JP5624250B2 - Lamination peel test method and peel inspection apparatus - Google Patents

Lamination peel test method and peel inspection apparatus Download PDF

Info

Publication number
JP5624250B2
JP5624250B2 JP2014508624A JP2014508624A JP5624250B2 JP 5624250 B2 JP5624250 B2 JP 5624250B2 JP 2014508624 A JP2014508624 A JP 2014508624A JP 2014508624 A JP2014508624 A JP 2014508624A JP 5624250 B2 JP5624250 B2 JP 5624250B2
Authority
JP
Japan
Prior art keywords
reflected wave
laminate
reflections
peeling
echo height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014508624A
Other languages
Japanese (ja)
Other versions
JPWO2013161835A1 (en
Inventor
永井 辰之
辰之 永井
純一 北阪
純一 北阪
賢 遠藤
賢 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Non Destructive Inspection Co Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd, Non Destructive Inspection Co Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2014508624A priority Critical patent/JP5624250B2/en
Application granted granted Critical
Publication of JP5624250B2 publication Critical patent/JP5624250B2/en
Publication of JPWO2013161835A1 publication Critical patent/JPWO2013161835A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Description

本発明は、積層体の剥離検査方法及び剥離検査装置に関する。さらに詳しくは、複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信し、受信した多重反射波を評価することにより層間剥離の有無を検査する積層体の剥離検査方法及び剥離検査装置に関する。   The present invention relates to a laminate peel inspection method and a peel inspection apparatus. In more detail, peeling of a laminated body in which ultrasonic waves are incident from one side of a laminated body in which a plurality of members are laminated and multiple reflected waves are received, and the presence or absence of delamination is inspected by evaluating the received multiple reflected waves. The present invention relates to an inspection method and a peeling inspection apparatus.

従来、上述の如き積層体の剥離検査対象は、管、容器等が多く、検査時には管、容器等の内部に人間が入り、内部からの目視検査、打音検査、ピンホール検査等行うのが通常であった。そのため、検査時には、操業を停止しなければならず、検査に多大な時間を要していた。   Conventionally, there are many pipes, containers, etc. for the above-mentioned laminate peel inspection as described above. At the time of inspection, humans enter the inside of the pipe, container, etc., and visual inspection, hammering inspection, pinhole inspection, etc. are performed from inside. It was normal. Therefore, at the time of the inspection, the operation has to be stopped, and the inspection takes a lot of time.

一方、例えば積層体の一例として特許文献1に記載の如く、操業を停止せずにライニングの剥離を検査する方法が提唱されている。上記文献記載の発明は、配管外部から超音波パルスを入射させ、配管内部のライニング内周面と管本体との各反射エコーの減衰率を算出し、剥離の有無を調査している。同従来方法では、ライニング材と、接着層とからなる多層構造のライニングには言及していないが、接着層とライニング材とが共に板材から剥離する場合には、上記手法で剥離を推定することができるかもしれない。   On the other hand, for example, as described in Patent Document 1 as an example of a laminated body, a method for inspecting peeling of a lining without stopping operation has been proposed. In the invention described in the above document, an ultrasonic pulse is incident from the outside of the pipe, the attenuation rate of each reflection echo between the inner circumferential surface of the lining inside the pipe and the pipe body is calculated, and the presence or absence of peeling is investigated. The conventional method does not refer to a lining having a multilayer structure composed of a lining material and an adhesive layer, but when the adhesive layer and the lining material are both peeled from the plate material, the above method is used to estimate the peeling. May be possible.

ところが、ライニング材のみが剥離して、接着層が板材本体に残余することもある。しかし、上記従来方法では、接着層のみが残余する部分と健全部との差異は明らかでなく、ライニング材のみの剥離をも検出することが困難であった。   However, only the lining material may peel off, and the adhesive layer may remain on the plate material body. However, in the conventional method, the difference between the portion where only the adhesive layer remains and the healthy portion is not clear, and it is difficult to detect the separation of only the lining material.

特開2000−329751号公報JP 2000-329751 A

かかる従来の実情に鑑みて、本発明は、簡便でありながら積層体の層間剥離を明瞭に検出することの可能な積層体の剥離検査方法及び剥離検査装置を提供することを目的とする。   In view of such a conventional situation, an object of the present invention is to provide a laminate peel inspection method and a peel inspection apparatus capable of clearly detecting delamination of a laminate while being simple.

上記目的を達成するため、本発明に係る積層体の剥離検査方法の特徴は、複数の部材が積層した積層体の一側に配置した探触子から超音波を入射すると共に多重反射波を受信し、受信した多重反射波を評価することにより層間剥離の有無を検査する方法において、予め、前記積層体の健全部において多重反射波を受信し、前記健全部におけるエコー高さに変動を与える前記探触子の前記積層体に対する接触状態並びに前記積層体の表面及び界面の荒れによる変動を含む多重反射波の各反射回数毎のエコー高さの変動範囲を求め、前記積層体の模擬剥離部において多重反射波を受信し、前記模擬剥離部におけるエコー高さに変動を与える前記探触子の前記積層体に対する接触状態及び前記積層体の表面及び界面の荒れによる変動を含む多重反射波の各反射回数毎のエコー高さの変動範囲とを求め、求めた前記健全部における変動範囲と前記模擬剥離部における変動範囲とが重複しない領域を求め、求めた前記領域における最小の反射回数より大で且つ前記領域の高さが所定値以上となる反射波の反射回数を求め、前記積層体の検査部において多重反射波を受信し、前記検査部における予め求めた前記所定値以上となる反射波の反射回数の反射波のエコー高さと前記健全部における予め求めた前記所定値以上となる反射波の反射回数の反射波のエコー高さを比較することにより前記層間剥離の有無を検査することにある。   In order to achieve the above object, the laminate peel inspection method according to the present invention is characterized in that an ultrasonic wave is incident from a probe disposed on one side of a laminate in which a plurality of members are laminated and multiple reflected waves are received. In the method of inspecting the presence or absence of delamination by evaluating the received multiple reflected waves, the multiple reflected waves are received in advance in the healthy part of the laminate, and the echo height in the healthy part is changed. Obtaining the fluctuation range of the echo height for each number of reflections of the multiple reflected waves including the contact state of the probe with the laminated body and the fluctuation of the surface and interface of the laminated body, and in the simulated peeling portion of the laminated body Multiple reflections including a variation of the contact state of the probe with the laminate and the roughness of the surface and interface of the laminate that receive multiple reflected waves and cause fluctuations in echo height at the simulated peeling portion The fluctuation range of the echo height for each number of reflections is determined, the area where the obtained fluctuation range in the healthy part and the fluctuation range in the simulated peeling part do not overlap is obtained, and the minimum number of reflections in the obtained area is obtained. The number of reflections of the reflected wave that is large and the height of the region is equal to or greater than a predetermined value is obtained, the multiple reflected wave is received in the inspection unit of the laminate, and the reflection that is equal to or greater than the predetermined value previously determined in the inspection unit Inspecting the presence or absence of delamination by comparing the echo height of the reflected wave of the number of wave reflections and the echo height of the reflected wave of the number of reflections of the reflected wave that is equal to or greater than the predetermined value obtained in advance in the healthy part It is in.

ところで、検査対象となる積層体の界面で反射した反射波のエコー高さ(信号強度)は、例えば、塗装膜の有無、その厚さ、探触子の探傷面に対する接触状態、探傷面や界面の面粗さ、剥離部内の物質等の要因によって変動する。そのため、多重反射波全体の減衰率や減衰曲線にのみ着目すると、上記要因による変動によって、健全部からの信号と剥離部からの信号とを明瞭に識別することが困難となる場合がある。   By the way, the echo height (signal intensity) of the reflected wave reflected at the interface of the laminate to be inspected is, for example, the presence or absence of a coating film, its thickness, the contact state of the probe with the flaw detection surface, the flaw detection surface and the interface. It fluctuates depending on factors such as surface roughness and material in the peeled part. Therefore, if attention is paid only to the attenuation factor and attenuation curve of the entire multiple reflected wave, it may be difficult to clearly distinguish the signal from the healthy part and the signal from the separation part due to the fluctuation due to the above factors.

上記構成によれば、例えば図22に示すように、反射波のエコー高さは、上記各種要因による変動(バラツキ)を含む。予め、前記積層体の健全部において多重反射波を受信し、前記健全部におけるエコー高さに変動を与える前記探触子の前記積層体に対する接触状態並びに前記積層体の表面及び界面の荒れによる変動を含む多重反射波のエコー高さの変動範囲を求め、前記積層体の模擬剥離部において多重反射波を受信し、前記模擬剥離部におけるエコー高さに変動を与える前記探触子の前記積層体に対する接触状態並びに前記積層体の表面及び界面の荒れによる変動を含む多重反射波のエコー高さの変動範囲とを求め、求めた前記健全部における変動範囲と前記模擬剥離部における変動範囲とが重複しない領域を求め、求めた前記領域における最小の反射回数より大で且つ前記領域の高さが所定値以上となる反射波の反射回数を求める。そして、予め求めた前記所定値以上となる反射波の反射回数の健全部の反射波のエコー高さと同回数の反射回数の検査部の反射波のエコー高さとを比較すれば、上記要因による変動を排除でき、精度よく剥離の有無を検出することが可能となる。   According to the above configuration, for example, as shown in FIG. 22, the echo height of the reflected wave includes fluctuations (variations) due to the above various factors. Preliminary reception of multiple reflected waves at the sound part of the laminate and fluctuation in echo height at the sound part, contact state of the probe with the laminate, and fluctuation due to roughness of the surface and interface of the laminate The laminated body of the probe that obtains the fluctuation range of the echo height of the multiple reflected waves including the received, receives the multiple reflected waves in the simulated peeling portion of the laminate, and varies the echo height in the simulated peeling portion And the fluctuation range of the echo height of the multiple reflected wave including fluctuation due to the roughness of the surface and interface of the laminate, and the fluctuation range in the healthy part and the fluctuation range in the simulated peeling part overlap. An area that is not to be obtained is obtained, and the number of reflections of the reflected wave that is greater than the minimum number of reflections in the obtained area and the height of the area is a predetermined value or more is obtained. Then, if the echo height of the reflected wave of the healthy part with the number of reflections of the reflected wave equal to or greater than the predetermined value obtained in advance is compared with the echo height of the reflected wave of the inspection part with the same number of reflections, the fluctuation due to the above factors This makes it possible to accurately detect the presence or absence of peeling.

前記変動範囲は、前記探触子の前記積層体に対する接触状態並びに前記積層体の表面及び界面の荒れによる変動を含む。例えば図21に示すように、反射波のエコー高さの変動範囲は、探触子の接触状態による変動を含む。よって、予め求めた反射回数の健全部の反射波のエコー高さと同回数の反射回数の検査部の反射波のエコー高さとを比較すれば、探触子の接触状態によるエコー高さの変動を排除でき、接触状態にバラツキが生じていたとしても、精度よく剥離の有無を検出することができる。   The range of fluctuation includes fluctuations due to the contact state of the probe with the laminated body and the roughness of the surface and interface of the laminated body. For example, as shown in FIG. 21, the fluctuation range of the echo height of the reflected wave includes fluctuation due to the contact state of the probe. Therefore, if the echo height of the reflected wave of the healthy part with the number of reflections obtained in advance is compared with the echo height of the reflected wave of the inspection part with the same number of reflections, the fluctuation of the echo height due to the contact state of the probe Even if there is variation in the contact state, the presence or absence of peeling can be detected with high accuracy.

前記積層体は前記一側に塗装膜を備え、前記変動範囲は、前記塗装膜の膜厚による変動をさらに含むものであるとよい。例えば図20に示すように、反射波のエコー高さの変動範囲は、塗装膜の膜厚による変動を含む。よって、予め求めた反射回数の健全部の反射波のエコー高さと同回数の反射回数の検査部の反射波のエコー高さとを比較すれば、塗装膜の膜厚によるエコー高さの変動を排除でき、膜厚にバラツキが生じていたとしても、精度よく剥離の有無を検出することができる。さらに、前記変動範囲は、剥離部内の内容物による変動をさらに含むものであるとよい。   The laminate may include a coating film on the one side, and the variation range may further include a variation due to a film thickness of the coating film. For example, as shown in FIG. 20, the fluctuation range of the echo height of the reflected wave includes a fluctuation due to the film thickness of the coating film. Therefore, if the echo height of the reflected wave of the healthy part with the number of reflections obtained in advance is compared with the echo height of the reflected wave of the inspection part with the same number of reflections, the fluctuation of the echo height due to the coating film thickness is eliminated. Even if the film thickness varies, the presence or absence of peeling can be detected with high accuracy. Furthermore, the fluctuation range may further include fluctuation due to the contents in the peeling portion.

予め前記健全部における前記所定値以上となる反射波の反射回数の反射波の伝搬時間を求めておき、前記検査部における前記所定値以上となる反射波の反射回数の反射波の伝搬時間を求め、これら伝搬時間を比較することで前記層間剥離の有無を検査するとよい。例えば図6に示すように、第一の部材と第二の部材との界面に剥離が存在する場合、前記所定値以上となる反射波の反射回数の反射を繰り返した反射波の伝搬時間にずれが生じる。従って、予め求めた反射回数の健全部の反射波の伝搬時間と同回数の反射回数の検査部の反射波の伝搬時間とを比較すれば、伝搬時間のずれによって積層体の層間剥離の検出が可能となる。なお、この伝搬時間のずれは、超音波の周波数に依存するものではなく、原理的に周波数は特に限定されるものではない。   The propagation time of the reflected wave with the number of reflections of the reflected wave that is equal to or greater than the predetermined value in the healthy part is obtained in advance, and the propagation time of the reflected wave with the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the inspection unit is obtained. The presence or absence of delamination may be inspected by comparing the propagation times. For example, as shown in FIG. 6, in the case where there is separation at the interface between the first member and the second member, the reflected wave is shifted in the propagation time of repeated reflection of the number of reflections of the reflected wave exceeding the predetermined value. Occurs. Therefore, if the propagation time of the reflected wave of the healthy part with the number of reflections obtained in advance is compared with the propagation time of the reflected wave of the inspection part with the same number of reflections, the delamination of the laminate can be detected due to the deviation of the propagation time. It becomes possible. Note that this difference in propagation time does not depend on the frequency of the ultrasonic wave, and the frequency is not particularly limited in principle.

前記複数の部材は、前記一側に位置する第一の部材と、この第一の部材に設けられる第二の部材とを少なくとも含み、前記第一の部材は、前記第二の部材の音響インピーダンスより小となる材料よりなり、予め前記健全部における前記所定値以上となる反射波の反射回数の反射波の位相を求めておき、前記検査部における前記所定値以上となる反射波の反射回数の反射波の位相を求め、これら位相を比較することで前記層間剥離の有無を検査するようにしても構わない。   The plurality of members include at least a first member located on the one side and a second member provided on the first member, and the first member is an acoustic impedance of the second member. The phase of the reflected wave of the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the healthy part is obtained in advance, and the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the inspection unit You may make it test | inspect the presence or absence of the said delamination by calculating | requiring the phase of a reflected wave and comparing these phases.

上記構成によれば、第一の部材は、第二の部材の音響インピーダンスより小となる材料より構成されている。係る場合、例えば図18(a)に例示する積層体の場合、第一の部材と第二の部材との界面に到達した超音波の一部は、音響インピーダンスの差により当該界面で反射する。他方、例えば同図(b)に示す如く、剥離部が存在すると、当該界面に到達した超音波はこの剥離部でほぼ反射し、第一の部材へ透過しない。ここで、第一の部材の音響インピーダンスは、第二の部材の音響インピーダンスより小さく、且つ剥離部を構成する空気の音響インピーダンスはさらに小さい。従って、剥離部の存在により位相反転が生じる。よって、健全部と検査部との位相反転に着目することで、当該界面における剥離の検出が可能となる。   According to the above configuration, the first member is made of a material that is smaller than the acoustic impedance of the second member. In such a case, for example, in the case of the laminated body illustrated in FIG. 18A, part of the ultrasonic waves that reach the interface between the first member and the second member is reflected at the interface due to the difference in acoustic impedance. On the other hand, for example, as shown in FIG. 5B, when a peeling portion exists, the ultrasonic wave that reaches the interface is substantially reflected by the peeling portion and does not pass through the first member. Here, the acoustic impedance of the first member is smaller than the acoustic impedance of the second member, and the acoustic impedance of the air constituting the peeling portion is even smaller. Therefore, phase inversion occurs due to the presence of the peeling portion. Therefore, it is possible to detect peeling at the interface by paying attention to the phase inversion between the healthy part and the inspection part.

