JP5618785B2 - Electrophotographic equipment - Google Patents
Electrophotographic equipment Download PDFInfo
- Publication number
- JP5618785B2 JP5618785B2 JP2010264128A JP2010264128A JP5618785B2 JP 5618785 B2 JP5618785 B2 JP 5618785B2 JP 2010264128 A JP2010264128 A JP 2010264128A JP 2010264128 A JP2010264128 A JP 2010264128A JP 5618785 B2 JP5618785 B2 JP 5618785B2
- Authority
- JP
- Japan
- Prior art keywords
- photosensitive member
- electrophotographic photosensitive
- particles
- group
- electrophotographic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G21/00—Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/05—Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/06—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
- G03G5/07—Polymeric photoconductive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
- Cleaning In Electrography (AREA)
- Developing Agents For Electrophotography (AREA)
Description
本発明は、電子写真装置(電子写真プロセスを用いて画像を形成する画像形成装置)に関する。 The present invention relates to an electrophotographic apparatus (an image forming apparatus that forms an image using an electrophotographic process).
市場では、高画質化、省エネルギーおよび省資源のため、電子写真感光体の表面の低摩耗化による長寿命化が要求されている。さらに、表面が低摩耗化された電子写真感光体を備えた電子写真装置において発生しやすい画像流れの抑制も併せて求められている。 In the market, in order to improve image quality, save energy, and save resources, there is a demand for longer life by lowering the surface of the electrophotographic photoreceptor. Furthermore, suppression of image flow that is likely to occur in an electrophotographic apparatus provided with an electrophotographic photosensitive member whose surface is reduced in wear is also demanded.
従来から、電子写真感光体を低摩耗性に維持したままで画像流れの発生を抑制する技術が試みられている。特許文献1には、電子写真感光体の表面層を架橋構造にするとともに、不織布をトナー保持部材として用いて、画像流れの原因となる放電生成物(帯電生成物)を除去する技術が開示されている。また、特許文献2には、電子写真感光体の表面を脂肪酸金属塩で被覆して、画像流れの原因となる放電生成物から保護する技術が開示されている。また、特許文献3には、電子写真感光体の摩耗速度を規定するとともに、電子写真感光体の表面にpH7〜11の塩基性粒子を供給する技術が開示されている。 2. Description of the Related Art Conventionally, a technique for suppressing the occurrence of image flow while maintaining an electrophotographic photosensitive member with low wear has been attempted. Patent Document 1 discloses a technique for removing a discharge product (charged product) that causes image flow using a non-woven fabric as a toner holding member while making the surface layer of an electrophotographic photosensitive member a crosslinked structure. ing. Patent Document 2 discloses a technique for protecting the surface of an electrophotographic photosensitive member with a fatty acid metal salt to protect it from discharge products that cause image blur. Patent Document 3 discloses a technique for defining the abrasion rate of the electrophotographic photosensitive member and supplying basic particles having a pH of 7 to 11 to the surface of the electrophotographic photosensitive member.
しかしながら、特許文献1に開示されている技術では、不織布によりトナーを保持するため、トナーのフィルミングが発生する場合がある。この問題を抑えるために不織布の電子写真感光体への押圧力を増加させると、トナーの供給不足によってクリーニングブレードが損耗する場合がある。 However, in the technique disclosed in Patent Document 1, since toner is held by a nonwoven fabric, toner filming may occur. If the pressing force of the nonwoven fabric to the electrophotographic photosensitive member is increased to suppress this problem, the cleaning blade may be worn out due to insufficient supply of toner.
また、特許文献2に開示されている技術のように、脂肪酸金属塩を電子写真感光体の表面に被覆すると、通常は潤滑剤である脂肪酸金属塩が、放電被曝後は摩擦を増加させる物質として働くようになり、脂肪酸金属塩を使用しない場合よりも、クリーニングブレードの損耗が増加する場合がある。 In addition, as in the technique disclosed in Patent Document 2, when a fatty acid metal salt is coated on the surface of an electrophotographic photosensitive member, the fatty acid metal salt, which is usually a lubricant, is a substance that increases friction after exposure to electric discharge. The wear of the cleaning blade may increase compared to the case where the fatty acid metal salt is not used.
また、特許文献3に開示されている技術を用いた場合、低湿環境下でトナーのフィルミングが生じたり、高温高湿下で繰り返し画像形成すると画像流れが悪化したりする場合がある。これらの問題は、電子写真感光体の表面が強度に放電被曝を受ける系や、電子写真装置を長期間放置した場合において、特に顕著になる。 When the technique disclosed in Patent Document 3 is used, toner filming may occur in a low-humidity environment, or image flow may deteriorate when repeated image formation is performed under high-temperature and high-humidity conditions. These problems are particularly prominent when the surface of the electrophotographic photosensitive member is subjected to strong discharge exposure or when the electrophotographic apparatus is left for a long period of time.
本発明の目的は、電子写真感光体やクリーニングブレードの損耗が抑制され、かつ、画像流れやトナーのフィルミングが抑制された電子写真装置を提供することにある。 An object of the present invention is to provide an electrophotographic apparatus in which wear of an electrophotographic photosensitive member and a cleaning blade is suppressed, and image flow and toner filming are suppressed.
本発明は、電子写真感光体、放電を伴う帯電手段、像露光手段、現像手段、転写手段、および該電子写真感光体の表面に当接するクリーニングブレードを有するクリーニング手段、を有する電子写真装置であって、
該電子写真感光体の表面層は、2つ以上の重合性官能基を有する電荷輸送性化合物の重合物からなる樹脂、および、下記一般式(1)で示される化合物を含有し、
該電子写真装置は、該電子写真感光体の表面と該クリーニングブレードとが当接する部位に個数平均粒径30〜500nmのpH11.0以下の塩基性粒子を供給する手段をさらに有することを特徴とする電子写真装置である。
The present invention is an electrophotographic apparatus having an electrophotographic photosensitive member, a charging unit with discharge, an image exposing unit, a developing unit, a transferring unit, and a cleaning unit having a cleaning blade in contact with the surface of the electrophotographic photosensitive member. And
The surface layer of the electrophotographic photoreceptor contains a resin composed of a polymer of a charge transporting compound having two or more polymerizable functional groups, and a compound represented by the following general formula (1):
The electrophotographic apparatus further includes means for supplying basic particles having a number average particle size of 30 to 500 nm and having a pH of 11.0 or less to a portion where the surface of the electrophotographic photosensitive member is in contact with the cleaning blade. An electrophotographic apparatus.
また、本発明は、電子写真感光体、放電を伴う帯電手段、像露光手段、現像手段、転写手段、および該電子写真感光体の表面に当接するクリーニングブレードを有するクリーニング手段、を有する電子写真装置であって、
該電子写真感光体の表面層は、2つ以上の重合性官能基を有する電荷輸送性化合物の重合物からなる樹脂、および、下記一般式(1)で示される化合物を含有し、
該現像手段は、個数平均粒径30〜500nmのpH11.0以下の塩基性粒子を含有する現像剤を有することを特徴とする電子写真装置である。
The present invention also provides an electrophotographic apparatus comprising: an electrophotographic photosensitive member; a charging unit with discharge; an image exposing unit; a developing unit; a transferring unit; and a cleaning unit having a cleaning blade that contacts the surface of the electrophotographic photosensitive member. Because
The surface layer of the electrophotographic photoreceptor contains a resin composed of a polymer of a charge transporting compound having two or more polymerizable functional groups, and a compound represented by the following general formula (1):
The developing means is an electrophotographic apparatus having a developer containing basic particles having a number average particle diameter of 30 to 500 nm and having a pH of 11.0 or less.
(一般式(1)中、Xは、酸素原子、または、硫黄原子を示し、R1およびR2は、それぞれ独立に、炭素数が1〜3のアルキル基を示し、Ar1およびAr2は、それぞれ独立に、置換もしくは無置換のアリール基を示す。ただし、該アリール基が有してもよい置換基は、カルボキシ基、シアノ基、置換もしくは無置換のアミノ基、ヒドロキシ基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキル基、ニトロ基、または、ハロゲン原子である。) (In General Formula (1), X represents an oxygen atom or a sulfur atom, R 1 and R 2 each independently represents an alkyl group having 1 to 3 carbon atoms, and Ar 1 and Ar 2 represent Each independently represents a substituted or unsubstituted aryl group, provided that the aryl group may have a carboxy group, a cyano group, a substituted or unsubstituted amino group, a hydroxy group, a substituted or unsubstituted group; A substituted alkoxy group, a substituted or unsubstituted alkyl group, a nitro group, or a halogen atom.)
本発明によれば、電子写真感光体やクリーニングブレードの損耗が抑制され、かつ、画像流れやトナーのフィルミングが抑制された電子写真装置を提供することができる。 According to the present invention, it is possible to provide an electrophotographic apparatus in which wear of an electrophotographic photosensitive member and a cleaning blade is suppressed, and image flow and toner filming are suppressed.
本発明のように、重合性官能基を有する化合物を重合あるいは架橋させて硬化させて得られる樹脂(硬化性樹脂)を電子写真感光体の表面層に用いた場合、電子写真感光体の表面が摩耗しにくくなり、電子写真感光体の長寿命化が図られる一方で、画像流れの原因となる放電生成物が除去されにくく、画像流れが発生しやすい。 As in the present invention, when a resin (curable resin) obtained by polymerizing or crosslinking a compound having a polymerizable functional group and curing is used for the surface layer of the electrophotographic photoreceptor, the surface of the electrophotographic photoreceptor is While it is difficult to wear and the life of the electrophotographic photosensitive member is extended, the discharge products that cause the image flow are hardly removed, and the image flow is likely to occur.
本発明で用いられる個数平均粒径30〜500nmのpH11.0以下の塩基性粒子(以下単に「塩基性粒子」ともいう。)は、放電生成物(窒素酸化物や窒素酸化物から生じる硝酸化合物)と反応あるいは放電生成物を吸着することによって、画像流れを抑制する。本発明において、この塩基性粒子は、電子写真装置に備わる塩基性粒子を供給する手段および/または塩基性粒子を含有する現像剤によって、電子写真感光体の表面とクリーニングブレードとが当接する部位に供給される。 The basic particles having a number average particle size of 30 to 500 nm and having a pH of 11.0 or less (hereinafter also simply referred to as “basic particles”) used in the present invention are discharge products (nitric oxides produced from nitrogen oxides and nitrogen oxides). ) And the reaction or the adsorbed discharge product, thereby suppressing the image flow. In the present invention, the basic particles are brought into contact with the surface of the electrophotographic photosensitive member and the cleaning blade by means for supplying basic particles provided in the electrophotographic apparatus and / or a developer containing basic particles. Supplied.
本発明者らの検討の結果、クリーニングブレードの損耗は、放電生成物と反応あるいは放電生成物を吸着した塩基性粒子が電子写真感光体の表面に残留することによって生じることが判明した。そして、電子写真感光体の表面層に硬化性樹脂に加えて上記特定の構造の化合物((チオ)ウレア誘導体)を含有させることにより、電子写真感光体の表面に残留する塩基性粒子(以下「残留塩基性粒子」ともいう。)の除去に効果があるとの知見を得た。 As a result of the study by the present inventors, it was found that the wear of the cleaning blade is caused by the reaction with the discharge product or the basic particles adsorbing the discharge product remaining on the surface of the electrophotographic photosensitive member. Then, by adding a compound having a specific structure ((thio) urea derivative) in addition to the curable resin to the surface layer of the electrophotographic photoreceptor, basic particles remaining on the surface of the electrophotographic photoreceptor (hereinafter referred to as “ It was also known that it is effective in removing “residual basic particles”.
本発明において、電子写真感光体の表面に残留する塩基性粒子を除去するための部材として、クリーニング手段に備わるクリーニングブレードを使用する。 In the present invention, a cleaning blade provided in the cleaning means is used as a member for removing basic particles remaining on the surface of the electrophotographic photosensitive member.
クリーニングブレードの長手方向における塩基性粒子の分布状態や、形成される画像の局在などの理由で、塩基性粒子の除去が不均一になる場合がある。また、温湿度などの環境により、クリーニングブレードの硬度などの特性が変化し、塩基性粒子の除去が不均一になったり、不十分になったりする場合もある。ここで、塩基性粒子の除去均一性や除去能力の向上のために、電子写真感光体の表面に対するクリーニングブレードの当接圧を単純に増大させると、電子写真感光体やクリーニングブレードの損耗(局所的な傷や偏摩耗など)が生じやすくなる。 The removal of the basic particles may be non-uniform due to the distribution state of the basic particles in the longitudinal direction of the cleaning blade and the localization of the formed image. In addition, characteristics such as hardness of the cleaning blade may change depending on the environment such as temperature and humidity, and the removal of basic particles may be uneven or insufficient. Here, if the contact pressure of the cleaning blade against the surface of the electrophotographic photosensitive member is simply increased in order to improve the removal uniformity and removal ability of the basic particles, the wear (localized) of the electrophotographic photosensitive member and the cleaning blade will be increased. Scratches and uneven wear).
また、本発明において除去する対象である塩基性粒子(放電生成物と反応あるいは放電生成物を吸着した塩基性粒子)は、トナーのフィルミングを引き起こすことが知られているトナーの外添剤と同等のサイズ(数10nm〜数100nmのオーダー)である。トナーのフィルミングは、外添剤などの微小粒子が電子写真感光体の表面に付着し、その上にトナーが固着することで生じる。すなわち、外添剤と同等のサイズの塩基性粒子も、トナーのフィルミングの原因となりうる。 Further, the basic particles (basic particles that react with the discharge product or adsorb the discharge product) to be removed in the present invention are the toner external additives known to cause toner filming. The size is equivalent (in the order of several tens of nm to several hundreds of nm). Toner filming occurs when fine particles such as external additives adhere to the surface of the electrophotographic photosensitive member, and the toner adheres thereon. That is, basic particles having a size equivalent to that of the external additive can also cause toner filming.
本発明者らは、電子写真感光体の表面の微視的な範囲の弾性を増加させることで、塩基性粒子の除去均一性および除去能力の向上が図れるのではないかと考えた。そして、この考えに基づいて検討を進めた結果、特定の構造の(チオ)ウレア誘導体(上記一般式(1)で示される化合物)を電子写真感光体の表面層に含有させることで、上記課題を解決できることを見出した。また、電子写真感光体の表面層における該(チオ)ウレア誘導体の含有量を増加させていくと、電子写真感光体の表面の弾性変形率(We%)は増加する傾向にあるが、弾性変形率(We%)がほとんど変化しない程度の含有量であっても、上記課題を解決できることも見出した。なお、本発明における弾性変形率(We%)の詳細は後述するが、数μm角の範囲で測定を行う手法による値である。 The present inventors considered that the removal uniformity of basic particles and the removal ability could be improved by increasing the elasticity of the surface of the electrophotographic photosensitive member in a microscopic range. As a result of investigation based on this idea, as a result of containing a (thio) urea derivative having a specific structure (a compound represented by the general formula (1)) in the surface layer of the electrophotographic photosensitive member, It was found that can be solved. Further, when the content of the (thio) urea derivative in the surface layer of the electrophotographic photosensitive member is increased, the elastic deformation rate (We%) of the surface of the electrophotographic photosensitive member tends to increase, but the elastic deformation It has also been found that the above problem can be solved even if the content is such that the rate (We%) hardly changes. In addition, although the detail of the elastic deformation rate (We%) in this invention is mentioned later, it is a value by the method of measuring in the range of several micrometers square.
本発明者らは、上記一般式(1)で示される化合物は、同一分子内のアリール基(Ar1およびAr2)同士が向かい合う配置をとりやすい特殊な化学構造である。そのため、これらのアリール基同士の距離が縮まることにより、一種の分子レベルのバネとして作用すると考えられる。 The inventors of the present invention have a special chemical structure in which the compound represented by the general formula (1) has an aryl group (Ar 1 and Ar 2 ) in the same molecule that is likely to face each other. For this reason, it is considered that the distance between these aryl groups is reduced to act as a kind of molecular level spring.
電子写真感光体の表面の微視的な範囲の弾性を増加させることにより、放電生成物と反応あるいは放電生成物を吸着した塩基性粒子が電子写真感光体の表面から除去され、電子写真感光体の表面には新たな塩基性粒子が供給されやすくなる。このような塩基性粒子の入れ替えが促進される理由として、本発明者らは以下のように考えている。 By increasing the elasticity in the microscopic range of the surface of the electrophotographic photosensitive member, the basic particles that react with the discharge product or adsorb the discharge product are removed from the surface of the electrophotographic photosensitive member. It becomes easy to supply new basic particles to the surface. The present inventors consider the following as a reason why such replacement of basic particles is promoted.
電子写真装置に用いられるクリーニングブレードは、通常、ブレード状の弾性部材であり、例えば、ウレタンゴムなどから構成される。そして、クリーニングブレードは、電子写真感光体の表面に当接配置される。 A cleaning blade used in an electrophotographic apparatus is usually a blade-like elastic member, and is made of, for example, urethane rubber. The cleaning blade is disposed in contact with the surface of the electrophotographic photosensitive member.
図4は、電子写真感光体の表面とクリーニングブレードとが当接する部位(以下「当接部」ともいう。)の近傍の模式的な断面図(当接部に直交する断面)である。図4中、101は電子写真感光体であり、107はクリーニングブレードであり、aは小粒径粒子であり、bは大粒径粒子であり、cは付着物であり、dはトナー粒子であり、Xは電子写真感光体の表面の進行方向である。電子写真感光体101とクリーニングブレード107の当接部の手前側(図4中左側)のくさび形状の部位には、小粒径粒子aや大粒径粒子bが入り込み、粒子の堰を形成する。くさびが広い領域(図4中左側)から狭い領域(図4中右側)に向かって、堰形成の主体となる粒子は、大粒径粒子bから次第に小粒径粒子aとなっていく。 FIG. 4 is a schematic cross-sectional view (cross section orthogonal to the contact portion) in the vicinity of a portion where the surface of the electrophotographic photosensitive member and the cleaning blade come into contact (hereinafter also referred to as “contact portion”). In FIG. 4, 101 is an electrophotographic photosensitive member, 107 is a cleaning blade, a is a small particle particle, b is a large particle particle, c is a deposit, and d is a toner particle. X is the traveling direction of the surface of the electrophotographic photosensitive member. The small particle size particles a and the large particle size particles b enter the wedge-shaped portion on the front side (left side in FIG. 4) of the contact portion between the electrophotographic photosensitive member 101 and the cleaning blade 107 to form a particle weir. . From the large wedge area (left side in FIG. 4) to the narrow area (right side in FIG. 4), the main particles for forming the weir gradually change from the large particle b to the small particle a.
