JP2004091660A - Fuel for premixed compressed self-ignition type engine - Google Patents

Fuel for premixed compressed self-ignition type engine Download PDF

Info

Publication number
JP2004091660A
JP2004091660A JP2002255305A JP2002255305A JP2004091660A JP 2004091660 A JP2004091660 A JP 2004091660A JP 2002255305 A JP2002255305 A JP 2002255305A JP 2002255305 A JP2002255305 A JP 2002255305A JP 2004091660 A JP2004091660 A JP 2004091660A
Authority
JP
Japan
Prior art keywords
fuel
boiling point
fraction
less
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002255305A
Other languages
Japanese (ja)
Other versions
JP4109046B2 (en
Inventor
Hajime Shibata
柴田 元
Kenichiro Saito
斎藤 健一郎
Takashi Kaneko
金子 タカシ
Hideaki Sugano
菅野 秀昭
Koji Oyama
尾山 宏次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2002255305A priority Critical patent/JP4109046B2/en
Publication of JP2004091660A publication Critical patent/JP2004091660A/en
Application granted granted Critical
Publication of JP4109046B2 publication Critical patent/JP4109046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide fuel capable of sufficiently exhibiting engine characteristics of a premixed compressed self-ignition type engine capable of attaining low NO<SB>x</SB>discharge gas, low fuel cost and high heat efficiency at the same time. <P>SOLUTION: The fuel for premixed compressed self-ignition type engine has the following distillation properties (1) and fulfills the following required conditions (2) and (3). (1) Initial boiling point is <45°C and 50% distillation temperature is ≥60 °C and ≤105°C and final boiling point is ≥120°C and ≤210°C. (2) 4×E1+3×E2+2×E3-1×E4-4×E5≥100 [wherein E1 is a fraction having <70°C boiling point; E2 is a fraction having ≥70°C and <100°C boiling point; E3 is a fraction having ≥100°C boiling point and <130°C; E4 is a fraction having ≥130°C and <160°C boiling point; E5 is a fraction (vol.%) having ≥160°C boiling point]. (3) Paraffin content in the fuel is ≥30 vol.%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、予混合圧縮自己着火式エンジン用燃料に関する。
【0002】
【従来の技術】
今日、自動車用内燃機関としては火花点火式ガソリンエンジンと圧縮自己着火式ディーゼルエンジンの二種類が広く使用されている。
火花点火式ガソリンエンジンとは、吸気ポートあるいは燃焼室内に燃料を噴射して燃料と空気の予混合気を形成させ、スパークプラグによる電気放電で強制的に点火、燃焼させる方式であり、燃料特性として、蒸発しやすいこと、自己着火し難いこと、点火後は火炎伝播がスムーズに行われること等が求められる。火花点火式ガソリンエンジンから排出される窒素酸化物(以下NOx)、炭化水素(以下HC)、一酸化炭素(以下CO)の浄化には三元触媒などが広く使用されているが、三元触媒による排出ガス浄化システムは、燃料と空気の割合が理論空燃比近傍になる範囲にしか適用できないため、圧縮自己着火式ディーゼルエンジンと比較すると熱効率、燃費が著しく劣ってしまうという短所がある。
【0003】
一方、圧縮自己着火式ディーゼルエンジンとは、圧縮工程でのピストン上昇により燃焼室内の空気が圧縮されて温度が上昇し、軽油の臨界温度以上に達したところに燃料を噴霧し自己着火燃焼させる方式で、燃料特性には自己着火しやすいことが求められる。燃費および熱効率面では優れるものの燃料噴霧を圧縮上死点前30クランク角度から圧縮上死点後10クランク角度付近で行うため、燃焼時の温度分布に濃淡ができ、NOxとすすの排出量が著しく高くなるという短所がある。また圧縮自己着火式ディーゼルエンジンでは排出ガス浄化のための触媒があまり普及しておらず、NOxは100〜1200ppmと非常に高いレベルで大気中に放出されることになる。
【0004】
このように、従来の火花点火式ガソリンエンジンでは排出ガスは浄化できるが燃費や熱効率の面に課題があり、圧縮自己着火式ディーゼルエンジンでは低燃費、高熱効率であるがNOx等の排出ガスの面に課題がある。このため、低NOx排出ガス、低燃費および高熱効率を同時に達成するという課題を解決すべく予混合圧縮自己着火式エンジンが検討されている。
【0005】
予混合圧縮自己着火式エンジンとは、燃料の噴射圧力レベルが20MPa以下と圧縮自己着火式ディーゼルエンジンで使用されている噴射圧力に比べると著しく低い燃料噴射圧力にて燃料を吸気ポートまたは燃焼室内に噴射し、そのサイクルで燃焼する燃料噴射を圧縮上死点前60クランク角度以前に終了するシステムであって、燃料と空気の予混合気をスパークプラグによる強制点火ではなく、自己着火で燃焼させるエンジンである。この予混合圧縮自己着火式エンジンは従来の圧縮自己着火式ディーゼルエンジンに比べて燃料が噴射されてから燃焼の始まるまでの時間が長く、燃料が燃料室内で均一に混合するため、燃焼時に局部的に温度の高い領域ができず、NOx排出レベルを触媒未装着状態で10ppm以下に抑えることが可能となり、かつ燃費および熱効率を圧縮自己着火式ディーゼルエンジン並みの低燃費、高効率が可能である。しかし、このようなエンジンに対し、その特性を十分発揮させることのできる燃料は未だ開発されておらず、予混合圧縮自己着火式エンジンに適した燃料の開発が望まれている。
