JP5520080B2 - Fuel compositions for premixed compression self-ignition combustion and compression self-ignition diesel combustion switched engines - Google Patents
Fuel compositions for premixed compression self-ignition combustion and compression self-ignition diesel combustion switched engines Download PDFInfo
- Publication number
- JP5520080B2 JP5520080B2 JP2010043387A JP2010043387A JP5520080B2 JP 5520080 B2 JP5520080 B2 JP 5520080B2 JP 2010043387 A JP2010043387 A JP 2010043387A JP 2010043387 A JP2010043387 A JP 2010043387A JP 5520080 B2 JP5520080 B2 JP 5520080B2
- Authority
- JP
- Japan
- Prior art keywords
- compression self
- combustion
- ignition
- fuel
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 112
- 239000000446 fuel Substances 0.000 title claims description 96
- 238000007906 compression Methods 0.000 title claims description 95
- 230000006835 compression Effects 0.000 title claims description 95
- 239000000203 mixture Substances 0.000 title claims description 42
- 238000004821 distillation Methods 0.000 claims description 33
- 125000003118 aryl group Chemical group 0.000 claims description 17
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 14
- 229910052717 sulfur Inorganic materials 0.000 claims description 14
- 239000011593 sulfur Substances 0.000 claims description 14
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 238000009835 boiling Methods 0.000 claims description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 36
- 239000007789 gas Substances 0.000 description 24
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- 239000013618 particulate matter Substances 0.000 description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 12
- 229910002091 carbon monoxide Inorganic materials 0.000 description 12
- 239000003921 oil Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 239000002904 solvent Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000009841 combustion method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 239000002283 diesel fuel Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000779 smoke Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- -1 fatty acid ester Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004231 fluid catalytic cracking Methods 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Liquid Carbonaceous Fuels (AREA)
Description
本発明は、燃料の着火方式を負荷に応じて切り替える予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物に関し、予混合圧縮自己着火方式の燃焼範囲を、軽油等の従来燃料では達成できない範囲まで拡大させることができ、また、従来燃料と比べて、予混合圧縮自己着火燃焼時及び従来型ディーゼル燃焼時において排出ガスに含まれる窒素酸化物及び粒子状物質の排出量を低減し、更には燃費の向上、即ち二酸化炭素(CO2)排出量の低減を達成することも可能な燃料組成物に関するものである。 The present invention relates to a fuel composition for a premixed compression self-ignition combustion and a compression self-ignition diesel combustion switching engine that switches a fuel ignition method according to a load, and relates to a combustion range of the premixed compression self-ignition method such as light oil. Emissions of nitrogen oxides and particulate matter contained in exhaust gas during premixed compression auto-ignition combustion and conventional diesel combustion compared to conventional fuel can be expanded to the extent that cannot be achieved with conventional fuel In addition, the present invention relates to a fuel composition capable of reducing fuel consumption and further achieving improvement in fuel consumption, that is, reduction in carbon dioxide (CO 2 ) emissions.
自動車から排出される窒素酸化物(NOx)、粒子状物質(PM)、一酸化炭素(CO)、炭化水素(HC)は、大気中におけるこれら有害成分濃度に一定の寄与があるため、大気環境改善の観点から、これら有害排出ガス成分の削減が強く求められている。一方、地球温暖化防止のためには、化石燃料の燃焼で排出されるCO2の削減が必要であり、自動車からのCO2排出の削減、即ち、自動車の燃料消費効率(燃費)の向上が強く求められている。このように、自動車においては、有害ガス成分の排出削減とCO2の排出削減を同時に達成する必要があり、昨今、その対応技術として、予混合圧縮自己着火式エンジンが注目されている。 Nitrogen oxides (NOx), particulate matter (PM), carbon monoxide (CO), and hydrocarbons (HC) emitted from automobiles have a certain contribution to the concentration of these harmful components in the atmosphere. From the viewpoint of improvement, reduction of these harmful exhaust gas components is strongly demanded. On the other hand, in order to prevent global warming, it is necessary to reduce the CO 2 emitted by the combustion of fossil fuels, which reduces the CO 2 emission from automobiles, that is, improves the fuel consumption efficiency (fuel consumption) of automobiles. There is a strong demand. As described above, in automobiles, it is necessary to simultaneously achieve emission reduction of harmful gas components and CO 2 emission reduction, and recently, premixed compression self-ignition engines have been attracting attention as a corresponding technology.
予混合圧縮自己着火式エンジンは、燃料噴射時期を従来のディーゼルエンジンよりも早いタイミングで噴射することにより着火までの予混合期間を設けて、燃料と空気が燃焼室内で比較的均一に混合されてから圧縮自己着火させるエンジンである。従って、燃焼時に部分的な温度の高い領域ができず、PMやNOxの排出レベルを低く抑えることが可能となり、且つ予混合期間を設けていない圧縮自己着火式ディーゼルエンジンと同程度の低燃費及び高熱効率を達成することも可能である。一方で、高負荷では多点同時着火による騒音や急激な燃焼が問題となることから、予混合圧縮自己着火方式による運転範囲は制限されることになる(非特許文献1)。 A premixed compression self-ignition engine provides a premixing period until ignition by injecting fuel at an earlier timing than the conventional diesel engine, and fuel and air are mixed relatively uniformly in the combustion chamber. It is an engine that self-ignites compression. Therefore, it is not possible to have a region where the temperature is high at the time of combustion, it is possible to keep the emission level of PM and NOx low, and the fuel consumption is as low as that of a compression self-ignition diesel engine without a premixing period. It is also possible to achieve high thermal efficiency. On the other hand, at high loads, noise and rapid combustion due to multi-point simultaneous ignition become a problem, so the operating range by the premixed compression self-ignition method is limited (Non-Patent Document 1).