トナー像を電子写真感光体の表面から転写材に転写した後、電子写真感光体101の表面に残留したトナー(転写残トナー)dは、小粒径粒子aや大粒径粒子bよりも十分大きく、クリーニングブレード107および上記粒子の堰でクリーニングされる。上記残留塩基性粒子などの電子写真感光体101の表面の付着物cは、堰を形成する小粒径粒子aおよび大粒径粒子bなどで擦られ、また、クリーニングブレード107により掻き取られ、電子写真感光体101の表面から除去される。 After the toner image is transferred from the surface of the electrophotographic photosensitive member to the transfer material, the toner (transfer residual toner) d remaining on the surface of the electrophotographic photosensitive member 101 is sufficiently larger than the small particle size particles a and the large particle size particles b. Largely cleaned by the cleaning blade 107 and the particle weir. The adhering substance c on the surface of the electrophotographic photosensitive member 101 such as the residual basic particles is rubbed with the small particle size particle a and the large particle size particle b forming the weir, and is scraped off by the cleaning blade 107. It is removed from the surface of the electrophotographic photosensitive member 101.
図1は、電子写真感光体101の表面とクリーニングブレード107の当接部の状態を、電子写真感光体101の表面の進行方向に見た模式的な図である。クリーニングブレード107は、当接部への粒子などの異物の挟み込みに対して、クリーニングブレード107の弾性による変形で、電子写真感光体101の表面への当接を維持しようとする。 FIG. 1 is a schematic view of the state of the surface of the electrophotographic photosensitive member 101 and the contact portion of the cleaning blade 107 as viewed in the traveling direction of the surface of the electrophotographic photosensitive member 101. The cleaning blade 107 tries to maintain the contact with the surface of the electrophotographic photosensitive member 101 by the deformation of the cleaning blade 107 due to the elasticity of the cleaning blade 107 against the trapping of foreign matters such as particles in the contact portion.
図1の(a)のように、電子写真感光体101の表面の弾性が小さい場合は、該粒子などの異物の分布により、電子写真感光体101の表面とクリーニングブレード107の当接が不均一になる。この不均一を解消するために、クリーニングブレード107の当接圧を高めたり、硬度や反発弾性が特殊な範囲の材質をクリーニングブレードに用いたりすると、クリーニング性に影響が出たり、電子写真感光体101やクリーニングブレード107の損耗が生じやすくなる。 As shown in FIG. 1A, when the surface elasticity of the electrophotographic photosensitive member 101 is small, the contact between the surface of the electrophotographic photosensitive member 101 and the cleaning blade 107 is not uniform due to the distribution of foreign matters such as particles. become. In order to eliminate this non-uniformity, if the contact pressure of the cleaning blade 107 is increased, or a material with a special range of hardness and rebound resilience is used for the cleaning blade, the cleaning performance is affected, and the electrophotographic photosensitive member Wear of the 101 and the cleaning blade 107 is likely to occur.
一方、図1の(b)のように、電子写真感光体101の表面の弾性が大きい場合は、該粒子などの異物が多量にある箇所で、電子写真感光体101の表面とクリーニングブレード107が当接しようとする際に、電子写真感光体101の表面も、その弾性により変形する。その結果、該粒子などの異物の分布があっても、クリーニングブレード107が電子写真感光体101の表面に均一に当接しやすくなる。これにより、電子写真感光体の表面に対するクリーニングブレードの当接圧の増大を抑えながら、塩基性粒子を均一に十分に除去しやすくなると考えられる。 On the other hand, when the elasticity of the surface of the electrophotographic photosensitive member 101 is large as shown in FIG. 1B, the surface of the electrophotographic photosensitive member 101 and the cleaning blade 107 are located at a location where a large amount of foreign matters such as particles are present. When attempting to contact, the surface of the electrophotographic photosensitive member 101 is also deformed by its elasticity. As a result, the cleaning blade 107 can easily come into contact with the surface of the electrophotographic photosensitive member 101 even if there is a distribution of foreign matter such as particles. Thereby, it is considered that the basic particles can be easily and uniformly removed while suppressing an increase in the contact pressure of the cleaning blade against the surface of the electrophotographic photosensitive member.
また、上記特定の構造の化合物((チオ)ウレア誘導体)を表面層に含有させたことによる電子写真感光体の電気特性の悪化は見られなかった。これは、上記向かい合うアリール基同士が異方性を持つ導電パスとしても作用するため、電気特性の悪化抑えられているのだと考えられる。 Moreover, the deterioration of the electrical characteristics of the electrophotographic photosensitive member due to the surface layer containing the compound having the specific structure ((thio) urea derivative) was not observed. This is considered to be because deterioration of electrical characteristics is suppressed because the facing aryl groups also act as conductive paths having anisotropy.
・電子写真感光体
電子写真感光体は、一般的に、支持体および支持体上に形成された感光層を有する。
-Electrophotographic photoreceptor An electrophotographic photoreceptor generally has a support and a photosensitive layer formed on the support.
本発明の電子写真装置に用いられる電子写真感光体の感光層は、電荷輸送物質と電荷発生物質を同一の層に含有する単層型感光層であってもよいし、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型感光層であってもよい。電子写真特性の観点からは、積層型感光層が好ましい。また、支持体と感光層との間には、干渉縞の抑制、支持体の表面の欠陥の被覆などを目的とした導電層や、支持体との密着性確保、感光層の電気的破壊に対する保護、感光層への電荷注入性の改良などを目的とした下引き層(中間層、バリア層とも呼ばれる)を設けてもよい。 The photosensitive layer of the electrophotographic photosensitive member used in the electrophotographic apparatus of the present invention may be a single layer type photosensitive layer containing a charge transport material and a charge generation material in the same layer, or contains a charge generation material. It may be a laminated photosensitive layer separated into a charge generation layer and a charge transport layer containing a charge transport material. From the viewpoint of electrophotographic characteristics, a laminated photosensitive layer is preferable. In addition, between the support and the photosensitive layer, a conductive layer for the purpose of suppressing interference fringes, covering defects on the surface of the support, ensuring adhesion to the support, and preventing electrical breakdown of the photosensitive layer. An undercoat layer (also referred to as an intermediate layer or a barrier layer) may be provided for the purpose of protection, improvement of charge injection property to the photosensitive layer, or the like.
図2は、本発明の電子写真装置に用いられる電子写真感光体の層構成の例を示す図である。図2の(a)に示す電子写真感光体101においては、支持体101aの上に、導電層101b、下引き層101c、電荷発生層101dおよび電荷輸送層101eがこの順に設けられている。図2の(b)に示す電子写真感光体101においては、支持体101aの上に、導電層101b、下引き層101c、電荷発生層101d、電荷輸送層101eおよび保護層101fがこの順に設けられている。図2の(a)に示す電子写真感光体の場合、電子写真感光体の表面層は電荷輸送層101eであり、(b)に示す電子写真感光体の場合、電子写真感光体の表面層は保護層101fである。電荷輸送層101eの膜厚は、5〜40μmであることが好ましい。保護層101fの膜厚は、0.5〜20μmであることが好ましい。 FIG. 2 is a diagram showing an example of the layer structure of the electrophotographic photosensitive member used in the electrophotographic apparatus of the present invention. In the electrophotographic photosensitive member 101 shown in FIG. 2A, a conductive layer 101b, an undercoat layer 101c, a charge generation layer 101d, and a charge transport layer 101e are provided in this order on a support 101a. In the electrophotographic photoreceptor 101 shown in FIG. 2B, a conductive layer 101b, an undercoat layer 101c, a charge generation layer 101d, a charge transport layer 101e, and a protective layer 101f are provided in this order on a support 101a. ing. In the case of the electrophotographic photoreceptor shown in FIG. 2A, the surface layer of the electrophotographic photoreceptor is the charge transport layer 101e, and in the case of the electrophotographic photoreceptor shown in FIG. 2B, the surface layer of the electrophotographic photoreceptor is This is the protective layer 101f. The thickness of the charge transport layer 101e is preferably 5 to 40 μm. The thickness of the protective layer 101f is preferably 0.5 to 20 μm.
本発明の電子写真装置に用いられる電子写真感光体の支持体および表面層以外の層に関しては、公知の材料および公知の形成方法を用いることができる。 For the layers other than the support and surface layer of the electrophotographic photosensitive member used in the electrophotographic apparatus of the present invention, known materials and known forming methods can be used.
上述のとおり、本発明の電子写真装置に用いられる電子写真感光体の表面層は、重合性官能基を有する化合物(少なくとも1つの重合性官能基を有する化合物)を重合あるいは架橋させて硬化させて得られる樹脂(硬化性樹脂)を含有する。重合性官能基を有する化合物を重合させる際には、必要に応じて重合開始剤を用いてもよい。また、重合性官能基を有する化合物の重合は、熱、光(紫外線など)または放射線(電子線など)を用いて行うことができる。これらの中でも、必ずしも重合開始剤を用いる必要のない、放射線を用いた重合が好ましく、電子線を用いた重合がより好ましい。また、電子線を用いて重合性官能基を有する化合物を重合させる場合、酸素による重合阻害作用を取り除く目的で、不活性ガス雰囲気で電子線を照射した後、不活性ガス雰囲気で加熱することが好ましい。不活性ガスとしては、例えば、窒素、アルゴンなどが挙げられる。 As described above, the surface layer of the electrophotographic photoreceptor used in the electrophotographic apparatus of the present invention is cured by polymerizing or crosslinking a compound having a polymerizable functional group (a compound having at least one polymerizable functional group). Contains the resulting resin (curable resin). When polymerizing a compound having a polymerizable functional group, a polymerization initiator may be used as necessary. The polymerization of the compound having a polymerizable functional group can be performed using heat, light (such as ultraviolet rays) or radiation (such as an electron beam). Among these, it is not always necessary to use a polymerization initiator, polymerization using radiation is preferable, and polymerization using an electron beam is more preferable. In addition, when a compound having a polymerizable functional group is polymerized using an electron beam, it may be heated in an inert gas atmosphere after irradiating the electron beam in an inert gas atmosphere for the purpose of removing the polymerization inhibiting action due to oxygen. preferable. Examples of the inert gas include nitrogen and argon.
本発明の電子写真装置に用いられる電子写真感光体の表面層は、さらに、下記一般式(1)で示される化合物((チオ)ウレア誘導体)を含有する。 The surface layer of the electrophotographic photosensitive member used in the electrophotographic apparatus of the present invention further contains a compound ((thio) urea derivative) represented by the following general formula (1).
上記一般式(1)中のXは、酸素原子、または、硫黄原子を示す。 X in the general formula (1) represents an oxygen atom or a sulfur atom.
また、上記一般式(1)中のR1およびR2は、それぞれ独立に、炭素数1〜3のアルキル基を示す。炭素数1〜3のアルキル基としては、メチル基、エチル基、プロピル基(n−プロピル基、イソプロピル基)が挙げられる。R1およびR2が水素原子である場合、本発明の効果は得られない。また、R1およびR2のアルキル基の炭素数が4以上である場合、表面層を形成する硬化性樹脂の構造(3次元網目構造)の高密度化を阻害する因子として働き、十分な表面層の膜強度が得られない。 Moreover, R < 1 > and R < 2 > in the said General formula (1) shows a C1-C3 alkyl group each independently. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, and a propyl group (n-propyl group, isopropyl group). When R 1 and R 2 are hydrogen atoms, the effect of the present invention cannot be obtained. Further, when the carbon number of the alkyl group of R 1 and R 2 is 4 or more, it acts as a factor that inhibits the densification of the structure (three-dimensional network structure) of the curable resin that forms the surface layer, and a sufficient surface The film strength of the layer cannot be obtained.
上記一般式(1)中のAr1およびAr2は、それぞれ独立に、置換もしくは無置換のアリール基を示す。アリール基としては、例えば、フェニル基、ナフチル基、フルオレニル基などが挙げられる。また、アリール基が有してもよい置換基は、カルボキシ基、シアノ基、置換もしくは無置換のアミノ基、ヒドロキシ基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキル基、ニトロ基、または、ハロゲン原子である。置換のアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基などのアルキル基置換のアミノ基が挙げられる。アルコキシ基としては、例えば、メトキシ基、エトキシ基などが挙げられる。無置換のアルキル基としては、例えば、メチル基、エチル基、プロピル基(n−プロピル基、イソプロピル基)などが挙げられる。置換のアルキル基としては、例えば、トリフルオロメチル基などが挙げられる。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子などが挙げられる。 Ar 1 and Ar 2 in the general formula (1) each independently represent a substituted or unsubstituted aryl group. Examples of the aryl group include a phenyl group, a naphthyl group, a fluorenyl group, and the like. The substituent that the aryl group may have includes a carboxy group, a cyano group, a substituted or unsubstituted amino group, a hydroxy group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkyl group, a nitro group, Or it is a halogen atom. Examples of the substituted amino group include alkyl group-substituted amino groups such as dimethylamino group and diethylamino group. Examples of the alkoxy group include a methoxy group and an ethoxy group. Examples of the unsubstituted alkyl group include a methyl group, an ethyl group, a propyl group (n-propyl group, isopropyl group), and the like. Examples of the substituted alkyl group include a trifluoromethyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
また、分子中のアリール基同士が向かい合う配置をとりやすいという点から、上記一般式(1)で示される化合物は、上記一般式(1)中のR1およびR2が同一の基であり、かつ、Ar1およびAr2が同一の基である、対称形の構造であることが好ましい。 In addition, the compound represented by the general formula (1) is a group in which R 1 and R 2 in the general formula (1) are the same, because the aryl groups in the molecule are easily arranged to face each other. and, Ar 1 and Ar 2 are identical groups preferably has a structure symmetrical.
また、本発明において、電子写真感光体の表面層は、上記一般式(1)で示される化合物を、表面層の全質量に対して0.5〜25質量%含有することが好ましい。含有量が少なすぎると、本発明の効果が小さくなる場合がある。含有量が多すぎると、表面層を形成する硬化性樹脂の構造(3次元網目構造)の高密度化が抑制され、表面層の膜強度が低くなる場合や、表面層から上記一般式(1)で示される化合物が析出しやすくなる場合がある。 In the present invention, the surface layer of the electrophotographic photoreceptor preferably contains 0.5 to 25% by mass of the compound represented by the general formula (1) with respect to the total mass of the surface layer. When there is too little content, the effect of this invention may become small. If the content is too large, densification of the structure (three-dimensional network structure) of the curable resin that forms the surface layer is suppressed, and the film strength of the surface layer is reduced, or the surface layer is reduced to the above general formula (1 ) May be easily precipitated.
上記一般式(1)で示される化合物は、電子写真感光体の表面層に、1種のみを含有させてもよく、2種以上を含有させてもよい。 The compound represented by the general formula (1) may contain only one type or two or more types in the surface layer of the electrophotographic photosensitive member.
上記一般式(1)で示される化合物は、例えば、下記文献に記載されている合成方法を用いて合成することができる。
・Photochem.Photobiol.Sci.,2002,1,30−37
・Transactions of the Faraday Society,34,1938,783−786
・Tetrahedron Letters 39(1998)6267−6270
・Bulletin of the chemical society of japan,vol.47(4),1974,935−937
The compound represented by the general formula (1) can be synthesized, for example, using a synthesis method described in the following literature.
-Photochem. Photobiol. Sci. , 2002, 1, 30-37
・ Transactions of the Faraday Society, 34, 1938, 783-786
Tetrahedron Letters 39 (1998) 6267-6270
Bulletin of the chemical society of Japan, vol. 47 (4), 1974, 935-937.
以下に、上記一般式(1)で示される化合物の具体例(例示化合物)を挙げるが、本発明はこれらに限定されるわけではない。 Specific examples (exemplary compounds) of the compound represented by the general formula (1) are listed below, but the present invention is not limited thereto.
上記化合物の中でも、上記式(U−1)で示される化合物、上記式(U−2)で示される化合物、上記式(U−3)で示される化合物、上記式(U−10)で示される化合物がより好ましい。以下、上記式(U−1)〜(U−24)で示される化合物を、それぞれ、例示化合物(U−1)〜(U−24)ともいう。 Among the above compounds, the compound represented by the above formula (U-1), the compound represented by the above formula (U-2), the compound represented by the above formula (U-3), and the above formula (U-10). Are more preferred. Hereinafter, the compounds represented by the formulas (U-1) to (U-24) are also referred to as exemplary compounds (U-1) to (U-24), respectively.
例示化合物(U−1)〜(U−24)は、上記一般式(1)で示される化合物のうちのウレア誘導体の具体例であるが、上記一般式(1)で示される化合物のうちのチオウレア誘導体の具体例としては、例示化合物(U−1)〜(U−24)における上記一般式(1)中のXにあたる酸素原子を硫黄原子に置き換えたものが挙げられる。 Exemplified compounds (U-1) to (U-24) are specific examples of urea derivatives among the compounds represented by the above general formula (1), but among the compounds represented by the above general formula (1) Specific examples of the thiourea derivative include those in which the oxygen atom corresponding to X in the general formula (1) in the exemplary compounds (U-1) to (U-24) is replaced with a sulfur atom.
