JP2008008709A - Ultrasonic flaw detection method and ultrasonic flaw detection system - Google Patents

Ultrasonic flaw detection method and ultrasonic flaw detection system Download PDF

Info

Publication number
JP2008008709A
JP2008008709A JP2006178190A JP2006178190A JP2008008709A JP 2008008709 A JP2008008709 A JP 2008008709A JP 2006178190 A JP2006178190 A JP 2006178190A JP 2006178190 A JP2006178190 A JP 2006178190A JP 2008008709 A JP2008008709 A JP 2008008709A
Authority
JP
Japan
Prior art keywords
flaw detection
ultrasonic
coating film
probe
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006178190A
Other languages
Japanese (ja)
Other versions
JP5022640B2 (en
Inventor
Hironori Okauchi
宏憲 岡内
Mamoru Nishio
護 西尾
Hideyuki Hirasawa
英幸 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2006178190A priority Critical patent/JP5022640B2/en
Publication of JP2008008709A publication Critical patent/JP2008008709A/en
Application granted granted Critical
Publication of JP5022640B2 publication Critical patent/JP5022640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method for accurately and easily performing the ultrasonic flaw detection of an inspection target having a coating film formed thereto. <P>SOLUTION: In the case where the ultrasonic flaw detection of the inspection target, which is constituted by forming the coating film on the surface of a base material, is performed, the echo height from the boundary surface of the coating film and the base material is measured by a vertical flaw detection method (S101), flaw detection sensitivity for the flaw detection due to an oblique angle flaw detection method is corrected on the basis of the measured echo height (S102 and S103) and the flaw detection of the inspection target due to the oblique angle flaw detection method is subsequently performed using the corrected flaw detection sensitivity (S104). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被検体の探傷を行う超音波探傷方法に関し、特に表面に塗膜が形成された被検体の探傷を行う超音波探傷方法、及びその方法を実施するための超音波装置に関する。   The present invention relates to an ultrasonic flaw detection method for flaw detection of a subject, and more particularly to an ultrasonic flaw detection method for flaw detection of a subject with a coating film formed on the surface, and an ultrasonic apparatus for performing the method.

表面に塗膜が形成されている被検体に対して超音波探傷を行う場合、塗膜中で超音波が減衰することに起因して、傷を見落としたり、傷の過小評価または過大評価がなされたりするなどの問題があった。この問題を回避するために、塗膜を除去した上で探傷を実行し、その後に再度表面に塗装を施すことが考えられるが、これでは高コスト化を招来するという問題があった。   When ultrasonic flaw detection is performed on an object with a coating film formed on the surface, the ultrasonic wave is attenuated in the coating film, resulting in oversight of the scratch or underestimation or overestimation of the scratch. There was a problem such as. In order to avoid this problem, it is conceivable to carry out flaw detection after removing the coating film, and then paint the surface again. However, this has the problem of increasing the cost.

このような問題に対応するために、塗膜を除去することなく探傷を行う超音波探傷方法として、次のものが提案されている。   In order to cope with such a problem, the following has been proposed as an ultrasonic flaw detection method for flaw detection without removing the coating film.

第1に、(1)塗膜の種類ごとに、塗膜の厚さと塗膜中の超音波の減衰量との関係を予め調べておき、(2)探傷を実行する前または探傷を実行する際に、実際の被検体の塗膜の厚さを測定し、(3)上記(1)及び(2)の結果に基づいて、超音波の減衰量の推定及び探傷感度(探傷の目的に応じて適度に調整された超音波探傷装置の感度)の補正を行うという方法が提案されている(例えば、特許文献1及び2を参照。)。この方法のように、塗膜の厚さと塗膜中の超音波の減衰量との関係を予め把握することによって、塗膜を除去することなく、被検体の探傷が可能となる。   First, (1) for each type of coating film, the relationship between the thickness of the coating film and the amount of attenuation of ultrasonic waves in the coating film is examined in advance, and (2) before flaw detection or flaw detection is performed. In this case, the thickness of the coating film of the actual specimen is measured. (3) Based on the results of (1) and (2) above, estimation of ultrasonic attenuation and flaw detection sensitivity (depending on the purpose of flaw detection) And a method of correcting the sensitivity of the ultrasonic flaw detector adjusted appropriately) (see, for example, Patent Documents 1 and 2). As in this method, by previously grasping the relationship between the thickness of the coating film and the attenuation amount of the ultrasonic wave in the coating film, it is possible to detect the subject without removing the coating film.

第2に、塗膜による超音波の減衰を回避するために、針型の探触子を塗膜に突き刺すことによって、基材に対して超音波を直接入射して、探傷を実行する方法が提案されている(例えば、特許文献3を参照。)。この方法によれば、塗膜による影響を排除することができるため、より正確な探傷を行うことができるようになる。
特開平1−253651号公報 特開2003−139747号公報 特開平10−10094号公報
Second, in order to avoid attenuation of ultrasonic waves by the coating film, there is a method of performing flaw detection by directly injecting ultrasonic waves to the substrate by piercing the coating film with a needle-type probe. It has been proposed (see, for example, Patent Document 3). According to this method, the influence of the coating film can be eliminated, so that more accurate flaw detection can be performed.
JP-A-1-253651 JP 2003-139747 A Japanese Patent Laid-Open No. 10-10094

ところで、上記の第1の超音波探傷方法の場合、塗膜及び塗膜と基材との境界面はどの部位であっても同一の音響特性を有していることを前提としている。しかしながら、実際には、塗膜の音響特性に経年変化の影響により、塗膜の音響特性が部位によって異なったり、ブラストなどの表面処理及び下塗り材などの影響により、塗膜と基材との境界面の音響特性が部位によって異なったりする。そのため、予め調べておいた塗膜中の超音波の減衰量と実際の超音波の減衰量とが異なっていたり、塗膜と基材との境界面での超音波の通過量が異なっていたりすることとなる。その結果、第1の超音波探傷方法によると、探傷感度の補正を適切に行うことが困難となり、傷の過小評価または過大評価が生じ得る。   By the way, in the case of the first ultrasonic flaw detection method described above, it is premised that the coating film and the boundary surface between the coating film and the substrate have the same acoustic characteristics at any part. However, in reality, the acoustic characteristics of the coating film vary depending on the site due to the effects of secular change, and the boundary between the coating film and the substrate due to surface treatment such as blasting and the effect of the primer. The acoustic characteristics of the surface may vary depending on the part. For this reason, the ultrasonic attenuation amount in the coating film, which has been examined in advance, and the actual ultrasonic attenuation amount are different, or the ultrasonic wave passing amount at the interface between the coating film and the substrate is different. Will be. As a result, according to the first ultrasonic flaw detection method, it is difficult to appropriately correct the flaw detection sensitivity, and underestimation or overestimation of the flaw may occur.

また、上記の第2の超音波探傷方法によれば、針型の探触子を塗膜に突き刺すことによって、塗膜に傷をつけることになるので、探傷終了後に、塗装の補修を行う必要が生ずるという問題がある。さらに、針型の探触子の場合、振動子のサイズが非常に小さくなるため、超音波が広がることになり、その結果傷の寸法の正確な評価が困難になるという問題がある。   Further, according to the second ultrasonic flaw detection method described above, since the coating film is damaged by piercing the coating film with a needle-type probe, it is necessary to repair the coating after completion of the flaw detection. There is a problem that occurs. Furthermore, in the case of a needle-type probe, since the size of the vibrator becomes very small, the ultrasonic wave spreads, and as a result, there is a problem that it is difficult to accurately evaluate the size of the scratch.

本発明は斯かる事情に鑑みてなされたものであり、その目的は、塗膜が表面に形成された被検体の超音波探傷を、塗膜を傷つけることなく、正確に行うことができる超音波探傷方法及びその方法を実施するための超音波探傷装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to perform ultrasonic flaw detection of a subject having a coating film formed on the surface thereof accurately without damaging the coating film. An object of the present invention is to provide a flaw detection method and an ultrasonic flaw detection apparatus for carrying out the method.