予混合圧縮自己着火燃焼に関してこれまで多くの研究がなされているが、全負荷領域への適用は現実的ではなく、従来のディーゼル燃焼とのデュアルモード運転が有力視されている(非特許文献2)。予混合圧縮自己着火燃焼が成立しないエンジンの負荷条件下では、従来型の燃焼形態である圧縮自己着火ディーゼル燃焼を用いることとなるが、有害排出ガスの低減と燃費の向上を同時に達成できる予混合圧縮自己着火燃焼の範囲が広く、且つ従来のディーゼル燃焼を行うことも可能な燃料が求められている。 Much research has been conducted on premixed compression self-ignition combustion, but application to the full load region is not realistic, and dual mode operation with conventional diesel combustion is considered promising (Non-patent Document 2). ). Under engine load conditions where premixed compression self-ignition combustion is not possible, conventional self-combustion compression self-ignition diesel combustion will be used, but premixing that can simultaneously reduce harmful emissions and improve fuel efficiency There is a need for a fuel that has a wide range of compression self-ignition combustion and can perform conventional diesel combustion.
そこで、本発明の目的は、予混合圧縮自己着火燃焼と、予混合期間を設けていない従来型の圧縮自己着火ディーゼル燃焼とを負荷に応じて切り替えるエンジン、即ち、予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジンにおいて、予混合圧縮自己着火方式の燃焼範囲を、軽油等の従来燃料では達成できない範囲まで拡大させることができ、また、従来燃料と比べて、予混合圧縮自己着火燃焼時及び従来型ディーゼル燃焼時において排出ガスに含まれるNOx排出量及びPM排出量を低減し、更には燃費の向上、即ち二酸化炭素(CO2)排出量の低減を達成することも可能な燃料組成物を提供することにある。 Therefore, an object of the present invention is to provide an engine that switches between premixed compression self-ignition combustion and conventional compression self-ignition diesel combustion without a premixing period according to the load, that is, premixed compression self-ignition combustion and compression. In a self-igniting diesel combustion switching engine, the combustion range of the premixed compression self-ignition system can be expanded to a range that cannot be achieved with conventional fuels such as light oil, and compared to conventional fuels, premixed compression self-ignition combustion Composition that can reduce NOx emissions and PM emissions contained in the exhaust gas at the time of combustion and conventional diesel combustion, and further improve fuel efficiency, that is, reduce carbon dioxide (CO 2 ) emissions To provide things.
本発明者らは、上記目的を達成するために鋭意検討した結果、特定の蒸留性状を有し、セタン価(CN)及び全芳香族分が特定の範囲にある上、水素/炭素比(H/C比)が高い燃料組成物が予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジンに好適であることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have a specific distillation property, a cetane number (CN) and a total aromatic content within a specific range, and a hydrogen / carbon ratio (H The present inventors have found that a fuel composition having a high / C ratio is suitable for a premixed compression self-ignition combustion engine and a compression self-ignition diesel combustion switching engine, and completed the present invention.
即ち、本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、硫黄分が8質量ppm以下、セタン価が35以上44以下、初留点が153.0℃以上、90容量%留出温度が296.0℃以下、10容量%留出温度と50容量%留出温度と90容量%留出温度との平均値が255.8℃以下、全芳香族分が7.16〜12.3容量%、水素/炭素比(H/C比)が2.02以上、潤滑性向上剤の含有量が100〜500質量ppmであることを特徴とする。 That is, the fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention has a sulfur content of 8 mass ppm or less, a cetane number of 35 to 44 , and an initial boiling point of 153.0. ℃ ≧ 90 vol% distillation temperature is 296.0 ℃ or less Average value of 10 vol% distillation temperature, 50 vol% distillation temperature and 90 vol% distillation temperature is 255.8 ℃ or less, wholly aromatic min 7.16 to 12.3 volume%, of hydrogen / carbon ratio (H / C ratio) is 2.02 or more, and the content of lubricity improvers is 100 to 500 mass ppm.
本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、15℃における密度が0.79〜0.82g/cm3、10容量%留出温度と50容量%留出温度と90容量%留出温度との平均値が205〜255.8℃、1環芳香族分が0.5容量%以上、2環芳香族分が6容量%以下、及び3環以上の芳香族分が5容量%以下であることが好ましい。 The fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention has a density at 15 ° C. of 0.79 to 0.82 g / cm 3 , a 10 vol% distillation temperature and 50 capacities. The average value of the% distillation temperature and the 90 volume% distillation temperature is 205 to 255.8 ° C., 1 ring aromatic content is 0.5 volume% or more, 2 ring aromatic content is 6 volume% or less, and 3 rings The aromatic content is preferably 5% by volume or less.
本発明によれば、特定の蒸留性状を有し、セタン価(CN)及び全芳香族分が特定の範囲にある上、水素/炭素比(H/C比)が高い燃料組成物を、負荷に応じて予混合圧縮自己着火燃焼と圧縮自己着火ディーゼル燃焼とを切り替える方式のエンジンに用いることにより、予混合圧縮自己着火方式の燃焼範囲を、軽油等の従来燃料では達成できない範囲まで拡大させることができ、また、従来燃料と比べて、予混合圧縮自己着火燃焼時及び従来型ディーゼル燃焼時において排出ガスに含まれるNOx排出量及びPM排出量を低減し、更には燃費の向上、即ちCO2排出量の低減を達成することが可能となる。 According to the present invention, a fuel composition having a specific distillation property, a cetane number (CN) and a total aromatic content within a specific range, and a high hydrogen / carbon ratio (H / C ratio) is loaded. To expand the combustion range of the premixed compression self-ignition method to a range that cannot be achieved with conventional fuels such as light oil. Compared with conventional fuels, NOx emissions and PM emissions contained in exhaust gas can be reduced during premixed compression self-ignition combustion and conventional diesel combustion, and fuel consumption can be improved, that is, CO 2. A reduction in emissions can be achieved.
以下に本発明を詳細に説明する。本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、負荷に応じて予混合圧縮自己着火燃焼方式と圧縮自己着火ディーゼル燃焼方式を切り替えるタイプのエンジンに適した燃料である。なお、予混合圧縮自己着火燃焼方式とは、燃料を燃焼室に噴射する時期を圧縮上死点前20クランク角度以前とすることで、燃焼開始までの着火遅れ期間を長く設け、燃料と空気との混合気を比較的均質とした状態で圧縮自己着火を行う燃焼方式である。 The present invention is described in detail below. The fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention is suitable for an engine of a type that switches between a premixed compression self-ignition combustion method and a compression self-ignition diesel combustion method according to a load. Fuel. Note that the premixed compression self-ignition combustion method means that the timing of injecting the fuel into the combustion chamber is 20 crank angles before the compression top dead center, thereby providing a long ignition delay period until the start of combustion, This is a combustion system that performs compression self-ignition in a relatively homogeneous mixture.