前記複数の部材は、前記一側に位置する第一の部材と、この第一の部材に設けられる第二の部材と、これら部材を密着させる接着層とを少なくとも含み、前記第一の部材と前記接着層との界面における層間剥離を検査するようにしても構わない。第一の部材と接着層との界面に剥離が存在する場合、例えば図6に示すように、これら反射波のエコー高さが大きく相違する。従って、予め求めた反射回数の健全部の反射波のエコー高さと同回数の反射回数の検査部の反射波のエコー高さとを比較すれば、エコー高さの差異によって当該界面における剥離の検出が可能となる。   The plurality of members include at least a first member located on the one side, a second member provided on the first member, and an adhesive layer that closely contacts these members, You may make it test | inspect the delamination in the interface with the said contact bonding layer. When peeling exists at the interface between the first member and the adhesive layer, for example, as shown in FIG. 6, the echo heights of these reflected waves are greatly different. Therefore, if the echo height of the reflected wave of the healthy part with the number of reflections obtained in advance is compared with the echo height of the reflected wave of the inspection part with the same number of reflections, the separation of the interface at the interface is detected due to the difference in echo height. It becomes possible.

係る場合、予め前記健全部における前記所定値以上となる反射波の反射回数の反射波の伝搬時間を求めておき、前記検査部における前記所定値以上となる反射波の反射回数の反射波の伝搬時間を求め、これら伝搬時間を比較することで前記接着層と前記第二の部材との界面における層間剥離の有無を検査するとよい。第二の部材と接着層との界面に剥離が存在する場合、例えば図6に示すように、これら反射波の伝搬時間にずれが生じることが判明した。従って、予め求めた反射回数の健全部の反射波の伝搬時間と同回数の反射回数の検査部の反射波の伝搬時間とを比較すれば、伝搬時間のずれによって当該界面における剥離の検出が可能となる。   In such a case, the propagation time of the reflected wave having the number of reflections of the reflected wave that is equal to or greater than the predetermined value in the healthy part is obtained in advance, and the propagation of the reflected wave having the number of reflections of the reflected wave that is equal to or greater than the predetermined value in the inspection unit. It is preferable to inspect the presence or absence of delamination at the interface between the adhesive layer and the second member by obtaining time and comparing these propagation times. When peeling exists at the interface between the second member and the adhesive layer, it has been found that, for example, as shown in FIG. Therefore, if the propagation time of the reflected wave of the healthy part with the number of reflections obtained in advance is compared with the propagation time of the reflected wave of the inspection part with the same number of reflections, it is possible to detect separation at the interface due to the deviation of the propagation time. It becomes.

前記第一の部材は鋼材であり、前記第二の部材はフッ素樹脂ライニング材で構成されていても構わない。また、前記接着層は、前記鋼材に前記フッ素樹脂ライニング材を接着させる接着剤とガラスクロスと構成されていてもよい。前記積層体は、例えば、液体用コンテナタンクである。   The first member may be a steel material, and the second member may be made of a fluororesin lining material. The adhesive layer may be configured with an adhesive and a glass cloth that adheres the fluororesin lining material to the steel material. The laminate is, for example, a liquid container tank.

また、前記積層体は、曲面を有するものであってもよい。係る場合、超音波はその曲面で散乱反射するため、大きく減衰する。予め設定した反射回数の反射波のエコー高さに着目するので、曲面の曲率に応じた超音波の減衰は相殺される。よって、積層体が曲面であっても、平坦面での剥離検査と同等の結果を得ることができる。   Further, the laminate may have a curved surface. In such a case, since the ultrasonic wave is scattered and reflected on the curved surface, it is greatly attenuated. Since attention is paid to the echo height of the reflected wave having the preset number of reflections, the attenuation of the ultrasonic wave according to the curvature of the curved surface is canceled out. Therefore, even if the laminate is a curved surface, a result equivalent to the peel inspection on a flat surface can be obtained.

前記探触子を前記一側に沿って走査すると共に、前記検査部における前記所定値以上となる反射波の反射回数の反射波のエコー高さに基づいて走査画像を生成するとよい。上述したように、予め求めた反射回数の反射を繰り返した反射波に着目するので、走査画像を容易に生成でき、検査効率も向上する。   The probe may be scanned along the one side, and a scan image may be generated based on the echo height of the reflected wave of the number of reflected waves that is equal to or greater than the predetermined value in the inspection unit. As described above, since the focus is on the reflected wave that has been repeatedly reflected the number of times obtained in advance, a scanned image can be easily generated, and the inspection efficiency is improved.

前記検査部における前記所定値以上となる反射波の反射回数の反射波のエコー高さが、前記健全部における前記所定値以上となる反射波の反射回数の反射波のエコー高さより小さい場合に、前記層間剥離の一部に腐食が存在すると判定するようにしてもよい。剥離部が腐食している場合、その腐食面で超音波は散乱反射するので、大きく減衰する。従って、予め求めた反射回数の健全部の反射波のエコー高さと同回数の反射回数の検査部の反射波のエコー高さとを比較すれば、エコー高さの差異によって剥離の有無に加えて当該部分の腐食の有無をも検出することが可能となる。   When the echo height of the reflected wave of the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the inspection unit is smaller than the echo height of the reflected wave of the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the sound part, It may be determined that corrosion exists in a part of the delamination. When the peeled portion is corroded, the ultrasonic wave is scattered and reflected on the corroded surface, and is greatly attenuated. Therefore, if the echo height of the reflected wave of the healthy part with the number of reflections obtained in advance is compared with the echo height of the reflected wave of the inspection part with the same number of reflections, in addition to the presence or absence of peeling due to the difference in echo height, It becomes possible to detect the presence or absence of corrosion of the part.

前記探触子は、分割型探触子であってもよい。焦点を適切な距離に合わせることにより、界面の粗さによる減衰を大きくすることができ、健全部からの信号と腐食部からの信号をより明瞭に区別できる。なお、この場合、焦点は界面に合わせなくてもよい。   The probe may be a split type probe. By adjusting the focal point to an appropriate distance, the attenuation due to the roughness of the interface can be increased, and the signal from the healthy part and the signal from the corroded part can be more clearly distinguished. In this case, the focal point does not have to be aligned with the interface.

上記目的を達成するため、本発明に係る積層体の剥離検査装置の特徴は、複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信する探触子と、受信した多重反射波を評価する信号処理装置を備え、受信した多重反射波を評価することにより層間剥離の有無を検査する構成において、前記信号処理装置は、予め、前記積層体の健全部において多重反射波を受信し、前記健全部におけるエコー高さに変動を与える前記探触子の前記積層体に対する接触状態並びに前記積層体の表面及び界面の荒れによる変動を含む多重反射波の各反射回数毎のエコー高さの変動範囲を求め、前記積層体の模擬剥離部において多重反射波を受信し、前記模擬剥離部におけるエコー高さに変動を与える前記探触子の前記積層体に対する接触状態並びに前記積層体の表面及び界面の荒れによる変動を含む多重反射波の各反射回数毎のエコー高さの変動範囲とを求め、求めた前記健全部における変動範囲と前記模擬剥離部における変動範囲とが重複しない領域を求め、求めた前記領域における最小の反射回数より大で且つ前記領域の高さが所定値以上となる反射波の反射回数を求め、前記積層体の検査部において多重反射波を受信し、前記検査部における予め求めた前記所定値以上となる反射波の反射回数の反射波のエコー高さと前記健全部における予め求めた前記所定値以上となる反射波の反射回数の反射波のエコー高さを比較することにより前記層間剥離の有無を検査することにある。
In order to achieve the above-mentioned object, the laminate peel inspection apparatus according to the present invention is characterized by a probe that receives ultrasonic waves from one side of a laminate in which a plurality of members are laminated and receives multiple reflected waves; In a configuration in which a signal processing device that evaluates the received multiple reflected waves is provided and the presence or absence of delamination is inspected by evaluating the received multiple reflected waves, the signal processing device is multiplexed in advance in the sound part of the laminate. For each number of reflections of multiple reflected waves, including the contact state of the probe with respect to the laminate and the fluctuation due to the roughness of the surface and interface of the laminate, which receives the reflected wave and changes the echo height in the healthy part The echo height fluctuation range is obtained, multiple reflected waves are received at the simulated peeling portion of the laminated body, and the probe contacts the laminated body to vary the echo height at the simulated peeling portion And the fluctuation range of the echo height for each number of reflections of the multiple reflected wave including fluctuation due to the roughness of the surface and interface of the laminate, and the obtained fluctuation range in the healthy part and the fluctuation range in the simulated peeling part And the number of reflections of the reflected wave that is larger than the minimum number of reflections in the obtained region and the height of the region is equal to or greater than a predetermined value. And the reflected wave of the number of reflections of the reflected wave that is equal to or greater than the predetermined value obtained in advance in the inspection unit and the number of reflections of the reflected wave that is equal to or greater than the predetermined value obtained in advance in the healthy unit That is, the presence or absence of delamination is inspected by comparing the echo heights.

前記信号処理装置は、前記探触子を走査して受信した多重反射波により走査画像を生成するようにしても構わない。走査画像としては、例えば、Bスキャン画像やCスキャン画像が挙げられる。また、前記探触子には、一振動子型探触子を用いてもよく、二振動子型探触子を用いることも可能である。   The signal processing device may generate a scanned image by multiple reflected waves received by scanning the probe. Examples of the scanned image include a B-scan image and a C-scan image. The probe may be a single-element probe or a two-element probe.

上記本発明に係る積層体の剥離検査方法及び剥離検査装置の特徴によれば、簡便でありながら積層体の層間剥離を明瞭に検出することが可能となった。   According to the characteristics of the laminate peel inspection method and peel inspection apparatus according to the present invention, it is possible to clearly detect delamination of the laminate while being simple.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

本発明に係る剥離検査装置の概略図である。It is the schematic of the peeling test | inspection apparatus which concerns on this invention. 積層体の各層に対する超音波の挙動を説明するための図であり、(a)は健全部、(b)は第一界面での剥離、(c)は第二界面での剥離を示す図である。It is a figure for demonstrating the behavior of the ultrasonic wave with respect to each layer of a laminated body, (a) is a healthy part, (b) is peeling in a 1st interface, (c) is a figure which shows peeling in a 2nd interface. is there. 各試験体におけるバンドパスフィルターを介して得られたRF波形の一例を示すグラフであり、(a)はB1付近、(b)はB10付近、(c)はB20付近の結果を示す。It is a graph which shows an example of the RF waveform obtained via the band pass filter in each test body, (a) shows B1 vicinity, (b) shows B10 vicinity, (c) shows B20 vicinity result. (a)〜(c)は、図3(a)〜(c)にそれぞれ対応する検波波形を示すグラフである。(A)-(c) is a graph which shows the detection waveform corresponding to FIG. 3 (a)-(c), respectively. 減衰の差異を説明するグラフであり、(a)は各試験体における減衰の傾向を示すグラフ、(b)は健全試験体に対する第一、第二剥離試験体の感度差を示すグラフ、(c)は各試験体の減衰係数を示すグラフである。It is a graph explaining the difference of attenuation | damping, (a) is a graph which shows the tendency of attenuation | damping in each test body, (b) is a graph which shows the sensitivity difference of the 1st, 2nd peeling test body with respect to a healthy test body, (c) ) Is a graph showing the attenuation coefficient of each specimen. 反射波のピーク時間及びピーク値の比較を説明するグラフである。It is a graph explaining the comparison of the peak time and peak value of a reflected wave. 健全試験体、第一剥離試験体及び第二剥離試験体をそれぞれ比較したグラフであり、(a)はピーク時間差、(b)はエコー高さを比較したグラフである。It is the graph which compared the healthy test body, the 1st peeling test body, and the 2nd peeling test body, respectively, (a) is a peak time difference, (b) is a graph which compared echo height. 他の積層体の一例を示す図である。It is a figure which shows an example of another laminated body. 図8に示す積層体の各試験体における図3相当図である。FIG. 9 is a view corresponding to FIG. 3 in each test body of the laminate shown in FIG. 8. 図8に示す積層体の各試験体における図4相当図である。FIG. 9 is a view corresponding to FIG. 4 in each test body of the laminate shown in FIG. 8. 図8に示す積層体の各試験体における図5相当図である。FIG. 9 is a view corresponding to FIG. 5 in each test body of the laminate shown in FIG. 8. 図8に示す積層体の各試験体における図7相当図である。FIG. 9 is a view corresponding to FIG. 7 in each test body of the laminate shown in FIG. 8. 本発明の第二実施形態に係る図2相当図である。FIG. 3 is a view corresponding to FIG. 2 according to a second embodiment of the present invention. 本発明の第二実施形態に係る図3相当図である。FIG. 4 is a view corresponding to FIG. 3 according to a second embodiment of the present invention. 本発明の第二実施形態に係る図4相当図である。FIG. 5 is a view corresponding to FIG. 4 according to a second embodiment of the present invention. 本発明の第二実施形態に係る図5(a)相当図である。FIG. 5A is a diagram corresponding to FIG. 5A according to a second embodiment of the present invention. 本発明の第二実施形態に係る図6相当図である。FIG. 7 is a view corresponding to FIG. 6 according to a second embodiment of the present invention. 本発明の第三実施形態に係る図2相当図である。FIG. 9 is a view corresponding to FIG. 2 according to a third embodiment of the present invention. 塗装膜の膜厚とエコー高さとの関係を示す図である。It is a figure which shows the relationship between the film thickness of a coating film, and echo height. 塗装膜の膜厚のバラツキによるエコー高さの変動を示す図である。It is a figure which shows the fluctuation | variation of the echo height by the variation in the film thickness of a coating film. 探触子の接触状態のバラツキによるエコー高さの変動を示す図である。It is a figure which shows the fluctuation | variation of the echo height by the variation in the contact state of a probe. 健全部、剥離部、腐食部におけるエコー高さの変動を模式的に示す図である。It is a figure which shows typically the fluctuation | variation of the echo height in a healthy part, a peeling part, and a corrosion part. 多重反射波の音圧反射率の変化を示す図である。It is a figure which shows the change of the sound pressure reflectance of a multiple reflected wave. 本発明の改変例を示す図22相当図である。FIG. 23 is a view corresponding to FIG. 22 showing a modified example of the present invention.

次に、適宜添付図面を参照しながら、本発明の第一実施形態についてさらに詳しく説明する。   Next, the first embodiment of the present invention will be described in more detail with reference to the accompanying drawings as appropriate.

[検査装置構成]
図1に示すように、本発明の第一実施形態に係る剥離検査装置1は、大略、複数の部材としての第一の部材20、第二の部材30が薄層40を介して積層された積層体10の一側11(表面21)から超音波を入射すると共に多重反射波を受信する探触子2と、受信した多重反射波を処理し評価する信号処理装置3とを備える。この信号処理装置3は、例えば、パーソナルコンピューターにより構成される。また、探触子2には、走査位置を検出するエンコーダ等の位置検出器2aが取り付けると共に、信号処理装置3に接続されている。本実施形態において、積層体10の一側11(第一の部材20の表面21)には、塗装膜50が形成されている。
[Inspection equipment configuration]
As shown in FIG. 1, in the peeling inspection apparatus 1 according to the first embodiment of the present invention, a first member 20 and a second member 30 as a plurality of members are roughly stacked via a thin layer 40. A probe 2 that receives ultrasonic waves from one side 11 (surface 21) of the laminate 10 and receives multiple reflected waves, and a signal processing device 3 that processes and evaluates the received multiple reflected waves are provided. The signal processing device 3 is constituted by a personal computer, for example. Further, a position detector 2 a such as an encoder for detecting a scanning position is attached to the probe 2 and is connected to the signal processing device 3. In the present embodiment, a coating film 50 is formed on one side 11 of the laminate 10 (the surface 21 of the first member 20).

信号処理装置3は、パルサー4aを制御して探触子2から超音波パルスを発生させる。送信された超音波パルスは、第一、第二部材20,30内及び薄層40内を通過(若しくは透過)及び各界面F1,F2で反射し、探触子2にて受信される。受信した多重反射波は、レシーバー4b及びプリアンプ5により増幅され、フィルター6によりノイズが除去された状態でA/Dコンバーター7によりデジタル信号に変換される。そして、信号処理装置3にて信号処理がなされ、モニター8に表示される。モニター8には、例えば、図3,4,6に示す如く、横軸を伝播距離を代表する時間軸とし、縦軸に同反射波の強度とするグラフが表示される。   The signal processing device 3 controls the pulsar 4a to generate ultrasonic pulses from the probe 2. The transmitted ultrasonic pulse passes through (or is transmitted through) the first and second members 20 and 30 and the thin layer 40, is reflected by the interfaces F 1 and F 2, and is received by the probe 2. The received multiple reflected waves are amplified by the receiver 4b and the preamplifier 5, and converted into a digital signal by the A / D converter 7 with the noise removed by the filter 6. Then, signal processing is performed by the signal processing device 3 and displayed on the monitor 8. For example, as shown in FIGS. 3, 4, and 6, the monitor 8 displays a graph in which the horizontal axis is a time axis representing the propagation distance and the vertical axis is the intensity of the reflected wave.

また、信号処理装置3は、位置検出器2aが検出した探触子2の走査位置データと共に受信信号を処理し、Bスキャン画像やCスキャン画像等の走査画像を生成して、モニタ8に表示させる。さらに、信号処理装置3は、剥離の存在を警告する警告手段3aをさらに備える。本実施形態において、警告手段3aは、検査部における伝搬時間が健全部における伝搬時間(基準伝搬時間)に対し所定時間以上の場合、又は、検査部におけるピーク値が健全部におけるピーク値(基準ピーク値)に対し所定値以上の場合に警告を行う。この警告は、例えば、警告音やモニター8への表示等により行われる。   Further, the signal processing device 3 processes the received signal together with the scanning position data of the probe 2 detected by the position detector 2 a, generates a scanning image such as a B-scan image or a C-scan image, and displays it on the monitor 8. Let Furthermore, the signal processing device 3 further includes warning means 3a that warns of the presence of peeling. In the present embodiment, the warning unit 3a is configured such that when the propagation time in the inspection unit is a predetermined time or more with respect to the propagation time (reference propagation time) in the healthy portion, or the peak value in the inspection portion is the peak value in the healthy portion (reference peak). Warning is given when the value is equal to or greater than a predetermined value. This warning is performed by, for example, a warning sound or a display on the monitor 8.

[積層体構成]
ここで、本実施形態における検査対象となる積層体10は、例えば液体を保存する液体用コンテナタンクの壁部である。このタンクは、例えばISO規格に準ずるコンテナタンクである。図2に示すように、積層体10は、第一の部材20としての板材と、この板材20を内容物からの侵食を防ぐための第二の部材30としてのフッ素樹脂ライニング材とを有する。そして、このフッ素樹脂ライニング材30が薄層40としての接着剤よりなる接着層により板材20に接着されている。
[Laminate structure]
Here, the laminate 10 to be inspected in the present embodiment is, for example, a wall portion of a liquid container tank that stores liquid. This tank is, for example, a container tank according to the ISO standard. As shown in FIG. 2, the laminate 10 includes a plate material as the first member 20 and a fluororesin lining material as the second member 30 for preventing the plate material 20 from being eroded from the contents. And this fluororesin lining material 30 is adhere | attached on the board | plate material 20 with the contact bonding layer which consists of an adhesive agent as the thin layer 40. FIG.

本実施形態において、板材20は、例えば厚さ5mmのステンレス鋼板(SUS板)等より構成されている。また、フッ素樹脂ライニング材30としては、例えば厚さ3.5mmのフッ素樹脂ライニング(PTFE)が用いられる。   In this embodiment, the board | plate material 20 is comprised from the stainless steel plate (SUS board) etc. of thickness 5mm, for example. As the fluororesin lining material 30, for example, a fluororesin lining (PTFE) having a thickness of 3.5 mm is used.

また、本実施形態における接着層40は、例えば、エポキシ樹脂系接着剤等のフッ素樹脂ライニング材30(以下、単に「ライニング材30」と称する。)を板材20に接着させる接着剤により構成される。その厚みは、例えば0.1mm以下であり、板材20やライニング材30に対し十分に薄い。ここで、仮に、接着層40の音速を1800m/s、超音波の周波数を5MHzとすると、波長は0.36mmとなり、接着層40の厚みよりも大きい。そのため、接着層40の上面41からの反射波と下面42からの反射波とは分離できず、従来の垂直法では各面41,42の信号を識別することはできない。本発明は、このような超音波の波長より短い(薄い)肉厚の接着層40の上下面41,42における剥離検出に有利である。   Further, the adhesive layer 40 in the present embodiment is constituted by an adhesive that adheres a fluororesin lining material 30 (hereinafter simply referred to as “lining material 30”) such as an epoxy resin adhesive to the plate material 20, for example. . The thickness is, for example, 0.1 mm or less, and is sufficiently thin with respect to the plate material 20 and the lining material 30. Here, if the sound velocity of the adhesive layer 40 is 1800 m / s and the frequency of the ultrasonic wave is 5 MHz, the wavelength is 0.36 mm, which is larger than the thickness of the adhesive layer 40. Therefore, the reflected wave from the upper surface 41 of the adhesive layer 40 and the reflected wave from the lower surface 42 cannot be separated, and the signals of the surfaces 41 and 42 cannot be identified by the conventional vertical method. The present invention is advantageous for detection of peeling on the upper and lower surfaces 41 and 42 of the adhesive layer 40 having a thickness shorter (thin) than the wavelength of the ultrasonic wave.

ところで、塗装膜50の膜厚は、施工状態や経年変化によって、例えば100〜500μm程度の誤差(バラツキ)が生じている場合がある。図19に塗装膜の膜厚に対するエコー高さの相対的な変動の例を示す。縦軸は相対エコー高さ(dB)、横軸は膜厚(μm)である。図19の例において、例えば膜厚が300μmに対し±100μm変動すると、エコー高さは、1回反射(B1)では±約0.9dB(90%〜111%、図中のM1)、10回反射(B10)では±約1.1dB(88%〜114%)、20回反射(B20)では±約1.5dB(84%〜119%、図中のM2)変動する。このように、膜厚が大きいほど、又、反射回数が多いほど、エコー高さは大きく変動する。そのため、剥離部と健全部の信号が重なり合い、両者の判別が困難となる場合が生じる。なお、同図はエポキシ樹脂の例であるが、塗装膜の材質に限られず、上記と同様にエコー高さは変動する。   By the way, the film thickness of the coating film 50 may have an error (variation) of, for example, about 100 to 500 μm depending on the construction state and the secular change. FIG. 19 shows an example of the relative variation of the echo height with respect to the coating film thickness. The vertical axis represents the relative echo height (dB), and the horizontal axis represents the film thickness (μm). In the example of FIG. 19, for example, when the film thickness varies by ± 100 μm with respect to 300 μm, the echo height is ± about 0.9 dB (90% to 111%, M1 in the figure) in the single reflection (B1), 10 times. The reflection (B10) varies ± about 1.1 dB (88% to 114%), and the 20th reflection (B20) varies ± about 1.5 dB (84% to 119%, M2 in the figure). Thus, as the film thickness increases and the number of reflections increases, the echo height varies greatly. For this reason, the signals of the peeled portion and the healthy portion overlap each other, and it may be difficult to distinguish between the two. This figure is an example of an epoxy resin, but is not limited to the material of the coating film, and the echo height varies as described above.

また、図20に、健全部を模した健全試験体E0と剥離部を模した模擬剥離試験体E1において、塗装膜50の膜厚を150〜300μmで変化させた測定結果の例を示す。縦軸は相対エコー高さ(dB)、横軸は反射回数である。いずれの試験体においても、膜厚に応じて各反射回数でエコー高さに変動(バラツキ)が生じる。反射回数が8回以下では、健全部の変動範囲r0と剥離部の変動範囲r1が重複するため、健全部と剥離部の信号の区別が困難となる。反射回数が8回目以降では、変動範囲r0,r1の差は反射回数が増加するに従い広がる。   Moreover, in FIG. 20, the example of the measurement result which changed the film thickness of the coating film 50 by 150-300 micrometers in the healthy peeling body E0 which imitated the healthy part and the simulation peeling body E1 which imitated the peeling part is shown. The vertical axis represents the relative echo height (dB), and the horizontal axis represents the number of reflections. In any specimen, the echo height fluctuates (varies) at each reflection frequency depending on the film thickness. When the number of reflections is 8 or less, the fluctuation range r0 of the healthy part and the fluctuation range r1 of the peeling part overlap, so that it is difficult to distinguish the signals of the healthy part and the peeling part. After the eighth reflection, the difference between the fluctuation ranges r0 and r1 increases as the number of reflections increases.

さらに、反射波のエコー高さに変動を与える要因は、塗装膜50の膜厚に限られるものではない。例えば、探触子2の積層体10に対する接触状態もエコー高さに変動を与える要因となる。図21に、複数の異なる対象物(A〜E)について、探触子2の接触状態を異ならせた測定結果の例を示す。縦軸は相対エコー高さ(dB)である。接触状態に対する変動の平均が±2.5dBとなった。なお、接触状態とは、探触子の対象物に対する傾きや押圧力、接触媒質の厚さ、種類等を含む概念である。また、他の変動要因として、積層体表面や界面の荒れや剥離部内の内容物等もある。このように、多重反射波は各種要因の影響を受けるため、多重反射波全体の減衰曲線や減衰率による剥離検査では、判定精度が低くなる。   Further, the factor that causes fluctuations in the echo height of the reflected wave is not limited to the thickness of the coating film 50. For example, the contact state of the probe 2 with respect to the laminated body 10 is also a factor that varies the echo height. In FIG. 21, the example of the measurement result which varied the contact state of the probe 2 about several different target object (AE) is shown. The vertical axis represents the relative echo height (dB). The average variation with respect to the contact state was ± 2.5 dB. The contact state is a concept including the inclination and pressing force of the probe with respect to the object, the thickness and type of the contact medium, and the like. In addition, as other fluctuation factors, there are the surface of the laminate, the roughness of the interface, the contents in the peeled portion, and the like. As described above, since the multiple reflected wave is affected by various factors, the determination accuracy is lowered in the peeling test based on the attenuation curve and attenuation rate of the entire multiple reflected wave.

図22に、各種試験体における上記変動要因を含むエコー高さの変動を模式的に示す。上述したように、反射波の信号には、上記各種要因による変動範囲R0〜R2が含まれる。健全試験体E0と模擬剥離試験体E1とでは、反射回数が多くなるに従い、健全部の変動範囲R0と剥離部の変動範囲R1の差が大きくなる。これは、剥離部に存在する空気の音圧反射率はほぼ1であまり変化しないが、健全部では界面における音圧反射率は1より小さいため、この音圧反射率の差が反射を繰り返すほど積算されて大きくなるからである。そして、この変動範囲の差には、上記要因による変動が除かれる。従って、所定値以上の差となる反射回数を求め、反射回数が多い反射波のエコー高さに着目することで、上記変動要因の影響を排除し、剥離部と健全部との信号を明瞭に区別でき、検出精度が向上する。   FIG. 22 schematically shows the fluctuation of the echo height including the above fluctuation factors in various test specimens. As described above, the reflected wave signal includes the fluctuation ranges R0 to R2 due to the above various factors. In the healthy specimen E0 and the simulated peel specimen E1, the difference between the fluctuation range R0 of the healthy portion and the fluctuation range R1 of the peel portion increases as the number of reflections increases. This is because the sound pressure reflectance of the air present in the peeled portion is almost 1 and does not change so much. However, since the sound pressure reflectance at the interface is smaller than 1 in the healthy portion, the difference in the sound pressure reflectance repeats the reflection. This is because it is accumulated and becomes larger. Then, the fluctuation due to the above factors is excluded from the difference in the fluctuation range. Therefore, by obtaining the number of reflections with a difference of a predetermined value or more and paying attention to the echo height of the reflected wave with many reflections, the influence of the above fluctuation factors is eliminated, and the signal between the peeled portion and the healthy portion is clarified. It can be distinguished and detection accuracy is improved.

ところで、剥離部には、腐食が生じている場合も想定される。係る場合、腐食面で超音波は散乱するため、腐食が進行している(面粗さが大きい)ほど大きく減衰し、健全部に比べエコー高さは小さくなる。腐食部を模した模擬剥離試験体E2の信号にも同様に上記要因による変動が含まれる。図22の如く、模擬剥離試験体2においても、所定値以上の差となる反射回数を予め求め、反射回数が多い反射波のエコー高さに着目することで、上記変動要因の影響を排除し、剥離の有無に加え腐食の有無をも精度よく検出することができる。なお、発明者らの実験によれば、面粗さRa(250μm)≒Rz1000(μm)に相当する約1mmの凹凸腐食を検出することができた。   By the way, the case where corrosion has arisen in the peeling part is also assumed. In such a case, since the ultrasonic waves are scattered on the corroded surface, the more the corrosion progresses (the larger the surface roughness), the greater the attenuation, and the echo height becomes smaller than that of the healthy part. Similarly, the signal of the simulated peeling test body E2 simulating the corroded portion includes the variation due to the above factors. As shown in FIG. 22, the simulated peel test specimen 2 also obtains the number of reflections that have a difference of a predetermined value or more in advance, and pays attention to the echo height of the reflected wave having a large number of reflections, thereby eliminating the influence of the fluctuation factors. In addition to the presence or absence of peeling, the presence or absence of corrosion can be accurately detected. According to the experiments by the inventors, it was possible to detect uneven corrosion of about 1 mm corresponding to a surface roughness Ra (250 μm) ≈Rz1000 (μm).

このように、予め、健全試験体と模擬剥離試験体において、反射波のエコー高さが所定値以上の差となる反射回数を求め、当該回数における反射波のエコー高さを比較することで、上記変動要因による影響を排除して、高精度に剥離の有無を検査することが可能となる。なお、反射回数及び所定値は、各種変動要因が排除されればよく、信号が明瞭に識別できる範囲において、これらは特に制限されるものではない。例えば、図22に示すように、剥離検出について反射回数を20回とし、腐食検出には20回の所定値Z’より大きいZ’’となる10回の反射回数としてもよい。   Thus, in advance, in the healthy test specimen and the simulated peel test specimen, the number of reflections in which the echo height of the reflected wave is a difference of a predetermined value or more is obtained, and by comparing the echo height of the reflected wave in the number of times, It is possible to inspect the presence / absence of peeling with high accuracy by eliminating the influence of the fluctuation factors. It should be noted that the number of reflections and the predetermined value are not particularly limited as long as various fluctuation factors are eliminated and the signal can be clearly identified. For example, as shown in FIG. 22, the number of reflections may be set to 20 for peeling detection, and the number of reflections may be set to 10 for Z '' greater than a predetermined value Z ′ of 20 for detection of corrosion.

[多重反射波の挙動]
ここで、超音波の挙動と反射波形との関係について説明する。
図2(a)は、板材20、ライニング材30及び接着層40が互いに密着し剥離が存在しない健全部での反射の挙動を示す。探触子2から板材20内部へその上面(表面)21(容器外面11)から入射した超音波は、その一部が板材20の下面(裏面22)と接着層40の上面41との界面となる第二界面F2で符号P2に示す如く反射する。
[Behavior of multiple reflected waves]
Here, the relationship between the behavior of ultrasonic waves and the reflected waveform will be described.
FIG. 2A shows the behavior of reflection at a healthy portion where the plate material 20, the lining material 30, and the adhesive layer 40 are in close contact with each other and no separation exists. A part of the ultrasonic wave incident from the upper surface (front surface) 21 (the container outer surface 11) into the plate material 20 from the probe 2 is an interface between the lower surface (back surface 22) of the plate material 20 and the upper surface 41 of the adhesive layer 40. Reflected at the second interface F2 as shown by reference numeral P2.

一方、第二界面F2を透過した超音波は、接着層40内を伝播し、接着層40の下面42とライニング材30の上面31との界面となる第一界面F1に達する。ここで、ライニング材30と接着層40との音響インピーダンスが近似している(ライニング材30と接着層40との音響インピーダンスの差が小さい)場合、第一界面F1での反射はほとんど生じない。そのため、符号P1で示す反射波は殆ど受信されない。よって、健全部での多重反射による受信波形は、主に第二界面F2からの反射波P2によって形成される。   On the other hand, the ultrasonic wave transmitted through the second interface F <b> 2 propagates through the adhesive layer 40 and reaches the first interface F <b> 1 that is an interface between the lower surface 42 of the adhesive layer 40 and the upper surface 31 of the lining material 30. Here, when the acoustic impedance between the lining material 30 and the adhesive layer 40 is approximate (the difference in acoustic impedance between the lining material 30 and the adhesive layer 40 is small), the reflection at the first interface F1 hardly occurs. Therefore, the reflected wave indicated by reference sign P1 is hardly received. Therefore, the reception waveform due to the multiple reflection at the healthy part is mainly formed by the reflected wave P2 from the second interface F2.

図2(b)は、第一界面F1にて剥離が生じている場合の反射の挙動を示す。剥離部D1は第二界面F2の反射に無関係であるので、健全部と同様に、第二界面F2で符号P2で示す如く反射する。一方、剥離部D1においては、接着層40と空気Aとの界面が形成される。そのため、健全部とは異なり、第二界面F2を透過した超音波は、その殆どが接着層40と空気Aとの界面で符号P1’に示す如く反射する。よって、剥離部D1が存在する場合の多重反射による受信波形は、剥離部D1からの反射波P1’及び第二界面F2からの反射波P2が足し合わされた波形となる。   FIG. 2B shows the behavior of reflection when peeling occurs at the first interface F1. Since the peeling portion D1 is irrelevant to the reflection of the second interface F2, the peeling portion D1 is reflected at the second interface F2 as indicated by reference numeral P2, similarly to the healthy portion. On the other hand, at the peeling portion D1, an interface between the adhesive layer 40 and the air A is formed. Therefore, unlike the sound part, most of the ultrasonic wave transmitted through the second interface F2 is reflected at the interface between the adhesive layer 40 and the air A as indicated by reference numeral P1 '. Therefore, the reception waveform due to multiple reflection when the peeling portion D1 is present is a waveform obtained by adding the reflected wave P1 'from the peeling portion D1 and the reflected wave P2 from the second interface F2.

図2(c)は、第二界面F2にて剥離が生じている場合の反射の挙動を示す。剥離部D2においては、板材20と空気Aとの界面が形成される。そのため、第二界面F2に到達した超音波は、その殆どが板材20と空気Aとの界面で符号P2’に示す如く反射し、第一界面F1での反射波は生じない。よって、剥離部D2が存在する場合の多重反射による受信波形は、ほぼ剥離部D2からの反射波P2’によって形成される。ここで、板材20と剥離部D2の空気Aの音圧反射率はほぼ1であり反射を繰り返してもあまり変化しない。他方、健全部の反射波P2は、第二界面F2を構成する板材20と接着層40との音圧反射率が1より小さいため、第二界面F2での反射によって減衰する。   FIG. 2C shows the reflection behavior when peeling occurs at the second interface F2. In the peeling part D2, the interface of the board | plate material 20 and the air A is formed. Therefore, most of the ultrasonic waves reaching the second interface F2 are reflected at the interface between the plate member 20 and the air A as indicated by reference numeral P2 ', and no reflected wave is generated at the first interface F1. Therefore, the reception waveform due to multiple reflection in the presence of the peeling portion D2 is formed substantially by the reflected wave P2 'from the peeling portion D2. Here, the sound pressure reflectance of the air A of the plate member 20 and the peeling portion D2 is almost 1, and it does not change much even if reflection is repeated. On the other hand, the reflected wave P2 of the healthy part is attenuated by reflection at the second interface F2 because the sound pressure reflectance between the plate member 20 and the adhesive layer 40 constituting the second interface F2 is smaller than 1.

なお、図23に、各種材質の音圧反射率の変動を示す。縦軸は相対エコー高さ(dB)、横軸は反射回数である。材質によって音圧反射率は異なるが、空気の音圧反射率1よりも小さく、反射回数が多くなるに従いその差は大きくなる。すなわち、空気の音圧反射率より小さい材料であれば、剥離の有無を検出可能である。なお、同図中のaは空気、bは水、cはフッ素樹脂、dは硬質ゴム、eはエポキシ樹脂を示すが、これらは一例に過ぎない。   FIG. 23 shows fluctuations in sound pressure reflectance of various materials. The vertical axis represents the relative echo height (dB), and the horizontal axis represents the number of reflections. Although the sound pressure reflectivity varies depending on the material, it is smaller than the sound pressure reflectivity 1 of air, and the difference increases as the number of reflections increases. That is, if the material is smaller than the sound pressure reflectance of air, the presence or absence of peeling can be detected. In the figure, a represents air, b represents water, c represents a fluororesin, d represents a hard rubber, and e represents an epoxy resin, but these are merely examples.

[受信波形の相違]
ここで、健全部、剥離部D1及び剥離部D2における受信波形の相違について、図3〜5を参照しながら説明する。
図3に健全試験体TP0、第一、第二剥離試験体TP1,TP2にて受信した信号にバンドパスフィルター(中心周波数5MHz)を施して生成したRF波形の一例を示す。また、図4は、図3に対応する検波波形を示す。ここで、健全試験体TP0は、板材20、ライニング材30及び接着層40が互いに密着した健全部を模した。第一剥離試験体TP1は、板材20及び接着層40を接着させ第一界面F1の剥離部D1を模した。第二剥離試験体TP2は、板材20のみで構成し第二界面F2の剥離部D2を模した。図3,4の縦軸はエコー高さ(%)、横軸は伝搬時間(μ秒)を示す。
[Difference in received waveform]
Here, the difference of the received waveform in the healthy part, the peeling part D1, and the peeling part D2 will be described with reference to FIGS.
FIG. 3 shows an example of an RF waveform generated by applying a band-pass filter (center frequency 5 MHz) to a signal received by the sound specimen TP0, the first and second peel specimens TP1, TP2. FIG. 4 shows a detection waveform corresponding to FIG. Here, the sound test body TP0 imitated a sound portion in which the plate material 20, the lining material 30, and the adhesive layer 40 were in close contact with each other. The first peel test body TP1 was formed by adhering the plate material 20 and the adhesive layer 40 to simulate the peel portion D1 of the first interface F1. The second peel test body TP2 is composed only of the plate material 20 and simulates the peel portion D2 of the second interface F2. 3 and 4, the vertical axis represents echo height (%), and the horizontal axis represents propagation time (μsec).

図3(a)及び図4(a)に示すように、反射が1回の場合、各受信波形がほぼ重なり合うため、波形の識別は困難である。一方、図3(b)(c)及び図4(b)(c)に示すように、反射回数が増加するに従い、各波形のエコー高さにずれが生じると共に波形の重なりも解消され、波形の識別が可能である。このことから、観測当初においては剥離検出が困難であるが、多重反射波を利用することで、剥離検出が可能となることが伺える。   As shown in FIGS. 3 (a) and 4 (a), when the number of reflections is one, the received waveforms almost overlap each other, so that it is difficult to identify the waveforms. On the other hand, as shown in FIGS. 3B and 3C and FIGS. 4B and 4C, as the number of reflections increases, the echo height of each waveform shifts and the overlapping of waveforms is also eliminated. Can be identified. From this, it is difficult to detect peeling at the beginning of observation, but it can be seen that peeling can be detected by using multiple reflected waves.

さらに、発明者らは、上記各試験体において減衰の傾向を測定した。図5(a)(c)に示すように、減衰の傾向(減衰係数)は、第二剥離試験体TP2、第一剥離試験体TP1、健全試験体TP0の順に大きいことが分かった。また、同図(b)に示すように、健全試験体TP0の減衰傾向を基準とすると、第一剥離試験体TP1より第二剥離試験体TP2の方がより感度差が大きく、減衰傾向が大きいことが分かった。図5(a)の縦軸はエコー高さ(dB)、横軸は伝搬時間(μ秒)を示す。図5(b)の縦軸は感度差(dB)、横軸は反射回数を示す。図5(c)の縦軸は減衰係数(dB/mm)を示す。   Furthermore, the inventors measured the tendency of attenuation in each of the above test specimens. As shown in FIGS. 5A and 5C, it was found that the tendency of attenuation (attenuation coefficient) was larger in the order of the second peel test specimen TP2, the first peel test specimen TP1, and the healthy test specimen TP0. Further, as shown in FIG. 5B, when the attenuation tendency of the healthy specimen TP0 is used as a reference, the sensitivity difference is larger in the second peeling specimen TP2 than in the first peeling specimen TP1, and the damping tendency is larger. I understood that. In FIG. 5A, the vertical axis represents the echo height (dB), and the horizontal axis represents the propagation time (μ seconds). In FIG. 5B, the vertical axis represents the sensitivity difference (dB), and the horizontal axis represents the number of reflections. The vertical axis | shaft of FIG.5 (c) shows an attenuation coefficient (dB / mm).

上記現象のメカニズムは、以下のように推測される。
健全試験体TP0の反射波P2は、第二界面F2での反射及び接着層40への透過によって減衰する。一方、第二剥離試験体TP2の反射波P2’は、剥離部D2の空気Aでの反射のため、健全試験体TP0に比べ反射による減衰は小さい。また、第二剥離試験体TP2では接着層40への透過が生じないため、接着層40による減衰の影響を受けない。よって、第二剥離試験体TP2(剥離部D2)の減衰は、健全試験体TP0に比べ小さくなる。従って、複数回反射した反射波のピーク値(エコー高さ)を比較することで剥離部D2の検出が可能となる。
The mechanism of the above phenomenon is assumed as follows.
The reflected wave P2 of the sound specimen TP0 is attenuated by reflection at the second interface F2 and transmission to the adhesive layer 40. On the other hand, the reflected wave P2 ′ of the second peel test specimen TP2 is less attenuated by reflection than the sound test specimen TP0 because it is reflected by the air A of the peel portion D2. Further, since the second peel test body TP2 does not transmit to the adhesive layer 40, it is not affected by the attenuation by the adhesive layer 40. Therefore, the attenuation of the second peel test specimen TP2 (peeling part D2) is smaller than that of the healthy test specimen TP0. Therefore, the peeling portion D2 can be detected by comparing the peak values (echo heights) of the reflected waves reflected a plurality of times.

他方、第一剥離試験体TP1の波形は、剥離部D1からの反射波P1’及び第二界面F2からの反射波P2の双方が足し合わされる。第一剥離試験体TP1の反射波P1’は、剥離部D1の空気Aによる反射のため、反射による減衰の影響は少なく、図5に示す如く、第一剥離試験体TP1の減衰は健全試験体TP0より小さい。そのため、複数回の反射を繰り返すと、反射波P2がより大きく減衰し、反射波P1’が相対的に大きくなる。これにより、反射波P1’が波形の形成に影響を与え、健全試験体TP0の波形に対し、時間がずれたような波形となる。この時間のずれは、接着層40の厚みである。他方、健全試験体TP0の波形は、第二界面F2からの反射波P2で形成され、反射波P1’に対応する第一界面F1からの反射波P1は含まれない。従って、複数回反射した反射波の伝搬時間を比較することで剥離部D1の検出が可能となる。   On the other hand, as for the waveform of the first peeling test body TP1, both the reflected wave P1 'from the peeling portion D1 and the reflected wave P2 from the second interface F2 are added. Since the reflected wave P1 ′ of the first peel test specimen TP1 is reflected by the air A of the peel part D1, there is little influence of attenuation due to reflection. As shown in FIG. 5, the attenuation of the first peel test specimen TP1 is a healthy test specimen. Less than TP0. Therefore, when the reflection is repeated a plurality of times, the reflected wave P2 is further attenuated and the reflected wave P1 'becomes relatively large. As a result, the reflected wave P1 'affects the waveform formation, resulting in a waveform that is shifted in time from the waveform of the healthy specimen TP0. This time lag is the thickness of the adhesive layer 40. On the other hand, the waveform of the healthy specimen TP0 is formed by the reflected wave P2 from the second interface F2, and does not include the reflected wave P1 from the first interface F1 corresponding to the reflected wave P1 '. Therefore, the peeling part D1 can be detected by comparing the propagation times of the reflected waves reflected a plurality of times.

このように、発明者らの鋭意研究の結果、所定値以上の差となる反射回数を予め求め、当該反射回数の反射波のエコー高さ及び伝搬時間に着目することで、上記要因による変動の影響を排除し、且つ、健全部に対する波形の識別性(視認性)を向上させ、各界面F1,F2における剥離を検出できることが判明した。   As described above, as a result of the inventors' diligent research, the number of reflections with a difference greater than or equal to a predetermined value is obtained in advance, and by paying attention to the echo height and propagation time of the reflected wave of the number of reflections, It has been found that the influence can be eliminated, the waveform distinguishability (visibility) with respect to the healthy portion can be improved, and the separation at the interfaces F1 and F2 can be detected.

[ピーク時間及びエコー高さ]
次に、第一、第二界面F1,F2における剥離の検出について、図6を参照しながら説明する。なお、本実施形態において、伝搬時間として、反射波のピーク時間を例に以下説明する。
[Peak time and echo height]
Next, detection of peeling at the first and second interfaces F1 and F2 will be described with reference to FIG. In the present embodiment, the propagation time will be described below by taking the peak time of the reflected wave as an example.

第一界面F1の剥離部D1の場合、その信号波形S1における所定回数の反射を繰り返した反射波のピーク時間T1は、健全部の信号波形S0における同回数の反射を繰り返した反射波のピーク時間T0よりも遅れて出現し、時間ずれΔTが生じる。これは、健全部の減衰が剥離部D1よりも大きいため、複数回の反射を繰り返すと、剥離部D1からの反射波が相対的に大きくなり、健全部の波形に対し時間がずれた波形となるためである。他方、第二界面F2の剥離部D2の場合、その信号波形S2におけるピーク時間T2は健全部のピーク時間T0とほぼ同時間となる。これは、いずれの反射波も第二界面F2での反射であるためである。   In the case of the peeling portion D1 of the first interface F1, the peak time T1 of the reflected wave that has been reflected a predetermined number of times in the signal waveform S1 is the peak time of the reflected wave that has been repeated the same number of times in the signal waveform S0 of the healthy portion. Appearing later than T0, a time difference ΔT occurs. This is because the attenuation of the healthy part is larger than that of the peeling part D1, and when the reflection is repeated a plurality of times, the reflected wave from the peeling part D1 becomes relatively large, and the waveform is shifted in time with respect to the waveform of the healthy part. Because it becomes. On the other hand, in the case of the peeling portion D2 of the second interface F2, the peak time T2 in the signal waveform S2 is substantially the same as the peak time T0 of the healthy portion. This is because any reflected wave is reflected at the second interface F2.

また、第一界面F1の剥離部D1の場合、その信号波形S1における所定回数の反射を繰り返した反射波のピーク値としてのエコー高さH1は、健全部の信号波形S0における同回数の反射を繰り返した反射波のエコー高さH0と比べ若干大きいものの、それほど大きい差はない。他方、第二界面F2の剥離部D2の場合、その信号波形S2におけるエコー高さH2は、健全部の信号波形S0のエコー高さH0と比較し、明らかに突出して大きい。これは、第二界面F2の剥離部D2の場合、健全部と比較してより反射率の大きい空気Aで殆ど反射し透過しないため、減衰が少ないためである。   Further, in the case of the peeling portion D1 of the first interface F1, the echo height H1 as the peak value of the reflected wave obtained by repeating a predetermined number of reflections in the signal waveform S1 is the same number of reflections in the signal waveform S0 of the healthy portion. Although it is slightly larger than the echo height H0 of the repeated reflected wave, there is no great difference. On the other hand, in the case of the peeling portion D2 of the second interface F2, the echo height H2 in the signal waveform S2 is clearly protruding and large compared to the echo height H0 of the signal waveform S0 of the healthy portion. This is because in the case of the peeled portion D2 of the second interface F2, the attenuation is less because it is hardly reflected and transmitted by the air A having a higher reflectance than the healthy portion.

[評価方法]
このように、以下の積層体の剥離検査方法により、第一、第二界面F1,F2における剥離の有無を検査することが可能となる。
予め、板材20、ライニング材30及び接着層40が密着した健全部及び模擬剥離部において板材20の表面21から超音波を入射すると共に多重反射波を受信し、図22に示す如く、健全部における多重反射波のエコー高さと模擬剥離部における多重反射波のエコー高さとの差が所定値以上となる反射波の反射回数を求める。そして、その反射回数の反射を繰り返した反射波のピーク時間及びエコー高さを基準伝搬時間としての基準ピーク時間T0及び基準エコー高さとしての基準ピーク値H0として求めておく。なお、模擬剥離部には、剥離の他、剥離部が腐食した腐食部も含まれる。
[Evaluation method]
Thus, it becomes possible to inspect the presence or absence of peeling at the first and second interfaces F1 and F2 by the following peeling inspection method of the laminate.
In advance, the ultrasonic wave is incident from the surface 21 of the plate material 20 and the multiple reflected waves are received at the sound portion and the simulated peeling portion where the plate material 20, the lining material 30 and the adhesive layer 40 are in close contact, and as shown in FIG. The number of reflections of the reflected wave at which the difference between the echo height of the multiple reflected wave and the echo height of the multiple reflected wave at the simulated peeling portion is equal to or greater than a predetermined value is obtained. Then, the peak time and echo height of the reflected wave that has been repeatedly reflected the number of times of reflection are obtained as the reference peak time T0 as the reference propagation time and the reference peak value H0 as the reference echo height. In addition to the peeling, the simulated peeling portion includes a corroded portion in which the peeling portion corrodes.

ここで、反射回数の決定では、例えば、積層体10において健全部に相当する箇所及び剥離部に相当する箇所をそれぞれ選定する。また、上述の如き、健全試験体TP0、第一剥離試験体TP1、第二剥離試験体TP2を用いたり、これら試験体に相当する他の装置や他の部材を用いることもできる。さらに、例えば剥離部を模して作製した模擬剥離試験体(対比試験片)と積層体において健全部に相当する箇所として選定した箇所との比較でもよい。このように、「健全部」及び「模擬剥離部」はいずれも「部」であるから、これらには「検査対象となる積層体10の任意の箇所」及び「積層体10とは別体の試験体(片)及びこれに相当する他の装置や部材」の双方が含まれる。なお、上記の方法に加えて、例えば曲率を有する積層体の場合、曲率に応じたエコー高さの補正値を求めておき、感度を補正するようにしてもよい。   Here, in the determination of the number of reflections, for example, a location corresponding to the healthy portion and a location corresponding to the peeling portion are selected in the laminate 10. Further, as described above, the sound test specimen TP0, the first peel test specimen TP1, and the second peel test specimen TP2 can be used, or other devices and other members corresponding to these test specimens can be used. Furthermore, for example, a comparison between a simulated peel test body (contrast test piece) produced by simulating a peeled portion and a location selected as a location corresponding to a healthy portion in the laminate may be used. Thus, since both the “sound part” and the “simulated peeling part” are “parts”, these are “any part of the laminate 10 to be inspected” and “separate from the laminate 10”. Both “test body (piece) and other devices and members corresponding thereto” are included. In addition to the above method, for example, in the case of a laminate having a curvature, a correction value of an echo height corresponding to the curvature may be obtained to correct the sensitivity.

次に、板材20の所定の検査部Eにおいて、板材20の表面21に沿って適宜間隔をおいて探触子2を走査すると共に超音波を入射させて多重反射波を受信し、その多重反射波において予め求めた反射回数と同回数の反射を繰り返した反射波の伝搬時間としてのピーク時間T及びエコー高さHを求める。そして、これらのピーク時間及びエコー高さを比較することにより、ライニング材30と接着層40との第一界面F1における剥離及び板材20と接着層40との第二界面F2における剥離の有無をそれぞれ評価する。   Next, in a predetermined inspection part E of the plate member 20, the probe 2 is scanned at an appropriate interval along the surface 21 of the plate member 20, and an ultrasonic wave is incident to receive a multiple reflected wave. A peak time T and an echo height H are obtained as a propagation time of a reflected wave that has been reflected the same number of times as the number of reflections obtained in advance in the wave. Then, by comparing these peak times and echo heights, the presence or absence of peeling at the first interface F1 between the lining material 30 and the adhesive layer 40 and the peeling at the second interface F2 between the plate material 20 and the adhesive layer 40 are respectively determined. evaluate.

また、予め、信号処理装置3に基準ピーク時間に対し所定の閾値(時間)を設定しておき、ピーク時間が所定のゲートを超えた場合に警告手段3aにより警告するようにしてもよい。同様に、基準ピーク値に対し所定の閾値(振幅)を設定しておき、ピーク値が所定値を超えた場合に警告手段3aにより警告するようにしてもよい。さらに、位置検出器2aの探触子2の走査位置データと共に多重反射波を処理し、例えば図6に示す如きグラフと共に、又は、独立にBスキャン画像やCスキャン画像等の走査画像を生成してもよい。これら画像に剥離の有無を表示させてもよい。従来の多重反射波の減衰曲線に着目する方法では、多重信号が探触子の移動に伴い変化するため、健全部と剥離部の信号の区別が困難となる。また、走査後にデータを解析する方法では、解析処理が膨大で、しかも各種要因が信号に影響を与えているため、精度も低下する。一方、本発明は、所定値以上の差となる反射回数を予め求め、当該反射回数の反射波のエコー高さに着目するので、信号処理が簡便で容易に生成することができる。   Alternatively, a predetermined threshold (time) may be set for the signal processing device 3 in advance with respect to the reference peak time, and the warning means 3a may warn when the peak time exceeds a predetermined gate. Similarly, a predetermined threshold value (amplitude) may be set for the reference peak value, and the warning means 3a may warn when the peak value exceeds a predetermined value. Further, the multiple reflected waves are processed together with the scanning position data of the probe 2 of the position detector 2a, and for example, a scanning image such as a B-scan image or a C-scan image is generated together with a graph as shown in FIG. May be. The presence or absence of peeling may be displayed on these images. In the conventional method of paying attention to the attenuation curve of multiple reflected waves, the multiplexed signal changes as the probe moves, so that it is difficult to distinguish the signals of the healthy part and the peeled part. Further, in the method of analyzing data after scanning, the analysis processing is enormous, and various factors affect the signal, so that the accuracy is also lowered. On the other hand, according to the present invention, since the number of reflections with a difference of a predetermined value or more is obtained in advance and attention is paid to the echo height of the reflected wave of the number of reflections, signal processing can be easily and easily generated.

ここで、ピーク時間T及びエコー高さHの比較に際し、上述の所定回数は、減衰係数を考慮し、健全部での波形に対しピーク時間T及びエコー高さHの比較が可能となる回数に設定する。図5に示すように、健全部における減衰の傾向と、剥離部Dが存在する場合における減衰の傾向は異なる。   Here, in the comparison of the peak time T and the echo height H, the above-mentioned predetermined number of times is the number of times that the peak time T and the echo height H can be compared with respect to the waveform in the healthy part in consideration of the attenuation coefficient. Set. As shown in FIG. 5, the attenuation tendency in the healthy part is different from the attenuation tendency in the case where the peeling part D exists.

よって、例えば、信号処理装置3において、図6に示す如くテストピース等の健全部における反射波のエコー高さが100%振幅表示の20%程度の強度で表示されるように回数とするとよい。これにより、検査部Eにおける第一、第二界面F1,F2の剥離部からの各反射エコーが健全部に対し識別可能となる。図3(a)及び図4(a)に示すように、反射回数が少ない場合、受信信号に明瞭な差異が表れず、信号の識別(健全か剥離かの識別)が困難である。一方、図3(b)(c)及び図4(b)(c)に示すように、反射回数が増加するに従い、健全か剥離かの識別が容易となる。反射回数が増加すると、多重反射波の伝搬時間(距離)の差が拡大して、時間のずれが大きくなり、第二界面F2の剥離部からの信号が明瞭となる。また、図5(a)に示す如く減衰の差が拡大してエコー高さの差も大きくなるので、第一界面F1の剥離部からの信号も明瞭となる。なお、本実施形態では、20回程度に設定している。もちろん、適宜感度調整してもよい。   Therefore, for example, in the signal processing device 3, as shown in FIG. 6, the number of times may be set so that the echo height of the reflected wave in the sound part such as a test piece is displayed with an intensity of about 20% of 100% amplitude display. Thereby, each reflected echo from the peeling part of the 1st, 2nd interface F1, F2 in the test | inspection part E becomes distinguishable with respect to a healthy part. As shown in FIGS. 3A and 4A, when the number of reflections is small, a clear difference does not appear in the received signal, and it is difficult to identify the signal (identification of sound or peeling). On the other hand, as shown in FIGS. 3B and 3C and FIGS. 4B and 4C, as the number of reflections increases, it becomes easy to identify whether the sound is healthy or peeled. As the number of reflections increases, the difference in propagation time (distance) of multiple reflected waves increases, the time lag increases, and the signal from the peeled portion of the second interface F2 becomes clear. Further, as shown in FIG. 5A, the difference in attenuation is increased and the difference in echo height is also increased, so that the signal from the peeled portion of the first interface F1 becomes clear. In this embodiment, it is set to about 20 times. Of course, the sensitivity may be adjusted as appropriate.

発明者らは、本発明に係る剥離検査方法及び剥離検査装置の有用性を検証するために実験を行った。上述の各試験体を用い、中心周波数5MHzの一振動子探触子2により多重反射波を複数回受信した。図7にその結果を比較したグラフを示す。   The inventors conducted experiments in order to verify the usefulness of the peeling inspection method and the peeling inspection apparatus according to the present invention. Using each of the test specimens described above, multiple reflected waves were received a plurality of times by the single transducer probe 2 having a center frequency of 5 MHz. FIG. 7 shows a graph comparing the results.

図7(a)は、健全部におけるピーク時間が最も早いものを基準とした各試験体のピーク時間差を示すグラフである。縦軸が、ピーク時間差(μ秒)である。同図から明らかなように、健全試験体TP0と第二剥離試験体TP2とは、ピーク時間差にほとんど差異はない。他方、第一剥離試験体TP1では、ピーク時間差に明瞭な差異が表れた。このように、健全部のピーク時間と検査部のピーク時間とを比較することで、第一界面F1における剥離の有無を検出可能であることが分かった。   Fig.7 (a) is a graph which shows the peak time difference of each test body on the basis of the thing with the earliest peak time in a healthy part. The vertical axis represents the peak time difference (μ seconds). As is clear from the figure, there is almost no difference in the peak time difference between the healthy specimen TP0 and the second peel specimen TP2. On the other hand, in the first peel test specimen TP1, a clear difference was observed in the peak time difference. Thus, it was found that the presence or absence of peeling at the first interface F1 can be detected by comparing the peak time of the healthy part and the peak time of the inspection part.

図7(b)は、各試験体のエコー高さ(%)を比較したグラフである。縦軸が、エコー高さ(%)である。同図から明らかなように、健全試験体TP0と第一剥離試験体TP1とは、エコー高さにあまり差はない。他方、第二剥離試験体TP2では、ピーク値に明瞭な差異が表れた。このように、健全部のピーク値と検査部のピーク値とを比較することで、第二界面F2における剥離の有無を検出可能であることが分かった。   FIG. 7B is a graph comparing the echo height (%) of each specimen. The vertical axis represents the echo height (%). As is apparent from the figure, there is not much difference in echo height between the healthy specimen TP0 and the first peel specimen TP1. On the other hand, in the second peel test specimen TP2, a clear difference appeared in the peak value. Thus, it was found that the presence or absence of peeling at the second interface F2 can be detected by comparing the peak value of the healthy part and the peak value of the inspection part.

さらに、発明者らは、図8に示す如く、ライニング材30’としてフッ素樹脂ライニング(PFA)を用い、接着層40’を接着剤33とガラスクロス34とにより構成した試験体についても、上記実施例1と同様に実験を行った。図12(a)(b)に示すように、上記実施例1と同様の結果となり、検出可能であることが判明した。なお、図9〜11にこの試験体におけるRF波形、検波波形の一例及び減衰係数を示す。このライニング材30’においても、上記と同様の結果が得られた。   Further, as shown in FIG. 8, the inventors also conducted the above test on a test body in which a fluororesin lining (PFA) was used as the lining material 30 ′ and the adhesive layer 40 ′ was composed of an adhesive 33 and a glass cloth 34. The experiment was conducted in the same manner as in Example 1. As shown in FIGS. 12 (a) and 12 (b), the same results as in Example 1 were obtained, and it was found that detection was possible. 9 to 11 show examples of the RF waveform and the detection waveform and the attenuation coefficient in this test body. The same results as described above were obtained with this lining material 30 '.

次に、図13〜17を参照しながら、本発明の第二実施形態について説明する。なお、以下の実施形態において、同様の部材には同一の符号を付してある。
上記第一実施形態において、接着層40を介して板材20(第一の部材)にフッ素樹脂ライニング材30(第二の部材)を接着させた積層体10を例に説明した。しかし、検査対象としての積層体10は、接着層40を介して複数の部材20,30が積層されたものに限られるものではない。例えば、図13に示す第二実施形態の如く、第一の部材20’に第二の部材30’が直接設けられた積層体10’においても、層間剥離の検出が可能である。なお、この第一、第二の部材20’,30’は、上記第一実施形態の材料に限られるものではない。
Next, a second embodiment of the present invention will be described with reference to FIGS. In the following embodiments, similar members are denoted by the same reference numerals.
In the first embodiment, the laminated body 10 in which the fluororesin lining material 30 (second member) is bonded to the plate material 20 (first member) via the adhesive layer 40 has been described as an example. However, the laminated body 10 as an inspection target is not limited to the one in which the plurality of members 20 and 30 are laminated via the adhesive layer 40. For example, as in the second embodiment shown in FIG. 13, delamination can be detected even in the laminated body 10 ′ in which the first member 20 ′ is directly provided with the second member 30 ′. The first and second members 20 ′ and 30 ′ are not limited to the materials of the first embodiment.

図13に示すように、第二実施形態における積層体10’は、超音波の入射位置となる積層体10’の一側11’を構成する第一の部材20’と、この第一の部材20’の他側22’に直接設けられた第二の部材30’とからなる二層構造を呈する。   As shown in FIG. 13, the laminated body 10 ′ in the second embodiment includes a first member 20 ′ that constitutes one side 11 ′ of the laminated body 10 ′ serving as an ultrasonic wave incident position, and the first member. It has a two-layer structure consisting of a second member 30 'provided directly on the other side 22' of 20 '.

図13(a)は、第一の部材20’及び第二の部材30’が互いに密着し剥離が存在しない健全部での反射の挙動を示す。探触子2から第一の部材20’内部へその上面(表面)21’から入射した超音波は、その一部が第一の部材20’の下面(裏面22’)と第二の部材30’の上面31’との界面となる界面F3で符号P3に示す如く反射する。また、界面F3を透過した超音波は、第二の部材30’内を伝播し、第二の部材30’の下面32’に達し、符号P4に示す如く反射する。よって、健全部での多重反射による受信波形は、界面F3からの反射波P3及び第二の部材30’の下面32’からの反射波P4が足し合わされた波形となる。   FIG. 13A shows the behavior of reflection at a healthy part where the first member 20 ′ and the second member 30 ′ are in close contact with each other and no separation exists. A part of the ultrasonic wave incident from the upper surface (front surface) 21 ′ to the inside of the first member 20 ′ from the probe 2 and the lower surface (back surface 22 ′) of the first member 20 ′ and the second member 30. The light is reflected as indicated by reference numeral P3 at the interface F3 which is the interface with the “upper surface 31”. The ultrasonic wave transmitted through the interface F3 propagates through the second member 30 ', reaches the lower surface 32' of the second member 30 ', and is reflected as indicated by reference numeral P4. Therefore, the reception waveform due to the multiple reflection at the healthy part is a waveform obtained by adding the reflected wave P3 from the interface F3 and the reflected wave P4 from the lower surface 32 'of the second member 30'.

他方、図13(b)は、界面F3にて剥離が生じている場合の反射の挙動を示す。剥離部D3においては、第一の部材20’と空気Aとの界面が形成される。そのため、界面F3に到達した超音波は、その殆どが第一の部材20’と空気Aとの界面で符号P3’に示す如く反射し、第二の部材30’の下面32’での反射波は生じない。よって、剥離部D3が存在する場合の多重反射による受信波形は、ほぼ剥離部D3からの反射波P3’によって形成される。   On the other hand, FIG. 13 (b) shows the behavior of reflection when peeling occurs at the interface F3. In the peeling portion D3, an interface between the first member 20 'and the air A is formed. Therefore, most of the ultrasonic waves that reach the interface F3 are reflected at the interface between the first member 20 ′ and the air A as indicated by reference numeral P3 ′, and are reflected on the lower surface 32 ′ of the second member 30 ′. Does not occur. Therefore, the reception waveform due to multiple reflection in the presence of the peeling portion D3 is substantially formed by the reflected wave P3 'from the peeling portion D3.

ここで、健全部及び剥離部D3における受信波形の相違について、図14〜17を参照しながら説明する。
図14に健全試験体TP0、第三剥離試験体TP3にて受信した信号にバンドパスフィルター(中心周波数5MHz)を施して生成したRF波形の一例を示す。また、図15は、図14に対応する検波波形を示す。ここで、健全試験体TP0は、第一の部材20’及び第二の部材30’が互いに密着した健全部を模した。第三剥離試験体TP3は、第一の部材20’のみで構成し界面F3の剥離部D3を模した。
Here, the difference in the received waveform between the healthy part and the peeling part D3 will be described with reference to FIGS.
FIG. 14 shows an example of an RF waveform generated by applying a band-pass filter (center frequency 5 MHz) to signals received by the healthy test specimen TP0 and the third peel test specimen TP3. FIG. 15 shows a detection waveform corresponding to FIG. Here, the healthy test body TP0 imitated a healthy part in which the first member 20 ′ and the second member 30 ′ were in close contact with each other. The third peel test body TP3 is composed of only the first member 20 ′ and simulates the peel portion D3 of the interface F3.

図14,15に示すように、本実施形態においても、反射回数が増加するに従い、各波形のエコー高さにずれが生じると共に波形の重なりも解消され、波形の識別が可能である。このことから、観測当初においては剥離検出が困難であるが、多重反射波を利用することで、剥離検出が可能となることが伺える。さらに、上記第一実施形態と同様に、上記各試験体において減衰の傾向を測定すると、図16に示すように、減衰の傾向(減衰係数)は、健全試験体TP0の方が第三剥離試験体TP3より大きいことが分かった。   As shown in FIGS. 14 and 15, also in this embodiment, as the number of reflections increases, the echo height of each waveform shifts and the overlapping of waveforms is eliminated, and the waveform can be identified. From this, it is difficult to detect peeling at the beginning of observation, but it can be seen that peeling can be detected by using multiple reflected waves. Furthermore, as in the first embodiment, when the tendency of attenuation is measured in each of the test specimens, as shown in FIG. 16, the tendency of attenuation (attenuation coefficient) is the third peel test for the healthy specimen TP0. It was found to be larger than the body TP3.

健全試験体TP0の反射波P3は、界面F3での反射及び第二の部材30’への透過によって減衰する。一方、第三剥離試験体TP3の反射波P3’は、剥離部D3の空気Aでの反射のため、健全試験体TP0に比べ反射による減衰は小さい。また、第三剥離試験体TP3では第二の部材30’への透過が生じないため、第二の部材30’による減衰の影響を受けない。よって、第三剥離試験体TP3(剥離部D3)の減衰は、健全試験体TP0に比べ小さくなる。従って、予め求めた反射回数反射した反射波のピーク値を比較することで剥離部D3の検出が可能となる。   The reflected wave P3 of the healthy specimen TP0 is attenuated by reflection at the interface F3 and transmission to the second member 30 '. On the other hand, the reflected wave P3 'of the third peel test specimen TP3 is less attenuated by reflection than the sound test specimen TP0 due to reflection by the air A of the peel portion D3. Further, since the third peel test body TP3 does not transmit the second member 30 ', it is not affected by the attenuation by the second member 30'. Therefore, the attenuation of the third peel test specimen TP3 (peeling part D3) is smaller than that of the healthy test specimen TP0. Therefore, it is possible to detect the peeling portion D3 by comparing the peak values of the reflected waves that are reflected in the number of reflections obtained in advance.

また、健全試験体TP0の波形は、界面F3からの反射波P3及び第二の部材30’の下面32’からの反射波P4の双方が足し合わされる。一方、第三剥離試験体TP3の波形は、界面F3からの反射波P3’で形成され、第二の部材30’の下面32’からの反射波P4は含まれない。第三剥離試験体TP3の反射波P3’は、剥離部D3の空気Aによる反射のため、反射による減衰の影響は少なく、図16に示す如く、第三剥離試験体TP3の減衰は健全試験体TP0より小さい。そのため、複数回の反射を繰り返すと、反射波P3がより大きく減衰し、反射波P4が相対的に大きくなる。これにより、反射波P4が波形の形成に影響を与え、健全試験体TP0の波形に対し、第三剥離試験体TP3の波形は時間がずれた(早まる)ような波形となる。この時間のずれは、第二の部材30’の厚みである。従って、予め求めた反射回数反射した反射波の伝搬時間を比較することで剥離部D3の検出が可能となる。   In addition, the waveform of the healthy specimen TP0 is obtained by adding both the reflected wave P3 from the interface F3 and the reflected wave P4 from the lower surface 32 'of the second member 30'. On the other hand, the waveform of the third peel test body TP3 is formed by the reflected wave P3 'from the interface F3, and does not include the reflected wave P4 from the lower surface 32' of the second member 30 '. The reflected wave P3 ′ of the third peel test specimen TP3 is reflected by the air A of the peel part D3, so that the influence of attenuation due to the reflection is small. As shown in FIG. 16, the attenuation of the third peel test specimen TP3 is healthy. Less than TP0. Therefore, when the reflection is repeated a plurality of times, the reflected wave P3 is further attenuated and the reflected wave P4 becomes relatively large. Thereby, the reflected wave P4 affects the waveform formation, and the waveform of the third peel test specimen TP3 becomes a waveform that is shifted (fastened) with respect to the waveform of the healthy test specimen TP0. This time lag is the thickness of the second member 30 '. Therefore, it is possible to detect the peeling portion D3 by comparing the propagation times of the reflected waves reflected after the number of reflections obtained in advance.

次に、界面F3における剥離の検出について、図17を参照しながら説明する。
界面F3の剥離部D3の場合、その信号波形S3における所定回数の反射を繰り返した反射波のピーク時間T3は、健全部の信号波形S0’における同回数の反射を繰り返した反射波のピーク時間T0’よりも早く出現し、時間ずれΔT’が生じる。これは、健全部の減衰が剥離部D3よりも大きいため、複数回の反射を繰り返すと、剥離部D3からの反射波が相対的に大きくなり、健全部の波形に対し時間がずれた波形となるためである。
Next, detection of peeling at the interface F3 will be described with reference to FIG.
In the case of the peeling portion D3 of the interface F3, the peak time T3 of the reflected wave that has been reflected a predetermined number of times in the signal waveform S3 is the peak time T0 of the reflected wave that has been repeated the same number of times in the signal waveform S0 ′ of the healthy portion. Appears earlier than ', resulting in a time shift ΔT'. This is because the attenuation of the healthy part is larger than that of the peeling part D3, and when the reflection is repeated a plurality of times, the reflected wave from the peeling part D3 becomes relatively large, and the waveform is shifted in time with respect to the waveform of the healthy part. Because it becomes.

また、信号波形S3における所定回数の反射を繰り返した反射波のピーク値としてのエコー高さH3は、健全部の信号波形S0’における同回数の反射を繰り返した反射波のエコー高さH0’と比べ大きく表れる。これは、剥離部D3の場合、健全部と比較してより反射率の大きい空気Aで殆ど反射し透過しないため、減衰が少ないからである。   The echo height H3 as the peak value of the reflected wave that has been reflected a predetermined number of times in the signal waveform S3 is the echo height H0 ′ of the reflected wave that has been repeated the same number of times in the signal waveform S0 ′ of the healthy part. Compared to larger. This is because in the case of the peeled portion D3, since the light is reflected and hardly transmitted by the air A having a higher reflectance than the healthy portion, the attenuation is small.

このように、2つの部材20’,30’よりなる積層体10’においても、上記第一実施形態と同様に、健全部及び剥離部の受信信号波形(反射波)に違いが生じる。よって、予め求めた反射回数反射した反射波のピーク時間T及び/又はエコー高さHを比較することで、第一の部材20’と第二の部材30’との界面における剥離部D3の検出が可能となる。   Thus, also in the laminated body 10 ′ composed of the two members 20 ′ and 30 ′, a difference occurs in the received signal waveforms (reflected waves) of the healthy part and the peeled part as in the first embodiment. Therefore, by detecting the peak times T and / or echo heights H of the reflected waves reflected in the number of reflections obtained in advance, detection of the peeling portion D3 at the interface between the first member 20 ′ and the second member 30 ′ is performed. Is possible.

最後に、本発明のさらに他の実施形態の可能性について説明する。
上記第一、第二実施形態において、比較対象としてピーク時間Tを用いた。しかし、第三実施形態では、ピーク時間Tと共に、又は、ピーク時間Tに代えて反射波の位相を用いる。具体的には、予め、健全部において所定回数の反射を繰り返した反射波の位相を基準位相として求めておく。そして、検査部において同回数の反射を繰り返した反射波の位相を求め、これら位相を比較する。ここで、接着層40は、第二の部材30の音響インピーダンスより小となる材料よりなる。
Finally, the possibilities of yet another embodiment of the present invention will be described.
In the first and second embodiments, the peak time T is used as a comparison target. However, in the third embodiment, the phase of the reflected wave is used together with the peak time T or instead of the peak time T. Specifically, the phase of the reflected wave that has been reflected a predetermined number of times in the healthy portion is obtained in advance as a reference phase. And the phase of the reflected wave which repeated the same number of reflections in an inspection part is calculated | required, and these phases are compared. Here, the adhesive layer 40 is made of a material that is smaller than the acoustic impedance of the second member 30.

図18(a)に示す健全部の場合、探触子2から第一の部材20の表面21(積層体10の一側11)から入射した超音波の一部は、先の実施形態と同様に第二界面F2で符号P2に示す如く反射する。また、第二界面F2を透過した超音波は、接着層40と第二の部材30との音響インピーダンスの差により、符号P1’’で示す如く第一界面F1でも反射する。   In the case of the healthy part shown in FIG. 18A, a part of the ultrasonic wave incident from the surface 2 (one side 11 of the laminate 10) of the first member 20 from the probe 2 is the same as in the previous embodiment. Reflected at the second interface F2 as indicated by reference numeral P2. The ultrasonic wave transmitted through the second interface F2 is also reflected at the first interface F1 as indicated by reference numeral P1 ″ due to the difference in acoustic impedance between the adhesive layer 40 and the second member 30.

図18(b)に示す第一界面F1の剥離部D1においては、接着層40と空気Aとの界面が形成される。そのため、健全部とは異なり、第二境界面F2を透過した超音波は、その殆どが接着層40と空気Aとの界面で符号P1’に示す如く反射する。   In the peeling portion D1 of the first interface F1 shown in FIG. 18B, an interface between the adhesive layer 40 and the air A is formed. Therefore, unlike the sound part, most of the ultrasonic wave transmitted through the second interface F2 is reflected at the interface between the adhesive layer 40 and the air A as indicated by reference numeral P1 '.

ここで、空気の音響インピーダンスは極めて小さく、接着層40の音響インピーダンスよりも小さい。よって、接着層40の音響インピーダンスが第二の部材30の音響インピーダンスよりも小さい場合、健全部の信号に対し位相が反転することとなる。すなわち、剥離部D1の有無により位相が反転することから、位相反転の有無を検出することにより、第一界面F1の剥離検出が可能となる。このように、本実施形態は、第一界面F1において剥離の有無に関わらず反射エコーが検出される場合に有利である。なお、上記第二実施形態においても、第一の部材20’が、第二の部材30’の音響インピーダンスより小となる材料よりなる場合、位相反転により第一の部材20’と第二の部材30’との界面F3の剥離を検出することは可能である。なお、本実施形態においては、信号処理装置3に、検査部での位相が健全部に対し反転している場合に警告する警告手段3aを設けるとよい。   Here, the acoustic impedance of air is extremely small and smaller than the acoustic impedance of the adhesive layer 40. Therefore, when the acoustic impedance of the adhesive layer 40 is smaller than the acoustic impedance of the second member 30, the phase is inverted with respect to the signal of the healthy part. That is, since the phase is inverted depending on the presence or absence of the peeling portion D1, it is possible to detect the peeling of the first interface F1 by detecting the presence or absence of the phase inversion. Thus, this embodiment is advantageous when a reflected echo is detected regardless of the presence or absence of peeling at the first interface F1. In the second embodiment as well, when the first member 20 ′ is made of a material that is smaller than the acoustic impedance of the second member 30 ′, the first member 20 ′ and the second member are reversed by phase inversion. It is possible to detect the separation of the interface F3 from 30 ′. In the present embodiment, the signal processing device 3 may be provided with warning means 3a that warns when the phase at the inspection unit is reversed with respect to the healthy part.

上記第一、第二実施形態において、所定回数の反射を繰り返した反射波のピーク時間T及びエコー高さHの双方を比較することで、各界面における剥離をそれぞれ検出可能とした。しかし、ピーク時間T及びエコー高さHの比較は、それぞれ単独で比較することも可能である。さらに、上記第三実施形態に示す位相の比較についても、単独で又は、ピーク時間T及び/又はエコー高さHと組み合わせて実施することも可能である。   In the first and second embodiments, by comparing both the peak time T and the echo height H of the reflected wave that has been reflected a predetermined number of times, it is possible to detect separation at each interface. However, the peak time T and the echo height H can be compared independently. Furthermore, the phase comparison shown in the third embodiment can be performed alone or in combination with the peak time T and / or the echo height H.

また、上記第一、第二実施形態において、伝搬時間として反射波のピーク時間を用いた。しかし、伝搬時間はピーク時間に限らず、例えば、反射波の立ち上がり(下がり)時間や、所定の振幅を超える(下がる)時間を用いても構わない。すなわち、伝搬時間は、健全部及び検査部の各波形において時間のずれが比較(識別)可能となる時間であればよい。   In the first and second embodiments, the peak time of the reflected wave is used as the propagation time. However, the propagation time is not limited to the peak time, and for example, a rising (falling) time of the reflected wave or a time exceeding (falling) a predetermined amplitude may be used. That is, the propagation time only needs to be a time at which a time lag can be compared (identified) in each waveform of the healthy part and the inspection part.

上記各実施形態において、探触子2としては送受信を兼務する一振動子型探触子を用いた。しかし、送受信が別ユニットとなっている二振動子型探触子を用いても構わない。また、上記実施形態において探触子2として5MHzの探触子を用いたが、この周波数に限られるものではない。但し、周波数は大きいと減衰が大きく信号が小さくなり、周波数が小さいと波形が分離できないため、接着層40の材質や厚み等を考慮し設定するとよい。   In each of the embodiments described above, a single element type probe that also performs transmission and reception is used as the probe 2. However, a dual element probe in which transmission / reception is a separate unit may be used. In the above embodiment, a 5 MHz probe is used as the probe 2. However, the present invention is not limited to this frequency. However, if the frequency is large, the attenuation is large and the signal is small, and if the frequency is small, the waveform cannot be separated. Therefore, the material and thickness of the adhesive layer 40 may be set in consideration.

一般に、超音波は次式で示す近距離音場限界距離Lを超えると、一定の指向角αで広がる。
近距離音場限界距離L=(振動子の直径)の2乗/(4×波長)・・・(1)
指向角α=(70×波長)/(振動子の直径)・・・(2)
本発明は、予め求めた反射回数反射した反射波に着目するため、超音波は広がりによる減衰が少ないものが好ましい。そのため、近距離音場限界距離Lが大きく、また指向角αの小さい周波数のものが好ましい。また、腐食部を検出する場合、腐食面の面粗さにより大きく減衰するため、面粗さの影響を受けやすい周波数が好ましい。上記の点から、振動子の直径が20mm、周波数5MHzの垂直探触子を用いるとよい。なお、腐食部を検出する場合、腐食面の面粗さによる減衰の影響を大きくするべく、分割型探触子を用いることもできる。
In general, when the ultrasonic wave exceeds the near field limit distance L expressed by the following equation, the ultrasonic wave spreads at a constant directivity angle α.
Near field limit distance L = (diameter of transducer) squared / (4 × wavelength) (1)
Directional angle α = (70 × wavelength) / (vibrator diameter) (2)
In the present invention, since attention is paid to the reflected wave that has been obtained in advance by the number of reflections, it is preferable that the ultrasonic wave is less attenuated by spreading. For this reason, it is preferable to use a frequency with a short near field limit distance L and a small directivity angle α. Moreover, when detecting a corroded part, since it attenuate | damps largely with the surface roughness of a corroded surface, the frequency which is easy to receive to the influence of surface roughness is preferable. From the above points, it is preferable to use a vertical probe having a vibrator diameter of 20 mm and a frequency of 5 MHz. When detecting a corroded portion, a split probe can be used to increase the influence of attenuation due to the roughness of the corroded surface.

また、上記各実施形態において、探触子2を直接第一の部材20の表面21に押し当てて超音波を送受信したが、水浸法にも適用可能である。   Moreover, in each said embodiment, although the probe 2 was pressed directly on the surface 21 of the 1st member 20, and the ultrasonic wave was transmitted / received, it is applicable also to a water immersion method.

上記第一実施形態において、検査対象の積層体10の一部を構成する第一の部材20として鋼材を用いた。しかし、第一の部材は鋼材に限らず、他の金属、ガラス、樹脂等、超音波の伝達物質であればよい。また、検査対象となる積層体10は、上記第一実施形態の如きコンテナタンクに限られず、他のタンク、コンテナ等の容器の他、管の構成部分であっても構わない。さらに、第二の部材30も第一部材と同様に、超音波の伝達物質であれば、その材質はフッ素樹脂に特に限定されるものではなく、例えば硬質ゴムやエポキシ樹脂等の各種ライニング材に適用可能である。もちろん、ライニング材に限定されるものでもない。また、第二、第三実施形態における第一、第二の部材20(20’),30(30’)についても、同様である。すなわち、複数の部材は、異種材料及び同種材料のいずれの組み合わせであってもよい。   In said 1st embodiment, steel materials were used as the 1st member 20 which comprises some laminated bodies 10 to be examined. However, the first member is not limited to a steel material, and may be an ultrasonic transmission material such as another metal, glass, or resin. Moreover, the laminated body 10 to be inspected is not limited to the container tank as in the first embodiment, and may be a constituent part of a pipe in addition to containers such as other tanks and containers. Furthermore, as with the first member, the second member 30 is not particularly limited to a fluororesin as long as it is an ultrasonic transmission material. For example, the second member 30 can be various lining materials such as hard rubber and epoxy resin. Applicable. Of course, it is not limited to lining materials. The same applies to the first and second members 20 (20 ') and 30 (30') in the second and third embodiments. That is, the plurality of members may be any combination of different materials and the same materials.

また、上記第一、第三実施形態において、積層体10を第一、第二部材20,30を接着層40を介して積層した。しかし、積層させる部材の数は特に限定されるものではなく、3層以上であっても構わない。また、接着層40は、積層体10を構成する複数の部材間の少なくとも一部に介在していればよく、例えば、蝋付け用の蝋付け剤や、隣接する一方の部材の表層部の一部を変質させた変質部等であってもよい。その接着層40の上下面41,42における剥離の検出が可能である。接着層40の材料には、この接着層40に隣接し超音波の入射位置から離隔した側に位置する部材の音響インピーダンスに近似する材料を選択することができる。健全部において、当該部材と接着層40との界面F1からの反射波P1が検出困難な程度に近似していれば、健全部との伝搬時間の比較により剥離の有無を検出することが可能となるからである。他方、接着層40の材料に、前者と異なり音響インピーダンスが近似しない材料を選択することも可能である。係る場合、接着層40の界面における反射波の減衰に差が生じやすく、健全部とのエコー高さの比較により剥離の有無を検出できる。   In the first and third embodiments, the laminate 10 is laminated with the first and second members 20 and 30 through the adhesive layer 40. However, the number of members to be laminated is not particularly limited, and may be three or more. Further, the adhesive layer 40 only needs to be interposed between at least a part of the plurality of members constituting the laminated body 10, for example, a brazing agent for brazing or one surface layer portion of one adjacent member. It may be an altered part obtained by altering the part. It is possible to detect peeling on the upper and lower surfaces 41 and 42 of the adhesive layer 40. As the material of the adhesive layer 40, a material that approximates the acoustic impedance of a member that is adjacent to the adhesive layer 40 and is located on the side separated from the incident position of the ultrasonic wave can be selected. In the healthy part, if the reflected wave P1 from the interface F1 between the member and the adhesive layer 40 is approximated to be difficult to detect, it is possible to detect the presence or absence of peeling by comparing the propagation time with the healthy part. Because it becomes. On the other hand, it is also possible to select a material whose acoustic impedance is not approximated as the material of the adhesive layer 40 unlike the former. In such a case, a difference is easily generated in the attenuation of the reflected wave at the interface of the adhesive layer 40, and the presence or absence of peeling can be detected by comparing the echo height with the healthy part.

上記各実施形態において、剥離部に空気が存在している場合を例に説明したが、剥離部(腐食部)に液体が存在している場合も検出可能である。すなわち、健全部と内部に液体を有する剥離部との音圧反射率に違いがあれば、反射回数が大きくなるに従い音圧反射率の差によって、反射波のエコー高さにも差が生じるので、健全部と剥離部との区別が可能となる。さらに、内部に空気を有する模擬剥離部のエコー高さと比較することで、液体の有無の判定も可能である。なお、剥離(腐食)を検出する対象界面を構成する部材及び液体の材質によっては、反射波の伝搬時間の差によっても検出可能である。   In each of the above embodiments, the case where air is present in the peeling portion has been described as an example, but it is also possible to detect the case where liquid is present in the peeling portion (corrosion portion). In other words, if there is a difference in sound pressure reflectivity between the sound part and the peeling part having liquid inside, the difference in sound pressure reflectivity results in a difference in the echo height of the reflected wave as the number of reflections increases. It is possible to distinguish between a healthy part and a peeled part. Furthermore, the presence or absence of liquid can also be determined by comparing with the echo height of the simulated peeling portion having air inside. Depending on the member constituting the target interface for detecting peeling (corrosion) and the material of the liquid, it can be detected by the difference in the propagation time of the reflected wave.

また、上記各実施形態においては、略平坦な探傷面を例に説明したが、曲面を有する積層体にも適用可能である。曲面の場合、積層体表面及び界面において超音波は散乱反射するため、反射回数が増加するに従い減衰が大きくなる。しかし、健全部及び検査部もいずれも同じ曲率を有する曲面であれば、曲率による影響は相殺されることとなる。従って、配管等の曲面を有する部材において、剥離の有無を検出することが可能である。   Moreover, in each said embodiment, although demonstrated about the substantially flat flaw detection surface, it is applicable also to the laminated body which has a curved surface. In the case of a curved surface, since ultrasonic waves are scattered and reflected on the surface and interface of the laminate, the attenuation increases as the number of reflections increases. However, if the sound part and the inspection part are both curved surfaces having the same curvature, the influence of the curvature is offset. Therefore, it is possible to detect the presence or absence of peeling in a member having a curved surface such as a pipe.

また、上記各実施形態では、予め求めた反射回数の1つの反射波の信号を比較した。しかし、比較する反射波は複数であってもよく、例えば予め求めた反射回数の前後の信号を比較するようにしてもよい。さらに、受信した多重反射波の波形を表示するようにしてもよい。係る場合、例えば図24に示すように、予め求めた反射回数における健全部のエコー高さと同等となるエコー高さとなる反射回数が、予め求めた反射回数に対し所定の回数Y1,Y2以上離れている場合に、剥離(Y1の場合)又は腐食(Y2の場合)と判定するとよい。この場合においても、予め健全部における多重反射波のエコー高さと模擬剥離部における多重反射波のエコー高さとの差が所定値以上となる反射波の反射回数を求めて、検査部と健全部とのエコー高さを比較するものであり、本発明に含まれる。なお、同図の例では、横軸は反射回数であるが、時間に置き換えることも可能である。また、波形の表示は、波形全体又は所定回数(時間)の範囲内の波形のいずれでもよい。   In each of the above embodiments, signals of one reflected wave having the number of reflections obtained in advance are compared. However, a plurality of reflected waves may be compared. For example, signals before and after the number of reflections obtained in advance may be compared. Further, the waveform of the received multiple reflected waves may be displayed. In such a case, for example, as shown in FIG. 24, the number of reflections having an echo height equal to the echo height of the healthy part at the number of reflections determined in advance is more than a predetermined number of times Y1, Y2 with respect to the number of reflections determined in advance. If it is, peeling (in the case of Y1) or corrosion (in the case of Y2) may be determined. Even in this case, the number of reflections of the reflected wave in which the difference between the echo height of the multiple reflected wave in the healthy part and the echo height of the multiple reflected wave in the simulated peeling part is equal to or greater than a predetermined value is obtained in advance. Are included in the present invention. In the example of the figure, the horizontal axis is the number of reflections, but it can be replaced with time. The waveform display may be either the entire waveform or a waveform within a predetermined number of times (time).

上記各実施形態において、塗装膜50を有する積層体10を例に説明した。しかし、上述したように、塗装膜50の膜厚のバラツキは、反射波のエコー高さの変動要因の一例に過ぎない。よって、検査対象となる積層体10は、塗装膜50を有するものに限られるものではなく、塗装膜50を有しない積層体10であっても同様に検査可能である。   In each said embodiment, the laminated body 10 which has the coating film 50 was demonstrated to the example. However, as described above, the variation in the film thickness of the coating film 50 is merely an example of the variation factor of the echo height of the reflected wave. Therefore, the laminated body 10 to be inspected is not limited to the one having the coating film 50, and even the laminated body 10 having no coating film 50 can be similarly inspected.

本発明は、例えば、複数の部材を積層させた積層体としての貯蔵容器や配管等における部材間に介在する薄層の各界面における剥離を検査する積層体の剥離検査方法及び剥離検査装置として利用することができる。例えば、CFRP材とアルミニウムとの接着、アルミニウムと銅との接着等の異材積層体における層間剥離の検出に適用可能である。さらに、アルミニウムと鋼の蝋付け、タービン翼とステライト(耐熱合金)の蝋付けやアルミニウム同士の半田付け等にも適用可能である。   INDUSTRIAL APPLICABILITY The present invention is used, for example, as a peeling inspection method and a peeling inspection apparatus for a laminate that inspects peeling at each interface of a thin layer interposed between members in a storage container or piping as a laminate in which a plurality of members are laminated. can do. For example, the present invention can be applied to detection of delamination in a dissimilar material laminate such as adhesion between a CFRP material and aluminum and adhesion between aluminum and copper. Furthermore, it can be applied to brazing of aluminum and steel, brazing of turbine blades and stellite (heat-resistant alloy), soldering of aluminum.

1:剥離検査装置、2:探触子、2a:位置検出器、3:信号処理装置、3a:警告手段、4a:パルサー、4b:レシーバー、5:プリアンプ、6:フィルター、7:A/Dコンバーター、8:モニター、10:積層体、11:一側、20:第一部材(板材)、21:上面、22:下面、30:第二部材(ライニング材)、31:上面、32:下面、40:薄層(接着層)、41:上面、42:下面、50:塗装膜、D1〜3:剥離部、E:検査部、F1:第一界面、F2:第二界面、F3:界面、H,H0〜3:エコー高さ(ピーク値)、P1〜P4,P1’〜P3’:超音波、S0〜2,S0’:信号波形、T,T0〜2,T0’:ピーク時間 1: peeling inspection device, 2: probe, 2a: position detector, 3: signal processing device, 3a: warning means, 4a: pulser, 4b: receiver, 5: preamplifier, 6: filter, 7: A / D Converter: 8: Monitor, 10: Laminate, 11: One side, 20: First member (plate material), 21: Upper surface, 22: Lower surface, 30: Second member (lining material), 31: Upper surface, 32: Lower surface , 40: thin layer (adhesive layer), 41: upper surface, 42: lower surface, 50: coating film, D1-3: peeled portion, E: inspection portion, F1: first interface, F2: second interface, F3: interface , H, H0-3: Echo height (peak value), P1-P4, P1′-P3 ′: Ultrasound, S0-2, S0 ′: Signal waveform, T, T0-2, T0 ′: Peak time

Claims (16)

複数の部材が積層した積層体の一側に配置した探触子から超音波を入射すると共に多重反射波を受信し、受信した多重反射波を評価することにより層間剥離の有無を検査する積層体の剥離検査方法であって、
予め、前記積層体の健全部において多重反射波を受信し、前記健全部におけるエコー高さに変動を与える前記探触子の前記積層体に対する接触状態並びに前記積層体の表面及び界面の荒れによる変動を含む多重反射波の各反射回数毎のエコー高さの変動範囲を求め、
前記積層体の模擬剥離部において多重反射波を受信し、前記模擬剥離部におけるエコー高さに変動を与える前記探触子の前記積層体に対する接触状態及び前記積層体の表面及び界面の荒れによる変動を含む多重反射波の各反射回数毎のエコー高さの変動範囲とを求め、
求めた前記健全部における変動範囲と前記模擬剥離部における変動範囲とが重複しない領域を求め、
求めた前記領域における最小の反射回数より大で且つ前記領域の高さが所定値以上となる反射波の反射回数を求め、
前記積層体の検査部において多重反射波を受信し、前記検査部における予め求めた前記所定値以上となる反射波の反射回数の反射波のエコー高さと前記健全部における予め求めた前記所定値以上となる反射波の反射回数の反射波のエコー高さを比較することにより前記層間剥離の有無を検査する積層体の剥離検査方法。
A laminate in which ultrasonic waves are incident from a probe arranged on one side of a laminate in which a plurality of members are laminated, multiple reflected waves are received, and the presence of delamination is evaluated by evaluating the received multiple reflected waves. The peeling inspection method of
Preliminary reception of multiple reflected waves at the sound part of the laminate and fluctuation in echo height at the sound part, contact state of the probe with the laminate, and fluctuation due to roughness of the surface and interface of the laminate Obtain the fluctuation range of echo height for each number of reflections of multiple reflected waves including
Fluctuation due to the contact state of the probe with the laminate and the roughness of the surface and interface of the laminate, which receives multiple reflected waves at the simulated exfoliation part of the laminate and changes the echo height in the simulated exfoliation part Obtain the fluctuation range of the echo height for each number of reflections of multiple reflected waves including
Determine the area where the fluctuation range in the determined healthy part and the fluctuation range in the simulated peeling part do not overlap,
Obtain the number of reflections of the reflected wave that is larger than the minimum number of reflections in the obtained area and the height of the area is a predetermined value or more,
The multiple reflection wave is received by the inspection unit of the laminate, and the echo height of the reflected wave of the number of reflections of the reflected wave that is equal to or greater than the predetermined value obtained in advance in the inspection unit and the predetermined value or greater that is obtained in advance in the healthy part The peeling inspection method of the laminated body which test | inspects the presence or absence of the said delamination by comparing the echo height of the reflected wave of the frequency | count of reflection of the reflected wave which becomes.
前記積層体は前記一側に塗装膜を備え、前記変動範囲は、前記塗装膜の膜厚による変動をさらに含むものである請求項1記載の積層体の剥離検査方法。 The method according to claim 1, wherein the laminate includes a coating film on the one side, and the variation range further includes a variation due to a film thickness of the coating film. 前記変動範囲は、剥離部内の内容物による変動をさらに含むものである請求項1又は2記載の積層体の剥離検査方法。 The peeling inspection method for a laminate according to claim 1 or 2, wherein the fluctuation range further includes a fluctuation due to contents in the peeling portion. 予め前記健全部における前記所定値以上となる反射波の反射回数の反射波の伝搬時間を求めておき、前記検査部における前記所定値以上となる反射波の反射回数の反射波の伝搬時間を求め、これら伝搬時間を比較することで前記層間剥離の有無を検査する請求項1〜3のいずれかに記載の積層体の剥離検査方法。 The propagation time of the reflected wave with the number of reflections of the reflected wave that is equal to or greater than the predetermined value in the healthy part is obtained in advance, and the propagation time of the reflected wave with the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the inspection unit is obtained. The peeling inspection method for a laminate according to any one of claims 1 to 3, wherein the presence or absence of the delamination is inspected by comparing the propagation times. 前記複数の部材は、前記一側に位置する第一の部材と、この第一の部材に設けられる第二の部材とを少なくとも含み、前記第一の部材は、前記第二の部材の音響インピーダンスより小となる材料よりなり、予め前記健全部における前記所定値以上となる反射波の反射回数の反射波の位相を求めておき、前記検査部における前記所定値以上となる反射波の反射回数の反射波の位相を求め、これら位相を比較することで前記層間剥離の有無を検査する請求項1〜4のいずれかに記載の積層体の剥離検査方法。 The plurality of members include at least a first member located on the one side and a second member provided on the first member, and the first member is an acoustic impedance of the second member. The phase of the reflected wave of the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the healthy part is obtained in advance, and the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the inspection unit The peeling inspection method for a laminate according to any one of claims 1 to 4, wherein the phase of the reflected wave is obtained and the presence or absence of the delamination is inspected by comparing the phases. 前記複数の部材は、前記一側に位置する第一の部材と、この第一の部材に設けられる第二の部材と、これら部材を密着させる接着層とを少なくとも含み、前記第一の部材と前記接着層との界面における層間剥離を検査する請求項1記載の積層体の剥離検査方法。 The plurality of members include at least a first member located on the one side, a second member provided on the first member, and an adhesive layer that closely contacts these members, The delamination inspection method for a laminate according to claim 1, wherein delamination at the interface with the adhesive layer is inspected. 予め前記健全部における前記所定値以上となる反射波の反射回数の反射波の伝搬時間を求めておき、前記検査部における前記所定値以上となる反射波の反射回数の反射波の伝搬時間を求め、これら伝搬時間を比較することで前記接着層と前記第二の部材との界面における層間剥離の有無を検査する請求項6記載の積層体の剥離検査方法。 The propagation time of the reflected wave with the number of reflections of the reflected wave that is equal to or greater than the predetermined value in the healthy part is obtained in advance, and the propagation time of the reflected wave with the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the inspection unit is obtained. The peeling inspection method for a laminate according to claim 6, wherein the presence or absence of delamination at the interface between the adhesive layer and the second member is inspected by comparing the propagation times. 前記第一の部材は鋼材であり、前記第二の部材はフッ素樹脂ライニング材である請求項6又は7記載の積層体の剥離検査方法。 The laminate peel inspection method according to claim 6 or 7, wherein the first member is a steel material, and the second member is a fluororesin lining material. 前記接着層は、前記鋼材に前記フッ素樹脂ライニング材を接着させる接着剤とガラスクロスとよりなる請求項8記載の積層体の剥離検査方法。 The laminate peel inspection method according to claim 8, wherein the adhesive layer includes an adhesive that bonds the fluororesin lining material to the steel material and a glass cloth. 前記積層体は、液体用コンテナタンクである請求項8又は9記載の積層体の剥離検査方法。 The method for inspecting a peel-off of a laminate according to claim 8 or 9, wherein the laminate is a liquid container tank. 前記積層体は、曲面を有する請求項1〜6のいずれかに記載の積層体の剥離検査方法。 The said laminated body is a peeling test | inspection method of the laminated body in any one of Claims 1-6 which have a curved surface. 前記探触子を前記一側に沿って走査すると共に、前記検査部における前記所定値以上となる反射波の反射回数の反射波のエコー高さに基づいて走査画像を生成する請求項1〜11のいずれかに記載の積層体の剥離検査方法。 The scan is performed along the one side of the probe, and a scanned image is generated based on the echo height of the reflected wave of the number of reflections of the reflected wave that is equal to or greater than the predetermined value in the inspection unit. The peeling inspection method for a laminate according to any one of the above. 前記検査部における前記所定値以上となる反射波の反射回数の反射波のエコー高さが、前記健全部における前記所定値以上となる反射波の反射回数の反射波のエコー高さより小さい場合に、前記層間剥離の一部に腐食が存在すると判定する請求項1〜12のいずれかに記載の積層体の剥離検査方法。 When the echo height of the reflected wave of the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the inspection unit is smaller than the echo height of the reflected wave of the number of reflections of the reflected wave that is greater than or equal to the predetermined value in the sound part, The peeling inspection method for a laminate according to claim 1, wherein it is determined that corrosion is present in a part of the delamination. 前記探触子は、分割型探触子である請求項13記載の積層体の剥離検査方法。 The method according to claim 13, wherein the probe is a split-type probe. 複数の部材が積層した積層体の一側から超音波を入射すると共に多重反射波を受信する探触子と、受信した多重反射波を評価する信号処理装置を備え、受信した多重反射波を評価することにより層間剥離の有無を検査する積層体の剥離検査装置であって、
前記信号処理装置は、予め、前記積層体の健全部において多重反射波を受信し、前記健全部におけるエコー高さに変動を与える前記探触子の前記積層体に対する接触状態並びに前記積層体の表面及び界面の荒れによる変動を含む多重反射波の各反射回数毎のエコー高さの変動範囲を求め、
前記積層体の模擬剥離部において多重反射波を受信し、前記模擬剥離部におけるエコー高さに変動を与える前記探触子の前記積層体に対する接触状態及び前記積層体の表面及び界面の荒れによる変動を含む多重反射波の各反射回数毎のエコー高さの変動範囲とを求め、
求めた前記健全部における変動範囲と前記模擬剥離部における変動範囲とが重複しない領域を求め、
求めた前記領域における最小の反射回数より大で且つ前記領域の高さが所定値以上となる反射波の反射回数を求め、
前記積層体の検査部において多重反射波を受信し、前記検査部における予め求めた前記所定値以上となる反射波の反射回数の反射波のエコー高さと前記健全部における予め求めた前記所定値以上となる反射波の反射回数の反射波のエコー高さを比較することにより前記層間剥離の有無を検査する積層体の剥離検査装置。
Equipped with a probe that receives ultrasonic waves and receives multiple reflected waves from one side of a stack of multiple members, and a signal processing device that evaluates the received multiple reflected waves, and evaluates the received multiple reflected waves A laminate peeling inspection device for inspecting the presence or absence of delamination by
The signal processing device receives in advance multiple reflected waves in the sound part of the laminate and changes the echo height of the sound part in contact with the laminate and the surface of the laminate And the fluctuation range of the echo height for each number of reflections of multiple reflected waves including fluctuations due to the roughness of the interface,
Fluctuation due to the contact state of the probe with the laminate and the roughness of the surface and interface of the laminate, which receives multiple reflected waves at the simulated exfoliation part of the laminate and changes the echo height in the simulated exfoliation part Obtain the fluctuation range of the echo height for each number of reflections of multiple reflected waves including
Determine the area where the fluctuation range in the determined healthy part and the fluctuation range in the simulated peeling part do not overlap,
Obtain the number of reflections of the reflected wave that is larger than the minimum number of reflections in the obtained area and the height of the area is a predetermined value or more,
The multiple reflection wave is received by the inspection unit of the laminate, and the echo height of the reflected wave of the number of reflections of the reflected wave that is equal to or greater than the predetermined value obtained in advance in the inspection unit and the predetermined value or greater that is obtained in advance in the healthy part A peeling inspection apparatus for a laminate that inspects for the presence or absence of delamination by comparing the echo height of the reflected wave with the number of reflections of the reflected wave.
前記信号処理装置は、前記探触子を走査して受信した多重反射波により走査画像を生成する請求項15記載の積層体の剥離検査装置。 16. The laminate peeling inspection apparatus according to claim 15, wherein the signal processing device generates a scanned image by using multiple reflected waves received by scanning the probe.
JP2014508624A 2012-04-24 2013-04-23 Lamination peel test method and peel inspection apparatus Active JP5624250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014508624A JP5624250B2 (en) 2012-04-24 2013-04-23 Lamination peel test method and peel inspection apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012099035 2012-04-24
JP2012099036 2012-04-24
JP2012099035 2012-04-24
JP2012099036 2012-04-24
JP2014508624A JP5624250B2 (en) 2012-04-24 2013-04-23 Lamination peel test method and peel inspection apparatus

Publications (2)

Publication Number Publication Date
JP5624250B2 true JP5624250B2 (en) 2014-11-12
JPWO2013161835A1 JPWO2013161835A1 (en) 2015-12-24

Family

ID=49483143

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014508624A Active JP5624250B2 (en) 2012-04-24 2013-04-23 Lamination peel test method and peel inspection apparatus
JP2014512623A Active JP5735706B2 (en) 2012-04-24 2013-04-23 Lamination peel test method and peel inspection apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014512623A Active JP5735706B2 (en) 2012-04-24 2013-04-23 Lamination peel test method and peel inspection apparatus

Country Status (3)

Country Link
JP (2) JP5624250B2 (en)
KR (2) KR101672916B1 (en)
WO (2) WO2013161834A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198459A (en) * 2016-04-25 2017-11-02 非破壊検査株式会社 Method for inspecting separation of laminate and separation inspection device
WO2023032597A1 (en) 2021-08-30 2023-03-09 三菱重工業株式会社 Ultrasonic inspection method, ultrasonic inspection device, and program
JP7427532B2 (en) 2020-06-08 2024-02-05 非破壊検査株式会社 Corrosion testing method and corrosion testing device for laminates

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201314483D0 (en) * 2013-08-13 2013-09-25 Dolphitech As Ultrasound testing
GB2518817B (en) 2013-08-23 2020-12-16 Dolphitech As Sensor module with adaptive backing layer
GB201316656D0 (en) 2013-09-19 2013-11-06 Dolphitech As Sensing apparatus using multiple ultrasound pulse shapes
KR101639186B1 (en) * 2014-03-27 2016-07-13 김종석 Tank lining check method using ultrasonic
GB201416443D0 (en) 2014-09-17 2014-10-29 Dolphitech As Remote non-destructive testing
JP6595841B2 (en) * 2015-08-24 2019-10-23 株式会社荏原製作所 Measurement method, trend management method and diagnostic method.
CN108760876B (en) * 2018-06-15 2022-03-22 爱德森(厦门)电子有限公司 Device and method for detecting bonding defects of conductive composite material
CN112649515A (en) * 2019-10-11 2021-04-13 新东工业株式会社 Ultrasonic inspection apparatus and ultrasonic inspection method
JP7300383B2 (en) * 2019-12-25 2023-06-29 非破壊検査株式会社 LAMINATED PEELING INSPECTION METHOD AND PEELING INSPECTION APPARATUS
WO2021163808A1 (en) * 2020-02-21 2021-08-26 UT Comp Inc. System and method for evaluation of a material system
JPWO2022049857A1 (en) * 2020-09-03 2022-03-10
JPWO2022259710A1 (en) * 2021-06-10 2022-12-15

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170850A (en) * 1987-12-26 1989-07-05 Nkk Corp Method for examining material boundary surface of member
JPH01253651A (en) * 1988-03-31 1989-10-09 Kawasaki Heavy Ind Ltd Method and apparatus for ultrasonic flaw detection
JPH0587781A (en) * 1991-09-30 1993-04-06 Kobe Steel Ltd Method for ultrasonic flaw detection of laminate material
JPH09113489A (en) * 1995-10-19 1997-05-02 Hitachi Ltd Detection apparatus for corrosion of material
JP2004361132A (en) * 2003-06-02 2004-12-24 Mitsubishi Gas Chem Co Inc Lining exfoliation inspection method
JP2006337030A (en) * 2005-05-31 2006-12-14 Gnes Corp Ultrasonic flaw detecting method and device
JP2008008709A (en) * 2006-06-28 2008-01-17 Kawasaki Heavy Ind Ltd Ultrasonic flaw detection method and ultrasonic flaw detection system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147856A (en) * 1988-11-29 1990-06-06 Kobe Steel Ltd Ultrasonic flaw detecting device
GB8908507D0 (en) 1989-04-14 1989-06-01 Fokker Aircraft Bv Method of and apparatus for non-destructive composite laminatecharacterisation
JP3233816B2 (en) * 1995-05-31 2001-12-04 三菱重工業株式会社 Peeled defect detection method
US6161435A (en) * 1998-07-21 2000-12-19 University Technology Corporation Method and apparatus for determining the state of fouling/cleaning of membrane modules
JP2000329751A (en) * 1999-05-18 2000-11-30 Toshiba Corp Method and apparatus for inspection of piping
TW490559B (en) * 1999-07-30 2002-06-11 Hitachi Construction Machinery Ultrasonic inspection apparatus and ultrasonic detector
JP3940580B2 (en) * 2001-10-22 2007-07-04 株式会社東芝 Piping inspection method and piping inspection device
JP3955513B2 (en) 2002-09-04 2007-08-08 株式会社日立製作所 Defect inspection apparatus and defect inspection method
JP2005147770A (en) * 2003-11-12 2005-06-09 Hitachi Eng Co Ltd Ultrasonic flaw detector
JP4885003B2 (en) * 2007-02-19 2012-02-29 株式会社グローバル・ニュークリア・フュエル・ジャパン Ultrasonic fuel rod damage identification method and inspection probe
US8091426B2 (en) * 2007-03-29 2012-01-10 Panasonic Corporation Ultrasonic wave measuring method and apparatus
JP2009097890A (en) 2007-10-12 2009-05-07 Seven Kogyo Kk Non-destructive inspection method and apparatus of glulam for structure
JP2010223608A (en) * 2009-03-19 2010-10-07 Jfe Engineering Corp Method for inspecting corrosion-proof coating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170850A (en) * 1987-12-26 1989-07-05 Nkk Corp Method for examining material boundary surface of member
JPH01253651A (en) * 1988-03-31 1989-10-09 Kawasaki Heavy Ind Ltd Method and apparatus for ultrasonic flaw detection
JPH0587781A (en) * 1991-09-30 1993-04-06 Kobe Steel Ltd Method for ultrasonic flaw detection of laminate material
JPH09113489A (en) * 1995-10-19 1997-05-02 Hitachi Ltd Detection apparatus for corrosion of material
JP2004361132A (en) * 2003-06-02 2004-12-24 Mitsubishi Gas Chem Co Inc Lining exfoliation inspection method
JP2006337030A (en) * 2005-05-31 2006-12-14 Gnes Corp Ultrasonic flaw detecting method and device
JP2008008709A (en) * 2006-06-28 2008-01-17 Kawasaki Heavy Ind Ltd Ultrasonic flaw detection method and ultrasonic flaw detection system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198459A (en) * 2016-04-25 2017-11-02 非破壊検査株式会社 Method for inspecting separation of laminate and separation inspection device
TWI623747B (en) 2016-04-25 2018-05-11 日商非破壊檢查股份有限公司 Layered-body detachment-testing method and detachment-testing device
US10429358B2 (en) 2016-04-25 2019-10-01 Non-Destructive Inspection Company Limited. Method and apparatus for inspecting delamination of laminated body
JP7427532B2 (en) 2020-06-08 2024-02-05 非破壊検査株式会社 Corrosion testing method and corrosion testing device for laminates
WO2023032597A1 (en) 2021-08-30 2023-03-09 三菱重工業株式会社 Ultrasonic inspection method, ultrasonic inspection device, and program

Also Published As

Publication number Publication date
JPWO2013161834A1 (en) 2015-12-24
KR20140148414A (en) 2014-12-31
KR101672916B1 (en) 2016-11-04
JPWO2013161835A1 (en) 2015-12-24
WO2013161835A1 (en) 2013-10-31
KR101513142B1 (en) 2015-04-17
WO2013161834A1 (en) 2013-10-31
JP5735706B2 (en) 2015-06-17
KR20140148415A (en) 2014-12-31

Similar Documents

Publication Publication Date Title
JP5624250B2 (en) Lamination peel test method and peel inspection apparatus
Petcher et al. Weld defect detection using PPM EMAT generated shear horizontal ultrasound
Blomme et al. Air-coupled ultrasonic NDE: experiments in the frequency range 750 kHz–2 MHz
Leckey et al. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique
JP6182236B1 (en) Lamination peel test method and peel inspection apparatus
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JP5105384B2 (en) Nondestructive inspection method and apparatus
JP5922558B2 (en) Ultrasonic thickness measurement method and apparatus
JP7300383B2 (en) LAMINATED PEELING INSPECTION METHOD AND PEELING INSPECTION APPARATUS
US20090249879A1 (en) Inspection systems and methods for detection of material property anomalies
JP6610369B2 (en) Ultrasonic probe and manufacturing method thereof
Birring Sizing Discontinuities by Ultrasonics
US20180372688A1 (en) Method for ultrasonic testing of an object
JP7427532B2 (en) Corrosion testing method and corrosion testing device for laminates
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves
Kazakov An amplitude-phase method for testing acoustic contact of ultrasonic transducer
KR20130119834A (en) Method of inspecting a lining exfoliation and device therefor
JP4682921B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
Philtron et al. Guided wave phased array sensor tuning for improved defect detection and characterization
JP2010223608A (en) Method for inspecting corrosion-proof coating
JP2013108824A (en) Ultrasonic exfoliation detection method
Kümmritz et al. Material Characterization of Layered Structures with Ultrasound
Upendran et al. Identification of guided Lamb wave modes in thin metal plates using water path corrected frequency–wavenumber [fk] analysis
Morokov et al. Lateral resolution of acoustic microscopy in the visualization of interfaces inside solid materials
JP5630790B2 (en) Method for estimating the rate of thinning

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5624250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250