【0006】
【発明が解決しようとする課題】
本発明は、このような状況に鑑み、燃費および熱効率を圧縮自己着火式ディーゼルエンジン並みに保ち、かつNOx排出レベルを触媒未装着状態で10ppm以下に抑えることができる予混合圧縮自己着火式エンジンに適した燃料を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、特定の蒸留性状を有し、かつ特定の要件を具備した燃料が予混合圧縮自己着火式エンジンの燃料に適していることを見いだし、本発明を完成するに至ったものである。
【0008】
すなわち、本発明は、下記(1)の蒸留性状を有し、かつ下記(2)および(3)で示される要件を具備することを特徴とする予混合圧縮自己着火式エンジン用燃料に関する。
(1)初留点:45℃未満、
50%留出温度:60℃以上105℃以下、
終点:120℃以上210℃以下
(2)4×E1+3×E2+2×E3−1×E4−4×E5≧100
(3)燃料中のパラフィン含有量≧30容量%
(上記(2)におけるE1は沸点70℃未満の留分(容量%)、E2は沸点70℃以上100℃未満の留分(容量%)、E3は沸点100℃以上130℃未満の留分(容量%)、E4は沸点130℃以上160℃未満の留分(容量%)、E5は沸点160℃以上の留分(容量%)をそれぞれ表す。)
【0009】
前記予混合圧縮自己着火式エンジン用燃料は、芳香族分が40容量%以下、オレフィン分が30容量%以下であることが好ましい。
【0010】
【発明の実施の形態】
以下に本発明を詳述する。
本発明において、予混合圧縮自己着火式エンジンとは、下記の(A)、(B)および(C)の条件下に燃料を噴射させ、自己着火により燃焼を行わせるエンジンをいう。
(A)燃料噴射圧力:20MPa以下
(B)燃料噴射位置:吸気ポートあるいは燃焼室内部
(C)燃料噴射終了時期:圧縮上死点前60クランク角度以前
【0011】
従来の圧縮自己着火式ディーゼルエンジンと比べると、(A)は著しく低い燃料噴射圧力であり、(C)は燃料が噴射されてから燃焼が始まるまでの時間がかなり長く、その結果、燃料が燃焼室内で均一に混合するため燃焼室内温度に局部的に温度の高い領域ができず、窒素酸化物の排出量を触媒未装着状態で10ppm以下にすることができる。なお、予混合圧縮自己着火式エンジンは、HCCIエンジン(Homogeneous Charge Compression Ignition Engine)、PCCIエンジン(Premixed Charge Compression Ignition Engine)、PCIエンジン(Premixed Compression  Ignition  Engine)、CAIエンジン(Controlled Auto−Ignition Engine)、ARエンジン(Active Radical(Combustion)Engine)の名称で呼ばれることもある。
本発明の燃料は予混合圧縮自己着火式エンジンに適した燃料であるが、予混合圧縮自己着火式エンジンと、火花点火式ガソリンエンジンや電気モータなどを併用するハイブリッド式エンジンに対しても適用することができる。
【0012】
本発明の燃料は、下記(1)の蒸留性状を有していることが必要である。
(1)初留点:45℃未満、
50%留出温度:60℃以上105℃以下、
終点:120℃以上210℃以下
初留点は45℃未満であることが必要である。初留点が45℃以上では燃料の蒸発特性が悪くなり、燃効率および燃費の点で好ましくない。
50%留出温度は60℃以上105℃以下であることが必要である。50%留出温度が105℃を超えると軽質留分とのバランスが崩れ、熱効率の点で不利になるため、105℃以下であることが必要であり、95℃以下が好ましい。一方、燃料の蒸発が及ぼす空気の充填効率の点から50%留出温度の下限は60℃以上であることが必要であり、65℃以上が好ましい。
終点は120℃以上210℃以下であることが必要である。終点が210℃を超えると着火が安定せず、最大出力、熱効率、排出ガスが悪化するため、終点は210℃以下であることが必要であり、200℃以下が好ましい。一方、最大出力の点から120℃以上であることが必要である。
なお、ここでいう初留点、50%留出温度、終点とは、JIS K2254「石油製品−蒸留試験方法」によって測定された値である。
【0013】
本発明の燃料は、下記(2)の要件を具備することが必要である。
(2)4×E1+3×E2+2×E3−1×E4−4×E5≧100
ここで、E1は沸点70℃未満の留分(容量%)、E2は沸点70℃以上100℃未満の留分(容量%)、E3は沸点100℃以上130℃未満の留分(容量%)、E4は沸点130℃以上160℃未満の留分(容量%)、E5は沸点160℃以上の留分(容量%)をそれぞれ表す。
【0014】
要件(2)における左辺は、New Driveability Index(NDI:新運転性指標)として自動車の運転性を鑑みて開発された燃料の指標である。
本発明においては、かかるNDIが予混合圧縮自己着火式エンジンの熱効率を上げる点で100以上であることが必要である。好ましくは、140以上であり、より好ましくは180以上であり、さらに好ましくは220以上であり、最も好ましくは240以上である。
なお、ここでいうNDIは1995年のSAEにて柴田らが報告(Gen Shibata et al ”The Development of Driveability Index and the Effects of Gasoline Volatility on Engine Performance、SAE Paper 952521、1995)した方法に基づいて算出したものである。
【0015】
本発明の燃料は、さらに下記(3)の要件を具備することが必要である。
(3)燃料中のパラフィン含有量≧30容量%
燃料中のパラフィン含有量(容量%)は自己着火性を表わす指標であり、予混合圧縮自己着火式エンジンで自己着火特性を上げ、安定した燃焼を得るためには、燃料中のパラフィン含有量は30容量%以上であることが必要であり、50容量%以上が好ましく、60容量%以上がより好ましく、70容量%以上がさらに好ましく、80容量%以上が一層好ましく、90容量%以上が最も好ましい。
なお、ここでいうパラフィン含有量とは、JIS K2536「石油製品−成分試験方法」に準拠してガスクロマトグラフを利用して測定した値である。
【0016】
本発明の燃料中のオレフィン分の含有量は、30容量%以下であることが好ましい。燃料中のオレフィン分が30容量%を越えると予混合圧縮自己着火を阻害し、ノッキングを引き起こし易くなるため好ましくない。なお、燃料中のオレフィン分の含有量は、25容量%以下であることがより好ましく、20容量%以下がさらに好ましく、15容量%以下が一層好ましく、10容量%以下が最も好ましい。
また、本発明の燃料中の芳香族分の含有量は、オレフィン分と同様の観点から、40容量%以下であることが好ましく、30容量%以下がより好ましく、20容量%以下がさらに好ましく、10容量%以下が最も好ましい。
なお、ここでいうオレフィン分および芳香族分とはJIS K2536「石油製品−成分試験方法」の蛍光指示薬吸着法により測定される値である。
【0017】
本発明の燃料の密度(15℃)にはなんら制限はないが、アクセルレスポンスが鈍くなる点から、0.80g/cm以下であることが好ましく、より好ましくは0.78g/cm以下であり、ベーパーロックなどの問題から、0.65g/cm以上であることが好ましく、より好ましくは0.68g/cm以上である。なお、ここでいう密度とはJIS K2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される値である。
【0018】
本発明の燃料の硫黄分は特に限定されるものではないが、30質量ppm以下であることが好ましい。30質量ppmを越えた場合、エンジンに装着した排出ガス浄化のための触媒が硫黄により被毒され、排出ガス浄化能力が低下するといった問題が生じるため好ましくない。燃料の硫黄分は、触媒の性能維持の点から10質量ppm以下がより好ましく、5質量ppm以下がさらに好ましく、1質量ppm以下が最も好ましい。
なお、ここでいう硫黄分とは、JIS K2541「原油及び石油製品−硫黄分試験方法」により測定される値である。
【0019】
本発明の燃料は主成分である炭化水素のほかに、エーテル、アルコール、ケトン、エステル、及びグリコールなどの含酸素化合物を含有していてもよい。含酸素化合物としては例えば、メタノール、エタノール、ノルマルプロピルアルコール、イソプロピルアルコール、ノルマルブチルアルコール、イソブチルアルコール、ジメチルエーテル、ジイソプロピルエーテル、メチルターシャリーブチルエーテル(MTBE)、エチルターシャリーブチルエーテル(ETBE)、ターシャリーアミルメチルエーテル(TAME)、及びターシャリーアミルエチルエーテル等が挙げられる。含酸素化合物を含有すると排出ガス中のHC量は低減できるが、NOx量は増加してしまうので、含酸素化合物の含有量は、燃料全量基準で酸素元素換算(酸素含有量)20質量%以下が好ましく、10質量%以下がより好ましく、3質量%以下が最も好ましい。
【0020】
本発明の燃料は、具体的には例えば、原油蒸留装置、ナフサ改質装置、アルキレーション装置等から得られるプロパンを中心とした直留系プロパン留分、ブタンを中心とした直留系ブタン留分、それらを脱硫した直留系脱硫プロパン留分、直留系脱硫ブタン留分、接触分解装置等から得られるプロパン・プロピレンを中心とした分解系プロパン留分、ブタン・ブテンを中心とした分解系ブタン留分、原油を常圧蒸留して得られるナフサ留分(フルレンジナフサ)、ナフサの軽質留分(軽質ナフサ)、ナフサの重質留分(重質ナフサ)、フルレンジナフサを脱硫した脱硫フルレンジナフサ、軽質ナフサを脱硫した脱硫軽質ナフサ、重質ナフサを脱硫した脱硫重質ナフサ、軽質ナフサを異性化装置でイソパラフィンに転化して得られる異性化ガソリン、イソブタン等の炭化水素に低級オレフィンを付加(アルキル化)することによって得られるアルキレート、接触改質法で得られる改質ガソリン、改質ガソリンより芳香族分を抽出した残分であるラフィネート、改質ガソリンの軽質留分、改質ガソリンの中重質留分、改質ガソリンの重質留分、接触分解法、水素化分解法等で得られる分解ガソリン、分解ガソリンの軽質留分、分解ガソリンの重質留分、及び天然ガス等を一酸化炭素と水素に分解した後にF−T(Fischer−Tropsch)合成で得られるGTL(Gas to Liquids)の軽質留分等の基材を1種又は2種以上を混合して調製することで製造することができる。
【0021】
本発明の燃料には、必要に応じて燃料油添加剤を添加することができる。この様な添加剤としては、具体的には例えば、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンなどの清浄分散剤;高級脂肪酸のエステルまたはアミド化合物などの摩擦調整剤;N,N’−ジイソプロピル−p−フェニレンジアミン、N,N’−ジイソブチル−p−フェニレンジアミン、及び2,6−ジ−t−ブチル−4−メチルフェノール、ヒンダードフェノール類等の酸化防止剤;N,N’−ジサリチリデン−1,2−ジアミノプロパンのようなアミンカルボニル縮合化合物等の金属不活性化剤;有機リン系化合物などの表面着火防止剤;多価アルコールおよびそのエーテルなどの氷結防止剤;有機酸のアルカリ金属塩またはアルカリ土類金属塩、高級アルコール硫酸エステルなどの助燃剤;アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤などの帯電防止剤;アゾ染料などの着色剤;有機カルボン酸及びそれらの誘導体類、アルケニルコハク酸エステル等の防錆剤;ソルビタンエステル類等の水抜き剤;キニザリン、クマリンなどの識別剤;天然精油合成香料などの着臭剤等が挙げられる。これらの添加剤は、1種または2種以上を添加することができ、その合計添加量は燃料全量基準で0.1質量%以下とすることが好ましい。
【0022】
【実施例】
以下に、実施例および比較例を挙げ、本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。
【0023】
実施例1〜5及び比較例1
表1に示すように本発明の燃料(実施例1〜5)及び比較用の燃料(比較例1)を調製した。
得られた各燃料を下記に示す予混合圧縮自己着火式エンジンを用いて、以下の試験を行い、燃料の評価を実施した。
【0024】
(エンジン諸元)
エンジン種類 :直列6気筒予混合圧縮自己着火式エンジン
排気量    :2000cc
圧縮比    :16
燃料噴射圧力 :8MPa
【0025】
(エンジン試験)
下記の手順でエンジンを運転して回転−出力曲線図(マップ)をつくり、マップから運転可能最大回転数、最大熱効率、最大出力、ノッキングレベル、窒素酸化物量を求める。
(1) 動力計(明電舎社製、DC95 220kWの直流動力計)を回転−吸気圧制御にし、所定の回転数でエンジンをモータリング駆動する。
(2)  燃料を噴射し、徐々に噴射量を増量する。
(3)  自己着火燃焼を始めたら、燃料噴射量に対応する出力、燃料消費量、排出ガス、ノッキングレベルを計測し、熱効率を算出する。
(4)  運転できなくなるまで燃料噴射量を増量し、(3)の作業を継続する。
(5)  回転数を変化させて(2)〜(4)を繰り返す。
・出力:動力計から得られる軸トルクと回転数より算出する。
・燃料消費量:重量式燃費計(小野測器社製、FX−3400)にて測定を行なう。
・熱効率:出力と燃料の低位発熱量により算出する。
・ノッキングレベル:ノッキングを燃焼解析装置(小野測器社製、DS9110)にて解析し、結果をレベル1〜5の5段階で評価する。レベル1の燃料は最大回転領域までの全ての回転数領域においてノッキングしにくいことを表し、レベルが大きくなるに従いノッキングが起こり易くなることを表す。
・窒素酸化物排出量:エンジン排気管より燃焼排出ガスをサンプリングし排出ガス分析計(堀場製作所社製、MEXA9100)にて計測を行う。
【0026】
(過渡応答レスポンス試験)
エンジン回転数:800rpmにおいて燃料噴射量が下記の条件になるインジェクタの電気パルス幅を事前に計測する。
(a)空気過剰率3.2となる燃料噴射量
(b)空気過剰率2.4となる燃料噴射量
6気筒全てに対し燃料噴射量を(a)の状態にして燃料を噴霧し、瞬間的に(b)の状態に切り替えた場合、空気過剰率が2.6(空気過剰率2.4の90%)に達するのに要するサイクル数をレベル1〜5の5段階で評価する。過渡応答レスポンスレベル1の燃料は応答性が非常に良いことを表し、レベルが大きくなるに従い燃料の応答性が悪くなることを表す。