ここで、本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、硫黄分が8質量ppm以下、セタン価が35以上44以下、初留点が153.0℃以上、90容量%留出温度が296.0℃以下、10容量%留出温度と50容量%留出温度と90容量%留出温度との平均値が255.8℃以下、全芳香族分が7.16〜12.3容量%、水素/炭素比(H/C比)が2.02以上、潤滑性向上剤の含有量が100〜500質量ppmであることを特徴とする。 Here, the fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention has a sulfur content of 8 ppm by mass or less, a cetane number of 35 to 44 , and an initial boiling point of 153. 0 ° C. or higher, 90% by volume distillation temperature of 296.0 ° C. or lower, average value of 10% by volume distillation temperature, 50% by volume distillation temperature and 90% by volume distillation temperature is 255.8 ° C. or lower, total fragrance The group content is 7.16 to 12.3 % by volume, the hydrogen / carbon ratio (H / C ratio) is 2.02 or more, and the content of the lubricity improver is 100 to 500 ppm by mass.
<硫黄分>
本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、硫黄分が8質量ppm以下であることが必要である。本発明の燃料組成物は、硫黄分が8質量ppm以下であるため、燃焼生成物である硫黄酸化物が少なく、環境負荷の低減に寄与できる。また、硫黄分は、排出ガス浄化触媒を被毒するので、硫黄分の低減は、排出ガス浄化触媒の性能の維持を通じても、環境負荷の低減に寄与できる。更に、NOx吸蔵還元触媒を装着した車両においては、該触媒の硫黄被毒の再生に燃料を使用するので、硫黄分の低減は、燃費の向上にも寄与する。そして、これらの効果は、硫黄分が低い程顕著であるため、本発明の燃料組成物中の硫黄分は、好ましくは5質量ppm以下であり、更に好ましくは3質量ppm以下である。なお、該硫黄分は、JIS K2541−6「硫黄分試験方法(紫外蛍光法)」に規定された方法で測定されるものである。
<Sulfur content>
The fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention needs to have a sulfur content of 8 mass ppm or less. Since the fuel composition of the present invention has a sulfur content of 8 mass ppm or less, there are few sulfur oxides as combustion products, which can contribute to a reduction in environmental burden. Further, since the sulfur content poisons the exhaust gas purification catalyst, the reduction of the sulfur content can contribute to the reduction of the environmental load through the maintenance of the performance of the exhaust gas purification catalyst. Further, in a vehicle equipped with a NOx occlusion reduction catalyst, fuel is used for regeneration of sulfur poisoning of the catalyst. Therefore, reduction of the sulfur content also contributes to improvement of fuel consumption. And since these effects become so remarkable that a sulfur content is low, the sulfur content in the fuel composition of this invention becomes like this. Preferably it is 5 mass ppm or less, More preferably, it is 3 mass ppm or less. The sulfur content is measured by the method defined in JIS K2541-6 “Sulfur content test method (ultraviolet fluorescence method)”.
<セタン価(CN)>
本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、従来のディーゼル燃焼による運転を行う必要があることから、セタン価は35以上であることが必要であり、好ましくは37以上、更に好ましくは40以上である。また、予混合圧縮自己着火燃焼における排出ガスの低減と運転範囲拡大の為には、セタン価は44以下であることが必要である。本発明の燃料組成物は、セタン価が44以下であるため、予混合圧縮自己着火燃焼において、着火遅れ期間が十分に確保され、燃料と空気との混合気の均質化を促進することができ、排出ガスに含まれるNOxとPMの両方を同時に低減することに寄与することができる。また、予混合圧縮自己着火燃焼における多点同時着火を抑制することができるため、運転範囲を高負荷まで拡大させることが可能である。なお、該セタン価(CN)は、JIS K2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」に準じた方法で測定されるものである。
<Cetane number (CN)>
Since the fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention needs to be operated by conventional diesel combustion, the cetane number needs to be 35 or more. Yes, preferably 37 or more, more preferably 40 or more. Further, the cetane number needs to be 44 or less in order to reduce the exhaust gas and expand the operation range in the premixed compression self-ignition combustion. Since the fuel composition of the present invention has a cetane number of 44 or less, a sufficient ignition delay period is ensured in the premixed compression self-ignition combustion, and homogenization of the fuel / air mixture can be promoted. This can contribute to simultaneously reducing both NOx and PM contained in the exhaust gas. Moreover, since multipoint simultaneous ignition in premixed compression self-ignition combustion can be suppressed, the operating range can be expanded to a high load. The cetane number (CN) is measured by a method according to JIS K2280 “Petroleum products-fuel oil-octane number and cetane number test method and cetane index calculation method”.
<蒸留性状>
本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、初留点(IBP)が153.0℃以上であることが必要であり、好ましくは155℃以上、更に好ましくは165℃以上である。本発明の燃料組成物は、初留点が153.0℃以上であるため、燃焼室において、燃料インジェクターから噴射される燃料と空気との混合が良好であり、出力の低下や排出ガスに含まれる未燃炭化水素や一酸化炭素の排出を抑制することができる。
<Distillation properties>
The fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching engine of the present invention needs to have an initial boiling point (IBP) of 153.0 ° C or higher, preferably 155 ° C or higher. More preferably, it is 165 ° C. or higher. Since the fuel composition of the present invention has an initial boiling point of 153.0 ° C. or higher, the fuel and air injected from the fuel injector are well mixed in the combustion chamber, and is included in the output reduction and exhaust gas. Emission of unburned hydrocarbons and carbon monoxide.