また、本発明に用いられる重合性官能基を有する化合物とは、重合させることで硬化性樹脂を形成できる化合物である。具体的には、例えば、オレフィン化合物(二重結合C=Cを1個のみ有する化合物。)や、ハロゲン化オレフィン化合物(二重結合C=Cを1個のみ有し、ハロゲンX(XはF、Cl、BrまたはI)を有する化合物。)や、ジエン化合物(二重結合C=Cを2個以上有する化合物。)や、アセチレン化合物(三重結合C≡Cを1個以上有する化合物。)や、スチレン化合物(C=C−Ar(Arは芳香環または芳香族複素環)の構造を有する化合物。)や、ビニル化合物(ビニル基C=C−を有する化合物。)、アクリル酸化合物(C=C−CO−Z(ZはO、SまたはN)あるいはC=C−CN構造を有する化合物。)や、環状エーテル化合物(環に−O−結合を有する環状化合物。)や、ラクトン化合物(環に−CO−O−結合を有する環状化合物。)や、ラクタム化合物(環に−NH−CO−結合を有する環状化合物。)や、環状アミン化合物(環に−NH−結合を有する環状化合物。)や、環状スルフィド化合物(環にS原子を有する環状化合物。)や、環状カーボナート化合物(環に−O−CO−O−結合を有する環状化合物。)や、環状酸無水物(環に−CO−O−CO−結合を有する環状化合物。)や、環状イミノエーテル化合物(環に−N=C−O−結合を有する環状化合物。)や、アミノ酸−N−カルボン酸無水物(環に−O−CO−N=C−CO−結合を有する環状化合物。)や、環状イミド化合物(環に−CO−NH−CO−結合、−NH−CO−O−結合または−NH−CO−NH−結合を有する環状化合物。)や、環状含リン化合物(環にP原子を有する環状化合物。)や、環状含シリコン化合物(環にSi原子を有する環状化合物。)や、環状オレフィン化合物(環が炭素または炭素多重結合からなる環状化合物。)や、フェノール化合物(芳香族ヒドロキシル構造を有する化合物。)や、メラミン・尿素化合物(メラミン類または尿素誘導体。)や、ジアミン化合物(ジアミン誘導体、ポリアミンも含む。)や、ジカルボン酸類化合物(ジカルボン酸(エステル)誘導体。)や、オキシカルボン酸化合物(オキシカルボン酸(エステル)誘導体。)や、アミノカルボン酸化合物(アミノカルボン酸(エステル)誘導体。)や、ジオール化合物(フリーOH基を2基以上有するポリオール。)や、ジイソシアナート化合物(イソ(チオ)シアナート誘導体。)や、含硫黄化合物(含硫黄(S)モノマー類。)や、含リン化合物(含リン(P)モノマー類。)や、芳香族エーテル化合物(芳香族炭化水素基同士が酸素で結合された化合物。)や、ジハロゲン化合物(酸ハライド以外の炭素−ハロゲン結合を複数有する化合物。)や、アルデヒド化合物(アルデヒド基を有する化合物。)や、ジケトン化合物や、炭酸誘導体化合物や、アニリン誘導体化合物や、ケイ素化合物などが挙げられる。 The compound having a polymerizable functional group used in the present invention is a compound that can form a curable resin by polymerization. Specifically, for example, an olefin compound (a compound having only one double bond C = C) or a halogenated olefin compound (having only one double bond C = C, a halogen X (X is F , Cl, Br or I)), diene compounds (compounds having two or more double bonds C = C), acetylene compounds (compounds having one or more triple bonds C≡C), and the like. , A styrene compound (C = C-Ar (a compound having a structure of an aromatic ring or an aromatic heterocycle)), a vinyl compound (a compound having a vinyl group C = C-), an acrylic acid compound (C = C—CO—Z (where Z is O, S or N) or a compound having a C═C—CN structure), a cyclic ether compound (a cyclic compound having an —O— bond in the ring), a lactone compound (ring -CO-O- bond A cyclic compound.), A lactam compound (a cyclic compound having a —NH—CO— bond in the ring), a cyclic amine compound (a cyclic compound having a —NH— bond in the ring), a cyclic sulfide compound (S in the ring). A cyclic compound having an atom.), A cyclic carbonate compound (a cyclic compound having a —O—CO—O— bond in the ring), a cyclic acid anhydride (a cyclic compound having a —CO—O—CO— bond in the ring) ), A cyclic imino ether compound (a cyclic compound having a —N═C—O— bond in the ring), and an amino acid-N-carboxylic acid anhydride (—O—CO—N═C—CO— bond in the ring). And cyclic imide compounds (cyclic compounds having a —CO—NH—CO— bond, —NH—CO—O— bond or —NH—CO—NH— bond in the ring), Phosphorus compounds (having P atoms in the ring Cyclic compounds, cyclic silicon-containing compounds (cyclic compounds having a Si atom in the ring), cyclic olefin compounds (cyclic compounds in which the ring is composed of carbon or carbon multiple bonds), phenolic compounds (aromatic hydroxyl structure). ), Melamine / urea compounds (melamines or urea derivatives), diamine compounds (including diamine derivatives and polyamines), dicarboxylic acid compounds (dicarboxylic acid (ester) derivatives), oxycarbons Acid compounds (oxycarboxylic acid (ester) derivatives), aminocarboxylic acid compounds (aminocarboxylic acid (ester) derivatives), diol compounds (polyols having two or more free OH groups), diisocyanate compounds (Iso (thio) cyanate derivatives) and sulfur-containing compounds (sulfur-containing (S ) Monomers. ), Phosphorus-containing compounds (phosphorus-containing (P) monomers), aromatic ether compounds (compounds in which aromatic hydrocarbon groups are bonded with oxygen), dihalogen compounds (carbon-halogens other than acid halides) A compound having a plurality of bonds), an aldehyde compound (a compound having an aldehyde group), a diketone compound, a carbonic acid derivative compound, an aniline derivative compound, a silicon compound, and the like.
また、上記重合性官能基を有する化合物は、電気特性の観点から、分子中に電荷輸送性構造を有している電荷輸送性化合物であることが好ましい。電荷輸送性構造としては、例えば、トリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの構造が挙げられる。 The compound having a polymerizable functional group is preferably a charge transporting compound having a charge transporting structure in the molecule from the viewpoint of electrical characteristics. Examples of the charge transporting structure include structures such as triarylamine, hydrazone, pyrazoline, and carbazole.
また、上記重合性官能基は、重合効率の観点から、アクリル基(アクリロイルオキシ基:CH2=CHCOO−)またはメタクリル基(メタクリロイルオキシ基:CH2=C(CH3)COO−)であることが好ましい。 The polymerizable functional group is an acrylic group (acryloyloxy group: CH 2 ═CHCOO—) or a methacryl group (methacryloyloxy group: CH 2 ═C (CH 3 ) COO—) from the viewpoint of polymerization efficiency. Is preferred.
さらには、電子写真感光体の表面層に十分な3次元網目構造を形成する観点から、上記重合性官能基を有する化合物は、2つ以上の重合性官能基を有する電荷輸送性化合物であることが好ましい。 Furthermore, from the viewpoint of forming a sufficient three-dimensional network structure on the surface layer of the electrophotographic photoreceptor, the compound having a polymerizable functional group is a charge transporting compound having two or more polymerizable functional groups. Is preferred.
さらには、重合性官能基を有する化合物は、下記一般式(4)で示される化合物であることが好ましい。下記一般式(4)で示される化合物は、重合効率のよいモノアミン構造を有しており、かつ、表面層の内部応力を高めやすく傷を発生させやすい過剰な重合性官能基数が抑えられた構造である。 Furthermore, the compound having a polymerizable functional group is preferably a compound represented by the following general formula (4). The compound represented by the following general formula (4) has a monoamine structure with good polymerization efficiency, and has a structure in which the number of excessive polymerizable functional groups that can easily increase the internal stress of the surface layer and easily cause scratches is suppressed. It is.
上記一般式(4)中、R3およびR4は、それぞれ独立に、水素原子、または、メチル基を示し、Ar3は、置換もしくは無置換のアリール基を示す。mおよびnは、それぞれ独立に、0〜5の整数である。置換もしくは無置換のアリール基としては、例えば、フェニル基、ナフチル基、フルオレニル基、9,9−ジメチルフルオレニル基などが挙げられる。また、上記一般式(4)中のmおよびnは、3≦m+n≦10を満たすことが好ましい。 In the general formula (4), R 3 and R 4 each independently represent a hydrogen atom or a methyl group, and Ar 3 represents a substituted or unsubstituted aryl group. m and n are each independently an integer of 0 to 5. Examples of the substituted or unsubstituted aryl group include a phenyl group, a naphthyl group, a fluorenyl group, and a 9,9-dimethylfluorenyl group. Further, m and n in the general formula (4) preferably satisfy 3 ≦ m + n ≦ 10.
さらに、電子写真感光体の表面層の3次元網目構造の密度を高める観点から、上記一般式(4)中のAr3は、置換もしくは無置換のフェニル基であることが好ましい。 Furthermore, from the viewpoint of increasing the density of the three-dimensional network structure of the surface layer of the electrophotographic photosensitive member, Ar 3 in the general formula (4) is preferably a substituted or unsubstituted phenyl group.
以下に、上記一般式(4)で示される化合物の具体例(例示化合物)を挙げるが、本発明はこれらに限定されるわけではない。 Although the specific example (exemplary compound) of the compound shown by the said General formula (4) below is given, this invention is not necessarily limited to these.
上記式(J−1)および(J−2)中、yおよびzは、それぞれ独立に、0〜5の整数である。 In the above formulas (J-1) and (J-2), y and z are each independently an integer of 0 to 5.
上記化合物の中でも、電気特性と膜強度(耐摩耗性、耐傷性)の両立という観点から、上記式(J−1)で示され、かつ、上記式(J−1)中のyおよびzがともに3である化合物がより好ましい。 Among the above compounds, from the viewpoint of achieving both electrical properties and film strength (abrasion resistance, scratch resistance), y and z in the above formula (J-1) are represented by the above formula (J-1). Compounds in which both are 3 are more preferred.
上記重合性官能基を有する化合物は、硬化性樹脂を含有する表面層を形成する際に、1種のみを用いてもよく、2種以上を用いてもよい。 The compound having a polymerizable functional group may be used alone or in combination of two or more when forming a surface layer containing a curable resin.
本発明の電子写真装置に用いられる電子写真感光体の表面層には、導電性粒子、紫外線吸収剤などを含有させてもよい。導電性粒子としては、例えば、酸化スズ粒子などの金属酸化物が挙げられる。 The surface layer of the electrophotographic photosensitive member used in the electrophotographic apparatus of the present invention may contain conductive particles, an ultraviolet absorber and the like. Examples of the conductive particles include metal oxides such as tin oxide particles.
また、本発明の電子写真装置に用いられる電子写真感光体の表面層には、電子写真感光体の表面の潤滑性を高める潤滑性付与剤を含有させてもよい。これにより、表面層の摩耗や、繰り返し使用時の帯電、現像、転写などによる化学的劣化に伴う電子写真感光体の表面の潤滑性の変動を抑えることができ、上記のクリーニングブレードと電子写真感光体の当接状態が維持されやすくなる。また、電子写真感光体の表面とクリーニングブレードの当接部の近傍のトナー粒子やその他粒子が、電子写真感光体の表面の進行方向に直交する方向(以下「長手方向」ともいう。)に移動しやすくなり、画像比率の局在化による影響を抑制することができる。 The surface layer of the electrophotographic photosensitive member used in the electrophotographic apparatus of the present invention may contain a lubricity imparting agent that enhances the lubricity of the surface of the electrophotographic photosensitive member. As a result, it is possible to suppress changes in the lubricity of the surface of the electrophotographic photosensitive member due to wear of the surface layer and chemical deterioration due to charging, development, transfer, etc. during repeated use. The body contact state is easily maintained. Further, toner particles and other particles in the vicinity of the surface of the electrophotographic photosensitive member and the contact portion of the cleaning blade move in a direction orthogonal to the traveling direction of the surface of the electrophotographic photosensitive member (hereinafter also referred to as “longitudinal direction”). And the influence of localization of the image ratio can be suppressed.
潤滑性付与剤としては、例えば、フッ素原子含有樹脂粒子、フッ化カーボン粒子、ポリオレフィン樹脂粒子などが挙げられる。 Examples of the lubricity-imparting agent include fluorine atom-containing resin particles, carbon fluoride particles, and polyolefin resin particles.
本発明において、電子写真感光体の表面の弾性変形率(We%)およびユニバーサル硬さ値(HU)は、以下のようにして測定した。 In the present invention, the elastic deformation rate (We%) and universal hardness value (HU) of the surface of the electrophotographic photosensitive member were measured as follows.
弾性変形率(We%)は、外力を受けて変形した電子写真感光体の表面の形状回復度合いの値であり、その数値が大きければ弾性が大きいことを示し、外力に対する可逆的な変形能力の指標である。ユニバーサル硬さ値(HU)は、電子写真感光体の表面の機械的強度の値であり、外力を受けて変形した電子写真感光体の表面の凹み量の指標である。 The elastic deformation rate (We%) is a value of the degree of shape recovery of the surface of the electrophotographic photosensitive member that has been deformed by an external force. A large value indicates that the elasticity is large, and a reversible deformation capacity with respect to the external force. It is an indicator. The universal hardness value (HU) is a value of the mechanical strength of the surface of the electrophotographic photosensitive member, and is an index of the amount of dents on the surface of the electrophotographic photosensitive member that is deformed by an external force.
本発明において、これらの値は、25℃/50%RHの環境下で、ISO/FDIS14577に準拠するFischer社製の微小硬さ測定装置(商品名:フィシャースコープH100VP−HCU)を用いて測定した値である。測定条件としては、先端の対面角136゜の四角錐のダイヤモンド圧子に荷重をかけ、電子写真感光体の表面層に該ダイヤモンド圧子を押し込んだ後、荷重を減少させて荷重が0になるまでの押し込み深さと荷重を測定して弾性変形率(We%)を算出した。より具体的には、特開2007−086524号公報の[0037]〜[0043]に記載されている方法に準じて測定を行った。 In the present invention, these values were measured using a microhardness measuring device (trade name: Fischerscope H100VP-HCU) manufactured by Fischer in accordance with ISO / FDIS14577 in an environment of 25 ° C./50% RH. Value. The measurement conditions were that a load was applied to a diamond pyramid indenter with a face-to-face angle of 136 °, the diamond indenter was pushed into the surface layer of the electrophotographic photosensitive member, and the load was reduced until the load became zero. The indentation depth and load were measured to calculate the elastic deformation rate (We%). More specifically, the measurement was performed according to the method described in [0037] to [0043] of JP-A-2007-086524.
また、荷重をかけたときの押し込み深さとダイヤモンド圧子の形状から算出される表面積で除した比率(下記数式)から、ユニバーサル硬さ値(HU)を算出した。 Moreover, the universal hardness value (HU) was calculated from the ratio (the following mathematical formula) divided by the indentation depth when a load was applied and the surface area calculated from the shape of the diamond indenter.
上記数式において、Ffは測定時荷重、Sfはダイヤモンド圧子の押し込まれた部分の表面積、hfはダイヤモンド圧子の押し込み深さを示す。なお、本発明においては、上記荷重は最大6mNに達するまで所定速度(各点0.1秒の保持時間で273点)で負荷を増加させた。ただし、押し込み深さのリミットとして1μmを設定した。なお、上記数式の最右辺は荷重が6mNまで達した場合のものである。 In the above formula, F f is the load at the time of measurement, S f is the surface area of the portion where the diamond indenter is pushed in, and h f is the depth of the diamond indenter. In the present invention, the load was increased at a predetermined speed (273 points with a holding time of 0.1 seconds for each point) until the load reached 6 mN at the maximum. However, 1 μm was set as the limit of the indentation depth. Note that the rightmost side of the above formula is when the load reaches 6 mN.
電子写真感光体の表面が適度に変形し、粒子やクリーニングブレードにかかる局所的な負荷を軽減し、負荷を均一化する一方、粒子が電子写真感光体の表面に過剰に食い込むのを抑えるために、電子写真感光体の表面ユニバーサル硬さ値(HU)は150〜220N/mm2であることが好ましい。より好ましくは、170〜220N/mm2である。この範囲であれば、電子写真感光体の表面とクリーニングブレードの当接部の近傍で塩基性粒子が潰されたり、塗り延ばされたりしにくく、効果的に塩基性粒子が除去される。そのうえ、塩基性粒子が電子写真感光体の長手方向に移動する動きが促進される。また、塩基性粒子が引きずられることによる電子写真感光体やクリーニングブレードの損耗がより抑えられる。 The surface of the electrophotographic photoreceptor is moderately deformed to reduce the local load on the particles and the cleaning blade, and to equalize the load, while suppressing excessive penetration of particles into the surface of the electrophotographic photoreceptor The surface universal hardness value (HU) of the electrophotographic photosensitive member is preferably 150 to 220 N / mm 2 . More preferably, it is 170-220 N / mm < 2 >. Within this range, it is difficult for the basic particles to be crushed or spread near the surface of the electrophotographic photosensitive member and the contact portion of the cleaning blade, and the basic particles are effectively removed. In addition, the movement of the basic particles in the longitudinal direction of the electrophotographic photosensitive member is promoted. Further, the wear of the electrophotographic photosensitive member and the cleaning blade due to the dragging of the basic particles can be further suppressed.
また、電子写真感光体の表面の弾性変形率(We%)が40%以上であれば、クリーニングブレードのエッジ形状のばらつきやトナー粒子などによる、電子写真感光体の長手方向の、数μmレベルの不均一性に対する追従性が向上するため、好ましい。これにより、画像流れがさらに抑制され、画像の端部のようなクリーニングブレードにかかる負荷が極端に変化する部位においても、クリーニングブレードの掻き取り能力が変化しにくくなるため、フィルミングがより抑えられる。また、電子写真感光体の摩耗や傷の発生が抑えられるため、繰り返し使用時の電子写真感光体の表面とクリーニングブレードの当接部の近傍の形状の変化が抑えられる。 Further, if the elastic deformation ratio (We%) of the surface of the electrophotographic photosensitive member is 40% or more, it is several μm level in the longitudinal direction of the electrophotographic photosensitive member due to variations in the edge shape of the cleaning blade or toner particles. This is preferable because followability with respect to non-uniformity is improved. As a result, image flow is further suppressed, and filming is further suppressed because the cleaning blade's scraping ability is less likely to change even in a portion where the load on the cleaning blade such as the edge of the image changes extremely. . In addition, since the wear and scratches of the electrophotographic photosensitive member are suppressed, a change in shape near the surface of the electrophotographic photosensitive member and the contact portion of the cleaning blade during repeated use can be suppressed.
本発明において、電子写真感光体の膜厚は、Fischer社製の渦電流式の膜厚計(商品名:Ficher scope GROUNDEINHEIT MMS 3AM)を用いて測定した。 In the present invention, the film thickness of the electrophotographic photosensitive member was measured by using an eddy current type film thickness meter (trade name: Fischer scope GROUNDEINHEIT MMS 3AM) manufactured by Fischer.
・塩基性粒子
本発明の電子写真装置では、画像流れの発生を抑制するため、電子写真感光体の表面とクリーニングブレードの当接部に個数平均粒径30〜500nmのpH11.0以下の塩基性粒子を供給する一方、放電生成物と反応または放電生成物を吸着した残留塩基性粒子を電子写真感光体の表面から除去することが重要である。
Basic Particles In the electrophotographic apparatus of the present invention, in order to suppress the occurrence of image flow, the basicity of the surface of the electrophotographic photosensitive member and the contact portion of the cleaning blade with a number average particle size of 30 to 500 nm and pH of 11.0 or less. While supplying the particles, it is important to remove residual basic particles that have reacted with the discharge products or adsorbed the discharge products from the surface of the electrophotographic photoreceptor.