【0027】
(エンジン始動時間)
エンジンを−15℃の状態で48時間放置することで十分に冷却させた後、スタータを始動させてから第1気筒が初爆(スタータを始動した後、初めて気筒内の予混合気が着火すること)するまでに要する時間を計測する。この時間が長いほどエンジンの始動性が悪いことを表す。
【0028】
【表1】

Figure 2004091660
【0029】
表1に示す結果から、本発明の燃料(実施例1〜5)を用いた場合には、比較例1の燃料に比べて、最大熱効率および最大出力を高く、窒素酸化物排出量を少なく、運転可能最大回転数を大きく、ノッキングレベルおよび過渡応答レスポンスレベルを小さく、エンジン始動時間を短くすることができる。
【0030】
【発明の効果】
以上のように、低NOx排出ガス、低燃費、高熱効率を同時に達成するという課題を解決すべく開発されている予混合圧縮自己着火式エンジンに対して、本発明の燃料は、予混合圧縮自己着火式エンジンの特性を十分に発揮し得る燃料であり、予混合圧縮自己着火式エンジンに適していることが明らかである。また、本発明の燃料は、予混合圧縮自己着火式エンジンと、火花点火式ガソリンエンジンや電気モータなどを併用するハイブリッド式エンジンに対しても適用することができるものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel for a homogeneous charge compression self-ignition engine.
[0002]
[Prior art]
Today, two types of internal combustion engines for automobiles are widely used: spark ignition gasoline engines and compression self-ignition diesel engines.
A spark ignition gasoline engine is a method in which fuel is injected into an intake port or a combustion chamber to form a premixed fuel and air mixture, and is ignited and forced to burn by electric discharge from a spark plug. It is required to be easily evaporated, to be difficult to self-ignite, and to be able to smoothly propagate a flame after ignition. A three-way catalyst is widely used for purifying nitrogen oxides (hereinafter, NOx), hydrocarbons (hereinafter, HC) and carbon monoxide (hereinafter, CO) emitted from a spark ignition gasoline engine. Is applicable only to a range where the ratio of fuel and air is close to the stoichiometric air-fuel ratio, and therefore has a disadvantage in that thermal efficiency and fuel efficiency are remarkably inferior to a compression self-ignition diesel engine.
[0003]
On the other hand, the compression self-ignition diesel engine is a system in which the air in the combustion chamber is compressed by the rise of the piston in the compression process and the temperature rises, and when the temperature reaches the critical temperature of light oil or more, the fuel is sprayed and self-ignition combustion is performed. In addition, the fuel characteristics are required to be easy to self-ignite. Although excellent in terms of fuel efficiency and thermal efficiency, fuel spraying is performed from 30 crank angles before compression top dead center to around 10 crank angles after compression top dead center, so that the temperature distribution during combustion can vary, resulting in significant NOx and soot emissions. The disadvantage is that it is expensive. In addition, catalysts for purifying exhaust gas are not widely used in compressed self-ignition diesel engines, and NOx is released into the atmosphere at a very high level of 100 to 1200 ppm.
[0004]
As described above, the conventional spark ignition type gasoline engine can purify the exhaust gas but has problems in terms of fuel efficiency and thermal efficiency. The compression self-ignition type diesel engine has low fuel efficiency and high thermal efficiency, but has a problem in terms of the exhaust gas such as NOx. There is a problem. For this reason, homogeneous charge compression self-ignition engines are being studied to solve the problems of simultaneously achieving low NOx exhaust gas, low fuel consumption and high thermal efficiency.