また、本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、90容量%留出温度(T90)が296.0℃以下であることが必要であり、好ましくは290℃以下である。本発明の燃料組成物は、T90が296.0℃以下であるため、排出ガスに含まれる可溶性有機成分(Soluble Organic Fraction)の排出を抑制することができ、その結果、PM排出量の低減に寄与できる。 Further, the fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention needs to have a 90% by volume distillation temperature (T90) of 296.0 ° C. or less , Preferably it is 290 degrees C or less. Since the T90 of the fuel composition of the present invention is 296.0 ° C. or lower, it is possible to suppress the emission of soluble organic fraction contained in the exhaust gas, resulting in a reduction in PM emission. Can contribute.
更に、本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、10容量%留出温度(T10)と50容量%留出温度(T50)と90容量%留出温度(T90)との平均値が255.8℃以下であることが必要である。予混合圧縮自己着火燃焼では、排出ガス中のNOx及びPMを同時低減することが期待されるが、予混合化を更に促進しながら、軽油等の従来燃料では達成できないレベルまで排出量の低減を達成するためには、T10とT50とT90との平均値が255.8℃以下であることが必要であり、250℃以下がより好ましく、240℃以下が特に好ましい。また、燃料噴射時の貫徹力の維持によって燃料/空気混合気の形成を促進するため、T10とT50とT90との平均値は、205℃以上が好ましく、より好ましくは207℃以上、更に好ましくは210℃以上である。 Further, the fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention has a 10 volume% distillation temperature (T10), 50 volume% distillation temperature (T50) and 90 volume%. It is necessary that the average value with the distillation temperature (T90) is 255.8 ° C. or lower. Premixed compression self-ignition combustion is expected to reduce NOx and PM in the exhaust gas at the same time. However, while further promoting premixing, the emissions can be reduced to a level that cannot be achieved with conventional fuels such as light oil. In order to achieve this, the average value of T10, T50, and T90 needs to be 255.8 ° C or lower, more preferably 250 ° C or lower, and particularly preferably 240 ° C or lower. Further, in order to promote the formation of the fuel / air mixture by maintaining the penetration force during fuel injection, the average value of T10, T50, and T90 is preferably 205 ° C or higher, more preferably 207 ° C or higher, and still more preferably It is 210 ° C or higher.
なお、これらの蒸留性状は、JIS K2254「石油製品−蒸留試験方法」に規定された方法により求められるものである。 These distillation properties are obtained by the method defined in JIS K2254 “Petroleum products-distillation test method”.
<密度>
本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、15℃における密度が0.79〜0.82g/cm3であることが好ましい。燃料組成物の15℃での密度をこの範囲にすることにより、燃費をより良好に維持することができ、排出ガス性状を最適化することが出来る。該密度は、燃費及び排出ガス性状を更に向上させる観点から、更に好ましくは0.79〜0.81g/cm3、一層好ましくは0.79〜0.805g/cm3である。なお、該密度は、JIS K2249「原油及び石油製品密度試験方法」に規定された方法で測定されるものである。
<Density>
The fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching engine of the present invention preferably has a density at 15 ° C. of 0.79 to 0.82 g / cm 3 . By setting the density of the fuel composition at 15 ° C. within this range, the fuel efficiency can be maintained better, and the exhaust gas properties can be optimized. The density is more preferably 0.79 to 0.81 g / cm 3 , more preferably 0.79 to 0.805 g / cm 3 from the viewpoint of further improving fuel consumption and exhaust gas properties. The density is measured by a method defined in JIS K2249 “Crude oil and petroleum product density test method”.
<芳香族分>
本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、全芳香族分が12.3容量%以下であることが必要である。燃料組成物中の全芳香族分が高すぎると、PMの排出量が増加し、また発熱量が増加することで窒素酸化物の排出量も増加する為、全芳香族分は12.3容量%以下であり、好ましくは12容量%以下、更に好ましくは10容量%以下である。一方、燃料組成物中の全芳香族分が低すぎても発熱量が低下して燃料消費量が増加する為、本発明の燃料組成物は、全芳香族分が7.16容量%以上である。
<Aromatic content>
The fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching engine of the present invention needs to have a total aromatic content of 12.3 % by volume or less. If the total aromatic content of the fuel composition is too high, increased emissions of PM, also because the amount of heat generated also increases emissions of nitrogen oxides by increasing the total aromatic content is 12.3 volume % Or less, preferably 12% by volume or less, more preferably 10% by volume or less. On the other hand, even if the total aromatic content in the fuel composition is too low, the calorific value decreases and the fuel consumption increases, so the fuel composition of the present invention has a total aromatic content of 7.16 % by volume or more . There is .
また、本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物において、PMの排出量を減少させるためには、3環以上の芳香族分が該燃料組成物中5容量%以下であることが好ましく、4.5容量%以下がより好ましく、4容量%以下が更に好ましい。同様に、PM排出量の低減の観点から、2環芳香族分は、該燃料組成物中6容量%以下が好ましく、3容量%以下がより好ましく、1容量%以下が更に好ましい。一方、発熱量維持の観点から、1環芳香族分は、該燃料組成物中0.5容量%以上が好ましく、2容量%以上がより好ましく、3容量%以上が更に好ましい。 Further, in the fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention, in order to reduce the PM emission amount, three or more aromatic components are contained in the fuel composition. The content is preferably 5% by volume or less, more preferably 4.5% by volume or less, and still more preferably 4% by volume or less. Similarly, from the viewpoint of reducing PM emissions, the bicyclic aromatic content is preferably 6% by volume or less, more preferably 3% by volume or less, and still more preferably 1% by volume or less in the fuel composition. On the other hand, from the viewpoint of maintaining the calorific value, the monocyclic aromatic content is preferably 0.5% by volume or more, more preferably 2% by volume or more, and still more preferably 3% by volume or more in the fuel composition.
なお、これら芳香族分は、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」に規定された方法で測定されるものである。 These aromatic components are measured by the method defined in JPI-5S-49-97 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method”.