本発明に用いられる塩基性粒子は、塩基性であるため、そのpHは7.0より大きい。さらに、本発明に用いられる塩基性粒子は、pHが11.0以下のものである。好ましくは、pHが7.5以上10.5以下である。pHが7.0以下では、すなわち塩基性でなければ、画像流れの発生を抑制する効果が得られない。一方、pHが11.0を超える粒子(強塩基性粒子)であると、親水性が高くなったり、できる塩が強塩基性になったりして、電離性が強くなる。 Since the basic particles used in the present invention are basic, their pH is higher than 7.0. Furthermore, the basic particles used in the present invention have a pH of 11.0 or less. Preferably, pH is 7.5 or more and 10.5 or less. If the pH is 7.0 or less, that is, if it is not basic, the effect of suppressing the occurrence of image blur cannot be obtained. On the other hand, when the particles have a pH exceeding 11.0 (strongly basic particles), the hydrophilicity becomes high, or the resulting salt becomes strongly basic, and the ionization property becomes strong.
本発明において、塩基性粒子のpHの値は、pHが7.0に調整されたイオン交換水を使用して調整した分散液のpH値を意味し、その測定は、JISK5101−17−2(常温法)に準じて、常温(23±2℃)にて行った。 In the present invention, the pH value of the basic particles means the pH value of the dispersion adjusted using ion-exchanged water whose pH is adjusted to 7.0, and the measurement is performed according to JIS K5101-17-2 ( According to the room temperature method), it was carried out at room temperature (23 ± 2 ° C.).
また、本発明に用いられる塩基性粒子は、個数平均粒径が30〜500nmのものである。個数平均粒径が小さすぎると、電子写真感光体の表面からの除去が困難になる。個数平均粒径が大きすぎると、画像流れを抑制する効果が低下する。 The basic particles used in the present invention have a number average particle size of 30 to 500 nm. If the number average particle diameter is too small, it will be difficult to remove from the surface of the electrophotographic photoreceptor. If the number average particle size is too large, the effect of suppressing image flow is reduced.
また、本発明に用いられる塩基性粒子は、モース硬度が3以上であることが好ましく、5以上がより好ましい。モース硬度が小さすぎると、電子写真感光体の表面とクリーニングブレードの当接部で潰され、膜化しやすくなるため、電子写真感光体の表面から除去されにくくなる。なお、本発明におけるモース硬度とは、15段階のモース硬度である。 The basic particles used in the present invention preferably have a Mohs hardness of 3 or more, more preferably 5 or more. If the Mohs hardness is too small, the surface of the electrophotographic photosensitive member and the contact portion of the cleaning blade are crushed and easily formed into a film, so that it is difficult to remove from the surface of the electrophotographic photosensitive member. The Mohs hardness in the present invention is a 15-step Mohs hardness.
また、本発明に用いられる塩基性粒子は、透明または白色であることが好ましい。 The basic particles used in the present invention are preferably transparent or white.
また、本発明に用いられる塩基性粒子の体積抵抗率は、1×1012Ωcm以上であることが、帯電手段での異常放電による帯電均一性の低下を抑制できるため、好ましい。 In addition, the volume resistivity of the basic particles used in the present invention is preferably 1 × 10 12 Ωcm or more because a reduction in charging uniformity due to abnormal discharge in the charging means can be suppressed.
本発明に用いられる塩基性粒子は、塩基性有機化合物の粒子であってもよいし、塩基性無機化合物の粒子であってもよい。塩基性無機化合物の粒子としては、例えば、炭酸マグネシウム粒子、炭酸カルシウム粒子などが挙げられる。これらの中でも、炭酸カルシウム粒子は、潤滑性にも優れ、クリーニング工程における摩擦の増加を抑制でき、電子写真感光体やクリーニングブレードの損耗を抑えることができるため、好ましい。 The basic particles used in the present invention may be basic organic compound particles or basic inorganic compound particles. Examples of the basic inorganic compound particles include magnesium carbonate particles and calcium carbonate particles. Among these, calcium carbonate particles are preferable because they are excellent in lubricity, can suppress an increase in friction in the cleaning process, and can suppress wear of the electrophotographic photosensitive member and the cleaning blade.
また、必要に応じて、塩基性粒子の疎水化度を調整することができる。疎水化度が低いほど、表面の活性が高く酸や水分への作用効率が高まる一方で、疎水化度が低すぎると、耐久性や環境安定性が低下しやすくなる。具体的には、メタノール疎水化度測定による光透過率が低下を開始するメタノール濃度(以下単に「疎水化度」ともいう。)が40〜80%であることが好ましい。 Further, the hydrophobicity of the basic particles can be adjusted as necessary. The lower the degree of hydrophobicity, the higher the surface activity and the higher the efficiency of action on acids and moisture. On the other hand, when the degree of hydrophobicity is too low, durability and environmental stability tend to decrease. Specifically, it is preferable that the methanol concentration (hereinafter also simply referred to as “hydrophobization degree”) at which the light transmittance according to the measurement of methanol hydrophobization degree starts to decrease is 40 to 80%.
本発明において、塩基性粒子の個数平均粒径および疎水化度は、以下のようにして測定した。 In the present invention, the number average particle size and the degree of hydrophobicity of the basic particles were measured as follows.
まず、塩基性粒子の個数平均粒径は、走査型電子顕微鏡(SEM)で観測して、観測された塩基性粒子と同面積の円相当径をその塩基性粒子の粒径とした。個数平均粒径は、100〜1000個の範囲で無作為に選択した塩基性粒子の粒径の平均値である。 First, the number average particle diameter of the basic particles was observed with a scanning electron microscope (SEM), and the equivalent circle diameter of the same area as the observed basic particles was defined as the particle diameter of the basic particles. The number average particle diameter is an average value of the particle diameters of the basic particles randomly selected in the range of 100 to 1000 particles.
また、塩基性粒子の疎水化度は、(株)レスカ製の粉体濡れ性試験機(商品名:WET−100P)を用いて、次のようにして求めた。まず、気泡を除去した純水70mlをフラスコに入れ、この中に測定対象の塩基性粒子を0.50g精秤して添加して、測定用サンプル液を調製する。次に、この測定用サンプル液を6.67m/秒の速度で攪拌しながら、メタノールを1.3ml/分の滴下速度で連続的に添加し、780nmの波長の光で透過率90%となるメタノール濃度を測定する。なお、フラスコとしては、直径5cmの円形で厚さ1.75mmのガラス製のものを用い、マグネティックスターラーとしては、長さ25mm、最大径8mmの紡錘形であり、フッ素樹脂コーティングを施されたものを用いた。 The hydrophobicity of the basic particles was determined as follows using a powder wettability tester (trade name: WET-100P) manufactured by Reska Co., Ltd. First, 70 ml of pure water from which bubbles have been removed is placed in a flask, and 0.50 g of the basic particles to be measured are precisely weighed and added thereto to prepare a measurement sample solution. Next, while stirring the sample liquid for measurement at a speed of 6.67 m / sec, methanol is continuously added at a dropping rate of 1.3 ml / min, and the transmittance becomes 90% with light having a wavelength of 780 nm. Measure the methanol concentration. As the flask, a glass having a circular shape with a diameter of 5 cm and a thickness of 1.75 mm is used. As the magnetic stirrer, a spindle having a length of 25 mm and a maximum diameter of 8 mm and having a fluororesin coating is used. Using.
・無機粒子
本発明においては、電子写真感光体の表面とクリーニングブレードの当接部に、モース硬度が5以上であり、かつ、個数平均粒径が上記塩基性粒子より大きくかつ1000nm以下(1μm以下)の無機粒子が介在することが好ましい。なお、本発明において、無機粒子の個数平均粒径の測定は、塩基性粒子の個数平均粒径の測定と同様にして行った。
Inorganic particles In the present invention, the surface of the electrophotographic photosensitive member and the contact portion of the cleaning blade have a Mohs hardness of 5 or more and a number average particle size larger than the basic particles and 1000 nm or less (1 μm or less) ) Inorganic particles are preferably present. In the present invention, the number average particle size of the inorganic particles was measured in the same manner as the number average particle size of the basic particles.
無機粒子は、有機材料に比べて高い硬度を有しているため、クリーニングブレードで負荷を受け、電子写真感光体の表面の残留塩基性粒子を摺擦し、クリーニングブレードによる掻き取り性を向上させることができる。また、上記粒径により、電子写真感光体とクリーニングブレードの当接部の近傍で、塩基性粒子を電子写真感光体の表面の長手方向に移動させ、画像比率の局在化による影響を抑制することができる。そのため、電子写真感光体やクリーニングブレードの損耗を抑制することができる。 Since inorganic particles have a higher hardness than organic materials, they are loaded with a cleaning blade and rub against the remaining basic particles on the surface of the electrophotographic photosensitive member to improve the scraping property of the cleaning blade. be able to. In addition, the above particle size moves the basic particles in the longitudinal direction of the surface of the electrophotographic photosensitive member in the vicinity of the contact portion between the electrophotographic photosensitive member and the cleaning blade, thereby suppressing the influence of localization of the image ratio. be able to. Therefore, wear of the electrophotographic photosensitive member and the cleaning blade can be suppressed.
また、無機粒子は、透明または白色であることが好ましい。 The inorganic particles are preferably transparent or white.
無機粒子としては、例えば、アルミナ粒子、酸化チタン粒子、チタン酸ストロンチウム粒子などが挙げられる。これらの中でも、アルミナ粒子は、モース硬度が12と高く、好ましい。 Examples of inorganic particles include alumina particles, titanium oxide particles, and strontium titanate particles. Among these, alumina particles have a high Mohs hardness of 12 and are preferable.
・電子写真装置
図3は、本発明の電子写真装置の構成の例を示す図である。
Electrophotographic apparatus FIG. 3 is a diagram showing an example of the configuration of the electrophotographic apparatus of the present invention.
図3の(a)は、電子写真装置の全体構成である。電子写真感光体101は、回動可能な円筒状(ドラム型)の電子写真感光体であり、駆動機構(不図示)により、所定の速度で矢印X方向に回転駆動される。電子写真感光体101の形状は、円筒状のほか、ベルト状などであってもよい。電子写真感光体101の周囲には、放電を伴う帯電手段102、像露光光103を照射するための像露光手段(不図示)、現像手段104、転写手段105、クリーニング手段106が配置される。放電を伴う帯電手段102としては、例えば、コロナ帯電方式やローラー帯電方式の帯電手段が挙げられる。 FIG. 3A shows the overall configuration of the electrophotographic apparatus. The electrophotographic photosensitive member 101 is a rotatable cylindrical (drum type) electrophotographic photosensitive member, and is rotationally driven in a direction indicated by an arrow X at a predetermined speed by a driving mechanism (not shown). The shape of the electrophotographic photosensitive member 101 may be a belt shape or the like in addition to a cylindrical shape. Around the electrophotographic photosensitive member 101, there are arranged a charging means 102 with discharge, an image exposure means (not shown) for irradiating the image exposure light 103, a developing means 104, a transfer means 105, and a cleaning means 106. Examples of the charging unit 102 that accompanies discharge include a corona charging type or roller charging type charging unit.
帯電手段102で帯電された電子写真感光体101の表面には、像露光光103が照射されることにより静電潜像が形成される。後述の実施例では、帯電ローラーを電子写真感光体の表面に接触させ、直流(DC)電圧に正弦波の交流(AC)電圧を重畳した電圧を帯電ローラーに印加した。また、像露光手段による像露光は、イメージ露光方式であり、現像手段の対向位置において電子写真感光体の表面の暗部電位Vdが−600Vになるように、明部電位Vlが−100Vになるように設定した。 An electrostatic latent image is formed on the surface of the electrophotographic photosensitive member 101 charged by the charging unit 102 by irradiation with image exposure light 103. In Examples described later, the charging roller was brought into contact with the surface of the electrophotographic photosensitive member, and a voltage obtained by superimposing a sine wave alternating current (AC) voltage on a direct current (DC) voltage was applied to the charging roller. The image exposure by the image exposure unit is an image exposure method, and the light portion potential Vl becomes −100 V so that the dark portion potential Vd on the surface of the electrophotographic photosensitive member becomes −600 V at the position facing the developing unit. Set to.
電子写真感光体101の表面には、形成された静電潜像に応じたトナー像が現像手段104により形成され、次いで、転写手段105によりトナー像が転写材Pに転写される。転写手段105による転写工程を経た電子写真感光体101の表面は、クリーニング手段106のクリーニングブレードにより転写残トナーや紙粉などの残留物が除去されて、次の画像形成工程に供される。 A toner image corresponding to the formed electrostatic latent image is formed on the surface of the electrophotographic photosensitive member 101 by the developing unit 104, and then the toner image is transferred to the transfer material P by the transfer unit 105. Residues such as transfer residual toner and paper dust are removed from the surface of the electrophotographic photosensitive member 101 that has undergone the transfer process by the transfer unit 105 by the cleaning blade of the cleaning unit 106, and is subjected to the next image forming process.
・クリーニング手段
本発明の電子写真装置に用いられるクリーニング手段は、電子写真感光体の表面に当接するクリーニングブレードを有するブレードクリーニング方式のものである。図3において、クリーニング手段106は、クリーニングブレード107を有する。クリーニングブレードは、ゴム製であることが好ましい。後述の実施例にでは、ポリウレタンゴム製のクリーニングブレードを用いた。
Cleaning means The cleaning means used in the electrophotographic apparatus of the present invention is of a blade cleaning type having a cleaning blade that comes into contact with the surface of the electrophotographic photosensitive member. In FIG. 3, the cleaning means 106 has a cleaning blade 107. The cleaning blade is preferably made of rubber. In the examples described later, a polyurethane rubber cleaning blade was used.
図3の(b)は、電子写真装置のクリーニングブレード107およびその設置状態を示している。クリーニングブレード107は、保持手段107Bにより保持され、電子写真感光体101の表面に所定の当接圧(または侵入量)および設定角θで当接される。当接圧を一定とするために、付勢手段107Sを設けてもよい。 FIG. 3B shows the cleaning blade 107 of the electrophotographic apparatus and its installation state. The cleaning blade 107 is held by the holding means 107B and is brought into contact with the surface of the electrophotographic photosensitive member 101 with a predetermined contact pressure (or intrusion amount) and a set angle θ. In order to make the contact pressure constant, the urging means 107S may be provided.
また、クリーニングブレードの厚さTと自由長Lの比T/Lが0.2以上であると、クリーニングブレードの撓みが抑制され、電子写真感光体の表面にクリーニングブレードエッジを安定させて当接することができ、好ましい。 When the ratio T / L of the cleaning blade thickness T to the free length L is 0.2 or more, the cleaning blade is prevented from being bent, and the cleaning blade edge is brought into stable contact with the surface of the electrophotographic photosensitive member. Can be preferred.
また、システムの寿命の観点から、クリーニングブレード107のゴム物性として、100%モジュラスや破断伸びが規定されたものを使用すると、より好ましい。 Further, from the viewpoint of the life of the system, it is more preferable to use the rubber properties of the cleaning blade 107 that are defined with 100% modulus and elongation at break.
ゴム製のクリーニングブレードを用いる場合、ゴム物性としては、2940≦100%モジュラス≦5880kN/m2、破断伸び≧300%の範囲にあることが好ましい。この範囲とすることで、クリーニングブレードの損耗を抑制できる。 When a rubber cleaning blade is used, the rubber properties are preferably in the range of 2940 ≦ 100% modulus ≦ 5880 kN / m 2 and elongation at break ≧ 300%. By setting it within this range, the wear of the cleaning blade can be suppressed.
・粒子供給手段
本発明において、上記の塩基性粒子や無機粒子を電子写真感光体の表面とクリーニングブレードの当接部に供給する方法は、特に限定されない。専用の粒子供給手段を用いてもよいし、転写手段や帯電手段などを介して粒子を供給してもよい。
-Particle supply means In the present invention, the method for supplying the basic particles and the inorganic particles to the surface of the electrophotographic photosensitive member and the contact portion of the cleaning blade is not particularly limited. A dedicated particle supply unit may be used, or the particles may be supplied via a transfer unit, a charging unit, or the like.
塩基性粒子の供給量は、粒子供給の均一性の観点から、電子写真感光体の単位面積あたり1×10−10g/mm2以上が好ましい。また、5×10−6g/mm2以下であれば、供給の負荷が過剰にならず、塩基性粒子の長寿命化ができて好ましい。 The supply amount of the basic particles is preferably 1 × 10 −10 g / mm 2 or more per unit area of the electrophotographic photoreceptor from the viewpoint of uniformity of particle supply. Moreover, if it is 5 * 10 < -6 > g / mm < 2 > or less, the load of supply does not become excess and it can prolong the lifetime of basic particles, and is preferable.
塩基性粒子供給手段は、例えば、図3の(a)のように、供給物である粒子をブロック状に成形したものからなる粒子源109と、ブラシローラーなどの供給部材110を使用できる。図3の(a)において、供給部材110には、粒子源109を接触させて配設してある。この他、供給した粒子を電子写真感光体101表面で均す手段(不図示)や、フリッカー(不図示)などを付加してもよい。 As the basic particle supply means, for example, as shown in FIG. 3A, a particle source 109 formed by forming particles as a supply into a block shape and a supply member 110 such as a brush roller can be used. In FIG. 3A, the supply source 110 is provided with a particle source 109 in contact therewith. In addition, a means (not shown) for leveling supplied particles on the surface of the electrophotographic photosensitive member 101, a flicker (not shown), or the like may be added.
図3の(a)において、供給部材110は、電子写真感光体101と相対速度(表面の速度)の差をもって駆動され、塩基性粒子を電子写真感光体101の表面に塗布する。供給部材110のブラシローラーのブラシ繊維の材質としては、例えば、ナイロン、アクリル、ポリエステルなどが挙げられる。また、ブラシ繊維にカーボンや金属粉を含ませて導電性を付与してもよい。また、ブラシ繊維は、粒子源109に均一に接触できるように、密度1500〜80000本/cm2、太さ3.33Tex以下が好ましい。ブラシ繊維の繊維長は、太さ、密度、駆動速度などの各種設定条件に応じて、適宜調整すればよい。 In FIG. 3A, the supply member 110 is driven with a difference in relative speed (surface speed) from the electrophotographic photosensitive member 101 to apply basic particles to the surface of the electrophotographic photosensitive member 101. Examples of the material of the brush fibers of the brush roller of the supply member 110 include nylon, acrylic, and polyester. Further, the brush fibers may be provided with conductivity by including carbon or metal powder. The brush fibers preferably have a density of 1500 to 80000 pieces / cm 2 and a thickness of 3.33 Tex or less so that the brush fibers can be uniformly contacted with the particle source 109. The fiber length of the brush fibers may be appropriately adjusted according to various setting conditions such as thickness, density, and driving speed.
