JP5626323B2 - 太陽光熱ハイブリッドパネル及びソーラーシステム - Google Patents

太陽光熱ハイブリッドパネル及びソーラーシステム Download PDF

Info

Publication number
JP5626323B2
JP5626323B2 JP2012265290A JP2012265290A JP5626323B2 JP 5626323 B2 JP5626323 B2 JP 5626323B2 JP 2012265290 A JP2012265290 A JP 2012265290A JP 2012265290 A JP2012265290 A JP 2012265290A JP 5626323 B2 JP5626323 B2 JP 5626323B2
Authority
JP
Japan
Prior art keywords
cooling medium
solar
power generation
header pipe
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012265290A
Other languages
English (en)
Other versions
JP2014109419A (ja
Inventor
畝崎 史武
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012265290A priority Critical patent/JP5626323B2/ja
Publication of JP2014109419A publication Critical patent/JP2014109419A/ja
Application granted granted Critical
Publication of JP5626323B2 publication Critical patent/JP5626323B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、太陽光による発電及び集熱が可能な太陽光熱ハイブリッドパネル、及び当該太陽光熱ハイブリッドパネルを用いたソーラーシステムに関する。
従来技術として、太陽光発電パネルに取付けた伝熱管に水、不凍液等の冷却媒体を流通させることにより、パネルの冷却と太陽熱の集熱とを行う構成とした太陽光熱ハイブリッドパネルが知られている。従来技術では、冷却媒体が伝熱管を流通しつつ、パネルを冷却して昇温するので、冷却媒体とパネルとの温度差は、伝熱管の入口側の方が出口側よりも大きくなり、パネルの冷却能力も入口側の方が高くなる傾向がある。この傾向下では、伝熱管の入口側に近い太陽電池セルと、出口側に近い太陽電池セルとの間に温度ばらつきが生じるので、これらのセルの発電効率及び最適発電電圧にも差異が生じ、発電ロスが発生し易くなる。
この問題を解決するために、例えば特許文献1に記載された従来技術では、伝熱管を流れる冷却媒体と太陽光発電パネルとの間の熱抵抗が、伝熱管の入口側から出口側に向けて小さくなるように構成している。より具体的に述べると、伝熱管の入口側では、伝熱管の間隔を大きくして配管密度を低くし、出口側では、伝熱管の間隔を小さくして配管密度を高くするように構成している。
国際公開第2006/019091号
上述した特許文献1の従来技術では、太陽光発電パネルの温度が冷却媒体との熱交換のみにより決定されるものとしている。しかしながら、太陽光発電パネルは、冷却媒体だけでなく、太陽光の入射面側に存在する空気にも放熱しており、この空気に対する放熱の割合は、例えばパネルが受取る全太陽エネルギの20%程度にも達する。従って、太陽光発電パネルの温度は、冷却媒体及び空気への放熱量によって決定される。一方、入射面側の空気の温度には、太陽光発電パネルの設置状況によって温度分布が生じ易い。即ち、例えば太陽光発電パネルを一般家庭のように傾斜した屋根に設置した場合には、パネルからの熱を受けた空気が温められて上昇気流となり、この上昇気流が上方に移動しながらパネルの熱を受けるので、空気の温度はパネルの上端部に近いほど高温となる。
従って、冷却媒体との熱交換を考慮しなければ、太陽電池セルの温度はパネルの上部側で高温となり、パネルの下部側で相対的に低温となるので、各太陽電池セルの間には、周囲の空気の温度状況に応じて温度ばらつきが生じることになる。特許文献1の従来技術では、このように空気の温度状況により各太陽電池セルの間に温度ばらつきが生じるという現象が考慮されていない。このため、冷却媒体との熱交換のみを考慮して太陽電池セルの温度分布を均等化しようとしても、これを容易に実現することができず、発電ロスが生じるという問題がある。
本発明は、上述のような課題を解決するためになされたもので、周囲の空気の温度分布及び冷却媒体の温度変化に対応して伝熱管の配置を適切に設定することができ、発電量を向上させることが可能な太陽光熱ハイブリッドパネル及びソーラーシステムを提供することを目的とする。
本発明に係る太陽光熱ハイブリッドパネルは、太陽光を受けて発電する複数個の太陽電池セルが表面側に並べて配置され、各太陽電池セルを裏面側から冷却することが可能な矩形状の太陽光発電パネルと、太陽光発電パネルの外形に対応する矩形の一辺に沿って伸長し、外部の冷却媒体供給源と接続される第1のヘッダー配管と、矩形のうち一辺と対向する他辺に沿って第1のヘッダー配管と平行に伸長し、冷却媒体供給源と接続される第2のヘッダー配管と、第1,第2のヘッダー配管を長さ方向の複数個所で連結する複数の配管であって、太陽光発電パネルの裏面に沿って互いに平行に配置され、冷却媒体供給源から供給される冷却媒体を各ヘッダー配管の間に流通させる複数本の伝熱管と、を備え、太陽光発電パネルを第1のヘッダー配管が第2のヘッダー配管よりも上方に位置するように建物の屋根に沿って傾斜させ、冷却媒体が第1のヘッダー配管から第2のヘッダー配管に向けて流通する発電優先流路と、冷却媒体が第2のヘッダー配管から第1のヘッダー配管に向けて流通する集熱優先流路との間で冷却媒体の流路を切換えることが可能な流路切換手段を備えたものである。

本発明によれば、周囲の空気の温度分布及び冷却媒体の温度変化に対応して伝熱管の配置を適切に設定することができる。そして、太陽光熱ハイブリッドパネルの発電ロスを低減し、その発電量を向上させることができ、冷却効率及び発電効率が高いソーラーシステムを実現することができる。
本発明の実施の形態1による太陽光熱ハイブリッドパネルを分解した状態で示す分解斜視図である。 図1中に示す伝熱管の配置パターンの一例を示す説明図である。 本発明の実施の形態1による太陽光熱ハイブリッドパネルを用いたソーラーシステムを示す構成図である。 冷却媒体による冷却が行われない場合の太陽電池セル及び空気の温度を示す特性線図である。 太陽光熱ハイブリッドパネルの上方から下方に向けて冷却媒体を流通させた場合の太陽電池セル及び空気の温度を示す特性線図である。 太陽光熱ハイブリッドパネルの下方から上方に向けて冷却媒体を流通させた場合の太陽電池セル及び空気の温度を示す特性線図である。 本発明の実施の形態2において、太陽光熱ハイブリッドパネルの伝熱管を波形状に屈曲させた状態を示す平面図である。 本発明の実施の形態2において、太陽光熱ハイブリッドパネルの伝熱管を矩形状に屈曲させた状態を示す平面図である。 本発明の実施の形態2において、1本の伝熱管を水平方向に蛇行するように屈曲させた場合を示す参考図である。 本発明の実施の形態3による太陽光熱ハイブリッドパネルを示す平面図である。 本発明の実施の形態4によるソーラーシステムを示す構成図である。
実施の形態1.
以下、図1乃至図6を参照して、本発明の実施の形態1について説明する。なお、本明細書で使用する各図においては、共通する要素に同一の符号を付し、重複する説明を省略するものとする。図1は、本発明の実施の形態1による太陽光熱ハイブリッドパネルを分解した状態で示す分解斜視図である。本実施の形態の太陽光熱ハイブリッドパネル1は、ガラス基板2、太陽光発電パネル3、太陽電池セル4、放熱板5、ヘッダー配管6,7及び伝熱管8を備えている。
太陽光発電パネル3は、太陽光を受けて発電する複数個の太陽電池セル4をモジュール基板の表面側に並べて配置したもので、太陽光発電モジュールとして構成されている。太陽電池セル4は、単結晶または多結晶のシリコン、アモルファスシリコン等からなる発電部に電極を接続したもので、モジュール基板上にエチレン酢酸ビニル共重合体樹脂等を用いて封止されている。また、太陽光発電パネル3は、例えば横方向の寸法が1800mm、縦方向の寸法が1000mm程度の矩形状をなす平板として形成され、その表面側には、太陽光の入射面を保護するガラス基板2が重ね合わせた状態で配置されている。
また、太陽光発電パネル3の裏面、即ち、太陽光の入射面と反対側の面には、放熱板5が重ね合わせた状態で配置されている。放熱板5は、鉄、アルミ等の金属材料、または樹脂材料により平板状に形成され、太陽光発電パネル3に密着して接着されている。これにより、放熱板5は、太陽光発電パネル3の裏面側を保護しつつ、太陽光発電時に発生する熱を裏面側に伝導し易くして、太陽光発電パネル3の放熱性を確保している。太陽電池セル4は、放熱板5を介して太陽光発電パネル3の裏面側から冷却することができる。放熱板5の裏面には、第1のヘッダー配管6、第2のヘッダー配管7及び複数本の伝熱管8からなるパネル冷却部が重ね合わせた状態で配置されている。
ここで、ヘッダー配管6,7は、各伝熱管8を長さ方向の両側で連結して一体化すると共に、各伝熱管8に冷却媒体を均等に分配するための配管である。第1のヘッダー配管6は、太陽光発電パネル3の外形に対応する矩形の一辺に沿って直線状に伸長している。また、第2のヘッダー配管7は、前記矩形のうち前記一辺と対向する他辺に沿って直線状に伸長し、各伝熱管8を挟んでヘッダー配管6と対向すると共に、ヘッダー配管6と平行に配置されている。これらのヘッダー配管6,7は、例えば伝熱管8よりも内径が大きな配管を用いて形成され、多数の伝熱管8に分配される冷却媒体の流量を均等化するように構成されている。また、ヘッダー配管6,7には、後述の放熱器11及び熱回収交換器13により構成される冷却媒体供給源が接続され、図1中の矢示方向に冷却媒体が流通する。
伝熱管8は、太陽光発電パネル3の冷却及び集熱を行うための配管であり、例えば内径が6.35mm〜12.7mm程度の円筒管により構成されている。そして、複数本の伝熱管8は、太陽光発電パネル3の裏面に沿って平面状に配置されている。即ち、各伝熱管8は、ヘッダー配管6,7の長さ方向(=伸長方向)に一定の間隔をもって配置されると共に、ヘッダー配管6,7の長さ方向と直交する方向に沿って互いに平行に伸長している。なお、各伝熱管8は、放熱板5に接触させた状態で配置し、放熱板5を介して太陽光発電パネル3の裏面と熱的に接続する構成としてもよいが、小さな隙間を挟んで放熱板5と対面する構成としてもよい。
また、各伝熱管8の端部側は、それぞれヘッダー配管6,7に挿入された状態でロウ付け等の手段により固定されている。これにより、各伝熱管8は、ヘッダー配管6,7を長さ方向の複数個所で連結及び接続し、前記冷却媒体供給源から供給される冷却媒体をヘッダー配管6,7の間に流通させるように構成されている。なお、図1では、ヘッダー配管6,7の長さ方向に5枚の太陽電池セル4を並べて配置し、これらの太陽電池セル4と重なり合う位置に15本の伝熱管8を配置した場合を例示している。
次に、図1及び図2を参照して、太陽電池セル4と伝熱管8との位置関係について説明する。図2は、図1中に示す伝熱管の配置パターンの一例を示す説明図である。本実施の形態では、個々の太陽電池セル4の裏面にそれぞれ、少なくとも1本の伝熱管8を配置する構成としている。好ましくは、個々の太陽電池セル4の裏面にそれぞれ複数本の伝熱管8を配置し、これら複数本の伝熱管8は、平面視において太陽電池セル4の面積を等分割することにより得られる複数個の領域の中心位置をそれぞれ通過するように配置してもよい。即ち、各伝熱管8は、個々の太陽電池セル4の裏面に均等に配置され、太陽電池セル4の各部の温度が可能な限り均等となるように冷却する。
図2に示す具体例で説明すると、個々の太陽電池セル4の裏面には、3本の伝熱管8が配置されており、これらの伝熱管8は、平面視において太陽電池セル4の面積を水平方向に3等分することにより得られる3個の領域4a,4b,4cの中心位置をそれぞれ通過するように配置されている。なお、平面視とは、太陽光発電パネル3及び太陽電池セル4をその表面と垂直な方向からみた状態を意味している。また、水平方向とは、太陽光発電パネル3の横方向、即ち、ヘッダー配管6,7の長さ方向を意味している。
また、本実施の形態では、個々の太陽電池セル4の裏面に配置する伝熱管8の本数を各太陽電池セル4間で等しくする構成としている。具体例では、図2に示すように、太陽電池セル4の裏面に3本の伝熱管8が配置されており、この配置状態が全ての太陽電池セル4に適用されている。
(ソーラーシステムの構成)
次に、図3を参照して、太陽光熱ハイブリッドパネル1を用いたソーラーシステムについて説明する。図3は、本発明の実施の形態1による太陽光熱ハイブリッドパネルを用いたソーラーシステムを示す構成図である。本実施の形態では、6個の太陽光熱ハイブリッドパネル1を住宅16の屋根17の傾斜面に沿って設置した場合を例示している。この場合、太陽光熱ハイブリッドパネル1は、太陽光発電パネル3の縦方向(図1中の上下方向)が屋根17の傾斜方向と一致するように配置され、かつ、第1のヘッダー配管6が第2のヘッダー配管8よりも上方に位置するように配置される。また、6個の太陽光熱ハイブリッドパネル1は、水平方向に並んだ3個の太陽光熱ハイブリッドパネル1が直列に接続されて1組となり、さらに、屋根17の傾斜方向に並んだ2組の太陽光熱ハイブリッドパネル1が並列に接続されている。なお、図3では、伝熱管8の図示を省略している。
また、本実施の形態のソーラーシステムは、供給ポンプ9、三方弁10、放熱器11、放熱器ファン12、熱回収熱交換器13、貯湯タンク14及び循環ポンプ15を備えている。ソーラーシステムにおける冷却媒体の流路は、供給ポンプ9、第1のヘッダー配管6、伝熱管7、第2のヘッダー配管8、三方弁10、熱回収熱交換器13及び循環ポンプ15を他の配管等を用いて環状に接続することにより構成されている。ここで、供給ポンプ9は、各太陽光熱ハイブリッドパネル1に冷却媒体を供給するもので、インバータ等により回転数が連続的に変更可能となっている。これにより、供給ポンプ9は、冷却媒体の供給量を任意に調整することができる。
三方弁10は、太陽光熱ハイブリッドパネル1から流出した冷却媒体の還流先を放熱器11及び熱回収熱交換器13に切換えるものである。なお、三方弁10は、弁開度を連続的に調整可能な電磁弁等により構成され、放熱器11と熱回収熱交換器13に流れる冷却媒体の流量比を任意に調整することができる。なお、冷却媒体としては、例えば水、プロピレングリコール等のブラインが用いられる。放熱器11は、例えばプレートフィン熱交換器により構成され、放熱器11に送風する放熱器ファン12を備えている。そして、太陽光熱ハイブリッドパネル1を冷却することにより高温となったブラインの放熱及び冷却を促進するものである。
熱回収熱交換器13は、例えばプレート熱交換器、二重管熱交換器等により構成され、高温のブラインと貯湯タンク14内の湯水との間で熱交換することにより当該湯水を加熱するものである。貯湯タンク14は、密閉型の貯湯タンクにより構成され、熱回収熱交換器13により加熱された温水を貯留するものである。貯湯タンク14の出湯端Bから温水が流出すると、その分の市水が給水端Aから貯湯タンク14に供給される。循環ポンプ15は、貯湯タンク14と熱回収熱交換器13との間で温水を循環させるもので、その回転数は、供給ポンプ9と同様にインバータ制御される。
(太陽光熱ハイブリッドパネルの動作)
次に、本実施の形態による太陽光熱ハイブリッドパネル1の集熱動作について説明する。まず、太陽光熱ハイブリッドパネル1に太陽光が入射すると、太陽電池セル4では、入射した太陽エネルギの一部(10〜15%程度)が電気に変換される。この電気は、図示しない電極及び配線等を介して住宅16の受電設備に供給される。また、入射した太陽エネルギの他の一部(10〜20%)は反射され、残りの一部(60〜70%程度)は熱として太陽電池セル4に吸収される。そして、太陽電池セル4で生じた熱のうち2/3程度は、太陽光発電パネル3の下方に配置された放熱板5及び伝熱管8を介して伝導管8内の冷却媒体に伝導する。また、太陽電池セル4で生じた残りの熱は、太陽光発電パネル3の上方に配置されたガラス基板を介して周囲の空気に放熱される。
(ソーラーシステムの動作)
次に、太陽光熱ハイブリッドパネル1内で冷却媒体が吸収した熱の集熱動作について説明する。冷却媒体は、太陽光熱ハイブリッドパネル1内で熱を吸収することにより40〜50℃程度に昇温した後に、供給ポンプ9の作動により搬送され、三方弁10を介して熱回収熱交換器13に流入する。熱回収熱交換器13では、循環ポンプ15の作動により貯湯タンク14との間で循環する市水と熱交換する。市水の温度は5〜20℃程度の低温であるため、冷却媒体の熱は市水に伝導し、冷却媒体は20〜30℃程度の低温まで冷却される。この冷却媒体は、供給ポンプ9の作動により太陽光熱ハイブリッドパネル1に再び供給され、当該パネル1を冷却する。一方、冷却媒体との熱交換により加熱された市水は、40〜50℃程度の温水となり、出湯端Bから外部の給湯対象に給湯される。
また、貯湯タンク14では、深夜に当日の給湯が全て終了した時点でタンク内の温水が使い切られ、給水端Aから供給された低温水のみが貯留された状態となる。次に、翌日の日中となり、太陽光が太陽光熱ハイブリッドパネル1に入射し、冷却媒体が太陽熱により加熱されるようになると、循環ポンプ15が作動し、貯湯タンク14の下部に滞留する低温水を熱回収熱交換器13に流入させる。この低温水は、熱回収熱交換器13により高温の冷却媒体と熱交換して高温の温水となり、貯湯タンク14の上部に戻される。この結果、貯湯タンク14の内部では、高温水が上部に滞留し、給水端Aから供給された低温水が下部に滞留する温度成層が生じる。そして、熱回収熱交換器13の作動時間、即ち、積算熱交換量が増加するにつれて、貯湯タンク14に滞留する高温水の比率が増加する。
貯湯タンク14の高温水の比率が増加し、低温水が存在しなくなると、熱回収熱交換器13では、冷却媒体を十分に冷却することができなくなる。この場合、高温の冷却媒体を太陽光熱ハイブリッドパネル1に供給すると、発電効率が低下することになるので、この状態を回避するために三方弁10の開度を変更し、冷却媒体を放熱器11に流通させる。放熱器11では、10〜30℃程度である周囲の空気と、冷却媒体とが熱交換し、冷却媒体の温度が20〜35℃程度に低下する。温度が低下した冷却媒体は、供給ポンプ9の作動により太陽光熱ハイブリッドパネル1に供給され、当該パネル1を冷却する。
(太陽光熱ハイブリッドパネルの温度変化)
次に、図4を参照して、太陽光熱ハイブリッドパネル1の太陽電池セル4、周囲空気及び冷却媒体の温度変化について説明する。図4は、冷却媒体による冷却が行われない場合の太陽電池セル及び空気の温度を示す特性線図である。この図において、横軸は上下方向の位置を表し、縦軸は温度を表している。また、図中の点線は、太陽光熱ハイブリッドパネル1の周囲の空気温度を表し、実線は太陽電池セル4の温度を表している。
太陽光熱ハイブリッドパネル1の周囲の空気は、当該パネルからの熱を受けて昇温する。このため、パネル1の設置場所が傾斜した屋根17である場合には、太陽光熱ハイブリッドパネル1からの熱を受けた空気は温められ上昇気流となり、当該パネル1の太陽光入射面を下方から上方に向けて移動する。この空気は、移動中にもパネルから熱を受けるので、図4中の点線に示すように、上方に移動するほど高温となる。
一方、太陽電池セル4は、冷却媒体による冷却が存在しないので、入射した太陽エネルギに対応する熱を全て周囲の空気に対して放熱する。太陽光熱ハイブリッドパネル1の各部の放熱量はほぼ同一となるので、太陽電池セル4の温度は、図4中の実線に示すように、周囲の空気温度よりも一定温度だけ高い状態となり、太陽光熱ハイブリッドパネル1の上方でより高温となる。
(冷却媒体の流通方向とパネルの温度変化)
次に、図5及び図6は、冷却媒体による冷却が行われた場合の太陽電池セル及び空気の温度を示す特性線図である。図5は、冷却媒体が太陽光熱ハイブリッドパネル1の上方から下方に向けて流れる場合の温度変化を示し、図6は、冷却媒体が下方から上方に向けて流れる場合の温度変化を示している。冷却媒体の温度は、図5中の一点鎖線に示すように、太陽光熱ハイブリッドパネル1に流入する上方位置で最も低く、伝熱管7を流通する間に太陽電池セル4との熱交換により上昇するので、下方に移動するにつれて高温となる。
一方、図5中の細い実線は、冷却媒体による冷却が行われない場合の太陽電池セル4の温度変化を示すもので、図4中の実線に相当するものである。太陽電池セル4と冷却媒体との温度差は、冷却がない場合の太陽電池セル4の温度変化と、冷却媒体の温度変化とを合成したものであり、太陽光熱ハイブリッドパネル1の上方ほど大きく、下方ほど小さくなる。そして、この温度差が大きいほど、両者の熱交換量は増加するので、冷却媒体による太陽電池セル4の冷却量は、パネル1の上方ほど増加することになる。この結果、太陽電池セル4の温度は、上方ほど大きく低下することになり、この温度特性は、冷却がない場合の温度特性(前記細い実線)を緩和するように作用する。
従って、冷却媒体により冷却される場合の太陽電池セル4の温度特性は、図5中の太い実線に示すように、前記細い実線と比較して上下方向での温度変化(勾配)が抑制されたものとなる。太陽光熱ハイブリッドパネル1の各部において、太陽電池セル4の温度差を抑制することができる。このように、冷却媒体を太陽光熱ハイブリッドパネル1の上方から下方に向けて、即ち、第1のヘッダー配管6から第2のヘッダー配管7に向けて流通させれば、太陽光熱ハイブリッドパネル1の各部に配置された各太陽電池セル4の温度分布をほぼ均等に揃えることができる。
一方、冷却媒体を太陽光熱ハイブリッドパネル1の下方から上方に向けて流通させた場合には、図6中の一点鎖線に示すように、冷却媒体の温度がパネル1の下方から上方に向けて上昇する。この結果、太陽電池セル4と冷却媒体との温度差、即ち、太陽電池セル4の冷却量は、太陽光熱ハイブリッドパネル1の各部でほぼ一定となるので、太陽電池セル4の温度は、パネル1の各部でほぼ均等に低下する。しかし、太陽光熱ハイブリッドパネル1の周囲の空気は、前述したように、図6中の点線に示す温度特性を有しており、この温度特性が太陽電池セル4の温度に与える影響は解消されていない。この結果、太陽電池セル4の温度は、図6中の実線に示すように、太陽光熱ハイブリッドパネル1の上方ほど高温となり、発電ロスを解消するのは難しい。従って、パネル1の発電ロスを解消して発電量を増加させるには、冷却媒体をパネル1の上方から下方に向けて流通させることにより、各太陽電池セル4の温度を均等化するのが好ましい。
本実施の形態によれば、上記構成を採用することにより、次のような作用効果を得ることができる。まず、太陽光熱ハイブリッドパネル1の伝熱管8は、個々の太陽電池セル4の裏面にそれぞれ、少なくとも1本ずつ配置する構成としている。これにより、各伝熱管8を流通する冷却媒体を用いて、太陽光熱ハイブリッドパネル1に搭載された全ての太陽電池セル4をそれぞれ均等に冷却することができる。ここで、仮に一部の太陽電池セル4の裏面に伝熱管8が配置されていない場合でも、放熱板5を介して各太陽電池セル4の冷却は可能である。しかし、この場合には、伝熱管8の配置の有無及び伝熱管8との距離に応じて各太陽電池セル4の冷却量にばらつきが生じるので、太陽光熱ハイブリッドパネル1の上方から下方に向けて冷却媒体を流通させたとしても、太陽電池セル4間に温度ばらつきが生じ、発電ロスが生じる。これに対し、本実施の形態では、個々の太陽電池セル4の裏面にそれぞれ伝熱管8を配置することにより、太陽電池セル4間の温度ばらつきを抑制し、発電ロスを低減して発電量を増加させることができる。
特に、本実施の形態では、各太陽電池セル4の裏面にそれぞれ複数本(例えば3本)の伝熱管8を配置し、これらの伝熱管8を、太陽電池セル4の面積を等分割して得られた複数の領域4a,4b,4cの中心位置をそれぞれ通過するように配置している。また、各太陽電池セル4の裏面に配置する伝熱管8の本数を各太陽電池セル4間で等しくする構成としている。これにより、1個の太陽電池セル4の各部分を複数本の電熱管8によりそれぞれ均等に冷却することができ、各太陽電池セル4の内部の温度分布を一様にすることができる。しかも、この冷却状態を各太陽電池セル4の間で揃えることができ、各太陽電池セル4を高い冷却効率で均等に冷却することができる。ここで、太陽電池セル4の内部の温度分布を均等化することを考慮すると、各太陽電池セル4の裏面に配置する伝熱管8の本数は多いほどよいが、その分だけ配管コストも増加する。このため、具体例としては、1個の太陽電池セル4の裏面に、例えば2〜5本程度の伝熱管8を配置するのが好ましい。但し、本発明は、伝熱管8をこれらの本数に限定するものではない。
また、本実施の形態では、太陽光熱ハイブリッドパネル1のパネル冷却部を、第1,第2のヘッダー配管6,7と、これらのヘッダー配管6,7の間に接続される複数の伝熱管8とにより構成している。これにより、複数個の太陽電池セル4の裏面にそれぞれ複数本の伝熱管8を配置するような複雑な配管構成であっても、この配管構成を3種類の直線状の配管であるヘッダー配管6,7及び伝熱管8により実現することができる。即ち、パネル冷却部の部品点数を抑制することができ、また、何種類もの配管を複雑に組合わせたり、配管を湾曲及び屈曲させる作業等が不要となるので、組立作業の簡略化及びコストダウンを促進することができる。また、ヘッダー配管6,7の長さ方向の各部に接続する伝熱管8同士の間隔を変更するだけで、太陽電池セル4の個数に応じて配管構成を容易に最適化することができる。
さらに、本実施の形態では、ヘッダー配管6,7の内径を各伝熱管8よりも大きく形成しているので、例えば第1のヘッダー配管6から多数の伝熱管8に冷却媒体を分配する場合、及び多数の伝熱管8から第2のヘッダー配管7に冷却媒体を集約する場合において、各伝熱管8を流通する冷却媒体の流量を均等化することができる。即ち、ヘッダー配管6,7の内径を大きくすることで、上述した伝熱管8の均等配置との相乗効果により、全ての太陽電池セル4に対する冷却媒体の流れを均等化することができる。
一方、本実施の形態では、太陽電池セル4と伝熱管8とを上述のように配置した上で、太陽光熱ハイブリッドパネル1を屋根の傾斜面に沿って配置することにより、第1のヘッダー配管6が第2のヘッダー配管7よりも上方に配置し、冷却媒体を少なくとも第1のヘッダー配管6から第2のヘッダー配管7に向けて流通させる構成としている。この構成によれば、前述したように、太陽電池セル4の上下方向の位置の違いにより生じる温度差を抑制し、太陽光熱ハイブリッドパネル1の各部において、各太陽電池セル4の温度分布をほぼ均等に揃えることができる。これにより、各太陽電池セル4間の温度差、即ち、発電効率及び最適発電電圧のばらつきを抑制することができる。
以上詳述した通り、本実施の形態によれば、太陽電池セル4の配置、周囲の空気の温度分布及び冷却媒体の温度変化に対応して、伝熱管8の配置を適切に設定することができる。この伝熱管8の適切な配置は、ヘッダー配管6,7間に複数の伝熱管8を接続するという構成を採用することで容易に実現することができる。従って、太陽光熱ハイブリッドパネル1の発電ロスを低減し、その発電量を向上させることができ、冷却効率及び発電効率が高いソーラーシステムを実現することができる。
実施の形態2.
次に、図7及び図8を参照して、本発明の実施の形態2について説明する。図7は、本発明の実施の形態2において、太陽光熱ハイブリッドパネル1の伝熱管8を波形状に屈曲させた状態を示す平面図であり、図8は、伝熱管8を矩形状に屈曲させた状態を示す平面図である。これらの図に示すように、本実施の形態による複数本の伝熱管8′,8″は、前記実施の形態1とほぼ同様に、ヘッダー配管6,7よりも内径が小さい配管を用いて構成され、ヘッダー配管6,7の長さ方向に一定の間隔をもって互いに平行に伸長している。しかし、各伝熱管8′は、例えば波形状に蛇行するように屈曲して形成され、各伝熱管8″は、矩形状またはクランク形状に蛇行するように屈曲して形成されている。
このように構成される本実施の形態でも、前記実施の形態1とほぼ同様の作用効果を得ることができる。そして、特に本実施の形態では、伝熱管8′,8″を蛇行するように屈曲させることにより、ヘッダー配管6,7の間の一定の距離に対する伝熱管8′,8″の長さ寸法を増加させることができ、実施の形態1と比較して1本の伝熱管8′,8″により冷却が可能となる範囲を拡大することができる。これにより、一定の冷却効果を得るのに必要な伝熱管8′,8″の本数を削減することができるので、ヘッダー配管6,7と伝熱管8′,8″との組立加工を簡素化し、コストダウンを促進することができる。
なお、太陽光熱ハイブリッドパネル1の冷却構造としては、図9に示すように、例えばヘッダー配管6,7を廃止して1本の伝熱管100のみを使用し、この伝熱管100を、太陽光熱ハイブリッドパネル1の上方から下方に蛇行するように屈曲させて配置する構成も考えられる。図9は、本発明の実施の形態2において、1本の伝熱管を水平方向に蛇行するように屈曲させた場合を示す参考図である。太陽光熱ハイブリッドパネル1の上方ほど冷却され易いことを考慮すると、上記構成によれば、図6に示す温度特性が生じるようにパネル1の下方から上方に向けて冷却媒体を流す場合と比較して、各太陽電池セル4間の温度差を減少させ、発電ロスの低減効果を得ることができる。しかし、この場合には、太陽光熱ハイブリッドパネル1の水平方向で冷却媒体の温度差が生じるので、発電ロスを完全に解消するのは困難である。このような水平方向の温度差を回避するためには、例えば個々の高さ位置毎に冷却媒体の温度が水平方向で一様になるように構成することが好ましい。具体的には、例えば図1、図7、図8に示すような伝熱管8,8′,8″を水平方向に平行に数10cmまたはそれ以下の間隔で配置し、水平方向において太陽電池セル4の温度を均等化するのが好ましい。
また、前記実施の形態1,2では、伝熱管8,8′,8″を円筒管により構成する場合を例示したが、本発明はこれに限らず、例えば矩形、長円形及び楕円形の断面形状を有する配管(以下、扁平管と称する)を伝熱管8,8′,8″として用いる構成としてもよい。伝熱管が扁平管である場合には、円筒管の場合と比較して、伝熱管と放熱板5との間の接触面積または対向面積が増加するので、太陽電池セル4の冷却性能を向上させることができる。また、円筒状の伝熱管と太陽電池セル4とが最近接状態で対向する部分は直線状となるのに対し、扁平な伝熱管と太陽電池セル4とは、一定の面積において最近接状態で対向する。従って、扁平な伝熱管を用いた場合には、太陽電池セル4の内部の冷却量を一定の面積にわたって均等化し、太陽電池セル4内の温度分布の一様化を促進することができる。
実施の形態3.
次に、図10を参照して、本発明の実施の形態3について説明する。図10は、本発明の実施の形態3による太陽光熱ハイブリッドパネルを示す平面図である。本実施の形態による太陽光熱ハイブリッドパネル1′は、流路切換手段としての流入切換弁18と流出切換弁19とを備えている。流入切換弁18と流出切換弁19とは、例えば電磁駆動式の三方弁により構成されている。なお、図10では、伝熱管8の図示を省略している。また、以下の説明では、太陽光熱ハイブリッドパネル1′の適用対象として、前記図3に示すソーラーシステムを例示するものとする。
流入切換弁18に設けられた2つの流出ポートは、ヘッダー配管6,7の一端側にそれぞれ接続されている。また、流入切換弁18の流入ポートは、前述の冷却媒体供給源(図3中に示す放熱器11及び熱回収交換器13)の供給側に接続されており、具体的には、供給ポンプ9の吐出側に接続されている。そして、流入切換弁18は、冷却媒体供給源から供給される冷却媒体を第1のヘッダー配管6に流入させる第1の流路Pと、冷却媒体供給源から供給される冷却媒体を第2のヘッダー配管7に流入させる第2の流路Qの何れかを選択し、冷却媒体が流入する配管をヘッダー配管6,7の何れかに切換えるように構成されている。
一方、流出切換弁19に設けられた2つの流入ポートは、ヘッダー配管6,7の他端側にそれぞれ接続されている。また、流出切換弁19の流出ポートは、前記冷却媒体供給源の還流側に接続されており、具体的には、三方弁10の流入ポートに接続されている。そして、流出切換弁19は、第1のヘッダー配管6から流出した冷却媒体を冷却媒体供給源に還流させる第1の流路Rと、第2のヘッダー配管7から流出した冷却媒体を冷却媒体供給源に還流させる第2の流路Sの何れかを選択し、冷却媒体が流出する配管をヘッダー配管6,7の何れかに切換えるように構成されている。
これにより、流入切換弁18により流路Pを選択して流出切換弁19により流路Sを選択した場合には、冷却媒体が第1のヘッダー配管6から各伝熱管8を経由して第2のヘッダー配管7に向けて流通する発電優先流路が構成される。一方、流入切換弁18により流路Qを選択して流出切換弁19により流路Rを選択した場合には、冷却媒体が第2のヘッダー配管7から各伝熱管8を経由して第1のヘッダー配管6に向けて流通する集熱優先流路が構成される。
次に、本実施の形態による太陽光熱ハイブリッドパネル1′を用いたソーラーシステムの運転制御について説明する。この運転制御は、ソーラーシステムに搭載された制御装置により実現される。まず、例えば日照時間帯であったり、貯湯タンク14の残湯量が十分である等の理由により、発電を優先的に実行する場合には、流入切換弁18及び流出切換弁19により発電優先流路が構成される。これにより、冷却媒体供給源から供給される冷却媒体は、第1のヘッダー配管6から第2のヘッダー配管7に向けて流通し、各伝熱管8を上方から下方に向けて流通する。これにより、前述したように、太陽光熱ハイブリッドパネル1′の各太陽電池セル4を均等に効率よく冷却し、パネル1′の発電量を向上させることができる。
一方、貯湯タンク14の残湯量が少なかったり、残湯の温度が低い等の理由により、集熱を優先的に実行したい場合には、流入切換弁18及び流出切換弁19により集熱優先流路が構成される。これにより、冷却媒体供給源から供給される冷却媒体は、第2のヘッダー配管7から第1のヘッダー配管6に向けて流通し、各伝熱管8を下方から上方に向けて流通する。この場合、太陽光熱ハイブリッドパネル1′の各部の温度変化は、前記図6に示すようになり、冷却媒体が上方から下方に向けて流れる場合と比較して、太陽電池セル4と冷却媒体との温度差が均等となる。従って、集熱優先流路の使用時には、熱交換を効率よく実行することができ、熱交換による太陽熱の収集量を増加させることができる。
このように、発電優先流路と集熱優先流路とを状況に応じて使い分けることにより、太陽エネルギを電気及び熱として所望の形態で取得し、太陽エネルギを効率よく利用することができる。なお、発電優先流路と集熱優先流路との間における流路の切換制御は、上述したように、貯湯タンク14の貯湯量及び貯湯温度に基いて実行してもよいが、以下のように実行してもよい。1例としては、1日当たりの発電量及び集熱量の目標値を予め設定しておき、これらの目標値に対する実際の発電量及び集熱量の充足率を算出する。そして、発電量と集熱量のうち充足率が小さい方を優先して補充するように、流路の切換制御を実行する。この切換制御では、発電量の充足率が集熱量の充足率よりも小さい場合に発電優先流路を選択し、集熱量の充足率の方が小さい場合に集熱優先流路を選択する。
また、日射量、外気温度等を含む天候情報に基いて、流路の切換制御を実行してもよい。具体的に述べると、例えば日射量が多いと予測される場合には、発電を優先的に実行しても、日射量が多い分だけ集熱量も十分に確保できると考えられるので、発電優先流路を選択する。また、外気温度が高い場合には、家庭で用いられる給湯等の熱使用負荷が減少することにより、必要な集熱量も減少する傾向がある。この場合には、発電を優先しても、必要な集熱量を容易に確保できると考えられるので、発電優先流路を選択する。これと逆に、外気温度が低い場合には、家庭の熱使用負荷が増加するので、必要な集熱量を安定して確保するために集熱優先流路を選択する。
さらには、ユーザにより予め設定することが可能な流露の切換時間、現在の時刻情報等に基いて、流路の切換制御を実行してもよい。具体例を挙げると、例えば1日のうちで発電優先流路と集熱優先流路をそれぞれ使用する使用時間を予め設定しておき、この設定に基いて流路を切換えてもよい。この場合、例えば発電量を多くしたい状況では、全時間の80%で発電優先流路を使用し、残りの時間で集熱優先流路を使用する等のように、電気エネルギと熱エネルギのうち取得したいエネルギの大小に応じて各流路の使用時間を可変に設定してもよい。また、時刻情報に基いて流路を切換える方法としては、例えば日射量が増加する昼間は発電優先流路を選択し、日射量が減少する朝及び夕方には集熱優先流路を選択する方法を採用してもよい。
このように、太陽光発電パネルにおける発電量及び集熱量と、天候及び時刻情報と、予め設定することが可能な流路の切換時間とを含む複数のパラメータのうち、少なくとも1つのパラメータに基いて、発電優先流路と集熱優先流路とを適切に使い分けることができ、太陽エネルギを効率よく利用することができる。
また、本実施の形態によれば、前記実施の形態1とほぼ同様の作用効果に加えて、次の効果を得ることができる。太陽光熱ハイブリッドパネル1′には、流入切換弁18と流出切換弁19とを搭載したので、これらの切換弁18,19を太陽光熱ハイブリッドパネル1の外部に配置する場合と比較して配管の長さを短縮することができる。具体的に述べると、本実施の形態では、流入切換弁18の位置で分岐して各ヘッダー配管6,7に接続される2本の配管の長さと、流出切換弁19の位置で分岐して各ヘッダー配管6,7に接続される2本の配管の長さとを合計した分岐部分の配管長を短縮することができる。従って、配管構造を簡略化し、コストダウンを図ることができる。
実施の形態4.
次に、図11を参照して、本発明の実施の形態3について説明する。図11は、本発明の実施の形態4によるソーラーシステムを示す構成図である。本実施の形態では、太陽光熱ハイブリッドパネル1の外部に流路切換手段としての流入切換弁20と流出切換弁21とを配置している。なお、本実施の形態では、例えば6個の太陽光熱ハイブリッドパネル1が前記実施の形態1(図3)と同様の接続状態で屋根17上に配置された場合を例示し、各太陽光熱ハイブリッドパネル1の伝熱管8は図示を省略している。
流入切換弁20と流出切換弁21とは、例えば電磁駆動式の三方弁により構成されている。そして、流入切換弁20に設けられた2つの流出ポートは、各太陽光熱ハイブリッドパネル1の第1のヘッダー配管6の一端側及び第2のヘッダー配管7の他端側にそれぞれ接続され、流入切換弁20の流入ポートは、供給ポンプ9の吐出側に接続されている。そして、流入切換弁20は、冷却媒体供給源から供給される冷却媒体を第1のヘッダー配管6に流入させる第1の流路Pと、冷却媒体供給源から供給される冷却媒体を第2のヘッダー配管7に流入させる第2の流路Qの何れかを選択し、冷却媒体が流入する配管をヘッダー配管6,7の何れかに切換えるように構成されている。
一方、流出切換弁21に設けられた2つの流入ポートは、各太陽光熱ハイブリッドパネル1の第1のヘッダー配管6の一端側及び第2のヘッダー配管7の他端側にそれぞれ接続され、流出切換弁21の流出ポートは、三方弁10の流入ポートに接続されている。そして、流出切換弁21は、第1のヘッダー配管6から流出した冷却媒体を冷却媒体供給源に還流させる第1の流路Rと、第2のヘッダー配管7から流出した冷却媒体を冷却媒体供給源に還流させる第2の流路Sの何れかを選択し、冷却媒体が流出する配管をヘッダー配管6,7の何れかに切換えるように構成されている。
これにより、流入切換弁20により流路Pを選択して流出切換弁21により流路Sを選択した場合には、冷却媒体が第1のヘッダー配管6から各伝熱管8を経由して第2のヘッダー配管7に向けて流通する発電優先流路が構成される。一方、流入切換弁20により流路Qを選択して流出切換弁21により流路Rを選択した場合には、冷却媒体が第2のヘッダー配管7から各伝熱管8を経由して第1のヘッダー配管6に向けて流通する集熱優先流路が構成される。なお、発電優先流路と集熱優先流路の使い分けについては、前記実施の形態3と同様に実行される。
このように構成される本実施の形態でも、前記実施の形態3とほぼ同様の作用効果を得ることができる。そして、特に本実施の形態では、複数個の太陽光熱ハイブリッドパネル1の流路を一括して切換えることができるので、例えば実施の形態3とと比較して、切換弁20,21を構成する三方弁の個数をシステム全体として少なくすることができ、コストダウンを促進することができる。
なお、本発明では、前記実施の形態2に示した構成と、前記実施の形態3または4に示す構成とを組合わせてもよい。
1,1′ 太陽光熱ハイブリッドパネル,2 ガラス基板,3 太陽光発電パネル,4 太陽電池セル,5 放熱板,6,7 ヘッダー配管,8,8′,8″ 伝熱管,9 供給ポンプ,10 三方弁,11 放熱器(冷却媒体供給源),12 放熱器ファン,13 熱回収熱交換器(冷却媒体供給源),14 貯湯タンク,15 循環ポンプ,16 住宅,17 屋根,18,20 流入切換弁(流路切換手段),19,21 流出切換弁(流路切換手段)

Claims (9)

  1. 太陽光を受けて発電する複数個の太陽電池セルが表面側に並べて配置され、前記各太陽電池セルを裏面側から冷却することが可能な矩形状の太陽光発電パネルと、
    前記太陽光発電パネルの外形に対応する矩形の一辺に沿って伸長し、外部の冷却媒体供給源と接続される第1のヘッダー配管と、
    前記矩形のうち前記一辺と対向する他辺に沿って前記第1のヘッダー配管と平行に伸長し、前記冷却媒体供給源と接続される第2のヘッダー配管と、
    前記第1,第2のヘッダー配管を長さ方向の複数個所で連結する複数の配管であって、前記太陽光発電パネルの裏面に沿って互いに平行に配置され、前記冷却媒体供給源から供給される冷却媒体を前記各ヘッダー配管の間に流通させる複数本の伝熱管と、を備え、
    前記太陽光発電パネルを前記第1のヘッダー配管が前記第2のヘッダー配管よりも上方に位置するように建物の屋根に沿って傾斜させ、
    前記冷却媒体が前記第1のヘッダー配管から前記第2のヘッダー配管に向けて流通する発電優先流路と、前記冷却媒体が前記第2のヘッダー配管から前記第1のヘッダー配管に向けて流通する集熱優先流路との間で前記冷却媒体の流路を切換えることが可能な流路切換手段を備えた太陽光熱ハイブリッドパネル。
  2. 前記複数個の太陽電池セルの裏面にそれぞれ、少なくとも1本の前記伝熱管を配置する構成としてなる請求項1に記載の太陽光熱ハイブリッドパネル。
  3. 1個の前記太陽電池セルの裏面に配置する前記伝熱管の本数を前記各太陽電池セル間で等しくする構成としてなる請求項1または2に記載の太陽光熱ハイブリッドパネル。
  4. 前記複数個の太陽電池セルの裏面にそれぞれ複数本の前記伝熱管を配置し、
    前記複数本の伝熱管は、平面視において前記太陽電池セルの面積を等分割することにより得られる複数個の領域の中心位置をそれぞれ通過する構成としてなる請求項1乃至3のうち何れか1項に記載の太陽光熱ハイブリッドパネル。
  5. 前記第1,第2のヘッダー配管は、前記冷却媒体を前記各伝熱管に均等に流通させるために前記各伝熱管よりも内径が大きい配管を用いて構成してなる請求項1乃至4のうち何れか1項に記載の太陽光熱ハイブリッドパネル。
  6. 前記伝熱管は、波形状または矩形状に蛇行するように屈曲させる構成としてなる請求項1乃至5のうち何れか1項に記載の太陽光熱ハイブリッドパネル。
  7. 前記流路切換手段は、
    前記冷却媒体供給源から前記冷却媒体が流入する配管を前記第1,第2のヘッダー配管の何れかに切換える流入切換弁と、
    前記冷却媒体が前記冷却媒体供給源に向けて流出する配管を前記第1,第2のヘッダー配管の何れかに切換える流出切換弁と、
    を備えてなる請求項1乃至のうち何れか1項に記載の太陽光熱ハイブリッドパネル。
  8. 太陽光を受けて発電する複数個の太陽電池セルが表面側に並べて配置され、前記各太陽電池セルを裏面側から冷却することが可能な矩形状の太陽光発電パネルと、
    前記太陽光発電パネルの外形に対応する矩形の一辺に沿って伸長し、外部の冷却媒体供給源と接続される第1のヘッダー配管と、
    前記矩形のうち前記一辺と対向する他辺に沿って前記第1のヘッダー配管と平行に伸長し、前記冷却媒体供給源と接続される第2のヘッダー配管と、
    前記第1,第2のヘッダー配管を長さ方向の複数個所で連結する複数の配管であって、前記太陽光発電パネルの裏面に沿って互いに平行に配置され、前記冷却媒体供給源から供給される冷却媒体を前記各ヘッダー配管の間に流通させる複数本の伝熱管と、を備え、
    前記太陽光発電パネルを前記第1のヘッダー配管が前記第2のヘッダー配管よりも上方に位置するように建物の屋根に沿って傾斜させた太陽光熱ハイブリッドパネルと、
    前記冷却媒体が前記第1のヘッダー配管から前記第2のヘッダー配管に向けて流通する発電優先流路と、前記冷却媒体が前記第2のヘッダー配管から前記第1のヘッダー配管に向けて流通する集熱優先流路との間で前記冷却媒体の流路を切換えることが可能な流路切換手段と、
    を備えたソーラーシステム。
  9. 前記太陽光発電パネルにおける発電量及び集熱量と、天候及び時刻情報と、予め設定することが可能な前記流路の切換時間とを含む複数のパラメータのうち、少なくとも1つのパラメータに基いて前記流路切換手段により前記冷却媒体の流路を切換える構成としてなる請求項に記載のソーラーシステム。
JP2012265290A 2012-12-04 2012-12-04 太陽光熱ハイブリッドパネル及びソーラーシステム Active JP5626323B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012265290A JP5626323B2 (ja) 2012-12-04 2012-12-04 太陽光熱ハイブリッドパネル及びソーラーシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012265290A JP5626323B2 (ja) 2012-12-04 2012-12-04 太陽光熱ハイブリッドパネル及びソーラーシステム

Publications (2)

Publication Number Publication Date
JP2014109419A JP2014109419A (ja) 2014-06-12
JP5626323B2 true JP5626323B2 (ja) 2014-11-19

Family

ID=51030158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012265290A Active JP5626323B2 (ja) 2012-12-04 2012-12-04 太陽光熱ハイブリッドパネル及びソーラーシステム

Country Status (1)

Country Link
JP (1) JP5626323B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341106A (zh) * 2018-09-26 2019-02-15 浙江宏阳新能源科技有限公司 一种屋顶太阳能光伏发电系统
JP2023036300A (ja) * 2021-09-02 2023-03-14 株式会社リビエラ 太陽電池用熱交換器及びこの太陽電池用熱交換器を備えた太陽電池、並びに熱交換システム
KR102431621B1 (ko) * 2022-03-03 2022-08-11 주식회사 제이앤지 증발식 탱크를 이용한 신재생에너지 융합 시스템

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141064A (ja) * 1997-11-07 1999-05-25 Sekisui Chem Co Ltd 屋根材と、この屋根材で葺かれた屋根
JP2003161533A (ja) * 2001-11-27 2003-06-06 Sekisui Chem Co Ltd 太陽光・熱ハイブリッドモジュール
JP2008151490A (ja) * 2006-12-20 2008-07-03 Electric Power Dev Co Ltd 太陽光発電集熱ユニット

Also Published As

Publication number Publication date
JP2014109419A (ja) 2014-06-12

Similar Documents

Publication Publication Date Title
KR101452412B1 (ko) 단일 고온 용융염 열저장탱크를 이용한 태양열 발전 시스템
US6630622B2 (en) Combined solar electric power and liquid heat transfer collector panel
JP5987185B2 (ja) 無動力冷却型太陽電池板
KR101568606B1 (ko) 태양광열 모듈 및 이 태양광열 모듈을 포함하는 태양광열 및 지열 시스템
JPWO2006038508A1 (ja) 太陽電池システムおよび熱電気複合型太陽電池システム
CN102563891A (zh) 毛细管辐射冷却型光伏电热联用装置
CN107178910B (zh) 一种基于cpvt和梯级蓄热的太阳能供热系统
JP6767975B2 (ja) 太陽エネルギーシステム
US20160322932A1 (en) Hybrid solar thermal system
JP5626323B2 (ja) 太陽光熱ハイブリッドパネル及びソーラーシステム
CN108105918A (zh) 双源复合热泵与光伏热管理一体化系统及其控制方法
CN102664209A (zh) 太阳能光伏电池冷却装置
CN105450173B (zh) 一种热管式聚光光伏冷却集热装置
WO2013182916A1 (en) Solar collector
WO2006019091A1 (ja) 太陽電池ハイブリッドモジュール
KR20110026394A (ko) 태양광 전열 이용 시스템
CN205249143U (zh) 一种热管式聚光光伏冷却集热装置
CN104913519A (zh) 一种与建筑相结合的可控蓄热式太阳能空气集热器
KR101211947B1 (ko) 태양전지와 열전소자를 이용한 온수 가열 기능을 갖는 발전 시스템
JP6466667B2 (ja) 太陽熱利用システム
CN105553418B (zh) 一种基于光伏光热板的热电联产系统
EP3834282B1 (en) Solar energy system
JP2013117327A (ja) 超軽量型太陽エネルギー利用システム
CN202328844U (zh) 多段式热管型太阳能集热器
CN208154690U (zh) 双源复合热泵与光伏热管理一体化系统

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5626323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250