<水素/炭素比(H/C比)>
本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、CO2排出量の低減の観点から、水素/炭素比(H/C比)が2.02以上であることが必要である。また、本発明の燃料組成物は、発熱量を維持し燃料消費量の増加を防ぐという観点から、水素/炭素比(H/C比)が好ましくは2.3以下であり、更に好ましくは2.2以下、特に好ましくは2.15以下である。なお、該H/C比は、有機元素分析により水素(H)分と炭素(C)分を測定して、H/C比(モル比)を求めるものである。
<Hydrogen / carbon ratio (H / C ratio)>
The fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention has a hydrogen / carbon ratio (H / C ratio) of 2.02 or more from the viewpoint of reducing CO 2 emissions. It is necessary to be . Further, the fuel composition of the present invention has a hydrogen / carbon ratio (H / C ratio) of preferably 2.3 or less, more preferably 2 from the viewpoint of maintaining a calorific value and preventing an increase in fuel consumption. .2 or less, particularly preferably 2.15 or less. The H / C ratio is obtained by measuring the hydrogen (H) content and the carbon (C) content by organic element analysis to obtain the H / C ratio (molar ratio).
<潤滑性向上剤(LI)>
本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、燃料噴射ポンプや燃料噴射ノズルの摺動部等の摩耗を防止する為、潤滑性向上剤の含有量が100質量ppm以上であることが必要であり、好ましくは130質量ppm以上、更に好ましくは150質量ppm以上である。また、潤滑性の向上効果と経済性とのバランスから、本発明の燃料組成物は、潤滑性向上剤が500質量ppm以下であることが必要であり、好ましくは400質量ppm以下であり、更に好ましくは300質量ppm以下である。ここで、潤滑性向上剤(LI)としては、長鎖脂肪酸(炭素数12〜24)又はその脂肪酸エステルが好適に使用される。
<Lubricity improver (LI)>
The fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching type engine of the present invention contains a lubricity improver in order to prevent wear of a sliding portion of a fuel injection pump or a fuel injection nozzle. The amount needs to be 100 ppm by mass or more, preferably 130 ppm by mass or more, and more preferably 150 ppm by mass or more. In addition, from the balance between the effect of improving lubricity and economy, the fuel composition of the present invention requires that the lubricity improver be 500 ppm by mass or less, preferably 400 ppm by mass or less, Preferably it is 300 mass ppm or less. Here, as the lubricity improver (LI), a long-chain fatty acid (having 12 to 24 carbon atoms) or a fatty acid ester thereof is preferably used.
<燃料組成物の調製>
本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物は、上述の通り、所定の性状を有していれば、その基材としては特に限定されることがなく、例えば常圧蒸留装置で分留した直留ナフサ、直留灯油や直留軽油留分を水素化脱硫した基材や、直留ナフサを改質させてリサーチ法オクタン価を向上させた改質ナフサ、重質軽油を流動接触分解装置で製造した接触分解ガソリンを水素化脱硫した基材、直留残渣油を熱分解させて製造した熱分解ナフサ、熱分解軽油を水素化脱硫させた基材、又は液化石油ガス(LPG)留分の付加反応により製造されるアルキレートガソリン等を基材としてブレンドすることにより調製することができる。
<Preparation of fuel composition>
As described above, the fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching engine of the present invention may be particularly limited as a base material as long as it has predetermined properties. For example, straight-run naphtha fractionated by atmospheric distillation equipment, base material obtained by hydrodesulfurization of straight-run kerosene or straight-run gas oil fraction, and reformation by improving straight-run naphtha to improve research octane number Base material obtained by hydrodesulfurization of catalytic cracking gasoline produced by fluid catalytic cracking equipment, naphtha, heavy light oil, thermal cracking naphtha produced by pyrolysis of residual oil, and base material obtained by hydrodesulfurization of pyrolysis light oil Alternatively, it can be prepared by blending, as a base material, alkylate gasoline produced by addition reaction of a liquefied petroleum gas (LPG) fraction.
<添加剤>
なお、本発明の予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン用の燃料組成物には、低温流動性向上剤、セタン価向上剤、酸化防止剤、金属不活性化剤、腐食防止剤等の公知の燃料添加剤を添加してもよい。例えば、低温流動性向上剤としては、エチレン共重合体などを用いることができるが、特には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなどの飽和脂肪酸のビニルエステルが好ましく用いられる。
<Additives>
The fuel composition for the premixed compression self-ignition combustion and compression self-ignition diesel combustion switching engine of the present invention includes a low-temperature fluidity improver, a cetane number improver, an antioxidant, a metal deactivator, and corrosion. A known fuel additive such as an inhibitor may be added. For example, an ethylene copolymer or the like can be used as the low temperature fluidity improver, and in particular, a vinyl ester of a saturated fatty acid such as vinyl acetate, vinyl propionate or vinyl butyrate is preferably used.
<予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジン>
予混合圧縮自己着火燃焼では、高負荷領域で多点同時着火による騒音や急激な燃焼により運転が困難となることから、エンジン負荷に応じて従来型のディーゼル燃焼と予混合圧縮自己着火燃焼を切り替えるエンジンが、近年予混合圧縮自己着火燃焼の実用化案として着目されており、かかるエンジンを予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジンと称する。エンジン負荷は、燃料噴射量、回転数等から計測され、燃料噴射量は主にアクセル開度から計測される。また、燃焼方式は、一般に、低負荷(定格出力の0〜30%)において予混合圧縮自己着火燃焼、中高負荷(定格出力の30〜100%)において従来型ディーゼル燃焼(圧縮自己着火ディーゼル燃焼)が採用されることになるが、燃焼方式の切替えは燃料噴射時期によって制御されている。ここで、予混合圧縮自己着火燃焼における燃料噴射時期は、20〜40°CA BTDCの範囲であることが必要である。この範囲より前に噴射すると、噴射燃料がピストンキャビティ内におさまらず、シリンダー壁への付着が発生する。その結果、燃焼効率の低下、未燃炭化水素の排出ガス中へのリークや、潤滑油の希釈によるエンジン性能の低下が引き起こされる。一方、この範囲より後に噴射すると、予混合気の均質化が不十分となり、局所的濃予混合気(燃料の濃度が局所的に高い予混合気)の燃焼によって、NOx及びPMの生成が引き起こされる。
<Premixed compression self-ignition combustion and compression self-ignition diesel combustion switching engine>
In premixed compression self-ignition combustion, it becomes difficult to operate due to noise and rapid combustion due to multipoint simultaneous ignition in a high load region, so switch between conventional diesel combustion and premixed compression self-ignition combustion according to engine load In recent years, an engine has attracted attention as a practical application of premixed compression self-ignition combustion, and such an engine is referred to as a premixed compression self-ignition combustion and a compression self-ignition diesel combustion switching engine. The engine load is measured from the fuel injection amount, the rotational speed, etc., and the fuel injection amount is mainly measured from the accelerator opening. In general, the combustion method is premixed compression self-ignition combustion at low load (0 to 30% of rated output), and conventional diesel combustion (compressed self-ignition diesel combustion) at medium to high load (30 to 100% of rated output). However, the switching of the combustion method is controlled by the fuel injection timing. Here, the fuel injection timing in the premixed compression self-ignition combustion needs to be in the range of 20 to 40 ° CA BTDC. When the fuel is injected before this range, the injected fuel does not fit in the piston cavity, and sticking to the cylinder wall occurs. As a result, the combustion efficiency decreases, the unburned hydrocarbon leaks into the exhaust gas, and the engine performance decreases due to dilution of the lubricating oil. On the other hand, if injection is performed after this range, the homogenization of the premixed gas becomes insufficient, and the generation of NOx and PM is caused by the combustion of the local rich premixed gas (the premixed gas with a locally high fuel concentration). It is.