供給部材110のブラシローラーを電子写真感光体101の表面に当接させる際の侵入量は、ブラシ繊維の損耗を抑制する観点から、3mm以下であることが好ましい。 The amount of penetration when the brush roller of the supply member 110 is brought into contact with the surface of the electrophotographic photosensitive member 101 is preferably 3 mm or less from the viewpoint of suppressing wear of the brush fibers.
供給部材110のブラシローラーの駆動速度は、粒子供給の電子写真感光体との相対速度(表面の速度)の差が電子写真感光体101に対して5〜50%が好ましい。相対速度の差が小さすぎると、粒子源109の供給が不均一になりやすくなる。相対速度の差が大きすぎると、供給部材110や電子写真感光体101の損耗が生じやすくなる。 The driving speed of the brush roller of the supply member 110 is preferably 5 to 50% of the difference in relative speed (surface speed) with respect to the electrophotographic photosensitive member supplied with particles relative to the electrophotographic photosensitive member 101. If the difference in relative speed is too small, the supply of the particle source 109 tends to be uneven. When the difference in relative speed is too large, the supply member 110 and the electrophotographic photosensitive member 101 are easily worn out.
また、供給部材110は、電子写真感光体101の表面の進行方向で、転写手段105以降(下流側)でかつ帯電手段101以前(上流側)に配設することが好ましい。 Further, the supply member 110 is preferably disposed after the transfer unit 105 (downstream side) and before the charging unit 101 (upstream side) in the traveling direction of the surface of the electrophotographic photosensitive member 101.
また、供給部材110は、電子写真感光体101に非接触で塩基性粒子、無機粒子を電子写真感光体101の表面に飛散させて供給するようにすることもできる。 Further, the supply member 110 can supply the basic particles and inorganic particles to the surface of the electrophotographic photosensitive member 101 in a non-contact manner with the electrophotographic photosensitive member 101.
その他、専用の粒子供給手段を設けず、あるいは、専用の粒子供給手段と併用して、塩基性粒子を現像剤に含有させることによって、電子写真感光体の表面とクリーニングブレードの当接部に供給するようにすることもできる。塩基性粒子を現像剤に含有させ、現像手段から供給する方式は、塩基性粒子も拡散が促進され、電子写真感光体の表面の長手方向での均一性が向上するため、好ましい。また、専用の粒子供給手段を設ける必要が必ずしもないため、電子写真装置の小型化にも有利である。塩基性粒子を現像剤に含有させた場合の現像方式としては、公知の現像方式が適用できるが、接触現像方式であれば、画像比率などによらず電子写真感光体の表面に塩基性粒子を供給することができるため、好ましい。この方法は、無機粒子の供給方法としても用いることができる。 In addition, by supplying a basic particle in the developer without providing a dedicated particle supplying means or in combination with the dedicated particle supplying means, the surface is supplied to the surface of the electrophotographic photosensitive member and the contact portion of the cleaning blade. You can also do it. A method in which basic particles are contained in a developer and supplied from the developing means is preferable because the basic particles are also promoted to diffuse and the uniformity in the longitudinal direction of the surface of the electrophotographic photosensitive member is improved. Further, since it is not always necessary to provide a dedicated particle supply means, it is advantageous for miniaturization of the electrophotographic apparatus. As a developing method in which basic particles are contained in the developer, a known developing method can be applied. However, if the contact developing method is used, the basic particles are applied to the surface of the electrophotographic photosensitive member regardless of the image ratio or the like. Since it can supply, it is preferable. This method can also be used as a method for supplying inorganic particles.
塩基性粒子、無機粒子を現像剤に含有させる場合、塩基性粒子、無機粒子を、現像効率や転写特性など、現像剤の特性に弊害が出ない量でトナー粒子に外添することが好ましい。外添量は、トナー粒子100部に対して、塩基性粒子と無機粒子の合計で0.2〜3.5部であることが好ましい。塩基性粒子、無機粒子をトナー粒子に外添する方法としては、公知の外添方法を用いることができる。 When the basic particles and inorganic particles are contained in the developer, the basic particles and inorganic particles are preferably externally added to the toner particles in an amount that does not adversely affect the developer characteristics such as development efficiency and transfer characteristics. The external addition amount is preferably 0.2 to 3.5 parts in total of basic particles and inorganic particles with respect to 100 parts of toner particles. As a method of externally adding basic particles and inorganic particles to toner particles, a known external addition method can be used.
・放電電流量Idis
後述の実施例では、放電を伴う帯電手段102である帯電ローラーには、直流電圧に交流電圧を重畳した電圧(帯電電圧)が印加されている。帯電ローラーから電子写真感光体101への放電が起きていない場合は、帯電ローラーと電子写真感光体101と間のインピーダンスにしたがって、印加した交流電圧Vac(振幅:Vpp)と交流電流量Iacの間には、リニアな関係が成立している。
・ Discharge current amount Idis
In an embodiment described later, a voltage (charging voltage) obtained by superimposing an AC voltage on a DC voltage is applied to a charging roller that is a charging unit 102 that accompanies discharge. When no discharge from the charging roller to the electrophotographic photosensitive member 101 occurs, according to the impedance between the charging roller and the electrophotographic photosensitive member 101, between the applied AC voltage Vac (amplitude: Vpp) and the AC current amount Iac. Has a linear relationship.
一方、帯電ローラーから電子写真感光体101への放電が起きているときは、Iac≧Iz(Izは図5の放電領域での破線部)となる。このIacとIzの差Idisを放電電流量と規定する。 On the other hand, when discharge from the charging roller to the electrophotographic photosensitive member 101 occurs, Iac ≧ Iz (Iz is a broken line portion in the discharge region in FIG. 5). The difference Idis between Iac and Iz is defined as the discharge current amount.
放電が起きているときには、電気的な過渡現象を含むため、理論的に放電電流量Idisを求めることは難しい。さらには、放電電流量Idisは、温湿度や帯電ローラーの電子写真感光体への当接条件、物性、現像剤などによる汚れなどに影響されやすく、常に一定ではない。よって、放電電流量Idisは画像形成動作ごとに、または、一定時間ごとに求める必要がある。 It is difficult to theoretically obtain the discharge current amount Idis because an electrical transient phenomenon is included when the discharge is occurring. Furthermore, the discharge current amount Idis is easily influenced by temperature and humidity, contact conditions of the charging roller to the electrophotographic photosensitive member, physical properties, dirt due to a developer, and the like, and is not always constant. Therefore, the discharge current amount Idis needs to be obtained for each image forming operation or for every predetermined time.
後述の実施例では、放電電流量Idisが一定となるように制御して評価を行っている。以下、この制御方法について述べる。 In the examples described later, the evaluation is performed by controlling the discharge current amount Idis to be constant. Hereinafter, this control method will be described.
後述の実施例の電子写真装置は、コントローラー(不図示)および電流検出手段(不図示)を有している。これらと電源(不図示)により、非画像形成時に、交流電圧を未放電領域で1点以上、放電領域では2点以上印加し、そのときの総和の交流電流量Iacを測定する。コントローラーは、上記の測定値と交流電圧0の点(振幅Vpp=0ではIacもIdisも0)から近似処理を行い、所望の放電電流量Idisに対応する印加電圧を算出し、算出された印加電圧を電源から帯電ローラーに印加する。電流制御方式の場合には、電流検出手段の替わりに電圧検出手段として、未放電領域および放電領域の交流電流量Iacを各々印加し、上述の要領で所望の放電電流量Idisに対応する交流電流量Iacを求めて、帯電ローラーに印加するようにすればよい。 An electrophotographic apparatus according to an embodiment to be described later includes a controller (not shown) and current detection means (not shown). With these and a power source (not shown), at the time of non-image formation, an alternating voltage is applied at one point or more in the undischarged region and two or more points in the discharging region, and the total alternating current amount Iac at that time is measured. The controller performs an approximation process from the above measured value and the point of AC voltage 0 (the amplitude Vpp = 0, Iac and Idis are both 0), calculates the applied voltage corresponding to the desired discharge current amount Idis, and the calculated application A voltage is applied from the power source to the charging roller. In the case of the current control method, the AC current amount Iac corresponding to the desired discharge current amount Idis is applied as described above by applying the AC current amount Iac of the undischarged region and the discharge region as voltage detecting means instead of the current detecting means. May be obtained and applied to the charging roller.
連続で画像形成を行う場合には、画像形成間で上記の動作を行うようにすることができる。 When image formation is performed continuously, the above operation can be performed between image formations.
・トナー
本発明において、トナーとしては、通常のトナー粒子と外添剤を含むトナーを使用できる。
Toner In the present invention, as the toner, a toner containing normal toner particles and an external additive can be used.
トナー粒子は、通常、結着樹脂や着色剤やワックス類および荷電制御剤などを含有する。また、トナー粒子の製造方法としては、例えば、粉砕法、懸濁造粒法、懸濁重合法、分散重合法、乳化重合法、乳化凝集法などが挙げられる。トナー粒子の質量平均粒径(D4)は、高画質化およびクリーニング性などの観点から、3〜12μmであることが好ましい。また、トナー粒子には、必要に応じて、流動性向上剤、離型剤などの粒子を外添することができる。外添する粒子(「外添剤」ともいう。)の種類、量および外添方法は、公知のものを用いることができる。外添剤をトナー粒子に外添する方法としては、例えば、ヘンシェルミキサー(三井三池化工機(株)製)などの混合機を用いる方法が挙げられる。 The toner particles usually contain a binder resin, a colorant, a wax, a charge control agent, and the like. Examples of the toner particle production method include a pulverization method, a suspension granulation method, a suspension polymerization method, a dispersion polymerization method, an emulsion polymerization method, and an emulsion aggregation method. The mass average particle diameter (D4) of the toner particles is preferably 3 to 12 μm from the viewpoints of high image quality and cleanability. Further, particles such as a fluidity improver and a release agent can be externally added to the toner particles as necessary. Known types can be used for the type, amount, and external addition method of particles to be externally added (also referred to as “external additive”). Examples of a method for externally adding an external additive to toner particles include a method using a mixer such as a Henschel mixer (manufactured by Mitsui Miike Chemical Co., Ltd.).
上記の塩基性粒子、無機粒子をトナー粒子に外添して使用する場合には、上記の外添剤と同様に外添することができる。 When the above basic particles and inorganic particles are externally added to the toner particles, they can be externally added in the same manner as the above external additives.
現像剤を、トナーとキャリア(磁性キャリア)を混合してなる2成分現像剤とする場合、2成分現像剤中のトナーの量は、キャリアの全質量に対して2〜35質量%であることが好ましい。2〜35質量%とすることで、トナーへの電荷付与性などの現像性と、トナーの飛散低減とのバランスがとれるうえに、現像剤の穂と電子写真感光体の当接が安定し、現像剤に塩基性粒子、無機粒子を含有させた場合、それらの電子写真感光体の表面への供給が安定する。 When the developer is a two-component developer obtained by mixing a toner and a carrier (magnetic carrier), the amount of toner in the two-component developer is 2 to 35% by mass with respect to the total mass of the carrier. Is preferred. By setting the amount to 2 to 35% by mass, the balance between the developing property such as the charge imparting property to the toner and the reduction of the scattering of the toner can be obtained, and the contact between the developer ear and the electrophotographic photosensitive member is stabilized. When the developer contains basic particles and inorganic particles, their supply to the surface of the electrophotographic photoreceptor is stabilized.
以下に、具体的な実施例を挙げて本発明をさらに詳細に説明する。ただし、本発明は、これらのみに限定されるものではない。なお、実施例中の「部」は「質量部」を意味する。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to these. In the examples, “part” means “part by mass”.
[塩基性粒子の製造例]
〈炭酸カルシウム粒子の製造例〉
炭酸カルシウム粒子は、天然に存在する石灰石などの粉砕や、公知の化学反応による合成によって製造することができる。合成により炭酸カルシウム粒子を得る場合、その粒径(個数平均粒径)や粒度分布を制御しやすい。本例では、カルサイト型の結晶構造の合成炭酸カルシウム粒子を製造した。
[Production example of basic particles]
<Production example of calcium carbonate particles>
The calcium carbonate particles can be produced by pulverization of naturally occurring limestone or the like, or synthesis by a known chemical reaction. When calcium carbonate particles are obtained by synthesis, it is easy to control the particle size (number average particle size) and particle size distribution. In this example, synthetic calcium carbonate particles having a calcite-type crystal structure were produced.
〈炭酸亜鉛粒子の製造例〉
炭酸亜鉛粒子は、公知の化学反応による合成によって製造することができる。本例では、原料の酸化亜鉛粒子を含む水スラリー中に二酸化炭素ガスを導入し、塩基性炭酸亜鉛を生成して、粉砕工程を経て炭酸亜鉛粒子を製造した。
<Production example of zinc carbonate particles>
Zinc carbonate particles can be produced by synthesis by a known chemical reaction. In this example, carbon dioxide gas was introduced into a water slurry containing the raw material zinc oxide particles to produce basic zinc carbonate, and zinc carbonate particles were produced through a pulverization step.
〈炭酸マグネシウム粒子の製造例〉
炭酸マグネシウム粒子は、公知の化学反応による合成によって製造することができる。本例では、原料の酸化マグネシウム粒子を含む水スラリー中に二酸化炭素ガスを導入し、塩基性炭酸マグネシウムを生成し、粉砕工程を経て炭酸マグネシウム粒子を製造した。
<Production example of magnesium carbonate particles>
Magnesium carbonate particles can be produced by synthesis by a known chemical reaction. In this example, carbon dioxide gas was introduced into a water slurry containing magnesium oxide particles as a raw material to produce basic magnesium carbonate, and magnesium carbonate particles were produced through a pulverization step.
〈酸化マグネシウム粒子の製造例〉
炭酸マグネシウム粒子は、炭酸塩または硝酸塩の加水分解や灼熱分解などの公知の化学反応による合成によって製造することができる。本例では、加水分解により酸化マグネシウム粒子を製造した。
<Production example of magnesium oxide particles>
Magnesium carbonate particles can be produced by synthesis by a known chemical reaction such as hydrolysis or pyrolysis of carbonate or nitrate. In this example, magnesium oxide particles were produced by hydrolysis.
上記の塩基性粒子は、疎水化度を制御するために、表面に湿式の脂肪酸処理を施した。なお、本例においては、脂肪酸で湿式処理を行ったが、乾式処理を用いることもできる。 The above basic particles were subjected to wet fatty acid treatment on the surface in order to control the degree of hydrophobicity. In addition, in this example, although the wet process was performed with the fatty acid, a dry process can also be used.
得られた各塩基性粒子の個数平均粒径およびpHを表1に示す。なお、表1中の(E01)は、便宜上“塩基性粒子”の欄に記載しているが、pHが7ではないため、塩基性粒子ではない。以下、「粒子(E01)」とも称する。また、(E11)および(E12)は塩基性粒子ではあるものの、pHが11.0を超えているため、本発明に用いられる塩基性粒子には当たらない。また、(E13)および(E19)は塩基性粒子ではあるものの、個数平均粒径が30〜500nmの範囲から逸脱しているため、本発明に用いられる塩基性粒子には当たらない。 Table 1 shows the number average particle size and pH of the obtained basic particles. Although (E01) in Table 1 is described in the column of “basic particles” for convenience, it is not basic particles because the pH is not 7. Hereinafter, it is also referred to as “particle (E01)”. In addition, although (E11) and (E12) are basic particles, they do not hit the basic particles used in the present invention because the pH exceeds 11.0. Further, although (E13) and (E19) are basic particles, the number average particle size deviates from the range of 30 to 500 nm, and therefore does not fall under the basic particles used in the present invention.
[無機粒子の製造例]
無機粒子として、焼結法で得られる高純度α−アルミナ(Al2O3)粒子、燐灰石(Ca5F(PO4)3)粒子、ざくろ石((Mg,Ca,Fe)3(Al,Cr,Fe)2(SiO4)3)粒子、炭化ケイ素(SiC)粒子を製造した。
[Inorganic particle production example]
As inorganic particles, high-purity α-alumina (Al 2 O 3 ) particles obtained by a sintering method, apatite (Ca 5 F (PO 4 ) 3 ) particles, garnet ((Mg, Ca, Fe) 3 (Al, Cr, Fe) 2 (SiO 4 ) 3 ) particles and silicon carbide (SiC) particles were produced.
得られた無機粒子のモース硬度および個数平均粒径を表2に示す。 Table 2 shows the Mohs hardness and number average particle diameter of the obtained inorganic particles.
[トナーの製造例]
トナー粒子100部に個数平均粒径20nmの疎水化シリカ粒子(外添剤)1.5部を混合し、ヘンシェルミキサー(商品名:FM−75型、三井三池化工機(株)製)を用いて、トナー粒子に疎水化シリカ粒子を外添して、トナーを得た。なお、ヘンシェルミキサーの処理条件は、回転数を30s−1とし、10分間の処理とした。以下、これを標準トナーと称する。
[Example of toner production]
100 parts of toner particles are mixed with 1.5 parts of hydrophobic silica particles (external additive) having a number average particle diameter of 20 nm, and a Henschel mixer (trade name: FM-75 type, manufactured by Mitsui Miike Chemical Co., Ltd.) is used. Then, the toner was obtained by externally adding hydrophobic silica particles to the toner particles. The processing conditions of the Henschel mixer were set at 30 s -1 for 10 minutes. Hereinafter, this is referred to as a standard toner.
また、標準トナー100部に粒子(E01)0.5部を混合し、上記と同様に外添処理を行って、塩基性粒子外添トナーを製造した。 Further, 0.5 part of particles (E01) was mixed with 100 parts of standard toner, and external addition treatment was performed in the same manner as above to produce a basic particle externally added toner.
また、上記と同様に標準トナーおよび塩基性粒子(E02)〜(E19)を用いて、それぞれ塩基性粒子外添トナーを製造した。 Further, in the same manner as described above, basic toner particles were added using the standard toner and basic particles (E02) to (E19).