[0005]
A premixed compression self-ignition engine is a fuel injection pressure level of 20 MPa or less, and fuel is injected into an intake port or a combustion chamber at a fuel injection pressure significantly lower than the injection pressure used in a compression self-ignition diesel engine. An engine that injects and terminates fuel injection burning in the cycle before 60 crank angles before compression top dead center, in which a premixed mixture of fuel and air is burned by self-ignition instead of forced ignition by a spark plug. It is. This premixed compression self-ignition engine has a longer time from the injection of fuel to the start of combustion as compared with a conventional compression self-ignition diesel engine, and the fuel is uniformly mixed in the fuel chamber. A high temperature region cannot be formed, the NOx emission level can be suppressed to 10 ppm or less in the state where the catalyst is not mounted, and the fuel efficiency and heat efficiency can be as low as that of a compression self-ignition diesel engine. However, a fuel capable of sufficiently exhibiting the characteristics of such an engine has not yet been developed, and development of a fuel suitable for a homogeneous charge compression self-ignition engine has been desired.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, the present invention provides a premixed compression self-ignition engine that can maintain fuel efficiency and thermal efficiency at the same level as a compression self-ignition diesel engine and can suppress NOx emission levels to 10 ppm or less without a catalyst. The aim is to provide a suitable fuel.
[0007]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above problems, and as a result, a fuel having a specific distillation property and having a specific requirement is suitable for a fuel of a premixed compression self-ignition engine. This has led to the completion of the present invention.
[0008]
That is, the present invention relates to a fuel for a homogeneous charge compression self-ignition engine having the following distillation characteristics (1) and satisfying the following requirements (2) and (3).
(1) Initial boiling point: less than 45 ° C.
50% distillation temperature: 60 ° C or higher and 105 ° C or lower,
End point: 120 ° C. or more and 210 ° C. or less (2) 4 × E1 + 3 × E2 + 2 × E3-1 × E4-4 × E5 ≧ 100
(3) Paraffin content in fuel ≧ 30% by volume
(E1 in the above (2) is a fraction having a boiling point of less than 70 ° C. (% by volume), E2 is a fraction having a boiling point of 70 ° C. to less than 100 ° C. (volume%), and E3 is a fraction having a boiling point of 100 ° C. to less than 130 ° C. E4 represents a fraction having a boiling point of 130 ° C. or more and less than 160 ° C. (volume%), and E5 represents a fraction having a boiling point of 160 ° C. or more (volume%).)
[0009]
The fuel for the homogeneous charge compression self-ignition engine preferably has an aromatic content of 40% by volume or less and an olefin content of 30% by volume or less.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, the premixed compression self-ignition engine refers to an engine that injects fuel under the following conditions (A), (B) and (C) and performs combustion by self-ignition.
(A) Fuel injection pressure: 20 MPa or less (B) Fuel injection position: Intake port or inside the combustion chamber (C) Fuel injection end timing: 60 crank angles before compression top dead center
Compared with the conventional compression self-ignition diesel engine, (A) has a significantly lower fuel injection pressure, and (C) has a considerably longer time from the injection of fuel to the start of combustion, and as a result, the fuel is burned. Since the gas is uniformly mixed in the chamber, a region where the temperature in the combustion chamber is locally high is not formed, and the emission amount of nitrogen oxides can be reduced to 10 ppm or less without the catalyst. Incidentally, homogeneous charge compression ignition engine, HCCI engine (Homogeneous Charge Compression Ignition Engine), PCCI engine (Premixed Charge Compression Ignition Engine), PCI engine (Premixed Compression Ignition Engine), CAI engine (Controlled Auto-Ignition Engine), It may also be called an AR engine (Active Radical (Combustion) Engine).
Although the fuel of the present invention is a fuel suitable for a homogeneous charge compression self-ignition engine, the present invention is also applicable to a hybrid engine using both a homogeneous charge compression self-ignition engine and a spark ignition gasoline engine or an electric motor. be able to.
[0012]
It is necessary that the fuel of the present invention has the following distillation properties (1).
(1) Initial boiling point: less than 45 ° C.
50% distillation temperature: 60 ° C or higher and 105 ° C or lower,
End point: 120 ° C. or more and 210 ° C. or less The initial boiling point must be less than 45 ° C. When the initial boiling point is 45 ° C. or higher, the evaporation characteristics of the fuel deteriorate, which is not preferable in terms of fuel efficiency and fuel efficiency.
The 50% distillation temperature needs to be 60 ° C. or more and 105 ° C. or less. If the 50% distillation temperature exceeds 105 ° C., the balance with the light fraction is lost, which is disadvantageous in terms of thermal efficiency. Therefore, the temperature must be 105 ° C. or less, and preferably 95 ° C. or less. On the other hand, the lower limit of the 50% distillation temperature needs to be 60 ° C. or more, and preferably 65 ° C. or more, from the viewpoint of the air filling efficiency exerted by fuel evaporation.
The end point needs to be 120 ° C. or higher and 210 ° C. or lower. If the end point exceeds 210 ° C., ignition is not stable, and the maximum output, thermal efficiency, and exhaust gas deteriorate. Therefore, the end point needs to be 210 ° C. or lower, and preferably 200 ° C. or lower. On the other hand, it is necessary that the temperature be 120 ° C. or higher from the viewpoint of the maximum output.
Here, the initial boiling point, 50% distillation temperature, and end point are values measured according to JIS K2254 "Petroleum products-distillation test method".
[0013]
The fuel of the present invention needs to satisfy the following requirement (2).
(2) 4 × E1 + 3 × E2 + 2 × E3-1 × E4-4 × E5 ≧ 100
Here, E1 is a fraction having a boiling point of less than 70 ° C. (volume%), E2 is a fraction having a boiling point of 70 ° C. or more and less than 100 ° C. (volume%), and E3 is a fraction having a boiling point of 100 ° C. or more and less than 130 ° C. (volume%). , E4 represents a fraction having a boiling point of 130 ° C. or more and less than 160 ° C. (% by volume), and E5 represents a fraction having a boiling point of 160 ° C. or more (% by volume).
[0014]
The left side in the requirement (2) is a fuel index developed in consideration of the drivability of a vehicle as the New Drivability Index (NDI: new drivability index).
In the present invention, such NDI needs to be 100 or more in order to increase the thermal efficiency of the premixed compression self-ignition engine. Preferably, it is 140 or more, more preferably 180 or more, still more preferably 220 or more, and most preferably 240 or more.
The NDI referred to here was reported by Shibata et al. At SAE in 1995 (Gen Shibata et al, "The Development of Drivability Index and the Effects of the Calculations of the Method of a Participant in a Method of a Gasoline, a Method for a 21st Dimensional Report on a Method of a Gasoline, and a 21st Dimensional Report"). It was done.
[0015]
The fuel of the present invention must further satisfy the following requirement (3).
(3) Paraffin content in fuel ≧ 30% by volume
The paraffin content (% by volume) in the fuel is an index indicating the self-ignition property. In order to improve the self-ignition characteristics of a homogeneous charge compression self-ignition engine and obtain stable combustion, the paraffin content in the fuel must be It is necessary to be 30% by volume or more, preferably 50% by volume or more, more preferably 60% by volume or more, still more preferably 70% by volume or more, further preferably 80% by volume or more, and most preferably 90% by volume or more. .
In addition, the paraffin content here is a value measured using a gas chromatograph in accordance with JIS K2536 "Petroleum products-component test method".
[0016]
The content of the olefin component in the fuel of the present invention is preferably 30% by volume or less. If the olefin content in the fuel exceeds 30% by volume, the premixed compression auto-ignition is inhibited, and knocking is likely to occur, which is not preferable. The olefin content in the fuel is more preferably 25% by volume or less, further preferably 20% by volume or less, further preferably 15% by volume or less, and most preferably 10% by volume or less.
Further, the content of the aromatic component in the fuel of the present invention is preferably 40% by volume or less, more preferably 30% by volume or less, still more preferably 20% by volume or less, from the same viewpoint as the olefin component. Most preferred is 10% by volume or less.
The olefin content and the aromatic content here are values measured by the fluorescent indicator adsorption method of JIS K2536 “Petroleum products-component test method”.
[0017]
Without any limitation on the density (15 ° C.) of the fuel of the present invention, from the viewpoint of the accelerator response becomes dull, it is preferably 0.80 g / cm 3 or less, more preferably 0.78 g / cm 3 or less There, the problems such as vapor lock, is preferably 0.65 g / cm 3 or more, more preferably 0.68 g / cm 3 or more. The density here is a value measured according to JIS K2249 "Density test method for crude oil and petroleum products and conversion table for density / mass / capacity".
[0018]
The sulfur content of the fuel of the present invention is not particularly limited, but is preferably 30 ppm by mass or less. Exceeding 30 mass ppm is not preferred because the exhaust gas purifying catalyst mounted on the engine is poisoned by sulfur and the exhaust gas purifying ability is reduced. The sulfur content of the fuel is preferably 10 mass ppm or less, more preferably 5 mass ppm or less, and most preferably 1 mass ppm or less from the viewpoint of maintaining the performance of the catalyst.
Here, the sulfur content is a value measured according to JIS K2541 “Crude oil and petroleum products-Sulfur content test method”.
[0019]
The fuel of the present invention may contain oxygen-containing compounds such as ethers, alcohols, ketones, esters, and glycols, in addition to the main component hydrocarbons. Examples of the oxygen-containing compound include methanol, ethanol, normal propyl alcohol, isopropyl alcohol, normal butyl alcohol, isobutyl alcohol, dimethyl ether, diisopropyl ether, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), and tertiary amyl methyl. Ether (TAME), tertiary amyl ethyl ether, and the like. When an oxygen-containing compound is contained, the amount of HC in the exhaust gas can be reduced, but the amount of NOx increases. Therefore, the content of the oxygen-containing compound is 20% by mass or less in terms of oxygen element (oxygen content) based on the total amount of fuel. Is preferably 10% by mass or less, more preferably 3% by mass or less.
[0020]
Specifically, the fuel of the present invention is, for example, a straight-line propane fraction mainly containing propane obtained from a crude oil distillation unit, a naphtha reformer, an alkylation unit, and a straight-line butane fraction mainly containing butane. , A straight-line desulfurized propane fraction obtained by desulfurizing them, a straight-line desulfurized butane fraction, a cracked propane fraction obtained mainly from a catalytic cracking device, such as propane and propylene, and a cracking centered on butane and butene System butane fraction, naphtha fraction obtained by distillation of crude oil under normal pressure (full range naphtha), light fraction of naphtha (light naphtha), heavy fraction of naphtha (heavy naphtha), desulfurization of desulfurized full range naphtha Full range naphtha, desulfurized light naphtha desulfurized light naphtha, desulfurized heavy naphtha desulfurized heavy naphtha, isomerized gasoline obtained by converting light naphtha to isoparaffin using an isomerizer Obtained by the addition (alkylation) of lower olefins to hydrocarbons such as butane and isobutane, reformed gasoline obtained by catalytic reforming, and raffinate, a residue obtained by extracting aromatics from reformed gasoline Light fraction of reformed gasoline, medium and heavy fraction of reformed gasoline, heavy fraction of reformed gasoline, cracked gasoline obtained by catalytic cracking method, hydrocracking method, etc., light fraction of cracked gasoline, Substrates such as a heavy fraction of cracked gasoline and a light fraction of GTL (Gas to Liquids) obtained by Fischer-Tropsch (FT) synthesis after cracking natural gas and the like into carbon monoxide and hydrogen It can be produced by mixing and preparing two or more species.