また、予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジンは、その圧縮比が14〜18の範囲であることが必要である。この範囲より圧縮比が高くなると、機械摩擦損失の増大により熱効率が低下し、この範囲より圧縮比が低くなると、理論熱効率の低下が大きくなり、十分な性能を得ることができない。 In addition, the premixed compression self-ignition combustion and the compression self-ignition diesel combustion switching type engine need to have a compression ratio in the range of 14-18. When the compression ratio is higher than this range, the thermal efficiency is lowered due to an increase in mechanical friction loss. When the compression ratio is lower than this range, the theoretical thermal efficiency is greatly reduced, and sufficient performance cannot be obtained.
更に、予混合圧縮自己着火燃焼及び圧縮自己着火ディーゼル燃焼切替え式エンジンは、排出ガス中のNOxガスの低減効果をより高める為、排出ガスの一部を吸気側に戻すEGR(Exhaust gas Recirculation)を行うことが好ましい。 Further, the premixed compression self-ignition combustion and the compression self-ignition diesel combustion switching type engine has EGR (Exhaust gas Recirculation) for returning a part of the exhaust gas to the intake side in order to further improve the NOx gas reduction effect in the exhaust gas. Preferably it is done.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
<供試燃料の調製>
以下の供試燃料に対して、上記の方法で性状分析を行った。結果を表1〜2に示す。
・実施例1:蒸留範囲が150〜210℃のナフテン/パラフィン系溶剤であるエクゾールD40(東燃ゼネラル石油株式会社製)を72容量%、蒸留範囲が290〜305℃の芳香族系溶剤である日石ハイゾールSASグレード296(新日本石油化学株式会社製)を10容量%、蒸留範囲が255〜340℃のイソパラフィン系溶剤であるNAソルベントNAS−5H(日油株式会社製)を18容量%混合して調製した。また、インフィニアム社製の潤滑性向上剤R655を200質量ppm添加した。
・実施例2:市販1号軽油を15容量%、市販灯油を10容量%、エクゾールD40(東燃ゼネラル石油株式会社製)を70容量%、日石ハイゾールSASグレード296(新日本石油化学株式会社製)を5容量%混合して調製した。また、インフィニアム社製の潤滑性向上剤R655を200質量ppm添加した。
・実施例3:市販1号軽油を23容量%、市販灯油を45容量%、蒸留範囲213〜262℃のイソパラフィン系溶剤であるIPソルベント2028(出光興産株式会社製)を30容量%、NAソルベントNAS−5H(日油株式会社製)を2容量%混合して調製した。また、インフィニアム社製の潤滑性向上剤R655を200質量ppm添加した。
・実施例4:市販1号軽油を32容量%、IPソルベント2028(出光興産株式会社製)を68容量%混合して調製した。また、インフィニアム社製の潤滑性向上剤R655を200質量ppm添加した。
・比較例1:市販1号軽油を10容量%、IPソルベント2028(出光興産株式会社製)を40容量%、日石ハイゾールSASグレード296(新日本石油化学株式会社製)を11容量%、NAソルベントNAS−5H(日油株式会社製)を37容量%、日石ハイゾールSASグレードLH(新日本石油化学株式会社製)を2容量%混合して調製した。また、インフィニアム社製の潤滑性向上剤R655を200質量ppm添加した。
・比較例2:市販の2号軽油を使用した。
・比較例3:(株)JOMOサンエナジーからモスガス品として購入したF−T(Fischer−Tropsch)合成で得られるパラフィン系燃料を使用した。また、インフィニアム社製の潤滑性向上剤R655を200質量ppm添加した。
<Preparation of test fuel>
The properties of the following test fuels were analyzed by the above method. The results are shown in Tables 1-2.
Example 1: 72% by volume of Exol D40 (manufactured by TonenGeneral Sekiyu KK), a naphthene / paraffin solvent having a distillation range of 150 to 210 ° C., and an aromatic solvent having a distillation range of 290 to 305 ° C. 10% by volume of stone hysol SAS grade 296 (manufactured by Nippon Oil Chemical Co., Ltd.) and 18% by volume of NA solvent NAS-5H (manufactured by NOF Corporation), an isoparaffinic solvent with a distillation range of 255 to 340 ° C. Prepared. Further, 200 mass ppm of a lubricity improver R655 manufactured by Infinium Co. was added.
Example 2: 15% by volume of commercially available No. 1 diesel oil, 10% by volume of commercially available kerosene, 70% by volume of Exzol D40 (manufactured by TonenGeneral Sekiyu KK), Nisseki Hyzol SAS Grade 296 (manufactured by Nippon Petrochemical Co., Ltd.) ) Was prepared by mixing 5% by volume. Further, 200 mass ppm of a lubricity improver R655 manufactured by Infinium Co. was added.