なお、無機粒子を追加する場合には、上記にさらに無機粒子1.0部を混合した後、外添処理を行った。 In addition, when adding inorganic particle | grains, after adding 1.0 part of inorganic particles further to the above, the external addition process was performed.
なお、本例で用いたトナー粒子は、以下のようにして製造されたものである。 The toner particles used in this example are manufactured as follows.
〈低軟化点樹脂の製造例〉
ビニル系共重合体の材料として、スチレン5部、2−エチルヘキシルアクリレート2.5部、フマル酸1部、α−メチルスチレンの2量体2.5部、および、ジクミルパーオキサイドを滴下ロートに入れた。また、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン30部、ポリオキシエチレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン20部、テレフタル酸10部、無水トリメリット酸5部、フマル酸24部、および、酸化ジブチルスズをガラス製4リットルの四つ口フラスコに入れた。温度計、撹拌棒、コンデンサーおよび窒素導入管を四つ口フラスコに取りつけ、この四つ口フラスコをマントルヒーター内に設置した。次に、四つ口フラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、130℃で攪拌しつつ、先の滴下ロートより、ビニル系共重合体の単量体、架橋剤および重合開始剤を4時間かけて滴下した。次いで、180℃に昇温を行い、2.5時間反応を進め、低軟化点樹脂(L−1)(ハイブリッド樹脂)を得た。
<Production example of low softening point resin>
As a vinyl copolymer material, 5 parts of styrene, 2.5 parts of 2-ethylhexyl acrylate, 1 part of fumaric acid, 2.5 parts of dimer of α-methylstyrene, and dicumyl peroxide are added to a dropping funnel. I put it in. Also, 30 parts of polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, 20 parts of polyoxyethylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, Ten parts of terephthalic acid, 5 parts of trimellitic anhydride, 24 parts of fumaric acid, and dibutyltin oxide were placed in a 4-liter four-necked flask made of glass. A thermometer, a stir bar, a condenser and a nitrogen inlet tube were attached to a four-necked flask, and this four-necked flask was placed in a mantle heater. Next, after the inside of the four-necked flask was replaced with nitrogen gas, the temperature was gradually increased while stirring, and the monomer of the vinyl copolymer and the crosslinking agent were added from the previous dropping funnel while stirring at 130 ° C. And the polymerization initiator was dripped over 4 hours. Next, the temperature was raised to 180 ° C. and the reaction was allowed to proceed for 2.5 hours to obtain a low softening point resin (L-1) (hybrid resin).
〈高軟化点樹脂の製造例〉
ビニル系共重合体の材料として、スチレン10部、2−エチルヘキシルアクリレート5部、フマル酸2部、α−メチルスチレンの2量体5部、および、ジクミルパーオキサイドを滴下ロートに入れた。また、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン25部、ポリオキシエチレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン15部、テレフタル酸10部、無水トリメリット酸5部、フマル酸23部、および、酸化ジブチルスズをガラス製4リットルの四つ口フラスコに入れた。温度計、撹拌棒、コンデンサーおよび窒素導入管を四つ口フラスコに取りつけ、この四つ口フラスコをマントルヒーター内に設置した。次に、四つ口フラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、130℃で攪拌しつつ、先の滴下ロートより、ビニル系共重合体の単量体、架橋剤および重合開始剤を4時間かけて滴下した。次いで、190℃に昇温を行い、7時間反応をさらに進め、高軟化点樹脂(H−1)を得た。
<Production example of high softening point resin>
As a vinyl copolymer material, 10 parts of styrene, 5 parts of 2-ethylhexyl acrylate, 2 parts of fumaric acid, 5 parts of a dimer of α-methylstyrene, and dicumyl peroxide were placed in a dropping funnel. Also, 25 parts of polyoxypropylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, 15 parts of polyoxyethylene (2.2) -2,2-bis (4-hydroxyphenyl) propane, Ten parts of terephthalic acid, 5 parts of trimellitic anhydride, 23 parts of fumaric acid, and dibutyltin oxide were placed in a 4-liter four-necked flask made of glass. A thermometer, a stir bar, a condenser and a nitrogen inlet tube were attached to a four-necked flask, and this four-necked flask was placed in a mantle heater. Next, after the inside of the four-necked flask was replaced with nitrogen gas, the temperature was gradually increased while stirring, and the monomer of the vinyl copolymer and the crosslinking agent were added from the previous dropping funnel while stirring at 130 ° C. And the polymerization initiator was dripped over 4 hours. Next, the temperature was raised to 190 ° C., and the reaction was further advanced for 7 hours to obtain a high softening point resin (H-1).
〈中軟化点樹脂の製造例〉
低軟化点樹脂の製造例において、反応時間を4.5時間に変更した以外は、低軟化点樹脂の製造例と同様にして中軟化点樹脂(M−1)を合成した。
<Production example of medium softening point resin>
In the production example of the low softening point resin, a medium softening point resin (M-1) was synthesized in the same manner as in the production example of the low softening point resin except that the reaction time was changed to 4.5 hours.
〈マスターバッチの製造例〉
下記の材料および製法を用いてマスターバッチ(P−1)を作製した。
中軟化点樹脂(M−1) 60部
C.I.ピグメントブルー15:3 40部
上記の材料をヘンシェルミキサー(FM−75型、三井三池化工機(株)製)で混合した後、120℃に設定した二軸式押出機(商品名:PCM−30型、池貝製作所製)にて溶融混練した。得られた混練物を冷却し、ハンマーミルにて1mm以下に粗粉砕し、マスターバッチ(P−1)を得た。
<Example of master batch production>
A master batch (P-1) was prepared using the following materials and manufacturing method.
Medium softening point resin (M-1) 60 parts C.I. I. Pigment Blue 15: 3 40 parts After the above materials were mixed with a Henschel mixer (FM-75 type, manufactured by Mitsui Miike Chemical Co., Ltd.), a twin screw extruder (trade name: PCM-30) set at 120 ° C. And kneaded with a mold, manufactured by Ikegai Seisakusho. The obtained kneaded material was cooled and coarsely pulverized to 1 mm or less with a hammer mill to obtain a master batch (P-1).
〈トナー粒子の製造例〉
下記の材料および製法を用いてトナー粒子を作製した。
低軟化点樹脂(L−1) 50部
高軟化点樹脂(H−1) 50部
マスターバッチ(P−1) 16.5部
ノルマルパラフィンワックス(W−1:最大吸熱ピーク温度:75℃) 5.5部
3,5−ジ−t−ブチルサリチル酸アルミニウム化合物(C−1) 1.3部
上記の材料をヘンシェルミキサーにより予備混合を行った後、二軸押出混練機で混練物の温度が130℃になるよう溶融混練した。得られた混錬物を冷却し、ハンマーミルにて1〜2mm程度に粗粉砕した。得られた粗粉砕物を再度メッシュを細かくしたハンマーミルにて0.3mm程度に粗粉砕した後、ターボ・ミル(商品名:RSSローター/SNNBライナー、ターボ工業製)を用いて6μm程度に粉砕し、中粉砕物を作った。得られた中粉砕物を再度ターボ・ミル(RSSローター/SNNBライナー、ターボ工業製)を用いて5μm程度に粉砕し、微粉砕物を作った。次に、得られた微粉砕物をホソカワミクロン社製のファカルティを用いて分級し、トナー粒子を得た。
<Production example of toner particles>
Toner particles were prepared using the following materials and manufacturing method.
Low softening point resin (L-1) 50 parts High softening point resin (H-1) 50 parts Masterbatch (P-1) 16.5 parts Normal paraffin wax (W-1: maximum endothermic peak temperature: 75 ° C.) 5 .5 parts 3,5-di-t-butylsalicylic acid aluminum compound (C-1) 1.3 parts After the above materials were premixed using a Henschel mixer, the temperature of the kneaded product was 130 using a twin-screw extrusion kneader. It was melt-kneaded so that it might become ° C. The obtained kneaded material was cooled and coarsely pulverized to about 1 to 2 mm with a hammer mill. The obtained coarsely pulverized product is again coarsely pulverized to about 0.3 mm with a hammer mill with fine mesh, and then pulverized to about 6 μm using a turbo mill (trade name: RSS rotor / SNNB liner, manufactured by Turbo Kogyo). And made a medium pulverized product. The obtained medium pulverized product was again pulverized to about 5 μm using a turbo mill (RSS rotor / SNNB liner, manufactured by Turbo Kogyo Co., Ltd.) to produce a finely pulverized product. Next, the obtained finely pulverized product was classified using a factory manufactured by Hosokawa Micron Corporation to obtain toner particles.
[現像剤の製造例]
磁性キャリア92部に上記トナー8部を加え、V型混合機により10分間振筒させて、2成分現像剤を調製した。
[Developer production example]
8 parts of the toner was added to 92 parts of a magnetic carrier and shaken for 10 minutes with a V-type mixer to prepare a two-component developer.
なお、本例で用いた磁性キャリアは、以下のようにして製造されたものである。 The magnetic carrier used in this example is manufactured as follows.
〈磁性微粒子分散型樹脂コアの製造例〉
個数平均粒径0.30μmのマグネタイト微粒子[10000/4π(kA/m)の磁界下における磁化の強さ75Am2/kg、比抵抗5×107(Ω・cm)]と、個数平均粒径0.30μmのヘマタイト微粒子[比抵抗3×108(Ω・cm)]に対して、それぞれ3.5質量%、2.0質量%のシラン系カップリング剤(3−(2−アミノエチルアミノプロピル)トリメトキシシラン)を加え、容器内で、120℃以上で高速混合撹拌し、それぞれの微粒子を親油化処理した。
フェノール 10部
ホルムアルデヒド溶液(ホルムアルデヒド37質量%水溶液) 6部
上記処理されたマグネタイト微粒子 74部
上記処理されたヘマタイト微粒子 10部
上記の材料と、28質量%アンモニア水5部および水10部をフラスコに入れ、攪拌、混合しながら60分かけて85℃まで昇温・保持し、85℃で3時間重合反応させて生成するフェノール樹脂を硬化させた。その後、硬化したフェノール樹脂を30℃まで冷却し、さらに水を添加した後、上澄み液を除去し、沈殿物を水洗した後、風乾した。次いで、これを減圧下(5hPa以下)、60℃の温度で乾燥して、磁性微粒子が分散された状態の磁性微粒子分散型樹脂コア(A)を得た。得られた磁性微粒子分散型樹脂コア(A)は、個数平均粒子径が34μm、BET比表面積が0.07(m2/g)であった。
<Manufacturing example of magnetic fine particle dispersed resin core>
Magnetite fine particles with a number average particle size of 0.30 μm [magnetization strength 75 Am 2 / kg under a magnetic field of 10,000 / 4π (kA / m), specific resistance 5 × 10 7 (Ω · cm)], and number average particle size 3.5% by mass and 2.0% by mass of a silane coupling agent (3- (2-aminoethylamino) with respect to 0.30 μm hematite fine particles [specific resistance 3 × 10 8 (Ω · cm)], respectively. Propyl) trimethoxysilane) was added, and the mixture was stirred and mixed at 120 ° C. or higher in a container to make each fine particle lipophilic.
Phenol 10 parts Formaldehyde solution (formaldehyde 37% by weight aqueous solution) 6 parts The above treated magnetite fine particles 74 parts The above treated hematite fine particles 10 parts The above materials, 5 parts 28% by weight ammonia water and 10 parts water are placed in a flask. While stirring and mixing, the temperature was raised and maintained up to 85 ° C. over 60 minutes, and the phenol resin produced by polymerization reaction at 85 ° C. for 3 hours was cured. Thereafter, the cured phenol resin was cooled to 30 ° C., water was further added, the supernatant was removed, the precipitate was washed with water, and then air-dried. Next, this was dried under reduced pressure (5 hPa or less) at a temperature of 60 ° C. to obtain a magnetic fine particle dispersed resin core (A) in which magnetic fine particles were dispersed. The obtained magnetic fine particle dispersed resin core (A) had a number average particle diameter of 34 μm and a BET specific surface area of 0.07 (m 2 / g).
〈磁性キャリアの製造例〉
上記磁性微粒子分散型樹脂コア(A)をコーター(商品名:スピラコーター、岡田精工社製)内に投入し、加湿窒素を流入させ水分量0.3質量%に調整した。その後、剪断応力を連続して印加しつつ、トルエン溶媒を用いて希釈したγ−アミノプロピルトリメトキシシラン3質量%でコア表面を処理した。乾燥窒素気流下で溶媒を揮発させながら、置換基がすべてメチル基であるストレートシリコーン樹脂0.5質量%、および、γ−アミノプロピルトリメトキシシラン0.020質量%の混合物を、トルエンを溶媒として被覆した。さらに、この樹脂が被覆された磁性微粒子分散型樹脂コアを120℃で焼き付け、100メッシュの篩で、凝集した粗大粒子をカットし、次いで多分割風力分級機で微粉および粗粉を除去して粒度分布を調整した。その後、23℃、60%RHに保たれたホッパー内で100時間調湿して磁性キャリアを得た。
<Examples of magnetic carrier production>
The magnetic fine particle dispersed resin core (A) was put into a coater (trade name: Spira coater, manufactured by Okada Seiko Co., Ltd.), and humidified nitrogen was introduced to adjust the moisture content to 0.3 mass%. Thereafter, the core surface was treated with 3% by mass of γ-aminopropyltrimethoxysilane diluted with a toluene solvent while continuously applying a shear stress. While volatilizing the solvent under a dry nitrogen stream, a mixture of 0.5% by mass of straight silicone resin in which all substituents are methyl groups and 0.020% by mass of γ-aminopropyltrimethoxysilane was used with toluene as a solvent. Covered. Further, this resin-coated magnetic fine particle-dispersed resin core is baked at 120 ° C., and agglomerated coarse particles are cut with a 100 mesh sieve, and then fine particles and coarse particles are removed with a multi-division wind classifier. The distribution was adjusted. Thereafter, the carrier was conditioned for 100 hours in a hopper maintained at 23 ° C. and 60% RH to obtain a magnetic carrier.
[粒子源の製造例]
粒子(E01)を直方体状に圧縮成形して、粒子源を製造した。塩基性粒子(E02)〜(E19)についても、同様にして粒子源を製造した。
[Production example of particle source]
Particles (E01) were compression molded into a rectangular parallelepiped shape to produce a particle source. For the basic particles (E02) to (E19), a particle source was produced in the same manner.
なお、無機粒子(K01)〜(K07)をさらに含むものとしては、塩基性粒子と無機粒子を1:2の質量比で混合した後、直方体状に圧縮成形して、粒子源を製造した。 In addition, as what further contains inorganic particle | grains (K01)-(K07), after mixing basic particle | grains and an inorganic particle by mass ratio of 1: 2, it compression-molded in the shape of a rectangular parallelepiped, and manufactured the particle source.
[電子写真感光体の製造例]
〈下地電子写真感光体の製造例〉
直径30mm、長さ357.5mmのアルミニウムシリンダーを支持体(円筒状支持体)とした。
[Example of production of electrophotographic photosensitive member]
<Preparation example of base electrophotographic photoreceptor>
An aluminum cylinder having a diameter of 30 mm and a length of 357.5 mm was used as a support (cylindrical support).
次に、酸化スズの被覆層を有する硫酸バリウム粒子(商品名:パストランPC1、三井金属鉱業(株)製)60部、酸化チタン粒子(商品名:TITANIX JR、テイカ(株)製)15部、レゾール型フェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学工業(株)製、固形分70%)43部、シリコーンオイル(商品名:SH28PA、東レシリコーン(株)製)0.015部、シリコーン樹脂粒子(商品名:トスパール120、東芝シリコーン(株)製)3.6部、2−メトキシ−1−プロパノール50部、および、メタノール50部からなる液をボールミルに入れて20時間分散処理することによって、導電層用塗布液を調製した。この導電層用塗布液を支持体上に浸漬塗布し、得られた塗膜を1時間140℃のオーブンで加熱して硬化させることによって、膜厚が15μmの導電層を形成した。 Next, 60 parts of barium sulfate particles (trade name: Pastoran PC1, manufactured by Mitsui Mining & Smelting Co., Ltd.) having a tin oxide coating layer, 15 parts of titanium oxide particles (trade name: TITANIX JR, manufactured by Teika Co., Ltd.), Resole type phenolic resin (trade name: Phenolite J-325, manufactured by Dainippon Ink & Chemicals, Inc., solid content 70%) 43 parts, silicone oil (trade name: SH28PA, manufactured by Toray Silicone Co., Ltd.) 0.015 Parts, silicone resin particles (trade name: Tospearl 120, manufactured by Toshiba Silicone Co., Ltd.), 3.6 parts, 2-methoxy-1-propanol 50 parts, and methanol 50 parts in a ball mill and dispersed for 20 hours By processing, the coating liquid for conductive layers was prepared. The conductive layer coating solution was dip-coated on a support, and the resulting coating film was heated and cured in an oven at 140 ° C. for 1 hour to form a conductive layer having a thickness of 15 μm.
次に、共重合ナイロン樹脂(商品名:アミランCM8000、東レ(株)製)10部、および、メトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、帝国化学(株)製)30部を、メタノール400部/n−ブタノール200部の混合溶剤に溶解させることによって、下引き層用塗布液を調製した。この下引き層用塗布液を導電層上に浸漬塗布し、得られた塗膜を30分間100℃のオーブンで加熱して乾燥させることによって、膜厚が0.60μmの下引き層を形成した。 Next, 10 parts of copolymer nylon resin (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) and 30 parts of methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Co., Ltd.) An undercoat layer coating solution was prepared by dissolving in a mixed solvent of methanol 400 parts / n-butanol 200 parts. The undercoat layer coating solution was applied onto the conductive layer by dip coating, and the resulting coating film was dried in an oven at 100 ° C. for 30 minutes to form an undercoat layer having a thickness of 0.60 μm. .