本発明者等は、塗膜が表面に形成された被検体の超音波探傷を行うにあたって、塗膜を傷つけることなく、正確な評価をするために、どのようにして探傷感度の補正を行うべきかについて鋭意検討した。   The inventors should correct the flaw detection sensitivity in order to perform an accurate evaluation without damaging the coating film when performing ultrasonic flaw detection on the specimen having the coating film formed on the surface. We studied earnestly.

図1は、超音波探傷におけるエコーの概念を示す概念図である。図1において、被検体10は、基材11の表面に塗膜12が形成されてなる構造物である。以下では、図1に示すように、塗膜12の表面からのエコーを表面エコーと、塗膜12と基材11との境界面からのエコーを界面エコーと、基材11の底面からのエコーを底面エコーとそれぞれ称する。   FIG. 1 is a conceptual diagram showing the concept of echo in ultrasonic flaw detection. In FIG. 1, a subject 10 is a structure in which a coating film 12 is formed on the surface of a substrate 11. In the following, as shown in FIG. 1, the echo from the surface of the coating film 12 is a surface echo, the echo from the boundary surface between the coating film 12 and the base material 11 is an interface echo, and the echo from the bottom surface of the base material 11. Are referred to as bottom echoes, respectively.

図2は、探傷感度の補正前における底面エコー高さと塗膜厚さとの関係を示すグラフである。このグラフは、16個の振動子を有するフェイズドアレイ探触子を用いて、垂直探傷法により、表面に塗膜が形成された被検体(以下、塗膜付被検体という)の探傷を行った場合の試験結果を示している。なお、この試験では、周波数10MHzの超音波を用いている。   FIG. 2 is a graph showing the relationship between the bottom echo height and the coating thickness before the flaw detection sensitivity is corrected. This graph used a phased array probe having 16 transducers to detect a specimen (hereinafter referred to as a specimen with a coating film) having a coating film formed on the surface by a vertical flaw detection method. The test results are shown. In this test, ultrasonic waves having a frequency of 10 MHz are used.

図2においては、表面に塗膜が形成されていない被検体の場合と塗膜付被検体の場合との底面エコー高さの比を、底面エコー高さとして、黒塗りの三角でプロットしている。   In FIG. 2, the ratio of the bottom surface echo height between the case of the subject having no coating film formed on the surface and the case of the subject with the coating film is plotted as a bottom surface echo height with a black triangle. Yes.

塗膜厚さが増加すればするほど、塗膜中での超音波の減衰量も増加する。したがって、図2に示すとおり、塗膜厚さが増加するにしたがって、底面エコー高さが減少することになる。   As the coating thickness increases, the amount of ultrasonic attenuation in the coating also increases. Therefore, as shown in FIG. 2, the bottom echo height decreases as the coating thickness increases.

上述した従来の第1の超音波探傷方法では、図2に示すような塗膜厚さと底面エコー高さとの関係を予め調査しておき、その後に実際の被検体の塗膜の厚さを測定し、その塗膜の厚さと、予め調査しておいた塗膜厚さ及び底面エコー高さの関係とから、超音波の減衰量を推定する。そして、その超音波の減衰量に基づいて探傷感度の補正を行う。そのようにして、探傷感度の補正を行った場合の塗膜厚さと底面エコー高さとの関係を示すグラフが図3である。   In the first conventional ultrasonic flaw detection method described above, the relationship between the coating film thickness and the bottom echo height as shown in FIG. 2 is investigated in advance, and then the actual coating thickness of the subject is measured. Then, the attenuation amount of the ultrasonic wave is estimated from the thickness of the coating film and the relationship between the coating film thickness and the bottom surface echo height investigated in advance. Then, the flaw detection sensitivity is corrected based on the attenuation amount of the ultrasonic wave. FIG. 3 is a graph showing the relationship between the coating film thickness and the bottom surface echo height when the flaw detection sensitivity is corrected as described above.

図3に示すように、塗膜厚さによって、底面エコー高さに大きなばらつきが生じている。ここで、底面エコー高さの標準偏差は1.37dB程度であり、最大値と最小値との差は約6dBである。このように底面エコー高さに大きなばらつきが生じる場合、傷を過小評価したり過大評価したりするという問題を招来することになる。   As shown in FIG. 3, the bottom echo height varies greatly depending on the coating thickness. Here, the standard deviation of the bottom echo height is about 1.37 dB, and the difference between the maximum value and the minimum value is about 6 dB. Thus, when a large variation occurs in the bottom surface echo height, a problem of underestimating or overestimating the scratch is caused.

このように底面エコー高さを用いて超音波の減衰量を推測することとした場合、誤差が生じ易い。   In this way, when the attenuation amount of the ultrasonic wave is estimated using the bottom surface echo height, an error is likely to occur.

また、底面エコー高さを用いる場合は、次のような問題もある。すなわち、塗膜中の超音波の減衰量を正確に測定するためには、探傷する箇所で底面エコー高さを測定する必要があるが、被検体の底面は溶接部などが存在するため平面ではない場合が多く、底面エコー高さの測定が困難になることが多い。よって、塗膜中の超音波の減衰量を正確に測定することが困難となり得る。   In addition, when the bottom echo height is used, there are the following problems. In other words, in order to accurately measure the attenuation of ultrasonic waves in the coating film, it is necessary to measure the bottom echo height at the flaw detection site, but the bottom surface of the subject has a welded part, etc. In many cases, it is difficult to measure the bottom echo height. Therefore, it can be difficult to accurately measure the attenuation of ultrasonic waves in the coating film.

本発明者等は、上記のとおり、底面エコー高さを用いる方法によれば塗膜中の超音波の減衰量を測定することが難しく、その結果、探傷感度を適正に補正することができないと考えた。そして、塗膜と基材との境界面は多くの場合は平面であることから、界面エコー高さの測定は、底面エコー高さの場合と異なり、探触子を設置することが可能な箇所であれば、容易且つ正確に行うことができる点に着目した。そして、図4に示すとおり、界面エコー高さと底面エコー高さとが略1対1の関係にあることから、界面エコー高さを用いることにより、塗膜中の超音波の減衰を考慮した探傷感度の補正を適切に行うことができると考えた。   As described above, the present inventors have difficulty in measuring the attenuation of ultrasonic waves in the coating film according to the method using the bottom surface echo height, and as a result, the flaw detection sensitivity cannot be properly corrected. Thought. And since the interface between the coating film and the substrate is often a flat surface, the interface echo height measurement is different from the bottom surface echo height where the probe can be installed. Then, attention was paid to the fact that it can be performed easily and accurately. As shown in FIG. 4, since the interface echo height and the bottom surface echo height are in a substantially one-to-one relationship, the flaw detection sensitivity in consideration of attenuation of ultrasonic waves in the coating film is obtained by using the interface echo height. We thought that it was possible to correct appropriately.

これらの知見に基づいて、本発明者等は、以下に示す発明をした。   Based on these findings, the present inventors have made the invention shown below.

本発明の超音波探傷方法は、基材の表面に塗膜が形成されてなる被検体の超音波探傷方法において、垂直探傷法により、前記塗膜と前記基材との境界面からのエコー高さを測定し、測定されたエコー高さに基づいて、斜角探傷法による探傷のための探傷感度を補正し、補正された探傷感度を用いて、斜角探傷法による前記被検体の探傷を実行する。   The ultrasonic flaw detection method of the present invention is an ultrasonic flaw detection method for a subject in which a coating film is formed on the surface of a base material, and an echo height from the interface between the coating film and the base material is determined by a vertical flaw detection method. And the flaw detection sensitivity for flaw detection by the oblique flaw detection method is corrected based on the measured echo height, and flaw detection of the subject by the flaw detection method is performed using the corrected flaw detection sensitivity. Execute.