-Example 3: 23 volume% of commercially available No. 1 light oil, 45 volume% of commercially available kerosene, 30 volume% of IP solvent 2028 (made by Idemitsu Kosan Co., Ltd.) which is an isoparaffin solvent having a distillation range of 213 to 262 ° C., NA solvent It was prepared by mixing 2% by volume of NAS-5H (manufactured by NOF Corporation). Further, 200 mass ppm of a lubricity improver R655 manufactured by Infinium Co. was added.
-Example 4: It prepared by mixing 32 volume% of commercially available No. 1 light oil, and 68 volume% of IP solvent 2028 (made by Idemitsu Kosan Co., Ltd.). Further, 200 mass ppm of a lubricity improver R655 manufactured by Infinium Co. was added.
Comparative Example 1: 10% by volume of commercially available No. 1 diesel oil, 40% by volume of IP Solvent 2028 (made by Idemitsu Kosan Co., Ltd.), 11% by volume of Nisseki Hysol SAS Grade 296 (made by Shin Nippon Petrochemical Co., Ltd.), NA 37% by volume of Solvent NAS-5H (manufactured by NOF Corporation) and 2% by volume of Nisseki Hyzol SAS Grade LH (manufactured by Nippon Oil Chemical Co., Ltd.) were prepared. Further, 200 mass ppm of a lubricity improver R655 manufactured by Infinium Co. was added.
Comparative Example 2: A commercially available No. 2 diesel oil was used.
Comparative Example 3: A paraffinic fuel obtained by FT (Fischer-Tropsch) synthesis purchased as a moss gas product from JOMO Sun Energy Co., Ltd. was used. Further, 200 mass ppm of a lubricity improver R655 manufactured by Infinium Co. was added.
<エンジン試験>
次に、上記供試燃料について、予混合圧縮自己着火燃焼(運転条件1)と従来型ディーゼル燃焼である圧縮自己着火ディーゼル燃焼(運転条件2)でのエンジン試験を想定し、それぞれのエンジン定常条件におけるエンジン出口直後の排出ガス性状としてスモーク(煤)値%、窒素酸化物(NOx)の排出量(g/kWh)、燃費の代替パラメータとして二酸化炭素(CO2)の排出量(g/kWh)を測定した。また、予混合圧縮自己着火燃焼における運転可能な最高負荷条件を求める為、運転負荷上限の制限を燃焼室最高圧力上昇率(単位時間(クランク角度)当たりの圧力上昇率:dP/dθmax)として、dP/dθmaxが1.0 MPa/CAに達するIMEP(図示平均有効圧力)をエンジン試験により求めた(運転条件3)。なお、運転負荷が高いほどdP/dθmaxは高い値を示すが、この値が1.0 MPa/CAを超えると、振動や騒音が激しくなり、エンジン損傷などの要因となる。IMEPは運転負荷の代替パラメータであり、IMEPが高いほど高い運転負荷条件と考えられる。したがって、IMEPが高い条件で運転が可能なほど、燃焼範囲拡大の点で良好といえる。得られた数値を比較例2(市販2号軽油)を基準にして相対評価で示した。これらの結果を表3に示す。なお、○は基準に対して良好で、△は基準と同等で、×は基準に対して劣っていることを示す。なお、比較例1の供試燃料は、自己着火性が低すぎる為、両運転条件において燃焼が成立しなかった。また、供試エンジン諸元と想定したエンジン定常条件を下記に示す。
<Engine test>
Next, for the above test fuel, engine tests in premixed compression self-ignition combustion (operation condition 1) and conventional self-combustion compression self-ignition diesel combustion (operation condition 2) are assumed. Smoke (煤) value%, nitrogen oxide (NOx) emissions (g / kWh) as carbon dioxide (CO 2 ) emissions (g / kWh) as an alternative parameter of fuel consumption Was measured. In addition, in order to obtain the maximum load condition that can be operated in premixed compression self-ignition combustion, the upper limit of the operation load is limited as the maximum pressure increase rate of the combustion chamber (pressure increase rate per unit time (crank angle): dP / dθ max ). IMEP (the indicated mean effective pressure) at which dP / dθ max reaches 1.0 MPa / CA was determined by an engine test (operating condition 3). Note that dP / dθ max shows a higher value as the operating load is higher, but if this value exceeds 1.0 MPa / CA, vibration and noise become intense, which causes engine damage and the like. IMEP is an alternative parameter for the operational load, and the higher the IMEP, the higher the operational load condition. Therefore, the higher the IMEP, the better the operation range is. The obtained numerical value was shown by relative evaluation based on Comparative Example 2 (commercially available No. 2 diesel oil). These results are shown in Table 3. In addition, (circle) is favorable with respect to a reference | standard, (triangle | delta) is equivalent to a reference | standard, and x shows that it is inferior to a reference | standard. In addition, since the test fuel of Comparative Example 1 was too low in self-ignitability, combustion was not established under both operating conditions. The engine steady conditions assumed to be the test engine specifications are shown below.