[0021]
The fuel of the present invention may optionally contain a fuel oil additive. Specific examples of such additives include detergents and dispersants such as succinimides, polyalkylamines and polyetheramines; friction modifiers such as esters or amides of higher fatty acids; N, N'-diisopropyl Antioxidants such as -p-phenylenediamine, N, N'-diisobutyl-p-phenylenediamine, and 2,6-di-t-butyl-4-methylphenol and hindered phenols; N, N'-disalicylidene Metal deactivators such as amine carbonyl condensed compounds such as -1,2-diaminopropane; surface ignition inhibitors such as organic phosphorus compounds; anti-icing agents such as polyhydric alcohols and ethers thereof; alkali metals of organic acids Flame retardants such as salts or alkaline earth metal salts, higher alcohol sulfates; anionic surfactants, cationic fields Antistatic agents such as surfactants and amphoteric surfactants; coloring agents such as azo dyes; rust inhibitors such as organic carboxylic acids and their derivatives, alkenyl succinates; drainage agents such as sorbitan esters; quinizarin; Discriminating agents such as coumarin; odorants such as natural essential oil and synthetic fragrance; One or more of these additives can be added, and the total amount of the additives is preferably 0.1% by mass or less based on the total amount of the fuel.
[0022]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0023]
Examples 1 to 5 and Comparative Example 1
As shown in Table 1, a fuel of the present invention (Examples 1 to 5) and a fuel for comparison (Comparative Example 1) were prepared.
Each of the obtained fuels was subjected to the following tests using a premixed compression self-ignition engine shown below to evaluate the fuels.
[0024]
(Engine specifications)
Engine type: Inline 6-cylinder premixed compression self-ignition engine Engine displacement: 2000cc
Compression ratio: 16
Fuel injection pressure: 8MPa
[0025]
(Engine test)
The engine is operated according to the following procedure to create a rotation-output curve diagram (map), and the maximum operable speed, the maximum thermal efficiency, the maximum output, the knocking level, and the amount of nitrogen oxide are obtained from the map.
(1) A dynamometer (manufactured by Meidensha Co., Ltd., DC 95 220 kW DC dynamometer) is set to rotation-intake pressure control, and the engine is motored at a predetermined rotation speed.
(2) Inject the fuel and gradually increase the injection amount.
(3) When the self-ignition combustion is started, the output, the fuel consumption, the exhaust gas, and the knocking level corresponding to the fuel injection amount are measured, and the thermal efficiency is calculated.
(4) The fuel injection amount is increased until operation becomes impossible, and the operation of (3) is continued.
(5) The steps (2) to (4) are repeated while changing the rotation speed.
-Output: Calculated from the shaft torque and rotation speed obtained from the dynamometer.
-Fuel consumption: Measure with a gravimetric fuel economy meter (FX-3400, manufactured by Ono Sokki Co., Ltd.).
-Thermal efficiency: Calculated from the output and the lower calorific value of the fuel.
Knocking level: Knocking is analyzed with a combustion analyzer (DS9110, manufactured by Ono Sokki Co., Ltd.), and the results are evaluated in five levels of 1 to 5. Level 1 fuel indicates that it is difficult to knock in all rotation speed regions up to the maximum rotation region, and indicates that knocking is more likely to occur as the level increases.
-Nitrogen oxide emission: Combustion exhaust gas is sampled from an engine exhaust pipe and measured by an exhaust gas analyzer (MEXA9100, manufactured by Horiba, Ltd.).
[0026]
(Transient response test)
At an engine speed of 800 rpm, an electric pulse width of the injector in which the fuel injection amount satisfies the following condition is measured in advance.
(A) Amount of fuel injection with an excess air ratio of 3.2 (b) Amount of fuel injection with an excess air ratio of 2.4 A fuel is sprayed to all six cylinders with the amount of fuel injection set to (a) and instantaneous When the state is specifically switched to the state (b), the number of cycles required for the excess air ratio to reach 2.6 (90% of the excess air ratio 2.4) is evaluated in five levels 1 to 5. The transient response response level 1 fuel indicates that the responsiveness is very good, and the higher the level, the worse the responsiveness of the fuel.
[0027]
(Engine start time)
After the engine has been left at -15 ° C. for 48 hours to sufficiently cool it, the first cylinder starts firing after the starter is started (the premixed gas in the cylinder is ignited for the first time after the starter is started) Measure the time it takes to do The longer this time, the worse the startability of the engine.
[0028]
[Table 1]
Figure 2004091660
[0029]
From the results shown in Table 1, when the fuel of the present invention (Examples 1 to 5) was used, the maximum thermal efficiency and the maximum output were higher, and the amount of nitrogen oxide emission was smaller than the fuel of Comparative Example 1. The maximum operable speed is increased, the knocking level and the transient response level are reduced, and the engine start time can be shortened.
[0030]
【The invention's effect】
As described above, the fuel of the present invention is compared with the premixed compression self-ignition engine developed to solve the problems of simultaneously achieving low NOx exhaust gas, low fuel consumption, and high heat efficiency. It is a fuel that can sufficiently exhibit the characteristics of an ignition engine, and is apparently suitable for a homogeneous charge compression self-ignition engine. Further, the fuel of the present invention can be applied to a hybrid engine using a premixed compression self-ignition engine, a spark ignition gasoline engine, an electric motor, and the like.

Claims (2)

下記(1)の蒸留性状を有し、かつ下記(2)および(3)で示される要件を具備することを特徴とする予混合圧縮自己着火式エンジン用燃料。
(1)初留点:45℃未満、
50%留出温度:60℃以上105℃以下、
終点:120℃以上210℃以下
(2)4×E1+3×E2+2×E3−1×E4−4×E5≧100
(3)燃料中のパラフィン含有量≧30容量%
(上記(2)におけるE1は沸点70℃未満の留分(容量%)、E2は沸点70℃以上100℃未満の留分(容量%)、E3は沸点100℃以上130℃未満の留分(容量%)、E4は沸点130℃以上160℃未満の留分(容量%)、E5は沸点160℃以上の留分(容量%)をそれぞれ表す。)
A fuel for a premixed compression self-ignition engine having the following distillation characteristics (1) and satisfying the following requirements (2) and (3).
(1) Initial boiling point: less than 45 ° C.
50% distillation temperature: 60 ° C or higher and 105 ° C or lower,
End point: 120 ° C. or more and 210 ° C. or less (2) 4 × E1 + 3 × E2 + 2 × E3-1 × E4-4 × E5 ≧ 100
(3) Paraffin content in fuel ≧ 30% by volume
(E1 in the above (2) is a fraction having a boiling point of less than 70 ° C. (% by volume), E2 is a fraction having a boiling point of 70 ° C. or more and less than 100 ° C. (volume%), and E3 is a fraction having a boiling point of 100 ° C. or more and less than 130 ° C. E4 represents a fraction having a boiling point of 130 ° C. or more and less than 160 ° C. (volume%), and E5 represents a fraction having a boiling point of 160 ° C. or more (volume%).)
芳香族分が40容量%以下、オレフィン分が30容量%以下であることを特徴とする請求項1に記載の予混合圧縮自己着火式エンジン用燃料。The fuel for a premixed compression ignition engine according to claim 1, wherein the content of the aromatic component is 40% by volume or less and the content of the olefin component is 30% by volume or less.
JP2002255305A 2002-08-30 2002-08-30 Fuel for premixed compression self-ignition engines Expired - Lifetime JP4109046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255305A JP4109046B2 (en) 2002-08-30 2002-08-30 Fuel for premixed compression self-ignition engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255305A JP4109046B2 (en) 2002-08-30 2002-08-30 Fuel for premixed compression self-ignition engines

Publications (2)

Publication Number Publication Date
JP2004091660A true JP2004091660A (en) 2004-03-25
JP4109046B2 JP4109046B2 (en) 2008-06-25

Family

ID=32060854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255305A Expired - Lifetime JP4109046B2 (en) 2002-08-30 2002-08-30 Fuel for premixed compression self-ignition engines

Country Status (1)

Country Link
JP (1) JP4109046B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291309A (en) * 2006-03-31 2007-11-08 Nippon Oil Corp Fuel for premixed compression and auto-ignition type engine
JP2007291310A (en) * 2006-03-31 2007-11-08 Nippon Oil Corp Fuel for premixed compression and auto-ignition type engine
EP2107101A2 (en) 2008-03-13 2009-10-07 Nippon Oil Corporation Fuel for homogeneous charge compression ignition engine
US20100326410A1 (en) * 2009-06-30 2010-12-30 Exxonmobile Research And Engineering Company Expanding the operating envelope of advanced combustion enigines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291309A (en) * 2006-03-31 2007-11-08 Nippon Oil Corp Fuel for premixed compression and auto-ignition type engine
JP2007291310A (en) * 2006-03-31 2007-11-08 Nippon Oil Corp Fuel for premixed compression and auto-ignition type engine
EP2107101A2 (en) 2008-03-13 2009-10-07 Nippon Oil Corporation Fuel for homogeneous charge compression ignition engine
US8038742B2 (en) 2008-03-13 2011-10-18 Nippon Oil Corporation Fuel for homogeneous charge compression ignition engine
US20100326410A1 (en) * 2009-06-30 2010-12-30 Exxonmobile Research And Engineering Company Expanding the operating envelope of advanced combustion enigines
US8671891B2 (en) * 2009-06-30 2014-03-18 Exxonmobil Research And Engineering Company Expanding the operating envelope of advanced combustion enigines

Also Published As

Publication number Publication date
JP4109046B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP5178253B2 (en) Fuel for premixed compression self-ignition engines
JP5355064B2 (en) Fuel for premixed compression self-ignition engines
JP5019802B2 (en) Fuel for premixed compression self-ignition engines
JP4634103B2 (en) Premixed compression self-ignition and spark ignition combined engine fuel
JP4109043B2 (en) Fuel for premixed compression self-ignition engines
JP4109045B2 (en) Fuel for premixed compression self-ignition engines
JP5545677B2 (en) Fuel for premixed compression self-ignition engines
JP4109046B2 (en) Fuel for premixed compression self-ignition engines
JP4109053B2 (en) Fuel for premixed compression self-ignition engines
JP4458405B2 (en) Fuel for premixed compression self-ignition engines
JP4634104B2 (en) Premixed compression self-ignition and spark ignition combined engine fuel
JP4109048B2 (en) Fuel for premixed compression self-ignition engines
JP4815178B2 (en) Fuel for premixed compression self-ignition engines
JP4109050B2 (en) Fuel for premixed compression self-ignition engines
JP4109054B2 (en) Fuel for premixed compression self-ignition engines
JP4109049B2 (en) Fuel for premixed compression self-ignition engines
JP4109044B2 (en) Fuel for premixed compression self-ignition engines
JP4109051B2 (en) Fuel for premixed compression self-ignition engines
JP4109052B2 (en) Fuel for premixed compression self-ignition engines
JP4109047B2 (en) Fuel for premixed compression self-ignition engines
JP2005054103A (en) Gasoline
JP5520080B2 (en) Fuel compositions for premixed compression self-ignition combustion and compression self-ignition diesel combustion switched engines
JP5520076B2 (en) Fuel composition for premixed compression self-ignition engine
JP2009167404A (en) Fuel oil composition for premixed compressed ignition type engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4109046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term