このように、被検体の塗膜と基材との境界面からのエコー高さに基づいて探傷感度の補正を行うことにより、塗膜を除去することなく、正確且つ容易に塗膜が形成された被検体の探傷を行うことができる。   Thus, by correcting the flaw detection sensitivity based on the echo height from the boundary surface between the coating film of the subject and the base material, the coating film can be formed accurately and easily without removing the coating film. It is possible to perform a flaw detection on a subject.

上記発明に係る超音波探傷方法において、前記斜角探傷法による前記被検体の探傷は、点集束型斜角探触子を用いて実行されることが望ましい。   In the ultrasonic flaw detection method according to the above invention, it is desirable that the flaw detection of the subject by the oblique flaw detection method is performed using a point focusing oblique probe.

また、上記発明に係る超音波探傷方法において、前記斜角探傷法による前記被検体の探傷は、フェイズドアレイ探触子を用いて実行されるようにしてもよい。   In the ultrasonic flaw detection method according to the invention, the flaw detection of the subject by the oblique angle flaw detection method may be performed using a phased array probe.

本発明の超音波探傷装置は、基材の表面に塗膜が形成されてなる被検体の探傷を行う超音波探傷装置において、垂直探傷用探触子と、斜角探傷用探触子と、前記垂直探傷用探触子が受信した超音波に基づいて、前記塗膜と前記基材との境界面からのエコー高さを測定する測定手段と、当該測定手段によって測定されたエコー高さに基づいて、斜角探傷法による探傷のための探傷感度を補正する補正手段とを備え、当該補正手段によって補正された探傷感度を用いて、前記斜角探傷用探触子が受信した超音波に基づき、前記被検体の探傷を実行するように構成されている。   The ultrasonic flaw detector of the present invention is an ultrasonic flaw detector that performs flaw detection on a subject having a coating film formed on the surface of a substrate.In the ultrasonic flaw detector, a vertical flaw detector, an oblique flaw detector, Based on the ultrasonic wave received by the probe for vertical flaw detection, measuring means for measuring the echo height from the interface between the coating film and the substrate, and the echo height measured by the measuring means And a correction means for correcting the flaw detection sensitivity for flaw detection by the oblique flaw detection method, and using the flaw detection sensitivity corrected by the correction means, the ultrasonic wave received by the oblique flaw detection probe is used. Based on this, the test is performed on the subject.

上記発明に係る超音波探傷装置において、前記垂直探傷探触子と前記斜角探傷用探触子とが、1つのケースに収容されていることが望ましい。   In the ultrasonic flaw detection apparatus according to the present invention, it is preferable that the vertical flaw detection probe and the oblique flaw detection probe are accommodated in one case.

また、本発明の超音波探傷装置は、基材の表面に塗膜が形成されてなる被検体の探傷を行う超音波探傷装置において、複数の振動子が配列されてなるフェイズドアレイ探触子と、 当該フェイズドアレイ探触子の一部の振動子から放射される超音波を前記被検体の探傷面に垂直な方向へ入射させ、他の振動子から放射される超音波を前記探傷面に垂直以外の方向へ入射させるための音響ウェッジと、前記一部の振動子から放射された超音波を受信した場合、その受信した超音波に基づいて、前記塗膜と前記基材との境界面からのエコー高さを測定する測定手段と、当該測定手段によって測定されたエコー高さに基づいて、斜角探傷法による探傷のための探傷感度を補正する補正手段とを備え、前記他の振動子から放射された超音波を受信した場合、その受信した超音波に基づき、前記補正手段によって補正された探傷感度を用いて、前記被検体の探傷を実行するように構成されている。   Further, the ultrasonic flaw detector of the present invention is a phased array probe in which a plurality of transducers are arranged in an ultrasonic flaw detector that performs flaw detection on a subject having a coating film formed on the surface of a substrate. The ultrasonic waves radiated from some transducers of the phased array probe are incident in a direction perpendicular to the flaw detection surface of the subject, and the ultrasonic waves radiated from other transducers are perpendicular to the flaw detection surface. When receiving an acoustic wedge for incidence in a direction other than the ultrasonic wave radiated from the part of the vibrator, based on the received ultrasonic wave, from the boundary surface between the coating film and the base material Measuring means for measuring the echo height of the laser and correction means for correcting the flaw detection sensitivity for flaw detection by the oblique flaw detection method based on the echo height measured by the measurement means, and the other vibrator Received ultrasound emitted from If, on the basis of the ultrasonic wave the received, using the flaw detection sensitivity which is corrected by said correction means, wherein being configured to perform a flaw detection of the object.

本発明の超音波探傷方法、及びその方法を実施するための超音波探傷装置によれば、塗膜を傷つけることなく、正確な探傷を実行することができる。   According to the ultrasonic flaw detection method of the present invention and the ultrasonic flaw detection apparatus for performing the method, accurate flaw detection can be performed without damaging the coating film.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図5は、本発明の実施の形態1に係る超音波探傷装置の構成を示すブロック図である。図5に示すように、超音波探傷装置1は、垂直探傷のための垂直探傷用探触子2及び斜角探傷のための斜角探傷用探触子3と、超音波の送受信を行う送受信器4と、A/D変換器6と、所定の処理を実行する演算処理装置7と、ディスプレイ等で構成される出力装置8とを備えている。
(Embodiment 1)
FIG. 5 is a block diagram showing the configuration of the ultrasonic flaw detector according to Embodiment 1 of the present invention. As shown in FIG. 5, the ultrasonic flaw detector 1 transmits and receives ultrasonic waves to and from the vertical flaw detection probe 2 for vertical flaw detection and the oblique flaw detection probe 3 for oblique flaw detection. 4, an A / D converter 6, an arithmetic processing device 7 that executes predetermined processing, and an output device 8 that includes a display or the like.

垂直探傷用探触子2及び斜角探傷用探触子3は、点集束型斜角探触子であり、塗膜12を含む被検体10の底面近傍に焦点位置が設定されている。   The vertical flaw detection probe 2 and the oblique flaw detection probe 3 are point-focusing oblique flaw probes, and a focal position is set near the bottom surface of the subject 10 including the coating film 12.

基材11の表面に塗膜12が形成されてなる被検体10の表面、すなわち塗膜12の表面上に、垂直探傷用探触子2及び斜角探傷用探触子3が配置される。これらの垂直探傷用探触子2及び斜角探傷用探触子3は、送受信器4に接続されており、当該送受信器4は、これらの垂直探傷用探触子2及び斜角探傷用探触子3を介して、超音波の送受信を行う。   The vertical flaw detection probe 2 and the oblique flaw detection probe 3 are arranged on the surface of the subject 10 in which the coating film 12 is formed on the surface of the substrate 11, that is, on the surface of the coating film 12. The vertical flaw detection probe 2 and the oblique flaw detection probe 3 are connected to a transmitter / receiver 4, and the transmitter / receiver 4 is connected to the vertical flaw detection probe 2 and the oblique flaw detection probe. Ultrasonic waves are transmitted and received through the touch 3.

また、送受信器4は、受信した超音波を所定の増幅率で増幅するための増幅器5を備えている。この増幅率は、超音波探傷装置1の探傷感度に相当するものである。   The transceiver 4 includes an amplifier 5 for amplifying the received ultrasonic wave with a predetermined amplification factor. This amplification factor corresponds to the flaw detection sensitivity of the ultrasonic flaw detector 1.

A/D変換器6は、送受信器4から受けた電気信号をデジタル化し、そのデジタルデータを演算処理装置7へ出力する。   The A / D converter 6 digitizes the electrical signal received from the transceiver 4 and outputs the digital data to the arithmetic processing unit 7.

演算処理装置7は、A/D変換器6から受け取ったデータに基づいて、後述するような処理を実行する。そして、その処理結果は、ディスプレイ等で構成される出力装置8にて出力される。   The arithmetic processing unit 7 executes processing as described later based on the data received from the A / D converter 6. The processing result is output by the output device 8 constituted by a display or the like.

なお、本発明の超音波探傷装置が備える垂直探傷用探触子2及び斜角探傷用探触子3は、点集束型斜角探触子に限定されるわけではなく、他の種類の探触子を用いることが可能である。もっとも、厚みが5mm以下の薄板を被検体とする場合、通常型の探触子では音場が不安定な近距離音場内での探傷となり、感度補正を実行したとしても、傷の検出及びその傷の寸法の測定を正確に行うことができないおそれがあるため、上述したとおり、焦点位置を被検体の底面近傍に設定可能な探触子を用いることが望ましい。そのような探触子としては、点集束型斜角探触子の他にも、例えばフェイズドアレイ探触子などが挙げられる。   Note that the vertical flaw detection probe 2 and the oblique flaw detection probe 3 provided in the ultrasonic flaw detection apparatus of the present invention are not limited to point-focusing oblique flaw probes, but other types of probes. It is possible to use a tentacle. However, when a thin plate having a thickness of 5 mm or less is used as a subject, the normal type probe performs flaw detection in a short-distance sound field where the sound field is unstable. Since there is a possibility that the measurement of the size of the flaw cannot be performed accurately, it is desirable to use a probe capable of setting the focal position near the bottom surface of the subject as described above. Examples of such a probe include a phased array probe and the like in addition to the point focusing type oblique angle probe.

次に、以上のように構成された本発明の超音波探傷装置1の動作について、説明する。   Next, the operation of the ultrasonic flaw detector 1 of the present invention configured as described above will be described.

図6は、実施の形態1に係る本発明の超音波探傷装置1の動作の流れを示すフローチャートである。   FIG. 6 is a flowchart showing a flow of operations of the ultrasonic flaw detector 1 according to the first embodiment of the present invention.

まず、超音波探傷装置1は、垂直探傷法により、塗膜12と基材11との境界面からのエコー高さ、すなわち界面エコー高さを測定する(S101)。具体的には、送受信器4が、垂直探傷用探触子2を介して超音波の送受信を行い、界面エコー高さを測定する。   First, the ultrasonic flaw detector 1 measures the echo height from the boundary surface between the coating film 12 and the base material 11, that is, the interface echo height by the vertical flaw detection method (S101). Specifically, the transmitter / receiver 4 transmits / receives ultrasonic waves via the vertical flaw detection probe 2 to measure the interface echo height.

このようにして得られた界面エコー高さにより塗膜中の超音波の減衰量を推測することができる。しかし、垂直探傷法と斜角探傷法とでは、超音波の通る経路が異なるため、ステップS101にて測定された界面エコー高さ、すなわち垂直探傷法により測定された界面エコー高さをそのまま用いて、斜角探傷法による探傷を実行することは妥当ではない。   The attenuation amount of ultrasonic waves in the coating film can be estimated from the height of the interface echo thus obtained. However, since the ultrasonic path differs between the vertical flaw detection method and the oblique flaw detection method, the interface echo height measured in step S101, that is, the interface echo height measured by the vertical flaw detection method is used as it is. It is not appropriate to carry out flaw detection by the bevel flaw detection method.

そこで、超音波探傷装置1は、斜角探傷法用の探傷感度を求めるべく、ステップS101にて測定した界面エコー高さに基づいて、探傷感度の補正量を算出する(S102)。より具体的には、以下のとおりの処理を実行する。   Therefore, the ultrasonic flaw detector 1 calculates the correction amount of the flaw detection sensitivity based on the interface echo height measured in step S101 in order to obtain the flaw detection sensitivity for the oblique flaw detection method (S102). More specifically, the following processing is executed.

図7は、斜角探傷法による場合の塗膜厚さとコーナーエコー高さとの関係を示すグラフである。図7においては、表面に塗膜が形成されていない被検体の場合と塗膜付被検体の場合とのコーナーエコー高さの比を、コーナーエコー高さとして、黒塗りの丸でプロットしている。ここで、コーナーエコーとは、所定の斜角で超音波が送信された場合における、被検体の底面角部からのエコーをいう。   FIG. 7 is a graph showing the relationship between the coating film thickness and the corner echo height when the oblique flaw detection method is used. In FIG. 7, the ratio of the corner echo height between the case of the specimen having no coating film on the surface and the case of the specimen with the coating film is plotted as a corner echo height with a black circle. Yes. Here, the corner echo refers to an echo from the bottom corner of the subject when ultrasonic waves are transmitted at a predetermined oblique angle.

ステップS102において、超音波探傷装置1が備える演算処理装置7は、探傷感度の補正量ΔHの値を、式ΔH=−9.15δ−10.03にしたがって算出する。ここで、δは、垂直探傷法での界面エコー高さの測定結果から求めた塗膜厚さを示しており、具体的には、δ=((HI−HS)/5.61)+0.32で求められる値である。なお、HIは界面エコー高さを、HSは表面エコー高さをそれぞれ示している。 In step S102, the arithmetic processing unit 7 included in the ultrasonic flaw detector 1 calculates the value of the flaw detection sensitivity correction amount ΔH according to the equation ΔH = −9.15δ−10.03. Here, δ indicates the coating thickness obtained from the measurement result of the interface echo height in the vertical flaw detection method. Specifically, δ = ((H I −H S ) /5.61). It is a value obtained by +0.32. Note that H I represents the interface echo height, and H S represents the surface echo height.

このようにして算出された補正量にしたがって補正をした場合、次のような顕著な効果がある。   When correction is performed according to the correction amount calculated in this way, the following significant effects are obtained.

図8Aは、探傷感度の補正前における底面エコー高さ及び界面エコー高さと塗膜厚さとの関係を示すグラフであり、図8Bは、本発明の超音波探傷方法による探傷感度の補正後における底面エコー高さと塗膜厚さとの関係を示すグラフである。   FIG. 8A is a graph showing the relationship between the bottom surface echo height and the interface echo height and the coating thickness before the flaw detection sensitivity is corrected, and FIG. 8B is the bottom surface after the flaw detection sensitivity is corrected by the ultrasonic flaw detection method of the present invention. It is a graph which shows the relationship between echo height and coating-film thickness.

図8Aにおいては、表面に塗膜が形成されていない被検体の場合と塗膜付被検体の場合との底面エコー高さの比を、探傷感度の補正前における底面エコー高さとして、黒塗りの三角でプロットしている。また、界面エコー高さと表面エコー高さとの比を、界面エコー高さとして、白抜きの丸でプロットしている。   In FIG. 8A, the ratio of the bottom surface echo height between the case of the subject having no coating film formed on the surface and the case of the subject with the coating film is defined as the bottom surface echo height before correction of the flaw detection sensitivity. The triangle is plotted. The ratio between the interface echo height and the surface echo height is plotted as a white circle as the interface echo height.

塗膜厚さが増加すればするほど、塗膜中での超音波の減衰量も増加するため、補正前においては、図8Aに示すとおり、塗膜厚さが増加するにしたがって、底面エコー高さが減少することになる。 As the coating thickness increases, the attenuation of ultrasonic waves in the coating also increases. Therefore, before correction, as shown in FIG. 8A, the bottom echo height increases as the coating thickness increases. Will be reduced.

これに対し、上述したように界面エコー高さを用いて探傷感度を補正した後においては、図8Bに示すとおり、塗膜厚さが異なっていても、底面エコー高さはほぼ一定である。ここで、本発明の超音波探傷方法による補正後の底面エコー高さの標準偏差は0.19dB程度である。図3を参照して上述したように、従来の第1の超音波探傷方法による補正後の底面エコー高さの標準偏差が1.37dB程度であることと比較すると、補正後の底面エコー高さのばらつきが小さいことがわかる。この程度であれば、塗膜厚さが異なったとしても、傷の評価を正確に行うことができる。   On the other hand, after correcting the flaw detection sensitivity using the interface echo height as described above, the bottom surface echo height is substantially constant even when the coating film thickness is different as shown in FIG. 8B. Here, the standard deviation of the bottom echo height after correction by the ultrasonic flaw detection method of the present invention is about 0.19 dB. As described above with reference to FIG. 3, the bottom echo height after the correction is compared with the standard deviation of the bottom echo height after the correction by the conventional first ultrasonic flaw detection method is about 1.37 dB. It can be seen that the variation in is small. If it is this grade, even if a coating film thickness differs, evaluation of a crack can be performed correctly.

次に、超音波探傷装置1は、ステップS102で算出された探傷感度の補正量を用いて、探傷感度の設定を行う(S103)。より具体的には、送受信器4が有する増幅器5における増幅率が、演算処理装置7によって算出された補正量が反映された探傷感度に基づく値となるように、設定される。   Next, the ultrasonic flaw detection apparatus 1 sets the flaw detection sensitivity using the flaw detection sensitivity correction amount calculated in step S102 (S103). More specifically, the amplification factor in the amplifier 5 included in the transceiver 4 is set so as to be a value based on the flaw detection sensitivity in which the correction amount calculated by the arithmetic processing device 7 is reflected.

上述したとおり、本実施の形態では、超音波探傷装置1が探傷感度の設定(増幅率の設定)を自動的に行っているが、例えば、オペレータが手動で探傷感度を設定するようにしてもよい。   As described above, in the present embodiment, the ultrasonic flaw detector 1 automatically sets the flaw detection sensitivity (amplification factor setting). For example, the operator may manually set the flaw detection sensitivity. Good.

そして、超音波探傷装置1が備える送受信器4が、斜角探傷用探触子3を介して超音波の送受信を行うことにより、被検体の探傷を実行する(S104)。   Then, the transmitter / receiver 4 provided in the ultrasonic flaw detection apparatus 1 performs flaw detection on the subject by transmitting / receiving ultrasonic waves via the oblique flaw detection probe 3 (S104).

図9は、本発明の超音波探傷装置1による塗膜付被検体の探傷の結果を示すグラフである。このグラフに示されている結果は、超音波探傷装置1が、人工的に傷が設けられた試験体を探傷し、内在する傷の高さを測定したものである。この試験体としては、塗膜厚さが0.8mmのもの、2.2〜2.3mmのもの、及び2.4〜2.6mmのものを用意した。なお、傷の寸法の測定方法は、エコー高さの影響を受けにくいドロップ法を用いている。   FIG. 9 is a graph showing the results of flaw detection of a specimen with a coating film by the ultrasonic flaw detection apparatus 1 of the present invention. The results shown in this graph show that the ultrasonic flaw detector 1 flaws a test body provided with an artificial flaw and measures the height of the flaw that is present. As this test body, the thing with a coating-film thickness of 0.8 mm, the thing of 2.2-2.3 mm, and the thing of 2.4-2.6 mm were prepared. As a method for measuring the size of the scratch, a drop method is used which is not easily affected by the echo height.

図9に示すように、塗膜厚さの大小に関係なく、実際の傷の高さ(実きず高さ)と、超音波探傷装置1によって評価された傷の高さ(きず指示高さ)との誤差は極めて小さい(標準偏差0.33mm)。このように、本発明の超音波探傷装置1によれば、塗膜付被検体であっても、正確且つ容易に探傷を行うことができる。   As shown in FIG. 9, regardless of the thickness of the coating film, the actual height of the flaw (actual flaw height) and the height of the flaw (flaw indication height) evaluated by the ultrasonic flaw detector 1 are shown. The error is extremely small (standard deviation 0.33 mm). Thus, according to the ultrasonic flaw detector 1 of the present invention, flaw detection can be performed accurately and easily even for a specimen with a coating film.

以上のように、本発明の超音波探傷装置1において、傷の高さにかかわらず良好な探傷結果を得ることができるのは、探傷感度の補正を、傷の高さに影響されずに適切に行うことができるからである。以下、比較例と対比しながら、この点について説明する。   As described above, in the ultrasonic flaw detection apparatus 1 of the present invention, a good flaw detection result can be obtained regardless of the flaw height. It is because it can be performed. Hereinafter, this point will be described in comparison with the comparative example.

実験として、人工的に傷が設けられた塗膜厚さが3種類の試験体を用意し、この試験体に対して、本発明の超音波探傷方法及び上述した従来の第1の超音波探傷方法によって探傷を行い、探傷感度の補正前後でのエコー高さと塗膜厚さとの関係を求めた。なお、試験体には、高さが3mm、2mm、1mm、0.5mmの傷がそれぞれ設けられている。   As an experiment, three types of test specimens with artificially scratched coatings were prepared, and the ultrasonic test method of the present invention and the above-described conventional first ultrasonic test were performed on the test specimens. The flaw detection was performed by the method, and the relationship between the echo height before and after the flaw detection sensitivity was corrected and the coating thickness was determined. The specimen is provided with scratches having a height of 3 mm, 2 mm, 1 mm, and 0.5 mm.

図10Aは、従来の第1の超音波探傷方法による場合における、探傷感度の補正前の塗膜厚さとエコー高さとの関係を示すグラフであり、図10Bは、同じく探傷感度の補正後の塗膜厚さとエコー高さとの関係を示すグラフである。   FIG. 10A is a graph showing the relationship between the coating thickness before the correction of flaw detection sensitivity and the echo height in the case of the first conventional ultrasonic flaw detection method, and FIG. 10B is the same as the coating after the flaw detection sensitivity is corrected. It is a graph which shows the relationship between a film thickness and echo height.

また、図11Aは、本発明の超音波探傷方法による場合における、探傷感度の補正前の塗膜厚さと界面エコー高さとの関係を示すグラフであり、図11Bは、同じく探傷感度の補正後の塗膜厚さと界面エコー高さとの関係を示すグラフである。   FIG. 11A is a graph showing the relationship between the coating thickness before flaw detection sensitivity correction and the interface echo height in the case of the ultrasonic flaw detection method of the present invention, and FIG. 11B is the same after flaw detection sensitivity correction. It is a graph which shows the relationship between coating film thickness and interface echo height.

図10A及び図11Aを参照すると、何れの場合でも塗膜厚さが大きくなるにしたがってエコー高さが減少している。   Referring to FIGS. 10A and 11A, in any case, the echo height decreases as the coating thickness increases.

次に、図10B及び図11Bを参照すると、本発明の超音波探傷方法による場合では、塗膜厚さが異なっていても同じきず高さであればエコー高さは略同じであるのに対して、従来の場合では、同じきず高さであってもエコー高さがばらついているのがわかる。   Next, referring to FIG. 10B and FIG. 11B, in the case of the ultrasonic flaw detection method of the present invention, the echo height is substantially the same as long as the flaw is the same even if the coating thickness is different. In the conventional case, it can be seen that the echo height varies even with the same flaw height.

以上のエコー高さのばらつき度合いを感度補正誤差として示したのが図12である。図12は、本発明の超音波探傷方法及び従来の第1の超音波探傷方法による場合における、感度補正誤差と傷高さとの関係を示すグラフである。ここで、感度補正誤差とは、補正後のきず高さが同じである場合のきずエコー高さの最大最小値をいう。   FIG. 12 shows the degree of variation in echo height as a sensitivity correction error. FIG. 12 is a graph showing the relationship between the sensitivity correction error and the flaw height in the case of the ultrasonic flaw detection method of the present invention and the conventional first ultrasonic flaw detection method. Here, the sensitivity correction error refers to the maximum and minimum values of the flaw echo height when the flaw height after correction is the same.

図12に示すように、本発明による場合は、きず高さが何れの場合であっても感度補正誤差の値は小さく、他方、従来の方法による場合は、何れのきず高さの場合でも本発明による場合よりも感度補正誤差の値が大きい。   As shown in FIG. 12, in the case of the present invention, the value of the sensitivity correction error is small regardless of the flaw height. On the other hand, in the case of the conventional method, the value of the flaw height is small. The value of the sensitivity correction error is larger than that according to the invention.

以上より、本発明の超音波探傷方法による場合では、塗膜厚さが異なっていたとしても、同じきず高さであればエコー高さが略同じになる程度に補正ができているのに対して、従来の場合では、感度補正誤差が大きく、適切な補正が行われていないことがわかる。   From the above, in the case of the ultrasonic flaw detection method according to the present invention, even if the coating thickness is different, the echo height can be corrected to be substantially the same if the scratch height is the same. Thus, in the conventional case, it can be seen that the sensitivity correction error is large and appropriate correction is not performed.

(実施の形態2)
実施の形態1に係る超音波探傷装置は、垂直探傷用探触子及び斜角探傷用探触子の2つの探触子を備えている。これに対し、実施の形態2に係る超音波探傷装置は、1つの探触子を用いて、本発明の超音波探傷方法を実施するものである。
(Embodiment 2)
The ultrasonic flaw detection apparatus according to Embodiment 1 includes two probes, a vertical flaw detection probe and an oblique flaw detection probe. On the other hand, the ultrasonic flaw detection apparatus according to Embodiment 2 implements the ultrasonic flaw detection method of the present invention using one probe.

図13は、本発明の実施の形態2に係る超音波探傷装置が備える探触子の構成を示す正面図である。   FIG. 13 is a front view showing a configuration of a probe provided in the ultrasonic flaw detector according to Embodiment 2 of the present invention.

図13において、21は、複数の振動子が図面上の左右方向に配列してなるフェイズドアレイ探触子を示しており、このフェイズドアレイ探触子21は、音響ウェッジ22上に設けられている。   In FIG. 13, reference numeral 21 denotes a phased array probe in which a plurality of transducers are arranged in the horizontal direction on the drawing. The phased array probe 21 is provided on an acoustic wedge 22. .

音響ウェッジ22には、上下方向に貫通する孔23が形成されている。この孔23には、音響ウェッジ22とは音速が異なる媒質(例えば水等)が充填されている。   The acoustic wedge 22 is formed with a hole 23 penetrating in the vertical direction. The hole 23 is filled with a medium (for example, water) having a sound speed different from that of the acoustic wedge 22.

図13に示すように、孔23は、フェイズドアレイ探触子21と接する上辺及び被検体10の探傷面と接する下辺が、被検体10の探傷面に対して水平方向に設けられた矩形状の部分23aと、下辺は同じく水平方向に設けられているのに対し、上辺24がフェイズドアレイ探触子21と接することなく、且つ被検体10の探傷面に対して所定の角度傾斜して設けられている部分23bとから、構成される。   As shown in FIG. 13, the hole 23 has a rectangular shape in which the upper side in contact with the phased array probe 21 and the lower side in contact with the flaw detection surface of the subject 10 are provided in the horizontal direction with respect to the flaw detection surface of the subject 10. The portion 23a and the lower side are similarly provided in the horizontal direction, whereas the upper side 24 is provided in contact with the phased array probe 21 and inclined at a predetermined angle with respect to the flaw detection surface of the subject 10. Part 23b.

なお、実施の形態2に係る超音波探傷装置のその他の構成及び動作については、実施の形態1の場合と同様であるので、図示及び説明を省略する。   Since other configurations and operations of the ultrasonic flaw detector according to Embodiment 2 are the same as those in Embodiment 1, illustration and description thereof are omitted.

図13における波線矢印で示すように、フェイズドアレイ探触子21から音響ウェッジ22及び孔23内へ放射された超音波は、被検体10の探傷面に入射される。このうち、フェイズドアレイ探触子21の一部の振動子から23aで示される部分を介して放射される超音波は、被検体10の探傷面に対して垂直に入射するのに対して、フェイズドアレイ探触子21の他の振動子から23bで示される部分を介して放射される超音波は、上辺24で屈折することにより、被検体10の探傷面に対して所定の角度傾斜して入射する。   As indicated by the wavy arrow in FIG. 13, the ultrasonic wave radiated from the phased array probe 21 into the acoustic wedge 22 and the hole 23 is incident on the flaw detection surface of the subject 10. Among these, the ultrasonic wave radiated from a part of the transducer of the phased array probe 21 through the portion indicated by 23a is incident on the flaw detection surface of the subject 10 perpendicularly, whereas the phased array probe 21 is phased. The ultrasonic waves radiated from the other transducers of the array probe 21 through the portion indicated by 23b are refracted at the upper side 24 and are incident at a predetermined angle with respect to the flaw detection surface of the subject 10. To do.

上記のとおり、孔23が形成された音響ウェッジ22を用いることにより、1つの探触子により2つ以上の屈折角で探傷することができるようになる。なお、フェイズドアレイ探触子の場合、電子的に超音波の入射角を制御することができるため、1つの探触子により垂直探傷及び斜角探傷を行うことも可能であるが、超音波の広がりには限界があるため、大きく異なる2つの屈折角(例えば、垂直及び斜角45度、斜角45度と70度等)での探傷を同時に行うことは困難である。本実施の形態によれば、このように大きく異なる2つの屈折角での探傷を同時に行うことができる。   As described above, by using the acoustic wedge 22 in which the hole 23 is formed, a single probe can be used for flaw detection at two or more refraction angles. In the case of a phased array probe, since the incident angle of ultrasonic waves can be controlled electronically, vertical flaw detection and oblique flaw detection can be performed with one probe. Since there is a limit to the spread, it is difficult to perform flaw detection at two refraction angles (for example, vertical and oblique angles of 45 degrees, oblique angles of 45 degrees and 70 degrees, etc.) at the same time. According to the present embodiment, it is possible to simultaneously perform flaw detection at two refraction angles that are so different.

(実施の形態3)
実施の形態3に係る超音波探傷装置は、実施の形態1の場合と同様に、垂直探傷用探触子及び斜角探傷用探触子の2つの探触子を備えている。しかし、実施の形態1の場合では、2つの探触子が別個独立に設けられているのに対し、実施の形態3では、2つの探触子が1つのケースに収容されている。
(Embodiment 3)
As in the case of the first embodiment, the ultrasonic flaw detection apparatus according to the third embodiment includes two probes, a vertical flaw detection probe and an oblique flaw detection probe. However, in the case of the first embodiment, the two probes are provided independently, whereas in the third embodiment, the two probes are accommodated in one case.

図14は、本発明の実施の形態3に係る超音波探傷装置が備える探触子の構成を示す正面図である。   FIG. 14 is a front view showing a configuration of a probe provided in the ultrasonic flaw detector according to Embodiment 3 of the present invention.

図14において、31は、垂直探傷用探触子を、32は、斜角探傷用探触子をそれぞれ示している。これらの垂直探傷用探触子31及び斜角探傷用探触子32は、これらの探触子のケースの役割をも持つ音響ウェッジ33に収容されている。   In FIG. 14, 31 indicates a probe for vertical flaw detection, and 32 indicates a probe for oblique flaw detection. The vertical flaw detection probe 31 and the oblique flaw detection probe 32 are accommodated in an acoustic wedge 33 that also serves as a case of these probes.

なお、実施の形態3に係る超音波探傷装置のその他の構成及び動作については、実施の形態1の場合と同様であるので、図示及び説明を省略する。   Since other configurations and operations of the ultrasonic flaw detector according to Embodiment 3 are the same as those in Embodiment 1, illustration and description thereof are omitted.

図14における破線矢印で示すように、垂直探傷用探触子31から音響ウェッジ33内へ放射された超音波は、被検体10の探傷面に対して垂直に入射し、斜角探傷用探触子32から音響ウェッジ33内へ放射された超音波は、被検体10の探傷面に対して所定の角度傾斜して入射する。このようにして垂直探傷用探触子31から放射される超音波と、斜角探傷用探触子32から放射される超音波とが、被検体10の探傷面の同一の位置に入射するように、調整される。   As indicated by the broken-line arrows in FIG. 14, the ultrasonic wave radiated from the vertical flaw detection probe 31 into the acoustic wedge 33 is incident perpendicularly to the flaw detection surface of the subject 10, and the oblique flaw detection probe. The ultrasonic wave radiated from the child 32 into the acoustic wedge 33 is incident with a predetermined angle with respect to the flaw detection surface of the subject 10. In this way, the ultrasonic wave radiated from the vertical flaw detection probe 31 and the ultrasonic wave radiated from the oblique flaw detection probe 32 are incident on the same position on the flaw detection surface of the subject 10. Adjusted.

このように、垂直探傷用及び斜角探傷用の2つの探触子が1つのケース内に収容され、音響ウェッジ33によりそれらの探触子から放射される超音波の入射角を調整可能とすることによって、被検体10の探傷面の同一の位置に、両探触子からの超音波を入射させることができる。   As described above, two probes for vertical flaw detection and oblique flaw detection are accommodated in one case, and the incident angle of the ultrasonic wave radiated from these probes can be adjusted by the acoustic wedge 33. As a result, ultrasonic waves from both probes can be incident on the same position on the flaw detection surface of the subject 10.

実施の形態1の場合のように、両探触子を別個独立のものとした場合、それらの探触子からの超音波を、被検体10の探傷面の同一の位置に入射させようとすると、干渉が生じることとなる。そのため、実施の形態1の場合では、両探触子からの超音波は、干渉が生じない範囲で、被検体10の探傷面において可能な限り近い位置に入射させることになる。しかしながら、本発明の超音波探傷方法を用いて、より精度の高い探傷を行うためには、垂直探傷及び斜角探傷の何れの場合においても、探触子から放射される超音波を被検体の探傷面の同一の位置に入射させることが望ましい。この点において、実施の形態3に係る超音波探傷装置は、望ましい構成であるといえる。   When both probes are made independent as in the case of the first embodiment, the ultrasonic waves from these probes are caused to enter the same position on the flaw detection surface of the subject 10. Interference will occur. For this reason, in the case of the first embodiment, the ultrasonic waves from both probes are incident on the flaw detection surface of the subject 10 as close as possible to the extent that interference does not occur. However, in order to perform a highly accurate flaw detection using the ultrasonic flaw detection method of the present invention, in either case of vertical flaw detection or oblique flaw detection, ultrasonic waves radiated from the probe are applied to the subject. It is desirable that the light is incident on the same position on the flaw detection surface. In this respect, it can be said that the ultrasonic flaw detector according to Embodiment 3 is a desirable configuration.

本発明に係る超音波探傷方法及び超音波探傷装置は、塗膜が形成された被検体の探傷を、塗膜を除去することなく正確に行うことができるため、塗膜が形成される場合が多い構造物の超音波探傷を行う場合等に有用である。   The ultrasonic flaw detection method and the ultrasonic flaw detection apparatus according to the present invention can accurately perform flaw detection on a subject on which a coating film has been formed without removing the coating film, so that a coating film may be formed. This is useful when performing ultrasonic testing of many structures.

超音波探傷におけるエコーの概念を示す概念図である。It is a conceptual diagram which shows the concept of the echo in ultrasonic flaw detection. 探傷感度の補正前における底面エコー高さと塗膜厚さとの関係を示すグラフである。It is a graph which shows the relationship between the bottom echo height and coating film thickness before correction | amendment of a flaw detection sensitivity. 探傷感度の補正を行った場合の塗膜厚さと底面エコー高さとの関係を示すグラフである。It is a graph which shows the relationship between the coating-film thickness at the time of correcting flaw detection sensitivity, and a bottom face echo height. 底面エコー高さと界面エコー高さとの関係を示すグラフである。It is a graph which shows the relationship between bottom echo height and interface echo height. 本発明の実施の形態1に係る超音波探傷装置の構成を示すブロック図である。It is a block diagram which shows the structure of the ultrasonic flaw detector which concerns on Embodiment 1 of this invention. 実施の形態1に係る本発明の超音波探傷装置の動作の流れを示すフローチャートである。3 is a flowchart showing a flow of operations of the ultrasonic flaw detector according to the first embodiment of the present invention. 斜角探傷法による場合の塗膜厚さとコーナーエコー高さとの関係を示すグラフである。It is a graph which shows the relationship between the coating-film thickness in the case of an oblique flaw detection method, and a corner echo height. 探傷感度の補正前における底面エコー高さ及び界面エコー高さと塗膜厚さとの関係を示すグラフであり、It is a graph showing the relationship between the bottom surface echo height and the interface echo height and the coating thickness before correction of the flaw detection sensitivity, 本発明の超音波探傷方法による探傷感度の補正後における底面エコー高さと塗膜厚さとの関係を示すグラフである。It is a graph which shows the relationship between the bottom echo height and the coating-film thickness after correction | amendment of the flaw detection sensitivity by the ultrasonic flaw detection method of this invention. 本発明の超音波探傷装置1による塗膜付被検体の探傷の結果を示すグラフである。It is a graph which shows the result of the flaw detection of the test substance with a coating film by the ultrasonic flaw detector 1 of this invention. 従来の第1の超音波探傷方法による場合における、探傷感度の補正前の塗膜厚さとエコー高さとの関係を示すグラフである。It is a graph which shows the relationship between the coating-film thickness before correction | amendment of a flaw detection sensitivity, and echo height in the case of the conventional 1st ultrasonic flaw detection method. 従来の第1の超音波探傷方法による場合における、探傷感度の補正後の塗膜厚さとエコー高さとの関係を示すグラフである。It is a graph which shows the relationship between the coating-film thickness after correction | amendment of flaw detection sensitivity, and echo height in the case of the conventional 1st ultrasonic flaw detection method. 本発明の超音波探傷方法による場合における、探傷感度の補正前の塗膜厚さと界面エコー高さとの関係を示すグラフである。It is a graph which shows the relationship between the coating-film thickness before correction | amendment of a flaw detection sensitivity, and an interface echo height in the case of the ultrasonic flaw detection method of this invention. 本発明の超音波探傷方法による場合における、探傷感度の補正後の塗膜厚さと界面エコー高さとの関係を示すグラフである。It is a graph which shows the relationship between the coating-film thickness after correction | amendment of flaw detection sensitivity, and an interface echo height in the case of the ultrasonic flaw detection method of this invention. 本発明の超音波探傷方法及び従来の第1の超音波探傷方法による場合における、感度補正誤差と傷高さとの関係を示すグラフである。It is a graph which shows the relationship between the sensitivity correction error and the flaw height in the case of using the ultrasonic flaw detection method of the present invention and the conventional first ultrasonic flaw detection method. 本発明の実施の形態2に係る超音波探傷装置が備える探触子の構成を示す正面図である。It is a front view which shows the structure of the probe with which the ultrasonic flaw detector which concerns on Embodiment 2 of this invention is provided. 本発明の実施の形態3に係る超音波探傷装置が備える探触子の構成を示す正面図である。It is a front view which shows the structure of the probe with which the ultrasonic flaw detector which concerns on Embodiment 3 of this invention is provided.

符号の説明Explanation of symbols

1 超音波探傷装置
2 垂直探傷用探触子
3 斜角探傷用探触子
4 送受信器
5 増幅器
6 A/D変換器
7 演算処理装置
8 出力装置
10 被検体
11 基材
12 塗膜
21 探触子
22 音響ウェッジ
31 垂直探傷用探触子
32 斜角探傷用探触子
33 音響ウェッジ
DESCRIPTION OF SYMBOLS 1 Ultrasonic flaw detector 2 Probe for vertical flaw detection 3 Probe for oblique flaw detection 4 Transmitter / receiver 5 Amplifier 6 A / D converter 7 Arithmetic processing device 8 Output device 10 Subject 11 Substrate 12 Coating film 21 Probe Child 22 Acoustic wedge 31 Probe for vertical flaw detection 32 Probe for oblique flaw detection 33 Acoustic wedge

Claims (6)

基材の表面に塗膜が形成されてなる被検体の超音波探傷方法において、
垂直探傷法により、前記塗膜と前記基材との境界面からのエコー高さを測定し、
測定されたエコー高さに基づいて、斜角探傷法による探傷のための探傷感度を補正し、
補正された探傷感度を用いて、斜角探傷法による前記被検体の探傷を実行することを特徴とする超音波探傷方法。
In the ultrasonic flaw detection method for a subject in which a coating film is formed on the surface of a substrate,
By vertical flaw detection, measure the echo height from the interface between the coating film and the substrate,
Based on the measured echo height, the flaw detection sensitivity for flaw detection by the bevel flaw detection method is corrected,
An ultrasonic flaw detection method characterized by performing flaw detection on the subject by an oblique flaw detection method using the corrected flaw detection sensitivity.
前記斜角探傷法による前記被検体の探傷は、点集束型斜角探触子を用いて実行される、請求項1に記載の超音波探傷方法。   The ultrasonic flaw detection method according to claim 1, wherein flaw detection of the subject by the oblique angle flaw detection method is performed using a point-focusing oblique angle probe. 前記斜角探傷法による前記被検体の探傷は、フェイズドアレイ探触子を用いて実行される、請求項1に記載の超音波探傷方法。   The ultrasonic flaw detection method according to claim 1, wherein flaw detection of the subject by the oblique angle flaw detection method is performed using a phased array probe. 基材の表面に塗膜が形成されてなる被検体の探傷を行う超音波探傷装置において、
垂直探傷用探触子と、
斜角探傷用探触子と、
前記垂直探傷用探触子が受信した超音波に基づいて、前記塗膜と前記基材との境界面からのエコー高さを測定する測定手段と、
当該測定手段によって測定されたエコー高さに基づいて、斜角探傷法による探傷のための探傷感度を補正する補正手段とを備え、
当該補正手段によって補正された探傷感度を用いて、前記斜角探傷用探触子が受信した超音波に基づき、前記被検体の探傷を実行するように構成されていることを特徴とする超音波探傷装置。
In an ultrasonic flaw detection apparatus that performs flaw detection on a subject in which a coating film is formed on the surface of a substrate,
A probe for vertical flaw detection,
A probe for oblique flaw detection,
Based on the ultrasonic wave received by the probe for vertical flaw detection, measuring means for measuring the echo height from the interface between the coating film and the substrate,
Correction means for correcting the flaw detection sensitivity for flaw detection by the oblique flaw detection method based on the echo height measured by the measurement means,
The ultrasonic wave is configured to perform the flaw detection of the subject based on the ultrasonic wave received by the oblique angle flaw detection probe using the flaw detection sensitivity corrected by the correction means. Flaw detection equipment.
前記垂直探傷探触子と前記斜角探傷用探触子とが1つのケースに収容されている、請求項4に記載の超音波探傷装置。   The ultrasonic flaw detector according to claim 4, wherein the vertical flaw detector and the oblique flaw detector are housed in one case. 基材の表面に塗膜が形成されてなる被検体の探傷を行う超音波探傷装置において、
複数の振動子が配列されてなるフェイズドアレイ探触子と、
当該フェイズドアレイ探触子の一部の振動子から放射される超音波を前記被検体の探傷面に垂直な方向へ入射させ、他の振動子から放射される超音波を前記探傷面に垂直以外の方向へ入射させるための音響ウェッジと、
前記一部の振動子から放射された超音波を受信した場合、その受信した超音波に基づいて、前記塗膜と前記基材との境界面からのエコー高さを測定する測定手段と、
当該測定手段によって測定されたエコー高さに基づいて、斜角探傷法による探傷のための探傷感度を補正する補正手段とを備え、
前記他の振動子から放射された超音波を受信した場合、その受信した超音波に基づき、前記補正手段によって補正された探傷感度を用いて、前記被検体の探傷を実行するように構成されていることを特徴とする超音波探傷装置。
In an ultrasonic flaw detection apparatus that performs flaw detection on a subject in which a coating film is formed on the surface of a substrate,
A phased array probe in which a plurality of transducers are arranged;
Ultrasound radiated from some transducers of the phased array probe is incident in a direction perpendicular to the flaw detection surface of the subject, and ultrasonic waves radiated from other transducers are other than perpendicular to the flaw detection surface An acoustic wedge for incidence in the direction of
When receiving ultrasonic waves radiated from the part of the vibrator, based on the received ultrasonic waves, measuring means for measuring the echo height from the interface between the coating film and the substrate,
Correction means for correcting the flaw detection sensitivity for flaw detection by the oblique flaw detection method based on the echo height measured by the measurement means,
When receiving ultrasonic waves radiated from the other transducers, based on the received ultrasonic waves, the flaw detection sensitivity corrected by the correction means is used to perform flaw detection of the subject. An ultrasonic flaw detector characterized by comprising:
JP2006178190A 2006-06-28 2006-06-28 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus Active JP5022640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006178190A JP5022640B2 (en) 2006-06-28 2006-06-28 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006178190A JP5022640B2 (en) 2006-06-28 2006-06-28 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Publications (2)

Publication Number Publication Date
JP2008008709A true JP2008008709A (en) 2008-01-17
JP5022640B2 JP5022640B2 (en) 2012-09-12

Family

ID=39067060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006178190A Active JP5022640B2 (en) 2006-06-28 2006-06-28 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JP5022640B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009004392A1 (en) 2008-01-18 2009-07-30 Fujitsu Microelectronics Ltd. Data generation method for semiconductor device and electron beam exposure system
WO2013161835A1 (en) * 2012-04-24 2013-10-31 非破壊検査株式会社 Layered-body detachment-testing method and detachment-testing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443087A (en) * 1977-09-12 1979-04-05 Mitsubishi Electric Corp Ultrasonic inspector
JPH11352117A (en) * 1998-06-12 1999-12-24 Hitachi Techno Eng Co Ltd Ultrasonic corrosion diagnostic method and its device
JP2002214205A (en) * 2001-01-12 2002-07-31 Kawasaki Heavy Ind Ltd Ultrasonic flaw detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443087A (en) * 1977-09-12 1979-04-05 Mitsubishi Electric Corp Ultrasonic inspector
JPH11352117A (en) * 1998-06-12 1999-12-24 Hitachi Techno Eng Co Ltd Ultrasonic corrosion diagnostic method and its device
JP2002214205A (en) * 2001-01-12 2002-07-31 Kawasaki Heavy Ind Ltd Ultrasonic flaw detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009004392A1 (en) 2008-01-18 2009-07-30 Fujitsu Microelectronics Ltd. Data generation method for semiconductor device and electron beam exposure system
WO2013161835A1 (en) * 2012-04-24 2013-10-31 非破壊検査株式会社 Layered-body detachment-testing method and detachment-testing device
JP5624250B2 (en) * 2012-04-24 2014-11-12 非破壊検査株式会社 Lamination peel test method and peel inspection apparatus

Also Published As

Publication number Publication date
JP5022640B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
CN101169363B (en) Granule graininess, concentration and density measuring method and device
US7389693B2 (en) Methods and apparatus for porosity measurement
EP2598866B1 (en) Ultrasonic pipe inspection with signal processing arrangement
EP2053392A1 (en) Ultrasonic scanning device and method
KR20100045284A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JP2013088240A (en) Ultrasonic inspection method, ultrasonic testing method and ultrasonic inspection apparatus
KR20100124242A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
US9952185B1 (en) Method of calibrating a phased array ultrasonic system without known test object sound speed
WO2020250378A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
US20210293947A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
JP2008014911A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
JP5633059B2 (en) Ultrasonic flaw detection sensitivity setting method and ultrasonic flaw detection apparatus
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP2008082864A (en) Ultrasonic flaw detector and ultrasonic flaw detecting method
JP5022640B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JPH0210261A (en) Measurement of intercrystalline corrosion
JP4793636B2 (en) Array probe device for water immersion
US10620162B2 (en) Ultrasonic inspection methods and systems
JP2009244076A (en) Method and system of detecting alteration state of heterogeneous substance in medium using electromagnetic wave radar
JP2006313115A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP5886780B2 (en) Sheet wave inspection method and apparatus
US10578589B2 (en) System and method for ultrasound inspection with time reversal
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP2009156834A (en) Method for measuring depth of crack-like defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

R150 Certificate of patent or registration of utility model

Ref document number: 5022640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250