<供試エンジン諸元>
・4気筒 四サイクル直噴式エンジン
・排気量:約2L
・吸気:自然吸気(吸気加熱無し)
・燃料噴射システム:コモンレールシステム
・圧縮比:約17
<Specifications of the engine under test>
・ 4-cylinder four-cycle direct injection engine ・ Displacement: approx. 2L
・ Intake: Natural intake (no intake heating)
・ Fuel injection system: Common rail system ・ Compression ratio: Approximately 17
<運転条件1(予混合圧縮自己着火燃焼 一定負荷条件)>
・負荷:15%
・回転数:1200rpm
・噴射圧力:60MPa
・噴射開始時期:25°CA BTDC
・EGR率:20%
<Operating condition 1 (premixed compression self-ignition combustion constant load condition)>
・ Load: 15%
・ Rotation speed: 1200rpm
・ Injection pressure: 60 MPa
・ Injection start time: 25 ° CA BTDC
・ EGR rate: 20%
<運転条件2(圧縮自己着火ディーゼル燃焼 一定負荷条件)>
・負荷:50%
・回転数:1200rpm
・噴射圧力:60MPa
・噴射開始時期:12°CA BTDC
・EGR率:20%
<Operating condition 2 (compression self-ignition diesel combustion constant load condition)>
・ Load: 50%
・ Rotation speed: 1200rpm
・ Injection pressure: 60 MPa
・ Injection start time: 12 ° CA BTDC
・ EGR rate: 20%
<運転条件3(予混合圧縮自己着火燃焼 運転負荷上限の制約条件)>
・燃焼室最大圧力上昇率(dP/dθmax):1.0 MPa/CA
・回転数:1200rpm
・噴射圧力:60MPa
・噴射開始時期:25°CA BTDC
・EGR率:20%
<Operating condition 3 (premixed compression self-ignition combustion operating load upper limit constraint)>
・ Combustion chamber maximum pressure rise rate (dP / dθ max ): 1.0 MPa / CA
・ Rotation speed: 1200rpm
・ Injection pressure: 60 MPa
・ Injection start time: 25 ° CA BTDC
・ EGR rate: 20%
表3の結果から、本発明の燃料組成物である実施例1〜4の供試燃料は、比較例1〜2の供試燃料と比較して、予混合圧縮自己着火燃焼(運転条件1)及び圧縮自己着火ディーゼル燃焼(運転条件2)の両燃焼形態において、NOx排出量、スモーク(煤)値、CO2排出量を低減できることが分かる。なお、スモーク(煤)値は、PM排出量の指標となる。また、実施例1〜4の供試燃料は、比較例3の供試燃料と比較して、予混合圧縮自己着火燃焼(運転条件1)の燃料形態において、NOx排出量及びスモーク(煤)値を低減できることが分かる。さらに、実施例1〜4の供試燃料は、比較例1〜3の供試燃料と比較して、dP/dθmax=1.0 MPa/CA(運転負荷上限の制約条件)において、より高い負荷(高IMEP)条件まで運転可能であることが分かる。 From the results of Table 3, the test fuels of Examples 1 to 4 which are fuel compositions of the present invention are premixed compression self-ignition combustion (operating condition 1) as compared with the test fuels of Comparative Examples 1 and 2 It can be seen that the NOx emission amount, the smoke (煤) value, and the CO 2 emission amount can be reduced in both combustion forms of compression combustion and compression self-ignition diesel combustion (operating condition 2). Note that the smoke (値) value is an indicator of PM emissions. Further, the test fuels of Examples 1 to 4 were compared with the test fuel of Comparative Example 3 in the fuel form of premixed compression self-ignition combustion (operating condition 1), and the NOx emission amount and smoke (煤) value. It can be seen that can be reduced. Furthermore, the test fuels of Examples 1 to 4 are higher at dP / dθ max = 1.0 MPa / CA (constraint condition for the upper limit of the operating load) than the test fuels of Comparative Examples 1 to 3. It turns out that it can drive | operate to load (high IMEP) conditions.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010043387A JP5520080B2 (en) | 2010-02-26 | 2010-02-26 | Fuel compositions for premixed compression self-ignition combustion and compression self-ignition diesel combustion switched engines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010043387A JP5520080B2 (en) | 2010-02-26 | 2010-02-26 | Fuel compositions for premixed compression self-ignition combustion and compression self-ignition diesel combustion switched engines |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011178862A JP2011178862A (en) | 2011-09-15 |
JP5520080B2 true JP5520080B2 (en) | 2014-06-11 |
Family
ID=44690725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010043387A Active JP5520080B2 (en) | 2010-02-26 | 2010-02-26 | Fuel compositions for premixed compression self-ignition combustion and compression self-ignition diesel combustion switched engines |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5520080B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4223655B2 (en) * | 2000-04-20 | 2009-02-12 | 新日本石油株式会社 | Light oil composition |
JP5030459B2 (en) * | 2006-03-31 | 2012-09-19 | Jx日鉱日石エネルギー株式会社 | Light oil composition |
-
2010
- 2010-02-26 JP JP2010043387A patent/JP5520080B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011178862A (en) | 2011-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5355064B2 (en) | Fuel for premixed compression self-ignition engines | |
JP5178253B2 (en) | Fuel for premixed compression self-ignition engines | |
JP2006028493A (en) | Fuel oil composition for premix compression self-ignition engine | |
JP5019802B2 (en) | Fuel for premixed compression self-ignition engines | |
JP5361499B2 (en) | Fuel oil composition for premixed compression ignition engine with reformer | |
JP2006037075A (en) | Fuel oil composition for preliminarily mixing compression self-ignition type engine | |
JP5545677B2 (en) | Fuel for premixed compression self-ignition engines | |
JP2005343917A (en) | Fuel oil composition for premixed compressed self-ignition type engine | |
JP2004091657A (en) | Fuel for premixed compressed self-ignition type engine | |
JP5184903B2 (en) | Low temperature, premixed compression ignition engine fuel oil composition | |
JP2005343919A (en) | Fuel oil composition for premixed compressed self-ignition type engine | |
JP2004091659A (en) | Fuel for premixed compressed self-ignition type engine | |
JP5520080B2 (en) | Fuel compositions for premixed compression self-ignition combustion and compression self-ignition diesel combustion switched engines | |
JP4458405B2 (en) | Fuel for premixed compression self-ignition engines | |
JP2009173825A (en) | Fuel oil composition for premixed charge compression ignition engine and method for producing the same | |
JP4815178B2 (en) | Fuel for premixed compression self-ignition engines | |
JP2006213769A (en) | Fuel oil composition for diesel engine with multi-stage injection mechanism | |
JP2004091660A (en) | Fuel for premixed compressed self-ignition type engine | |
JP5520076B2 (en) | Fuel composition for premixed compression self-ignition engine | |
JP5334557B2 (en) | Fuel oil composition for premixed compression ignition engines | |
JP2009167405A (en) | Fuel oil composition for premixed compressed ignition engine, and method for producing the same | |
JP5188796B2 (en) | Fuel oil composition for premixed compression ignition engine and method for producing the same | |
JP2004091667A (en) | Fuel for premixed compressed self-ignition type engine | |
JP5436849B2 (en) | Fuel oil composition for premixed compression ignition engines | |
JP2004091662A (en) | Fuel for premixed compressed self-ignition type engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5520080 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |