JP5355064B2 - Fuel for premixed compression self-ignition engines - Google Patents

Fuel for premixed compression self-ignition engines Download PDF

Info

Publication number
JP5355064B2
JP5355064B2 JP2008321239A JP2008321239A JP5355064B2 JP 5355064 B2 JP5355064 B2 JP 5355064B2 JP 2008321239 A JP2008321239 A JP 2008321239A JP 2008321239 A JP2008321239 A JP 2008321239A JP 5355064 B2 JP5355064 B2 JP 5355064B2
Authority
JP
Japan
Prior art keywords
fuel
engine
ignition
volume
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008321239A
Other languages
Japanese (ja)
Other versions
JP2009167398A (en
Inventor
元 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2008321239A priority Critical patent/JP5355064B2/en
Publication of JP2009167398A publication Critical patent/JP2009167398A/en
Application granted granted Critical
Publication of JP5355064B2 publication Critical patent/JP5355064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/183Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、予混合圧縮自己着火式エンジン用の燃料に関し、詳しくは、予混合圧縮自己着火燃焼における燃焼反応を制御し、エンジン熱効率の向上を達成することができる予混合圧縮自己着火式エンジン用燃料に関する。   The present invention relates to a fuel for a premixed compression self-ignition engine, and more particularly, to a premixed compression self-ignition engine capable of controlling combustion reaction in premixed compression self-ignition combustion and achieving improvement in engine thermal efficiency. Regarding fuel.

今日、自動車用内燃機関としては、火花点火式ガソリンエンジンと圧縮自己着火式ディーゼルエンジンの二種類が広く使用されている。
火花点火式ガソリンエンジンは、吸気ポートあるいは燃焼室内に燃料を噴射して燃料と空気の予混合気を形成させ、スパークプラグによる電気放電で強制的に点火、燃焼させる方式であり、燃料特性として、蒸発しやすいこと、自己着火し難いこと、点火後は火炎伝播がスムーズに行われること等が求められる。火花点火式ガソリンエンジンにおいては、窒素酸化物(NOx)、炭化水素(HC)、一酸化炭素(CO)が排出されるため、これらの浄化に三元触媒等が広く使用されている。しかし、三元触媒による排出ガス浄化システムは、燃料と空気との割合が理論空燃比近傍になる範囲にしか適用できないため、圧縮自己着火式ディーゼルエンジンと比較すると熱効率、燃費が著しく劣るという欠点がある。
Today, two types of internal combustion engines for automobiles are widely used: a spark ignition gasoline engine and a compression self-ignition diesel engine.
A spark-ignition gasoline engine is a system in which fuel is injected into an intake port or combustion chamber to form a premixed mixture of fuel and air, and is forcibly ignited and burned by electric discharge by a spark plug. It is required that it is easy to evaporate, difficult to self-ignite, and that the flame propagates smoothly after ignition. In spark-ignition gasoline engines, nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxide (CO) are exhausted, and three-way catalysts and the like are widely used for purification of these. However, since the exhaust gas purification system using a three-way catalyst can only be applied to a range where the ratio of fuel to air is close to the theoretical air-fuel ratio, there is a disadvantage that the thermal efficiency and fuel consumption are significantly inferior compared with a compression self-ignition diesel engine. is there.

一方、圧縮自己着火式ディーゼルエンジンは、圧縮行程でのピストン上昇により燃焼室内の空気が圧縮されて温度が上昇し、軽油の臨界温度以上に達したところに燃料を噴霧し自己着火燃焼させる方式であり、燃料特性には自己着火しやすいことが求められる。圧縮自己着火式ディーゼルエンジンは、燃費及び熱効率面に優れるものの燃料噴霧を圧縮上死点前30クランク角度から圧縮上死点後10クランク角度付近で行うため、燃焼時の温度分布に濃淡が生じ、NOx及び煤の排出量が著しく高くなるという欠点がある。また圧縮自己着火式ディーゼルエンジンでは、排出ガス浄化のための触媒があまり普及しておらず、NOxが100〜1200質量ppmと非常に高いレベルで大気中に放出されるケースもある。   On the other hand, the compression self-ignition type diesel engine is a system in which the air in the combustion chamber is compressed by the piston rise in the compression stroke, the temperature rises, and fuel is sprayed and self-ignited and combusted when it reaches the critical temperature of light oil or higher. In addition, fuel characteristics are required to be easily ignited. Although the compression self-ignition type diesel engine is excellent in fuel efficiency and thermal efficiency, the fuel spray is performed from 30 crank angle before compression top dead center to around 10 crank angle after compression top dead center, so the temperature distribution during combustion is shaded, There is a drawback that the amount of NOx and soot emissions is significantly increased. Further, in a compression self-ignition diesel engine, a catalyst for purifying exhaust gas is not so popular, and there is a case where NOx is released into the atmosphere at a very high level of 100 to 1200 mass ppm.

このように、従来の火花点火式ガソリンエンジンは、排出ガスの浄化はある程度できるが燃費や熱効率の面に課題があり、一方、圧縮自己着火式ディーゼルエンジンは、省燃費、高熱効率であるが、NOx等の排出ガスの面に課題がある。このため、低NOx排出ガス、省燃費及び高熱効率を同時に達成するという課題を解決すべく予混合圧縮自己着火式エンジンが現在検討されている。
予混合圧縮自己着火式エンジンは、燃料の噴射圧力レベルが20MPa以下と圧縮自己着火式ディーゼルエンジンにおける噴射圧力に比べると著しく低い燃料噴射圧力にて燃料を吸気ポート又は燃焼室内に噴射し、そのサイクルで燃焼する燃料噴射を圧縮上死点前60クランク角度以前に終了するシステムであって、燃料と空気との予混合気をスパークプラグによる強制点火ではなく、自己着火で燃焼させるエンジンである。予混合圧縮自己着火式エンジンは、従来の圧縮自己着火式ディーゼルエンジンに比べて燃料が噴射されてから燃焼の始まるまでの時間が長く、燃料が燃料室内で均一に混合されるため、燃焼時に局部的に温度の高い領域ができず、NOx排出レベルを触媒未装着状態で10質量ppm以下に抑えることが可能となり、かつ燃費及び熱効率を圧縮自己着火式ディーゼルエンジン並みの省燃費、高効率にすることが可能である。
In this way, the conventional spark ignition gasoline engine can purify the exhaust gas to some extent, but there are problems in terms of fuel efficiency and thermal efficiency, while the compression self-ignition diesel engine has fuel efficiency and high thermal efficiency. There is a problem in terms of exhaust gas such as NOx. For this reason, premixed compression self-ignition engines are currently being studied to solve the problem of simultaneously achieving low NOx emission, fuel saving and high thermal efficiency.
A premixed compression self-ignition engine injects fuel into the intake port or the combustion chamber at a fuel injection pressure level of 20 MPa or less, which is significantly lower than the injection pressure in a compression self-ignition diesel engine. This is a system that terminates fuel injection combusted at 60 crank angle before compression top dead center and burns premixed fuel and air by self-ignition rather than forced ignition by a spark plug. A premixed compression self-ignition engine has a longer time from fuel injection to the start of combustion than a conventional compression self-ignition diesel engine, and the fuel is uniformly mixed in the fuel chamber. The high temperature range is not possible, the NOx emission level can be suppressed to 10 mass ppm or less with no catalyst installed, and the fuel efficiency and thermal efficiency can be reduced to the same level as the compression self-ignition diesel engine. It is possible.

このような予混合圧縮自己着火式エンジン用の燃料としては、燃料の揮発性指標およびセタン価、オクタン価等の既存のガソリンエンジン、ディーゼルエンジンの着火性指標に着目した燃料が提案されているが(例えば、特許文献1〜13参照)、予混合圧縮自己着火燃焼のメカニズム面(燃料自身の自己着火特性)からみて、その特性を十分に発揮できているとは必ずしもいえず、予混合圧縮自己着火式エンジンにさらに適した燃料の開発が望まれている。
特開2004−91657号公報 特開2004−91658号公報 特開2004−91659号公報 特開2004−91660号公報 特開2004−91661号公報 特開2004−91662号公報 特開2004−91663号公報 特開2004−91664号公報 特開2004−91665号公報 特開2004−91666号公報 特開2004−91667号公報 特開2004−91668号公報 特開2004−315604号公報
As fuels for such premixed compression self-ignition engines, fuels have been proposed that focus on fuel volatility indicators and existing gasoline engines such as cetane number and octane number, and diesel engine ignitability indicators ( See, for example, Patent Documents 1 to 13, and the mechanism of premixed compression self-ignition combustion (self-ignition characteristics of the fuel itself) does not necessarily indicate that the characteristics are sufficiently exhibited. The development of a fuel more suitable for an engine is desired.
JP 2004-91657 A JP 2004-91658 A JP 2004-91659 A JP 2004-91660 A JP 2004-91661 A JP 2004-91662 A JP 2004-91663 A JP 2004-91664 A JP 2004-91665 A JP 2004-91666 A JP 2004-91667 A JP 2004-91668 A JP 2004-315604 A

予混合圧縮自己着火燃焼(以下、HCCI燃焼ともいう。)を行う内燃機関では、燃料が空気と十分に予混合された混合気がピストンの圧縮によりその温度および圧力が上昇し着火に至るが、混合気がほぼ同時に着火するために急峻な圧力上昇がエンジンのノッキングを引き起こし、負荷が上げられないことが大きな課題となっていた。
本発明の目的は、予混合圧縮自己着火燃焼における燃焼反応を制御し、エンジン熱効率の向上を達成することができる予混合圧縮自己着火式エンジン用燃料を提供することにある。
In an internal combustion engine that performs premixed compression self-ignition combustion (hereinafter also referred to as HCCI combustion), an air-fuel mixture in which fuel is sufficiently premixed with air rises in temperature and pressure due to compression of the piston, resulting in ignition. Since the air-fuel mixture ignites almost at the same time, a sharp increase in pressure causes knocking of the engine, and the load cannot be increased.
An object of the present invention is to provide a fuel for a premixed compression self-ignition engine capable of controlling the combustion reaction in the premixed compression self-ignition combustion and achieving an improvement in engine thermal efficiency.

本発明者らは、HCCI燃焼における冷炎反応(750K以上900K未満の温度)で分解が始まるC5からC10のパラフィン系を主体とする炭化水素と、熱炎反応(1100K以上)で開環する芳香族系のラジカルおよび芳香族系炭化水素を生成するC6からC11までの単環の芳香族系を主体とする炭化水素を組み合わせることで、燃焼期間を長期化し、着火時の急峻な圧力上昇を抑えることが可能となり、ノッキングを回避した高負荷運転を実現することを見出し、本発明を完成したものである。   The present inventors have developed a C5 to C10 paraffinic hydrocarbon mainly starting to decompose in a cold flame reaction (temperature of 750 K or more and less than 900 K) in HCCI combustion, and an aromatic that is opened by a hot flame reaction (1100 K or more). Combining C6 to C11 monocyclic aromatic hydrocarbons, which generate aromatic radicals and aromatic hydrocarbons, prolongs the combustion period and suppresses steep pressure rise during ignition The present invention has been completed by finding that it is possible to realize a high-load operation that avoids knocking.

すなわち、本発明は、下記の(1)〜(6)の全ての性状を満たし、かつ、(7)または(8)の要件を満たす燃料であることを特徴とする予混合圧縮自己着火式エンジン用燃料に関する。
(1)C5からC10までのノルマルパラフィンの合計含有量が40.31容量%以上、70容量%以下であること。
(2)C6からC11までの芳香族系炭化水素の含有量が30容量%以上、59.69容量%以下であること。
(3)オレフィン系炭化水素の含有量が20容量%以下であること。
(4)含酸素炭化水素の含有量が酸素原子換算で5質量%以下であること。
(5)リサーチ法オクタン価が70以上、92未満であること。
(6)蒸留性状の初留点が30℃以上、終点が220℃以下であること。
(7)同一のエンジン運転条件(エンジンの圧縮比、回転数、過給圧力、吸気管内温度、空気流量、バルブタイミング、EGR率、燃料噴射開始タイミング)において、同一の平均有効圧力値及び高温酸化反応燃焼重心値(HTHR CA50)を示す正標準燃料(Primary Reference Fuel:以下、PRFと略記する。)と比較して、400サイクルの連続した最大圧力上昇率の平均値がPRFに比べて15%以上小さい燃料。
(8)同一のエンジン運転条件(エンジンの圧縮比、回転数、過給圧力、吸気管内温度、空気流量、バルブタイミング、EGR率、燃料噴射開始タイミング)において、最大圧力上昇率が同一の条件で計測される図示平均有効圧力の400サイクルの平均値が、同一リサーチ法オクタン価のPRFと比較して20%以上増大する燃料。
That is, the present invention is a premixed compression self-ignition engine characterized by being a fuel that satisfies all the following properties (1) to (6) and satisfies the requirements (7) or (8): Related to fuel.
(1) The total content of normal paraffins from C5 to C10 is from 40.31 % by volume to 70% by volume.
(2) The content of aromatic hydrocarbons from C6 to C11 is 30% by volume or more and 59.69 % by volume or less.
(3) The content of olefinic hydrocarbon is 20% by volume or less.
(4) The content of oxygen-containing hydrocarbon is 5% by mass or less in terms of oxygen atom.
(5) The research octane number is 70 or more and less than 92.
(6) The initial boiling point of the distillation property is 30 ° C or higher and the end point is 220 ° C or lower.
(7) Same average effective pressure value and high temperature oxidation under the same engine operating conditions (engine compression ratio, rotation speed, supercharging pressure, intake pipe temperature, air flow rate, valve timing, EGR rate, fuel injection start timing) Compared with a positive reference fuel (Primary Reference Fuel: hereinafter abbreviated as PRF) indicating the reaction combustion center of gravity (HTHR CA50), the average value of the maximum continuous pressure increase rate of 400 cycles is 15% compared with PRF. Smaller fuel than that.
(8) Under the same engine operating conditions (engine compression ratio, rotation speed, supercharging pressure, intake pipe temperature, air flow rate, valve timing, EGR rate, fuel injection start timing), the maximum pressure increase rate is the same. Fuel whose average value of the measured mean effective pressure measured over 400 cycles increases by 20% or more compared to the PRF with the same research octane number.

本発明の燃料は、予混合圧縮自己着火燃焼時における最大圧力上昇率を低く抑え、静かなエンジン燃焼を実現することができる。また、同一最大圧力上昇率条件では、エンジン出力を従来比で20%以上、向上させることが可能である。   The fuel of the present invention can suppress the maximum pressure increase rate during premixed compression self-ignition combustion and can realize quiet engine combustion. Further, under the same maximum pressure increase rate condition, it is possible to improve the engine output by 20% or more compared with the conventional one.

以下に、本発明を詳述する。
本発明における燃料は、予混合圧縮自己着火方式エンジンに適した燃料である。ここで予混合圧縮自己着火方式とは、下記(A)、(B)及び(C)の条件下に燃料を噴射させ、自己着火により燃焼を行わせる燃焼形態をいう。
(A)燃料噴射圧力:20MPa以下
(B)燃料噴射位置:吸気ポート及び/又は燃焼室内部
(C)燃料噴射終了時期:圧縮上死点前60クランク角度以前
The present invention is described in detail below.
The fuel in the present invention is a fuel suitable for a premixed compression self-ignition engine. Here, the premixed compression self-ignition system refers to a combustion mode in which fuel is injected under the following conditions (A), (B), and (C), and combustion is performed by self-ignition.
(A) Fuel injection pressure: 20 MPa or less (B) Fuel injection position: intake port and / or inside combustion chamber (C) Fuel injection end time: 60 crank angle before compression top dead center

予混合圧縮自己着火方式は、従来のディーゼルエンジンなどにみられる圧縮自己着火方式と比較し、(A)の燃料噴射圧力が著しく低く、(C)の燃料噴射終了時期、即ち、燃料が噴射されてから燃焼が始まるまでの時間がかなり長い。従って、予混合圧縮自己着火方式においては、燃料が燃焼室内で均一に混合されるため、燃焼室内において局部的に温度の高い領域ができず、窒素酸化物の排出量を触媒未装着状態で10質量ppm以下にすることができる。
なお、予混合圧縮自己着火方式は、HCCI(Homogeneous Charge Compression Ignition)、PCCI(Premixed Charge Compression Ignition)、PCI(Premixed Compression Ignition)、CAI(Controlled Auto-Ignition)、AR(Active Radical (Combustion) )と呼ばれることもある。
In the premixed compression self-ignition method, compared with the compression self-ignition method found in conventional diesel engines, the fuel injection pressure in (A) is remarkably low, and the fuel injection end time in (C), that is, fuel is injected. It takes a long time to start burning. Therefore, in the premixed compression self-ignition method, the fuel is uniformly mixed in the combustion chamber, so that a region having a high temperature locally cannot be formed in the combustion chamber, and the amount of nitrogen oxide emitted is 10 in a state where no catalyst is mounted. It can be made into mass ppm or less.
The premixed compression self-ignition method includes HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), PCI (Premixed Compression Ignition), CAI (Controlled Auto-Ignition), and AR (Active Radical (Combustion)). Sometimes called.

本発明の燃料は、予混合圧縮自己着火方式エンジンに適した燃料であるが、該予混合圧縮自己着火方式エンジンと火花点火方式エンジンまたはディーゼルエンジンとを切り替えるタイプのエンジン、および電気モーターと火花点火方式エンジンまたはディーゼルエンジンを組み合わせたハイブリッド式エンジンに対しても適用することができる。   The fuel of the present invention is a fuel suitable for a premixed compression self-ignition engine, a type that switches between the premixed compression self-ignition engine and a spark ignition engine or a diesel engine, and an electric motor and spark ignition. The present invention can also be applied to a hybrid engine in which a system engine or a diesel engine is combined.

燃料が自己着火する場合は、まず低温酸化反応(Low Temperature Heat Release:LTHR)が起こり、続いて高温酸化反応(High Temperature Heat Release:HTHR)が起きる。本発明による予混合圧縮自己着火式エンジン用燃料は、分解性の高い燃料(ノルマルパラフィン)と分解性の低い燃料(芳香族およびオレフィン)を組み合わせることを特徴としており、図1に示す様に、最初に分解性の高い燃料(パラフィン系炭化水素)が冷炎(Cool Flame)、青炎(Blue Flame)の期間中に酸化分解し、熱炎(Hot Flame)期間中にベンゼン環構造を有する芳香族系のラジカルおよび芳香族系炭化水素が酸化分解することにより、二段燃焼が達成できる。   When the fuel self-ignites, a low temperature oxidation reaction (Low Temperature Heat Release: LTHR) occurs first, followed by a high temperature oxidation reaction (High Temperature Heat Release: HTHR). The premixed compression self-ignition engine fuel according to the present invention is characterized by combining a highly decomposable fuel (normal paraffin) and a low decomposable fuel (aromatic and olefin), as shown in FIG. First, a highly decomposable fuel (paraffinic hydrocarbon) is oxidatively decomposed during the period of Cool Flame and Blue Flame, and has an aromatic benzene ring structure during the period of Hot Flame. Two-stage combustion can be achieved by the oxidative decomposition of aromatic radicals and aromatic hydrocarbons.

本発明の燃料は、以下の(1)〜(6)の全ての性状を満たすことが必要である。
(1)C5からC10までのノルマルパラフィンの合計含有量が40.31容量%以上、70容量%以下であること、好ましくは50容量%以下である。C4以下のノルマルパラフィン系炭化水素は十分な低温酸化反応が発揮できない。またC11以上の炭化水素は沸点が高く、HCCIエンジン用の燃料には適さない。
(2)C6からC11までの芳香族の含有量が30容量%以上、59.69容量%以下であること、好ましくは50容量%以上である。C12以上の炭化水素は揮発性が悪くHCCIエンジン用燃料には適さない。また75容量%を越える芳香族を燃料中に含有すると、運転できる負荷回転領域が狭くなる。
(3)オレフィン系炭化水素の含有量が20容量%以下であること、好ましくは10容量%以下である。
(4)含酸素炭化水素の含有量が酸素原子換算で5質量%以下であること。
(5)リサーチ法オクタン価が70以上、92未満であること、好ましくは70以上、86以下である。
(6)蒸留性状の初留点が30℃以上、終点が220℃以下であること、好ましくは初留点30℃以上、終点150℃以下である。
なお、ここでいう炭化水素の含有量の定義は、JIS K 2536「石油製品−成分試験方法」に準拠してガスクロマトグラフを利用して測定される値を意味する。またノルマルパラフィンは直鎖系炭化水素を意味し、ナフテン(環状飽和炭化水素)分は含まないものである。
The fuel of the present invention needs to satisfy all the following properties (1) to (6).
(1) C5 from the total content of normal paraffins to C10 is 40.31 volume% or more, or less 70% by volume, preferably 5 0% by volume or less. C4 or lower normal paraffin hydrocarbons cannot exhibit a sufficient low temperature oxidation reaction. Moreover, C11 or higher hydrocarbons have a high boiling point and are not suitable as fuel for HCCI engines.
(2) the content of aromatics from C6 to C11 is 30 volume% or more, or less 59.69 volume%, preferably 50 volume% or more. C12 or higher hydrocarbons have poor volatility and are not suitable as fuel for HCCI engines. Moreover, when the aromatics exceeding 75% by volume are contained in the fuel, the operable load rotation region is narrowed.
(3) The content of the olefinic hydrocarbon is 20% by volume or less, preferably 10% by volume or less.
(4) The content of oxygen-containing hydrocarbon is 5% by mass or less in terms of oxygen atom.
(5) The research octane number is 70 or more and less than 92, preferably 70 or more and 86 or less.
(6) The distillation property has an initial boiling point of 30 ° C or higher and an end point of 220 ° C or lower, preferably an initial boiling point of 30 ° C or higher and an end point of 150 ° C or lower.
The definition of the hydrocarbon content here means a value measured using a gas chromatograph in accordance with JIS K 2536 “Petroleum product-component test method”. Normal paraffin means a straight-chain hydrocarbon and does not contain naphthene (cyclic saturated hydrocarbon).

上記に加え、本発明の燃料は、以下の(7)または(8)のいずれか要件を満たす燃料であることが必要である。   In addition to the above, the fuel of the present invention needs to satisfy the following requirements (7) or (8).

(7)同一のエンジン運転条件(エンジンの圧縮比、回転数、過給圧力、吸気管内温度、空気流量、バルブタイミング、EGR率、燃料噴射開始タイミング)において、燃料噴射量を変化(インジェクタの燃料噴射時間を調節)させて運転した場合、同一の平均有効圧力値及び高温酸化反応燃焼重心値(HTHR CA50)を示す正標準燃料(Primary Reference Fuel:以下、PRFと略記する。)と比較して、400サイクルの連続した最大圧力上昇率の平均値がPRFに比べて15%以上小さい燃料であり、好ましくは20%以上小さい燃料であること。
なお、ここでいう同一の平均有効圧力値および高温酸化反応燃焼重心値とは比較燃料である同一オクタン価のPRFと比較して、図示平均有効圧力が±20kPa以内で、かつHTHR CA50が±0.8degクランクアングル以内に入っていることと定義する。また、PRFとはオクタン価を計測する際に用いられる正標準燃料(Primary Reference Fuel)を意味し、例えばPRF80とはイソオクタン80容積%、ノルマルヘプタン20容積%混合して作られるリサーチ法オクタン価80の燃料を意味する。平均有効圧力値の計測方法、並びにHTHR CA50の定義については、論文SAE2006−01−0207の記載に基づく。
(7) The fuel injection amount is changed (injector fuel) under the same engine operating conditions (engine compression ratio, rotation speed, supercharging pressure, intake pipe temperature, air flow rate, valve timing, EGR rate, fuel injection start timing). When operated with the injection time adjusted), it is compared with a positive reference fuel (Primary Reference Fuel: hereinafter abbreviated as PRF) showing the same average effective pressure value and high temperature oxidation reaction combustion gravity center value (HTHR CA50). The average value of the continuous maximum pressure increase rate for 400 cycles is a fuel that is 15% or less smaller than that of the PRF, preferably a fuel that is 20% or smaller.
Note that the same mean effective pressure value and high temperature oxidation reaction combustion gravity center value here are within the range of ± 20 kPa in the illustrated mean effective pressure and ± 0. It is defined as being within 8 deg crank angle. PRF means a primary reference fuel used when measuring octane number. For example, PRF80 is a fuel with a research octane number of 80 produced by mixing 80% by volume of isooctane and 20% by volume of normal heptane. Means. The measurement method of the mean effective pressure value and the definition of HTHR CA50 are based on the description in the paper SAE2006-01-0207.

(8)同一のエンジン運転条件(エンジンの圧縮比、回転数、過給圧力、吸気管内温度、空気流量、バルブタイミング、EGR率、燃料噴射開始タイミング)において、最大圧力上昇率が同一の条件で計測される図示平均有効圧力の400サイクルの平均値が、同一リサーチ法オクタン価のPRFと比較して20%以上増大する燃料であり、好ましくは25%以上増大する燃料であり、さらに好ましくは50%以上増大する燃料である。
なお、ここでいう最大圧力上昇率の誤差は比較燃料であるPRFに対して、±4kPa/deg以内であると定義する。
(8) Under the same engine operating conditions (engine compression ratio, rotation speed, supercharging pressure, intake pipe temperature, air flow rate, valve timing, EGR rate, fuel injection start timing), the maximum pressure increase rate is the same. The average value of the measured mean effective pressure measured over 400 cycles is a fuel that is increased by 20% or more, preferably a fuel that is increased by 25% or more, more preferably 50% compared to a PRF having the same research octane number. This is an increasing fuel.
The error of the maximum pressure increase rate here is defined to be within ± 4 kPa / deg with respect to the PRF as the comparative fuel.

本発明の燃料において、硫黄分の含有量は特に限定されないが、10質量ppm以下であることが好ましく、触媒の性能維持の点から5質量ppm以下がより好ましく、1質量ppm以下が最も好ましい。硫黄分が10質量ppmを超えると、エンジンに装着した排出ガス浄化のための触媒が硫黄により被毒され、排出ガス浄化能力が低下する問題が生じ好ましくない。ここで、硫黄分とは、JIS K2541「原油及び石油製品一硫黄分試験方法」により測定される値である。   In the fuel of the present invention, the sulfur content is not particularly limited, but is preferably 10 ppm by mass or less, more preferably 5 ppm by mass or less from the viewpoint of maintaining the performance of the catalyst, and most preferably 1 ppm by mass or less. If the sulfur content exceeds 10 ppm by mass, the exhaust gas purification catalyst mounted on the engine is poisoned by sulfur, which causes a problem in that the exhaust gas purification capacity is lowered, which is not preferable. Here, the sulfur content is a value measured according to JIS K2541 “Crude oil and petroleum product one sulfur content test method”.

本発明の燃料は、主成分として炭化水素を含むが、その他に、エーテル、アルコール、ケトン、エステル、グリコール等の含酸素化合物を含有していてもよい。含酸素化合物としては、例えば、メタノール、エタノール、ノルマルプロピルアルコール、イソプロピルアルコール、ノルマルブチルアルコール、イソブチルアルコール、ジメチルエーテル、ジイソプロピルエーテル、メチルターシャリーブチルエーテル(MTBE)、エチルターシャリーブチルエーテル(ETBE)、ターシャリーアミルメチルエーテル(TAME)、ターシャリーアミルエチルエーテル、脂肪酸メチルエステル、脂肪酸エチルエステル等が挙げられる。
本発明の燃料は、前記含酸素化合物を含有することにより、排出ガス中の未燃炭化水素(HC)、微小粒子状物質等を低減することができる。また、バイオマス由来の含酸素化合物を使用した場合は、二酸化炭素削減等にも寄与する。しかし、場合によっては窒素化合物の増加を招く場合もあるので、含酸素化合物の含有割合は、酸素元素換算(酸素含有量)で燃料全量に対し5質量%以下が好ましい。
The fuel of the present invention contains hydrocarbon as a main component, but may contain oxygen-containing compounds such as ether, alcohol, ketone, ester, glycol and the like. Examples of the oxygen-containing compound include methanol, ethanol, normal propyl alcohol, isopropyl alcohol, normal butyl alcohol, isobutyl alcohol, dimethyl ether, diisopropyl ether, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), and tertiary amyl. Examples include methyl ether (TAME), tertiary amyl ethyl ether, fatty acid methyl ester, and fatty acid ethyl ester.
By containing the oxygen-containing compound, the fuel of the present invention can reduce unburned hydrocarbons (HC), fine particulate matter, and the like in the exhaust gas. In addition, when an oxygen-containing compound derived from biomass is used, it contributes to carbon dioxide reduction and the like. However, since an increase in nitrogen compounds may be caused depending on circumstances, the content ratio of the oxygen-containing compound is preferably 5% by mass or less with respect to the total amount of fuel in terms of oxygen element (oxygen content).

本発明の燃料は、上述の通り所定の性状を有する燃料を得られさえすれば、その基材については特に制限されるものではなく、例えば、原油を常圧蒸留して得られるナフサ留分(フルレンジナフサ)、ナフサの軽質留分(軽質ナフサ)、ナフサの重質留分(重質ナフサ)、フルレンジナフサを脱硫した脱硫フルレンジナフサ、軽質ナフサを脱硫した脱硫軽質ナフサ、重質ナフサを脱硫した脱硫重質ナフサ、軽質ナフサを異性化装置でイソパラフィンに転化して得られる異性化ガソリン、イソブタン等の炭化水素化合物に低級オレフィンを付加(アルキル化)することによって得られるアルキレート、接触改質法で得られる改質ガソリン、改質ガソリンから芳香族分を抽出した残分であるラフィネート、改質ガソリンの軽質留分、改質ガソリンの中重質留分、改質ガソリンの重質留分、接触分解法、水素化分解法等で得られる分解ガソリン、分解ガソリンの軽質留分、分解ガソリンの重質留分、原油の常圧蒸留装置から得られる直留軽油および直留灯油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油、減圧重質軽油あるいは脱硫重油を接触分解または水素化分解して得られる接触分解軽油、接触分解灯油、水素化分解軽油または水素化分解灯油、これらの石油系炭化水素を水素化精製して得られる水素化精製軽油、水素化脱硫軽油、若しく水素化精製灯油、及び天然ガス等を一酸化炭素と水素とに分解した後にF−T(Fischer-Tropsch)合成で得られるGTL(Gas to liquids)のナフサ留分、灯油留分、軽油留分等の基材を1種又は2種以上混合して調製することができる。   The fuel of the present invention is not particularly limited as long as a fuel having a predetermined property can be obtained as described above. For example, a naphtha fraction obtained by atmospheric distillation of crude oil ( Full-range naphtha), naphtha light fraction (light naphtha), naphtha heavy fraction (heavy naphtha), desulfurized full-range naphtha desulfurized full-range naphtha, desulfurized light naphtha desulfurized light naphtha, desulfurized heavy naphtha Alkylate obtained by adding (alkylating) lower olefins to hydrocarbon compounds such as isomerized gasoline and isobutane obtained by converting desulfurized heavy naphtha and light naphtha into isoparaffin using an isomerizer, catalytic reforming method Reformed gasoline, raffinate, which is a residue obtained by extracting aromatics from reformed gasoline, light fraction of reformed gasoline, reformed gasoline Middle heavy fraction, heavy reformed gasoline fraction, cracked gasoline obtained by catalytic cracking, hydrocracking, etc., light fraction of cracked gasoline, heavy fraction of cracked gasoline, atmospheric distillation of crude oil Contact with straight-run gas oil and straight-run kerosene obtained from the equipment, straight-run heavy oil and residual oil obtained from the atmospheric distillation equipment with reduced-pressure light oil, reduced-pressure heavy light oil or desulfurized heavy oil obtained by processing with a vacuum distillation device Catalytic cracked diesel oil, catalytic cracked kerosene, hydrocracked diesel oil or hydrocracked kerosene obtained by cracking or hydrocracking, hydrorefined diesel oil, hydrodesulfurized diesel oil obtained by hydrorefining these petroleum hydrocarbons GTL (Gas to liquids) naphtha fraction, kerosene fraction obtained by FT (Fischer-Tropsch) synthesis after decomposing young hydrorefined kerosene and natural gas into carbon monoxide and hydrogen, Mixing one or more base materials such as light oil fractions Can be prepared.

本発明の燃料には、必要に応じて公知の燃料添加剤を添加しても良い。例えば、燃料添加剤としては、高級カルボン酸とアルコールアミンとのアミド化合物等の摩擦調整剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミン等の清浄分散剤、N,N’−ジイソプロピル−p−フェニレンジアミン、N,N’−ジイソブチル−p−フェニレンジアミン、2,6−ジ−t−ブチル−4−メチルフェノール、ヒンダードフェノール類等の酸化防止剤、N,N’−ジサリチリデン−1,2−ジアミノプロパン等のアミンカルボニル縮合化合物等の金属不活性化剤、有機リン系化合物等の表面着火防止剤、多価アルコール及びそのエーテル等の氷結防止剤、有機酸のアルカリ金属塩又はアルカリ土類金属塩、高級アルコール硫酸エステル等の助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等の帯電防止剤、アゾ染料等の着色剤、有機カルボン酸及びそれらの誘導体類、アルケニルコハク酸エステル等の防錆剤、ソルビタンエステル類等の水抜き剤、硝酸エステルや有機過酸化物等のセタン価向上剤、カルボン酸系、エステル系、アルコール系およびフェノール系の潤滑性向上剤、シリコン系などの消泡剤、エチレン−酢酸ビニル共重合体、アルケニルコハク酸アミド等の低温流動性向上剤、キニザリン、クマリン等の識別剤、着臭剤等が挙げられる。これらの添加剤は、単独若しくは混合物として添加することができ、これら添加剤全量が、燃料全量基準で0.5質量%以下が好ましく、より好ましくは0.2質量%以下となるような割合で添加することが望ましい。なお、ここでいう添加剤全量とは、添加剤の有効成分としての添加量を意味している。   You may add a well-known fuel additive to the fuel of this invention as needed. For example, fuel additives include friction modifiers such as amide compounds of higher carboxylic acids and alcohol amines, detergent dispersants such as succinimides, polyalkylamines and polyetheramines, N, N′-diisopropyl-p- Antioxidants such as phenylenediamine, N, N'-diisobutyl-p-phenylenediamine, 2,6-di-t-butyl-4-methylphenol, hindered phenols, N, N'-disalicylidene-1, -Metal deactivators such as amine carbonyl condensation compounds such as diaminopropane, surface ignition inhibitors such as organophosphorus compounds, anti-icing agents such as polyhydric alcohols and ethers thereof, alkali metal salts or alkaline earths of organic acids Auxiliary surfactant such as metal salt, higher alcohol sulfate, anionic surfactant, cationic surfactant, amphoteric surfactant Such as antistatic agents such as azo dyes, organic carboxylic acids and derivatives thereof, rust preventives such as alkenyl succinic acid esters, draining agents such as sorbitan esters, nitrate esters and organic peroxides, etc. Low-temperature fluidity improvers such as cetane improvers, carboxylic acid-based, ester-based, alcohol-based and phenol-based lubricity improvers, silicon-based antifoaming agents, ethylene-vinyl acetate copolymers, alkenyl succinic acid amides, etc. And discriminating agents such as quinizarin and coumarin, and odorants. These additives can be added alone or as a mixture. The total amount of these additives is preferably 0.5% by mass or less, more preferably 0.2% by mass or less based on the total amount of fuel. It is desirable to add. Here, the total amount of additive means the amount added as an active ingredient of the additive.

以下に、実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明はこれらの例により限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

表1に示す組成に従って、本発明の燃料(実施例1〜2)及び比較用の燃料(比較例1〜2)を常法により調製した。得られた各燃料の炭化水素化合物の含有割合及び性状を表1に示す。   According to the composition shown in Table 1, fuels of the present invention (Examples 1 and 2) and comparative fuels (Comparative Examples 1 and 2) were prepared by a conventional method. Table 1 shows the hydrocarbon compound content and properties of the obtained fuels.

Figure 0005355064
Figure 0005355064

(エンジン諸元)
エンジン形式:直列4気筒、圧縮比15の予混合圧縮自己着火式エンジン
エンジンのスペックについては、下記の文献のものを使用した。
SAE2006−01−0207 (2006年4月発行)
(Engine specifications)
Engine type: Inline 4-cylinder, premixed compression self-ignition engine with a compression ratio of 15 The specifications of the following literature were used for the engine specifications.
SAE 2006-01-0207 (April 2006 issue)

(実施例1)
<エンジン運転条件>
エンジン回転数1000rpm、過給絶対圧力155kPa、吸気管内温度58℃で、エンジンの圧縮比、回転数、過給圧力、吸気管内温度、空気流量、バルブタイミング、EGR率などのエンジン側の制御条件は燃料に拘わらず全て同一であり、燃料噴射量のみを変化(インジェクタの燃料噴射時間を調節)させて実験を行った。
Example 1
<Engine operating conditions>
Engine speed control conditions such as engine speed 1000rpm, supercharging absolute pressure 155kPa, intake pipe temperature 58 ° C, engine compression ratio, rotation speed, supercharging pressure, intake pipe temperature, air flow rate, valve timing, EGR rate are The experiment was conducted by changing only the fuel injection amount (adjusting the fuel injection time of the injector) regardless of the fuel.

<燃料>
様々な燃料を用いて運転をした場合に高温酸化反応燃焼重心位置(HTHR CA50)と図示平均有効圧力(IMEP:Indicate Mean Effective Pressure)の400サイクルの平均値を一覧にしたものを図2に示す。この条件の中から、ほぼ同一のIMEPとほぼ同一のHTHR CA50の条件であるポイント1、ポイント2、ポイント3を選び、それぞれの点における400サイクルの最大圧力上昇率の変化を計測した。この実験の詳細は、論文SAE2008−01−0007の記載に基づく。
<Fuel>
FIG. 2 shows a list of the average values of 400 cycles of the high temperature oxidation reaction combustion center of gravity (HTHR CA50) and the indicated mean effective pressure (IMEP) when operated using various fuels. . From these conditions, point 1, point 2, and point 3, which are almost the same IMEP and almost the same HTHR CA50 conditions, were selected, and the change in the maximum pressure increase rate for 400 cycles at each point was measured. The details of this experiment are based on the description of the paper SAE2008-01-0007.

図3はポイント1における400サイクルの最大圧力上昇率の変化、図4はポイント2における400サイクルの最大圧力上昇率の変化、図5はポイント3における400サイクルの最大圧力上昇率の変化を示したものであり、その詳細を表2、表3、表4に示す。
何れにおいても本発明の燃料に該当するNTL系燃料(NTL70、NTL75)は同一運転条件(同一IMEP、同一HTHR CA50)で運転されるPRF系燃料(PRF90、PRF85)に比べ20%以上最大圧力上昇率が低減していることが分かる。また比較例1の他の燃料(NDB系燃料、NMP系燃料)と比較してみても、NTL系燃料のような最大圧力上昇率を低減できるような燃料はない。本発明ではパラフィン系燃料を主体とする成分と芳香族系燃料を主体とする燃料の着火温度が異なることを利用して、急峻な燃焼を防ぐことによりこのような最大圧力上昇率を抑えたHCCI運転が可能となっている。
3 shows changes in the maximum pressure increase rate of 400 cycles at point 1, FIG. 4 shows changes in the maximum pressure increase rate of 400 cycles at point 2, and FIG. 5 shows changes in the maximum pressure increase rate of 400 cycles at point 3. The details are shown in Table 2, Table 3, and Table 4.
In any case, the NTL fuel (NTL70, NTL75) corresponding to the fuel of the present invention has a maximum pressure increase of 20% or more compared to the PRF fuel (PRF90, PRF85) operated under the same operating conditions (same IMEP, same HTHR CA50). It can be seen that the rate is reduced. Further, even when compared with the other fuels (NDB fuel, NMP fuel) in Comparative Example 1, there is no fuel that can reduce the maximum pressure increase rate like the NTL fuel. In the present invention, by utilizing the fact that the ignition temperature of the component mainly composed of paraffinic fuel and the fuel mainly composed of aromatic fuel is different, the HCCI that suppresses such a maximum pressure increase rate by preventing abrupt combustion. Driving is possible.

Figure 0005355064
Figure 0005355064

Figure 0005355064
Figure 0005355064

Figure 0005355064
Figure 0005355064

(実施例2)
<燃料>
リサーチ法オクタン価が同一な燃料として下記の燃料を用意した(なお、ここでのPRFとNTL燃料のリサーチ法オクタン価は、CFRエンジン(Cooperative Fuel Research)でJISK2280により規定されるリサーチ法オクタン価を計測して3以内を誤差とする)。
(1)リサーチ法オクタン価が75の燃料
(比較例)PRF75、NDB75、NMP75、NCP75
(実施例)NTL75
<エンジン運転条件>
エンジン回転数1000rpm、過給絶対圧力155kPa、吸気管内温度58℃で、エンジンの圧縮比、回転数、過給圧力、吸気管内温度、空気流量、バルブタイミング、EGR率などのエンジン側の制御条件が燃料によらず同一の条件において、400サイクルの平均最大圧力上昇率が同一の下記の条件で実験データを採取した。
(Example 2)
<Fuel>
The following fuels were prepared as fuels with the same research method octane number (note that the research method octane number of PRF and NTL fuel here is the CFR engine (Cooperative Fuel Research) measured by the research method octane number defined by JISK2280) The error is within 3).
(1) Fuel with a research octane number of 75 (Comparative example) PRF75, NDB75, NMP75, NCP75
(Example) NTL75
<Engine operating conditions>
The engine control conditions such as engine speed 1000rpm, supercharging absolute pressure 155kPa, intake pipe temperature 58 ° C, engine compression ratio, rotation speed, supercharging pressure, intake pipe temperature, air flow rate, valve timing, EGR rate, etc. Experimental data was collected under the following conditions with the same average maximum pressure increase rate for 400 cycles under the same conditions regardless of the fuel.

リサーチ法オクタン価75の燃料に対して、最大圧力上昇率800kPa/degの条件で計測(計測条件A)。   Measured under the conditions of a maximum pressure increase rate of 800 kPa / deg for a fuel with a research octane number of 75 (measurement condition A).

<結果>
上記計測条件A、B、Cで計測される400サイクル平均の筒内圧力及び熱発生率とその一覧を図6〜図及び表5に示す。
<Result>
The measurement condition A, B, cylinder pressure and heat release rate of 400 cycles the average measured by C and that list is shown in FIGS. 6 and 7 and Table 5.

Figure 0005355064
Figure 0005355064

何れの図においても本発明の燃料に該当するNTL系燃料(NTL75)は最大圧力上昇率が同一の条件において、比較燃料(PRF系燃料、NDB系燃料、NMP系燃料、NCP系燃料)よりも図示平均有効圧力で28.2%の向上率を示している。これは図7に示すように本発明ではパラフィン系燃料を主体とする成分と芳香族系燃料を主体とする成分の着火温度が異なることを利用して燃焼期間を延ばし急峻な燃焼を防ぐことができるため、最大圧力上昇率が同一の条件では多くの燃料を燃焼させることができ、熱発生率を大きくすることができるためである。 In any of the figures, the NTL fuel (NTL75) corresponding to the fuel of the present invention is higher than the comparative fuel (PRF fuel, NDB fuel, NMP fuel, NCP fuel) under the same maximum pressure increase rate. The improvement rate of 28.2% is shown in the indicated mean effective pressure. As shown in FIG. 7, in the present invention, it is possible to extend the combustion period and prevent sharp combustion by utilizing the fact that the ignition temperature of the component mainly composed of paraffinic fuel and the component mainly composed of aromatic fuel is different. This is because many fuels can be burned under the same maximum pressure increase rate, and the heat generation rate can be increased.

本発明のHCCI燃焼(二段燃焼)の起こり方を示す。The way of occurrence of HCCI combustion (two-stage combustion) of the present invention will be described. 実施例1のエンジン運転条件におけるHTHR CA50とIMEPの400サイクルの平均値を示す。The average value of 400 cycles of HTHR CA50 and IMEP in the engine operating condition of Example 1 is shown. ポイント1における400サイクルの最大圧力上昇率の変化を示す。The change in the maximum pressure increase rate of 400 cycles at point 1 is shown. ポイント2における400サイクルの最大圧力上昇率の変化を示す。The change in the maximum pressure increase rate of 400 cycles at point 2 is shown. ポイント3における400サイクルの最大圧力上昇率の変化を示す。The change in the maximum pressure increase rate of 400 cycles at point 3 is shown. 計測条件Aにおける筒内圧力を示す。The in-cylinder pressure in the measurement condition A is shown. 計測条件Aにおける熱発生率を示す。The heat release rate under measurement condition A is shown.

Claims (1)

下記の(1)〜(6)の全ての性状を満たし、かつ、(7)または(8)の要件を満たす燃料であることを特徴とする予混合圧縮自己着火式エンジン用燃料。
(1)C5からC10までのノルマルパラフィンの合計含有量が40.31容量%以上、70容量%以下であること。
(2)C6からC11までの芳香族系炭化水素の含有量が30容量%以上、59.69容量%以下であること。
(3)オレフィン系炭化水素の含有量が20容量%以下であること。
(4)含酸素炭化水素の含有量が酸素原子換算で5質量%以下であること。
(5)リサーチ法オクタン価が70以上、92未満であること。
(6)蒸留性状の初留点が30℃以上、終点が220℃以下であること。
(7)同一のエンジン運転条件(エンジンの圧縮比、回転数、過給圧力、吸気管内温度、空気流量、バルブタイミング、EGR率、燃料噴射開始タイミング)において、同一の平均有効圧力値及び高温酸化反応燃焼重心値(HTHR CA50)を示す正標準燃料(Primary Reference Fuel:以下、PRFと略記する。)と比較して、400サイクルの連続した最大圧力上昇率の平均値がPRFに比べて15%以上小さい燃料。
(8)同一のエンジン運転条件(エンジンの圧縮比、回転数、過給圧力、吸気管内温度、空気流量、バルブタイミング、EGR率、燃料噴射開始タイミング)において、最大圧力上昇率が同一の条件で計測される図示平均有効圧力の400サイクルの平均値が、同一リサーチ法オクタン価のPRFと比較して20%以上増大する燃料。
A fuel for a premixed compression self-ignition engine characterized by satisfying all the following properties (1) to (6) and satisfying the requirements (7) or (8).
(1) The total content of normal paraffins from C5 to C10 is from 40.31 % by volume to 70% by volume.
(2) The content of aromatic hydrocarbons from C6 to C11 is 30% by volume or more and 59.69 % by volume or less.
(3) The content of olefinic hydrocarbon is 20% by volume or less.
(4) The content of oxygen-containing hydrocarbon is 5% by mass or less in terms of oxygen atom.
(5) The research octane number is 70 or more and less than 92.
(6) The initial boiling point of the distillation property is 30 ° C or higher and the end point is 220 ° C or lower.
(7) Same average effective pressure value and high temperature oxidation under the same engine operating conditions (engine compression ratio, rotation speed, supercharging pressure, intake pipe temperature, air flow rate, valve timing, EGR rate, fuel injection start timing) Compared with a positive reference fuel (Primary Reference Fuel: hereinafter abbreviated as PRF) indicating the reaction combustion center of gravity (HTHR CA50), the average value of the maximum continuous pressure increase rate of 400 cycles is 15% compared with PRF. Smaller fuel than that.
(8) Under the same engine operating conditions (engine compression ratio, rotation speed, supercharging pressure, intake pipe temperature, air flow rate, valve timing, EGR rate, fuel injection start timing), the maximum pressure increase rate is the same. Fuel whose average value of the measured mean effective pressure measured over 400 cycles increases by 20% or more compared to the PRF with the same research octane number.
JP2008321239A 2007-12-17 2008-12-17 Fuel for premixed compression self-ignition engines Active JP5355064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008321239A JP5355064B2 (en) 2007-12-17 2008-12-17 Fuel for premixed compression self-ignition engines

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007324363 2007-12-17
JP2007324363 2007-12-17
JP2008321239A JP5355064B2 (en) 2007-12-17 2008-12-17 Fuel for premixed compression self-ignition engines

Publications (2)

Publication Number Publication Date
JP2009167398A JP2009167398A (en) 2009-07-30
JP5355064B2 true JP5355064B2 (en) 2013-11-27

Family

ID=40328689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321239A Active JP5355064B2 (en) 2007-12-17 2008-12-17 Fuel for premixed compression self-ignition engines

Country Status (5)

Country Link
US (1) US20090151236A1 (en)
EP (1) EP2077312A1 (en)
JP (1) JP5355064B2 (en)
KR (1) KR20090065458A (en)
CN (1) CN101503637B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011053651A2 (en) * 2009-10-30 2011-05-05 Chevron U.S.A. Inc. A fuel composition
WO2011053650A2 (en) * 2009-10-30 2011-05-05 Chevron U.S.A. Inc. A fuel composition
JP5526408B2 (en) * 2010-01-19 2014-06-18 国立大学法人東北大学 Fuel property determination method and fuel property determination device
JP5453221B2 (en) 2010-11-18 2014-03-26 国立大学法人東北大学 Combustion experiment equipment
AU2012242964C1 (en) * 2011-04-14 2017-08-24 Chevron U.S.A. Inc. A fuel composition
CN103184083A (en) * 2011-12-30 2013-07-03 李述玉 Oxygen-containing, combustion-supporting, environment-friendly and energy-saving gasoline, and production method thereof
US10246657B2 (en) 2013-12-11 2019-04-02 Phillips 66 Company Fuel blends for homogeneous charge compression ignition engines
US9688928B2 (en) 2013-12-11 2017-06-27 Phillips 66 Company Processes for making homogeneous charge compression ignition engine fuel blends
EP3080414B1 (en) * 2013-12-11 2020-11-04 Phillips 66 Company Homogeneous charge compression ignition engine fuels and process for making these fuels
CN104789277A (en) * 2014-01-22 2015-07-22 李卫教 Production process for synthesizing novel biodiesel from fatty acid methyl ester and dimethyl ether
US11261391B1 (en) * 2014-04-18 2022-03-01 National Technology & Engineering Solutions Of Sandia, Llc Fuel and fuel blend for internal combustion engine
AT516289B1 (en) * 2014-10-06 2016-07-15 Ge Jenbacher Gmbh & Co Og Method for operating an auto-ignition internal combustion engine
CN105647598A (en) * 2014-11-05 2016-06-08 周向进 Gasoline product containing combustion improver, and preparation method thereof
JP6448688B2 (en) * 2017-03-06 2019-01-09 Jxtgエネルギー株式会社 Method of using fuel oil in an internal combustion engine
CN109164393B (en) * 2018-07-27 2021-05-04 清华大学 Battery thermal runaway experimental device, system and method
EP3636910A1 (en) * 2018-10-08 2020-04-15 OxFA GmbH Use of a formic acid alkylester and/or an oxymethylene dimethyl ether or polyoxymethylene dimethyl ether
CN110823949B (en) * 2019-09-25 2020-08-28 西安交通大学 Method for rapidly calculating octane value sensitivity of ethanol gasoline based on heat release rate curve
CN111996042B (en) * 2020-07-30 2022-03-29 清华大学 Fuel for spark ignition combustion engine
CN113583723A (en) * 2021-08-06 2021-11-02 山东京博石油化工有限公司 Ignition type high-compression-ratio engine fuel and preparation method thereof
CN117965210B (en) * 2024-01-26 2024-07-30 苏州道伟迩新能源发展有限公司 Ether-based fuel for vehicle and fuel synthesis monitoring process

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007589A (en) * 1998-11-17 1999-12-28 Talbert Fuel Systems Inc. E-gasoline II a special gasoline for modified spark ignited internal combustion engines
US6550430B2 (en) * 2001-02-27 2003-04-22 Clint D. J. Gray Method of operating a dual fuel internal
US7557255B2 (en) * 2001-05-02 2009-07-07 Bp Corporation North America Inc. Method and an unleaded low emission gasoline for fueling an automotive engine with reduced emissions
ATE376044T1 (en) * 2001-09-18 2007-11-15 Southwest Res Inst FUELS FOR HOMOGENEOUSLY CHARGED COMPRESSION IGNITION MACHINES
JP2004019668A (en) 2002-06-12 2004-01-22 Ishino Gasket Kogyo Kk Bead
DE10226004A1 (en) 2002-06-12 2004-01-08 Robert Bosch Gmbh Fuel injection system with a solid-state damping element
US6766777B2 (en) 2002-06-14 2004-07-27 Borgwarner, Inc. Method to ensure robust operation of a pin lock in a vane style cam phaser
US6779501B2 (en) 2002-06-14 2004-08-24 Borgwarner Inc. Method to reduce rotational oscillation of a vane style phaser with a center mounted spool valve
US6736094B2 (en) 2002-06-17 2004-05-18 Borgwarner Inc. VCT solenoid dither frequency control
DE10228063A1 (en) 2002-06-17 2004-01-08 Robert Bosch Gmbh Method for operating an internal combustion engine, in particular a motor vehicle
GB0213910D0 (en) 2002-06-17 2002-07-31 Holset Engineering Co Turbine
US6766776B2 (en) 2002-06-17 2004-07-27 Borgwarner Inc. Control method for preventing integrator wind-up when operating VCT at or near its physical stops
US6807931B2 (en) 2002-06-17 2004-10-26 Borgwarner Inc Control method for transitions between open and closed loop operation in electronic VCT controls
US6938592B2 (en) 2002-06-17 2005-09-06 Borgwarner Inc. Control method for electro-hydraulic control valves over temperature range
US6745732B2 (en) 2002-06-17 2004-06-08 Borgwarner Inc. VCT cam timing system utilizing calculation of intake phase for dual dependent cams
DE10227281A1 (en) 2002-06-19 2004-01-08 Robert Bosch Gmbh Device for conveying fuel from a reservoir to the internal combustion engine of a motor vehicle
JP4454247B2 (en) 2003-04-14 2010-04-21 コスモ石油株式会社 Fuel oil composition for premixed compression self-ignition engine
US20050000855A1 (en) * 2003-07-03 2005-01-06 Farrell John T. Hydrocarbon fuel with improved laminar burning velocity and method of making
CN1882675B (en) * 2003-10-17 2010-09-29 Sasol技术股份有限公司 Process for the production of fuel of compression ignition type engine, gas turbine and fuel cell and fuel produced by said process
AU2004280647B2 (en) * 2003-10-17 2010-03-18 Sasol Technology (Pty) Ltd Process for the production of multipurpose energy sources and multipurpose energy sources produced by said process
DE112004002457T5 (en) * 2003-12-19 2006-12-21 Sasol Technology (Proprietary) Ltd. Homogeneous Diesel Combustion System (HCCI) fuel and method of making this fuel
CN1950489B (en) * 2004-05-14 2010-10-27 埃克森美孚研究工程公司 Method for controlling exhaust emissions from direct injection homogeneous charge compression ignition engines
US20060092329A1 (en) * 2004-10-29 2006-05-04 Canon Kabushiki Kaisha Image display apparatus and correction apparatus thereof
US7487663B2 (en) * 2006-04-20 2009-02-10 Exxonmobil Research & Engineering Co. Method for selecting fuel to both optimize the operating range and minimize the exhaust emissions of HCCI engines
JP5178253B2 (en) * 2008-03-13 2013-04-10 Jx日鉱日石エネルギー株式会社 Fuel for premixed compression self-ignition engines

Also Published As

Publication number Publication date
US20090151236A1 (en) 2009-06-18
CN101503637A (en) 2009-08-12
EP2077312A1 (en) 2009-07-08
KR20090065458A (en) 2009-06-22
JP2009167398A (en) 2009-07-30
CN101503637B (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5355064B2 (en) Fuel for premixed compression self-ignition engines
JP5178253B2 (en) Fuel for premixed compression self-ignition engines
JP5019802B2 (en) Fuel for premixed compression self-ignition engines
JP5545677B2 (en) Fuel for premixed compression self-ignition engines
JP4634103B2 (en) Premixed compression self-ignition and spark ignition combined engine fuel
JP4109043B2 (en) Fuel for premixed compression self-ignition engines
JP4815178B2 (en) Fuel for premixed compression self-ignition engines
JP2004091659A (en) Fuel for premixed compressed self-ignition type engine
JP4634104B2 (en) Premixed compression self-ignition and spark ignition combined engine fuel
JP4458405B2 (en) Fuel for premixed compression self-ignition engines
JP4109046B2 (en) Fuel for premixed compression self-ignition engines
JP4109053B2 (en) Fuel for premixed compression self-ignition engines
JP4109048B2 (en) Fuel for premixed compression self-ignition engines
JP4109049B2 (en) Fuel for premixed compression self-ignition engines
JP4109044B2 (en) Fuel for premixed compression self-ignition engines
JP4109047B2 (en) Fuel for premixed compression self-ignition engines
JP4109052B2 (en) Fuel for premixed compression self-ignition engines
JP4109050B2 (en) Fuel for premixed compression self-ignition engines
JP4109051B2 (en) Fuel for premixed compression self-ignition engines
JP4109054B2 (en) Fuel for premixed compression self-ignition engines
JP5334557B2 (en) Fuel oil composition for premixed compression ignition engines
JP6071695B2 (en) Fuel oil composition for premixed compression self-ignition engine
JP5520080B2 (en) Fuel compositions for premixed compression self-ignition combustion and compression self-ignition diesel combustion switched engines
JP2009167404A (en) Fuel oil composition for premixed compressed ignition type engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5355064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250