次に、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.3°および28.1°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン結晶(電荷発生物質)20部、ポリビニルブチラール(商品名:エスレックBX−1、積水化学工業(株)製)10部、シクロヘキサノン600部、および、下記構造式で示されるカリックスアレーン化合物0.2部 Next, 20 parts of a crystalline hydroxygallium phthalocyanine crystal (charge generating material) having strong peaks at 7.3 ° and 28.1 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction, polyvinyl 10 parts of butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.), 600 parts of cyclohexanone, and 0.2 part of calixarene compound represented by the following structural formula
を、直径1mmガラスビーズを用いたサンドミルに入れて4時間分散処理した。その後、酢酸エチル700部を加えることによって、電荷発生層用塗布液を調製した。この電荷発生層用塗布液を下引き層上に浸漬塗布し、得られた塗膜を15分間80℃のオーブンで加熱して乾燥させることによって、膜厚が0.17μmの電荷発生層を形成した。 Was dispersed in a sand mill using glass beads having a diameter of 1 mm for 4 hours. Thereafter, 700 parts of ethyl acetate was added to prepare a charge generation layer coating solution. This charge generation layer coating solution is dip coated on the undercoat layer, and the resulting coating film is dried in an oven at 80 ° C. for 15 minutes to form a charge generation layer having a thickness of 0.17 μm. did.
次いで、下記構造式で示される化合物(電荷輸送物質(正孔輸送性化合物))70部、 Next, 70 parts of a compound represented by the following structural formula (charge transporting substance (hole transporting compound)),
および、ポリカーボネート(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製)100部を、モノクロロベンゼン600部/ジメトキシメタン(メチラール)200部の混合溶剤に溶解させることによって、電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を電荷発生層上に浸漬塗布し、得られた塗膜を50分間90℃のオーブンで加熱して乾燥させることによって、膜厚が19μmの電荷輸送層を形成した。 Further, 100 parts of polycarbonate (trade name: Iupilon Z400, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) is dissolved in a mixed solvent of 600 parts of monochlorobenzene / 200 parts of dimethoxymethane (methylal) to thereby apply a coating solution for a charge transport layer. Was prepared. The charge transport layer coating solution was dip-coated on the charge generation layer, and the resulting coating film was heated and dried in an oven at 90 ° C. for 50 minutes to form a charge transport layer having a thickness of 19 μm.
このようにして、下地電子写真感光体を製造した。 In this way, a base electrophotographic photosensitive member was produced.
〈電子写真感光体の製造例1(電子写真感光体(P01))〉
上述の下地電子写真感光体の電荷輸送層上に、以下の方法で保護層を設けた。
<Example 1 of production of electrophotographic photoreceptor (electrophotographic photoreceptor (P01))>
A protective layer was provided on the charge transport layer of the above-described underlying electrophotographic photoreceptor by the following method.
まず、保護層用塗布液用の原料として、下記の材料を用意した。
上記式(J−1)(ただしyおよびzが3)で示される化合物35部
例示化合物(U−2)(東京化成工業(株)製、GC純度>98%)5部
ポリテトラフルオロエチレン粒子(商品名:ルブロンL2、ダイキン(株)製、平均粒径:0.18μm)10部
First, the following materials were prepared as raw materials for the protective layer coating solution.
35 parts of the compound represented by the above formula (J-1) (wherein y and z are 3) Illustrative compound (U-2) (Tokyo Chemical Industry Co., Ltd., GC purity> 98%) 5 parts Polytetrafluoroethylene particles (Product name: Lubron L2, manufactured by Daikin Corporation, average particle size: 0.18 μm) 10 parts
これらの原料とn−プロパノール30部を混合し、さらに1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(商品名:ゼオローラH、日本ゼオン(株)製)30部を混合し、分散処理を施して、保護層用塗布液を調製した。 These raw materials and 30 parts of n-propanol are mixed, and further 30 parts of 1,1,2,2,3,3,4-heptafluorocyclopentane (trade name: Zeolora H, manufactured by Nippon Zeon Co., Ltd.) are mixed. Then, a dispersion treatment was performed to prepare a protective layer coating solution.
この保護層用塗布液を下地電子写真感光体の電荷輸送層上に浸漬塗布し、得られた塗膜を5分間50℃で加熱処理した。その後、窒素雰囲気下で85kV、20000Gyの条件で1.5秒間電子線を塗膜に照射した。引き続き、塗膜の温度が125℃になる条件で50秒間塗膜を加熱処理した。なお、電子線照射から加熱処理までの酸素濃度は10ppmであった。次に、大気中で塗膜を40分間110℃で加熱処理することによって、膜厚が4.8μmの保護層を形成した。 This protective layer coating solution was dip coated on the charge transport layer of the underlying electrophotographic photoreceptor, and the resulting coating film was heat treated at 50 ° C. for 5 minutes. Thereafter, the coating film was irradiated with an electron beam for 1.5 seconds under conditions of 85 kV and 20000 Gy in a nitrogen atmosphere. Subsequently, the coating film was heat-treated for 50 seconds under the condition that the coating film temperature was 125 ° C. The oxygen concentration from electron beam irradiation to heat treatment was 10 ppm. Next, the coating film was heat-treated at 110 ° C. for 40 minutes in the atmosphere to form a protective layer having a thickness of 4.8 μm.
このようにして、保護層が表面層である電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P01)とする。 In this way, an electrophotographic photoreceptor having a protective layer as a surface layer was produced. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P01).
〈電子写真感光体の製造例2(電子写真感光体(P02))〉
保護層用塗布液用の原料を以下のものに変更し、分散処理を施さなかった以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P02)とする。
上記式(J−1)(ただしyおよびzが6)で示される化合物42.5部
例示化合物(U−1)(東京化成工業(株)製、GC純度>97%)7.5部
<Production Example 2 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (P02))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating solution for the protective layer was changed to the following and no dispersion treatment was performed. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P02).
42.5 parts of the compound represented by the above formula (J-1) (where y and z are 6) Illustrative compound (U-1) (Tokyo Chemical Industry Co., Ltd., GC purity> 97%) 7.5 parts
〈電子写真感光体の製造例3(電子写真感光体(P03))〉
保護層用塗布液用の原料を以下のものに変更し、分散処理を施さなかった以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P03)とする。
上記式(J−1)(ただしyおよびzが6)で示される化合物42.5部
例示化合物(U−3)7.5部
<Production Example 3 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (P03))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating solution for the protective layer was changed to the following and no dispersion treatment was performed. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P03).
42.5 parts of a compound represented by the above formula (J-1) (wherein y and z are 6) 7.5 parts of exemplary compound (U-3)
〈電子写真感光体の製造例4(電子写真感光体(P04))〉
保護層用塗布液用の原料を以下のものに変更し、分散処理を施さなかった以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P04)とする。
上記式(J−1)(ただしyおよびzが6)で示される化合物42.5部
例示化合物(U−10)7.5部
<Production Example 4 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (P04))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating solution for the protective layer was changed to the following and no dispersion treatment was performed. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P04).
42.5 parts of a compound represented by the above formula (J-1) (where y and z are 6) 7.5 parts of exemplary compound (U-10)
〈電子写真感光体の製造例5(電子写真感光体(P05))〉
保護層用塗布液用の原料を以下のものに変更し、分散処理を施さなかった以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P05)とする。
上記式(J−1)(ただしyおよびzが6)で示される化合物42.5部
例示化合物(U−2)(東京化成工業(株)製、GC純度>98%)7.5部
<Production Example 5 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (P05))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating solution for the protective layer was changed to the following and no dispersion treatment was performed. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P05).
42.5 parts of the compound represented by the above formula (J-1) (where y and z are 6) Illustrative compound (U-2) (Tokyo Chemical Industry Co., Ltd., GC purity> 98%) 7.5 parts
〈電子写真感光体の製造例6(電子写真感光体(P06))〉
保護層用塗布液用の原料を以下のものに変更した以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P06)とする。
上記式(J−1)(ただしyおよびzが0)で示される化合物32.5部
例示化合物(U−2)(東京化成工業(株)製、GC純度>98%)7.5部
ポリテトラフルオロエチレン粒子(商品名:ルブロンL2、ダイキン(株)製、平均粒径:0.18μm)10部
<Example 6 of production of electrophotographic photosensitive member (electrophotographic photosensitive member (P06))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating liquid for the protective layer was changed to the following. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P06).
32.5 parts of the compound represented by the above formula (J-1) (where y and z are 0) Exemplified compound (U-2) (manufactured by Tokyo Chemical Industry Co., Ltd., GC purity> 98%) 7.5 parts Poly 10 parts of tetrafluoroethylene particles (trade name: Lubron L2, manufactured by Daikin Co., Ltd., average particle size: 0.18 μm)
〈電子写真感光体の製造例7(電子写真感光体(P07)〉
保護層用塗布液用の原料を以下のものに変更した以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P07)とする。
上記式(J−1)(ただしyおよびzが1)で示される化合物32.5部
例示化合物(U−2)(東京化成工業(株)製、GC純度>98%)7.5部
ポリテトラフルオロエチレン粒子(商品名:ルブロンL2、ダイキン(株)製、平均粒径:0.18μm)10部
<Production Example 7 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (P07)>)
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating liquid for the protective layer was changed to the following. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P07).
32.5 parts of the compound represented by the above formula (J-1) (wherein y and z are 1) Exemplary Compound (U-2) (Tokyo Chemical Industry Co., Ltd., GC purity> 98%) 7.5 parts Poly 10 parts of tetrafluoroethylene particles (trade name: Lubron L2, manufactured by Daikin Co., Ltd., average particle size: 0.18 μm)
〈電子写真感光体の製造例8(電子写真感光体(P08)〉
保護層用塗布液用の原料を以下のものに変更した以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P08)とする。
上記式(J−1)(ただしyおよびzが2)で示される化合物32.5部
例示化合物(U−2)(東京化成工業(株)製、GC純度>98%)7.5部
ポリテトラフルオロエチレン粒子(商品名:ルブロンL2、ダイキン(株)製、平均粒径:0.18μm)10部
<Production Example 8 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (P08)>)
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating liquid for the protective layer was changed to the following. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P08).
32.5 parts of the compound represented by the above formula (J-1) (where y and z are 2) Exemplified compound (U-2) (Tokyo Chemical Industry Co., Ltd., GC purity> 98%) 7.5 parts Poly 10 parts of tetrafluoroethylene particles (trade name: Lubron L2, manufactured by Daikin Co., Ltd., average particle size: 0.18 μm)
〈電子写真感光体の製造例9(電子写真感光体(P09)〉
保護層用塗布液用の原料を以下のものに変更した以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P09)とする。
上記式(J−1)(ただしyおよびzが4)で示される化合物32.5部
例示化合物(U−2)(東京化成工業(株)製、GC純度>98%)7.5部
ポリテトラフルオロエチレン粒子(商品名:ルブロンL2、ダイキン(株)製、平均粒径:0.18μm)10部
<Production Example 9 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (P09)>)
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating liquid for the protective layer was changed to the following. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P09).
32.5 parts of the compound represented by the above formula (J-1) (wherein y and z are 4) Illustrative compound (U-2) (Tokyo Chemical Industry Co., Ltd., GC purity> 98%) 7.5 parts Poly 10 parts of tetrafluoroethylene particles (trade name: Lubron L2, manufactured by Daikin Co., Ltd., average particle size: 0.18 μm)
〈電子写真感光体の製造例10(電子写真感光体(P10)〉
保護層用塗布液用の原料を以下のものに変更した以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P10)とする。
上記式(J−1)(ただしyおよびzが5)で示される化合物32.5部
例示化合物(U−2)(東京化成工業(株)製、GC純度>98%)7.5部
ポリテトラフルオロエチレン粒子(商品名:ルブロンL2、ダイキン(株)製、平均粒径:0.18μm)10部
<Example 10 of production of electrophotographic photosensitive member (electrophotographic photosensitive member (P10)>)
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating liquid for the protective layer was changed to the following. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P10).
32.5 parts of the compound represented by the above formula (J-1) (y and z are 5) Exemplified Compound (U-2) (Tokyo Chemical Industry Co., Ltd., GC purity> 98%) 7.5 parts Poly 10 parts of tetrafluoroethylene particles (trade name: Lubron L2, manufactured by Daikin Co., Ltd., average particle size: 0.18 μm)
〈電子写真感光体の製造例11(電子写真感光体(P11)〉
保護層用塗布液用の原料を以下のものに変更した以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P11)とする。
上記式(J−1)(ただしyが1、zが2)で示される化合物32.5部
例示化合物(U−2)(東京化成工業(株)製、GC純度>98%)7.5部
ポリテトラフルオロエチレン粒子(商品名:ルブロンL2、ダイキン(株)製、平均粒径:0.18μm)10部
<Production Example 11 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (P11)>)
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating liquid for the protective layer was changed to the following. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P11).
32.5 parts of the compound represented by the above formula (J-1) (where y is 1 and z is 2) Exemplified compound (U-2) (manufactured by Tokyo Chemical Industry Co., Ltd., GC purity> 98%) 7.5 Part 10 parts of polytetrafluoroethylene particles (trade name: Lubron L2, manufactured by Daikin Co., Ltd., average particle size: 0.18 μm)
〈電子写真感光体の製造例12(電子写真感光体(P12))〉
保護層用塗布液用の原料を以下のものに変更し、分散処理を施さなかった以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P12)とする。
上記式(J−3)で示される化合物45部
例示化合物(U−3)10部
<Example 12 of electrophotographic photosensitive member (electrophotographic photosensitive member (P12))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating solution for the protective layer was changed to the following and no dispersion treatment was performed. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P12).
45 parts of the compound represented by the above formula (J-3) 10 parts of the exemplified compound (U-3)
〈電子写真感光体の製造例13(電子写真感光体(P13))〉
保護層用塗布液用の原料を以下のものに変更し、分散処理を施さなかった以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P13)とする。
上記式(J−1)(ただしyおよびzが3)で示される化合物45部
例示化合物(U−3)10部
<Production Example 13 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (P13))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating solution for the protective layer was changed to the following and no dispersion treatment was performed. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P13).
45 parts of the compound represented by the above formula (J-1) (wherein y and z are 3) 10 parts of the exemplified compound (U-3)
〈電子写真感光体の製造例14(電子写真感光体(P14))〉
保護層用塗布液用の原料を以下のものに変更し、分散処理を施さなかった以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(P14)とする。
上記式(J−4)で示される化合物45部
例示化合物(U−3)10部
<Example 14 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (P14))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating solution for the protective layer was changed to the following and no dispersion treatment was performed. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (P14).
45 parts of the compound represented by the above formula (J-4) 10 parts of the exemplified compound (U-3)
〈比較用の電子写真感光体の製造例1(電子写真感光体(PX01))〉
保護層用塗布液用の原料を以下のものに変更し、分散処理を施さなかった以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(PX01)とする。
上記式(J−1)(ただしyおよびzが6)で示される化合物50部
下記式(U−N1)で示される化合物7.5部
<Comparative Example 1 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (PX01))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating solution for the protective layer was changed to the following and no dispersion treatment was performed. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (PX01).
50 parts of the compound represented by the above formula (J-1) (wherein y and z are 6) 7.5 parts of the compound represented by the following formula (U-N1)
〈比較用の電子写真感光体の製造例2〜9(電子写真感光体(PX02)〜(PX09))〉
保護層用塗布液用の原料に用いた下記式(U−N1)で示される化合物を下記式(U−N2)、(U−N3)、(U−N4)、(U−N5)、(U−N6)、(U−N7)、(U−N8)、(U−N9)で示される化合物にそれぞれ変更した以外は、電子写真感光体(PX01)と同様にして電子写真感光体を製造した。これらの電子写真感光体を順に電子写真感光体(PX02)、(PX03)、(PX04)、(PX05)、(PX06)、(PX07)、(PX08)、(PX09)とする。
<Comparative electrophotographic photoreceptors production examples 2 to 9 (electrophotographic photoreceptors (PX02) to (PX09))>
The compounds represented by the following formula (U-N1) used as the raw material for the coating liquid for the protective layer are represented by the following formulas (U-N2), (U-N3), (U-N4), (U-N5), ( An electrophotographic photosensitive member is produced in the same manner as the electrophotographic photosensitive member (PX01) except that the compounds are changed to the compounds represented by U-N6), (U-N7), (U-N8), and (U-N9). did. These electrophotographic photosensitive members are sequentially referred to as electrophotographic photosensitive members (PX02), (PX03), (PX04), (PX05), (PX06), (PX07), (PX08), and (PX09).
〈比較用の電子写真感光体の製造例10(電子写真感光体(PX10))〉
保護層用塗布液用の原料を以下のものに変更し、分散処理を施さなかった以外は、電子写真感光体(P01)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(PX10)とする。
上記式(J−1)(ただしyおよびzが6)で示される化合物50部
(例示化合物(U−2)およびポリテトラフルオロエチレン粒子は使用せず。)
<Comparative Example 10 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (PX10))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P01) except that the raw material for the coating solution for the protective layer was changed to the following and no dispersion treatment was performed. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (PX10).
50 parts of the compound represented by the above formula (J-1) (y and z are 6) (Exemplary compound (U-2) and polytetrafluoroethylene particles are not used.)
〈比較用の電子写真感光体の製造例11(電子写真感光体(PX11))〉
下記式で示される化合物
<Comparative Example 11 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (PX11))>
Compound represented by the following formula
で表面処理(処理量8%)したアンチモンドープ酸化スズ粒子50部、および、エタノール150部をサンドミルに入れて60時間分散処理を施した。その後、さらにポリテトラフルオロエチレン粒子(商品名:ルブロンL2、ダイキン(株)製、平均粒径0.18μm)10部を加えて2時間分散処理を施した後、これにレゾール型フェノール樹脂(商品名:PL−48044、群栄化学(株)製)35部を溶解させた。この液に、例示化合物(U−10)を7.5部加えて、保護層用塗布液を調製した。 50 parts of antimony-doped tin oxide particles subjected to surface treatment (treatment amount: 8%) and 150 parts of ethanol were placed in a sand mill and subjected to a dispersion treatment for 60 hours. Then, after further adding 10 parts of polytetrafluoroethylene particles (trade name: Lubron L2, manufactured by Daikin Co., Ltd., average particle size 0.18 μm) for 2 hours, a resol type phenol resin (product) Name: PL-48044, manufactured by Gunei Chemical Co., Ltd.) 35 parts was dissolved. 7.5 parts of the exemplified compound (U-10) was added to this liquid to prepare a coating solution for a protective layer.
この保護層用塗布液を下地電子写真感光体の電荷輸送層上に浸漬塗布し、得られた塗膜を60分間150℃で加熱処理することによって、膜厚が4.9μmの保護層を形成した。 This protective layer coating solution is dip-coated on the charge transport layer of the underlying electrophotographic photoreceptor, and the resulting coating film is heated at 150 ° C. for 60 minutes to form a protective layer having a thickness of 4.9 μm. did.
このようにして、保護層が表面層である電子写真感光体を製造した。この電子写真感光体を電子写真感光体(PX11)とする。 In this way, an electrophotographic photoreceptor having a protective layer as a surface layer was produced. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (PX11).
〈比較用の電子写真感光体の製造例12(電子写真感光体(PX12))〉
下地電子写真感光体の製造例において、電荷輸送層用塗布液に例示化合物(U−10)7.5部を追加し、形成する電荷輸送層の膜厚を5μm厚くした以外は、下地電子写真感光体と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(PX12)とする。なお、電子写真感光体(PX12)には電荷輸送層上に保護層を形成していない。
<Comparative Example 12 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (PX12))>
In the production example of the base electrophotographic photosensitive member, except that 7.5 parts of the exemplified compound (U-10) was added to the coating solution for the charge transport layer and the thickness of the charge transport layer to be formed was increased to 5 μm, the base electrophotography An electrophotographic photoreceptor was produced in the same manner as the photoreceptor. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (PX12). In the electrophotographic photoreceptor (PX12), no protective layer is formed on the charge transport layer.
〈比較用の電子写真感光体の製造例13(電子写真感光体(PX13))〉
保護層用塗布液用の原料を以下のものに変更した以外は、電子写真感光体(P13)と同様にして電子写真感光体を製造した。この電子写真感光体を電子写真感光体(PX13)とする。
上記式(J−1)(ただしyおよびzが3)で示される化合物45部
(例示化合物(U−3)は使用せず。)
<Comparative Example 13 of Electrophotographic Photoreceptor (Electrophotographic Photoreceptor (PX13))>
An electrophotographic photosensitive member was produced in the same manner as the electrophotographic photosensitive member (P13) except that the raw material for the protective layer coating solution was changed to the following. This electrophotographic photosensitive member is referred to as an electrophotographic photosensitive member (PX13).
45 parts of the compound represented by the above formula (J-1) (wherein y and z are 3) (Exemplary compound (U-3) is not used.)
[弾性変形率(We%)およびユニバーサル硬さ値(HU)の測定]
電子写真感光体(P01)〜(P14)および(PX01)〜(PX13)を25℃/50%RHの環境下に24時間放置した後、各電子写真感光体の表面の弾性変形率(We%)およびユニバーサル硬さ値(HU)を測定した。結果を表3に示す。
[Measurement of Elastic Deformation Rate (We%) and Universal Hardness Value (HU)]
After the electrophotographic photosensitive members (P01) to (P14) and (PX01) to (PX13) are left in an environment of 25 ° C./50% RH for 24 hours, the elastic deformation rate (We%) of the surface of each electrophotographic photosensitive member is measured. ) And universal hardness values (HU). The results are shown in Table 3.
[評価]
〈評価機1〉
評価用の電子写真装置として、概略の構成が図3で示されるキヤノン(株)製デジタルカラー複合機image RUNNER ADVANCE C5051(帯電ローラーを用いた放電を伴う帯電手段を有するタンデム機)のブラック用のユニットを以下のように改造したものを評価機1として用意した。
[Evaluation]
<Evaluation machine 1>
As an electrophotographic apparatus for evaluation, a digital color composite machine image RUNNER ADVANCE C5051 (tandem machine having a charging means with a discharge using a charging roller) manufactured by Canon Inc. whose schematic configuration is shown in FIG. 3 is used for black. A unit modified as follows was prepared as an evaluation machine 1.
電子写真感光体の回転駆動速度を可変とした。給紙、排紙、現像、転写、定着、露光などの各手段の速度、印加する交流バイアスの周波数、および、光強度などは電子写真感光体の回転駆動速度に同調するようにした。イエロー、マゼンタおよびシアン用のユニットの諸条件もブラック用のユニットに同調するようにした。 The rotational driving speed of the electrophotographic photosensitive member was variable. The speed of each means such as paper feeding, paper discharge, development, transfer, fixing, and exposure, the frequency of the AC bias to be applied, and the light intensity were synchronized with the rotational driving speed of the electrophotographic photosensitive member. The conditions for the yellow, magenta and cyan units were also tuned to the black unit.
また、帯電手段用の電源を変更し、周波数、印加する直流電圧および放電電流を可変とした。なお、環境ヒーターなどの電子写真感光体を加熱する手段はオフにした。 In addition, the power supply for the charging means was changed so that the frequency, applied DC voltage, and discharge current were variable. The means for heating the electrophotographic photosensitive member such as an environmental heater was turned off.
クリーニングブレード107としては、ゴム硬度70°、100%モジュラスが3450kN/m2、破断伸びが320%のウレタンゴムからなるものを使用した。厚さT=2mmの板状クリーニングブレードを、自由長Lを8mmとして、バネ107Sにて、電子写真感光体101に当接圧=29.4N/m(30g/cm)、設定角θ=24°で当接させた。 The cleaning blade 107 was made of urethane rubber having a rubber hardness of 70 °, a 100% modulus of 3450 kN / m 2 , and an elongation at break of 320%. A plate-shaped cleaning blade having a thickness T = 2 mm, a free length L of 8 mm, a spring 107S, and a contact pressure = 29.4 N / m (30 g / cm) against the electrophotographic photosensitive member 101, a set angle θ = 24 Abutted at °.
さらに、クリーニングブレードの近傍に、粒子供給手段として供給部材110としてのブラシローラーおよび粒子源109を設置した。さらに、転写残トナーなどを除去するフリッカー(不図示)を設置した。 Further, a brush roller as a supply member 110 and a particle source 109 were installed in the vicinity of the cleaning blade as particle supply means. Further, a flicker (not shown) for removing transfer residual toner and the like was installed.
ブラシローラーとしては、導電性の繊維を基布に織りこみ、それを直径6mmの芯金上に巻き付けて直径16mmのロールブラシ状に構成したものを用いた。導電性繊維としては、太さ0.67Tex(6デニール)のアクリルの導電糸を用い、繊維密度が25000本/cm2となるようにW織りで基布に植え込んだものをシート状に形成し、芯金との導電性を確保するようにして巻き付けた。ブラシの抵抗は6×102Ω・cmとした。電子写真感光体に対する侵入量を0.5mmとして接触させ、電子写真感光体の回転駆動に同期して、電子写真感光体との対向部で、電子写真感光体と同方向で130%の相対速度で駆動するようにした。 As the brush roller, a conductive roller woven into a base fabric and wound around a core metal having a diameter of 6 mm to form a roll brush having a diameter of 16 mm was used. As conductive fibers, acrylic conductive threads with a thickness of 0.67Tex (6 denier) were used, and the fibers were planted in a base fabric with a W weave so that the fiber density was 25000 / cm 2 and formed into a sheet. The wire was wound so as to ensure conductivity with the cored bar. The resistance of the brush was 6 × 10 2 Ω · cm. The intrusion amount with respect to the electrophotographic photosensitive member is brought into contact with 0.5 mm, and the relative speed of 130% in the same direction as the electrophotographic photosensitive member is synchronized with the rotation of the electrophotographic photosensitive member in the opposite direction to the electrophotographic photosensitive member. It was made to drive with.
さらに、塩基性粒子、または、塩基性粒子と無機粒子の混合物を圧縮成形してなる粒子源109をブラシローラーに加圧当接させ、電子写真感光体の表面に所定量で塗布供給できるようにした。供給量の調整は、粒子源109の成形条件による硬度や、当接圧の制御により行った。なお、塩基性粒子の供給量は電子写真感光体の表面の単位面積あたり1×10−8g/mm2とした。塩基性粒子と無機粒子を併用する場合は、塩基性粒子の量が同等になるようにした(粒子の総供給量としては3×10−8g/mm2)。 Further, a particle source 109 formed by compression molding basic particles or a mixture of basic particles and inorganic particles is brought into pressure contact with a brush roller so that a predetermined amount can be applied and supplied to the surface of the electrophotographic photosensitive member. did. The supply amount was adjusted by controlling the hardness according to the molding conditions of the particle source 109 and the contact pressure. The supply amount of basic particles was 1 × 10 −8 g / mm 2 per unit area of the surface of the electrophotographic photosensitive member. When basic particles and inorganic particles were used in combination, the amount of basic particles was made equal (the total supply amount of particles was 3 × 10 −8 g / mm 2 ).
イエロー、マゼンタ、シアン用のユニットについては、現像手段およびクリーニング手段を除去した。 For the units for yellow, magenta and cyan, the developing means and cleaning means were removed.
〈評価機2〉
粒子供給手段としての供給部材(ブラシローラー)109および粒子源110を設置しなかった以外は、評価機1と同様にして、評価機2を用意した。
<Evaluation machine 2>
An evaluator 2 was prepared in the same manner as the evaluator 1 except that the supply member (brush roller) 109 and the particle source 110 as the particle supply means were not installed.
評価機1および2のどちらにおいても、帯電ローラーに印加する電圧は、現像手段との対向位置での暗部電位Vdの絶対値が600Vになるように調節した。像露光光の光量は、明部電位Vlの絶対値が100Vになるように調節した。 In both of the evaluation machines 1 and 2, the voltage applied to the charging roller was adjusted so that the absolute value of the dark portion potential Vd at the position facing the developing unit was 600V. The amount of image exposure light was adjusted so that the absolute value of the bright portion potential Vl was 100V.
また、電子写真感光体は表面速度300mm/sで回転駆動するようにし、現像バイアス、転写バイアスは、該電子写真感光体の速度および現像剤の種類などに応じて適宜調整した。 The electrophotographic photosensitive member was driven to rotate at a surface speed of 300 mm / s, and the developing bias and the transfer bias were appropriately adjusted according to the speed of the electrophotographic photosensitive member and the type of developer.
〈耐久試験用画像〉
耐久試験用画像として、図9に示すような、電子写真感光体の表面の長手方向でdutyを1%/5%/10%の3水準に振った画像を用意した。なお、各dutyの領域において長手1cm幅で白地(duty=0%)部を設けた。
<Image for durability test>
As an image for the durability test, as shown in FIG. 9, an image was prepared in which the duty was varied in three levels of 1% / 5% / 10% in the longitudinal direction of the surface of the electrophotographic photosensitive member. In each duty area, a white background (duty = 0%) portion having a length of 1 cm was provided.
〈評価項目および基準〉
〈画像流れ回復性の評価〉
評価機2、評価対象の電子写真感光体および標準トナーを用いて、30℃/80%RH環境(HH環境)下、放電電流量Idisを200μAとして、上記の耐久試験用画像をA4紙で連続20000枚出力する耐久試験(耐久試験A)を行った。耐久試験直後に5ドット30スペース(5D30S)の画像を連続で形成した後、そのまま、評価機2の電源をオフにして、2日間放置した。
<Evaluation items and criteria>
<Evaluation of image recovery>
Using the evaluation machine 2, the electrophotographic photosensitive member to be evaluated, and the standard toner, the above-mentioned durability test image is continuously printed on A4 paper with a discharge current amount Idis of 200 μA in a 30 ° C./80% RH environment (HH environment). An endurance test (endurance test A) for outputting 20,000 sheets was performed. Immediately after the endurance test, images of 5 dots and 30 spaces (5D30S) were continuously formed, and then the power supply of the evaluation machine 2 was turned off and left for 2 days.
2日間の放置後、電源をオンにして、上記耐久試験を行った評価対象の電子写真感光体と、評価対象であるトナーおよび/または粒子源を、評価機2にセットし、放電電流量Idisを100μAとし、5D30Sの画像形成を連続で行った。 After leaving for two days, the power is turned on, and the electrophotographic photosensitive member to be evaluated and the toner and / or particle source to be evaluated are set in the evaluation machine 2 and the discharge current amount Idis is set. Was set to 100 μA, and 5D30S image formation was continuously performed.
画像流れの指標として、耐久試験直後および2日間放置後の5D30Sの画像を、電子写真感光体1周相当の範囲において1200dpiのスキャナーで読み込んだ。その画素数から、画素回復率=100×(2日間放置後の5D30Sの画像の画素数−2日間放置後の5D30Sの最初の画像の画素数)/(耐久試験直後2日間放置前の5D30Sの画像の画素数−2日間放置後の5D30Sの最初の画像の画素数)を求めた。この画素回復率を、画像形成枚数ごとに並べると、図6のように回復していく。図6中の傾きを、画素回復指数と定義する。この回復指数を画像流れ回復性として、以下のA〜Dの4段階で評価した。
A:回復指数が38以上:画像形成2枚以内で画像流れ回復。
B:回復指数が30以上38未満:3枚以内で回復。
C:回復指数が20以上30未満:3〜5枚で回復。
D:回復指数が20未満:5枚以上で回復。
As an image flow index, a 5D30S image immediately after the durability test and after being left for two days was read with a 1200 dpi scanner in a range corresponding to one round of the electrophotographic photosensitive member. From the number of pixels, pixel recovery rate = 100 × (number of pixels of 5D30S image after being left for 2 days−number of pixels of 5D30S first image after being left for 2 days) / (5D30S before being left for 2 days immediately after the durability test) The number of pixels of the image—the number of pixels of the first image of 5D30S after being left for 2 days) was determined. When the pixel recovery rates are arranged for each number of image formations, the recovery is performed as shown in FIG. The slope in FIG. 6 is defined as a pixel recovery index. This recovery index was evaluated as the image flow recoverability in the following four grades A to D.
A: Recovery index is 38 or more: Image flow is recovered within 2 sheets of image formation.
B: Recovery index is 30 or more and less than 38: Recovery is within 3 sheets.
C: Recovery index of 20 or more and less than 30: 3 to 5 sheets recovered.
D: Recovery index is less than 20: Recovery is at 5 or more.
〈画像流れの評価〉
評価対象の電子写真感光体、評価対象のトナーおよび/または粒子源を、評価対象である評価機にセットし、HH環境下で、放電電流量Idisを70μAとして、上記の耐久試験用画像をA4紙で連続20000枚出力する耐久試験(耐久試験B)を行った。耐久試験直後に5D30S、罫線画像、細線画像、文字画像、17階調画像および各濃度の均一画像を形成した後、評価機の電源をオフにして、3日間放置した。
<Evaluation of image flow>
The electrophotographic photosensitive member to be evaluated, the toner to be evaluated and / or the particle source are set in the evaluation machine to be evaluated, and the above-mentioned durability test image is A4 under the HH environment with the discharge current amount Idis being 70 μA. An endurance test (endurance test B) for continuous output of 20000 sheets of paper was performed. Immediately after the durability test, 5D30S, ruled line image, fine line image, character image, 17 gradation image and uniform image of each density were formed, and then the power supply of the evaluation machine was turned off and left for 3 days.
3日間の放置後、電源をオンにして、耐久試験直後と同じ画像を形成した。その後、耐久試験用画像にて耐久試験を行うという順序で、耐久試験枚数が200000枚になるまで、上記の操作を繰り返した。 After standing for 3 days, the power was turned on, and the same image as that immediately after the durability test was formed. Thereafter, the above operation was repeated in the order of performing the durability test on the image for the durability test until the number of durability tests reached 200,000.
また、同様の耐久試験評価を15℃/10%RH環境(LL環境)下でも行った。 The same durability test evaluation was also performed under a 15 ° C./10% RH environment (LL environment).
画像流れの指標として、耐久試験直後および3日間放置後の5D30Sの画像をスキャナーで読み込んだ。その画素数から、画像のドット面積の変化率[%]=100×(耐久試験直後3日間放置前の画像の画素数−3日間放置後の画像の画素数)/(耐久試験直後3日間放置前の画像の画素数)を求めた。画像流れは、上記画像のドット面積の変化率[%]で、以下のA〜Dの4段階で評価した。
A:変化率が7%以下:画像流れが見られない。
B:変化率が7%より大で15%以下:ハイライト部がムラっぽくなる場合あり。
C:変化率が15%より大で40%以下:罫線、細線の一部が細る場合あり。
D:変化率が40%より大:文字がぼける場合あり。
As an image flow index, a 5D30S image was read by a scanner immediately after the durability test and after being left for 3 days. From the number of pixels, the rate of change in the dot area of the image [%] = 100 × (number of pixels in the image before leaving for 3 days immediately after the durability test−number of pixels in the image after being left for 3 days) / (left for 3 days immediately after the durability test) The number of pixels of the previous image) was obtained. The image flow was evaluated in the following four grades A to D by the change rate [%] of the dot area of the image.
A: Change rate is 7% or less: No image flow is observed.
B: Rate of change is greater than 7% and 15% or less: The highlight portion may be uneven.
C: The rate of change is greater than 15% and 40% or less: Some of the ruled lines and fine lines may be thin.
D: Rate of change is greater than 40%: characters may be blurred.
〈フィルミングの評価〉
上記のHH環境下およびLL環境下での耐久試験(耐久試験B)の初期および画像評価後に、電子写真感光体の表面の目視観察および光学顕微鏡観察を行った。フィルミングの評価は、画像と電子写真感光体の表面の観察結果から、以下のA〜Dの4段階で評価した。
A:フィルミング無し。
B:電子写真感光体の表面の画像形成領域外にフィルミングあり。画像には発生せず。
C:電子写真感光体の表面の画像形成領域内にフィルミングあり。画像には発生せず。
D:電子写真感光体の表面のフィルミングの影響が画像に発生。
<Evaluation of filming>
After the initial stage of the durability test (endurance test B) in the HH environment and the LL environment and after image evaluation, visual observation and optical microscope observation of the surface of the electrophotographic photosensitive member were performed. Filming was evaluated in the following four stages A to D based on the observation results of the image and the surface of the electrophotographic photosensitive member.
A: No filming.
B: Filming outside the image forming area on the surface of the electrophotographic photosensitive member. It does not occur in the image.
C: Filming is present in the image forming area on the surface of the electrophotographic photosensitive member. It does not occur in the image.
D: The effect of filming on the surface of the electrophotographic photosensitive member occurs in the image.
〈クリーニングブレード損耗の評価〉
上記のHH環境下およびLL環境下での耐久試験(耐久試験B)の初期および画像評価後に、クリーニングブレード損耗の評価を行った。クリーニングブレードにおける、電子写真感光体との当接部に相当する部分を長手方向に観測し、欠けまたはえぐれがある場合は、図10のように断面方向で深さD[μm]および幅W[μm]を測定した。具体的には、レーザー顕微鏡(VK−8510、(株)キーエンス製)で、対物レンズの倍率を50倍として0.02μmステップで観測後、単純±2のスムージング条件でプロファイル計測をした。
<Evaluation of wear of cleaning blade>
The initial stage of the durability test (endurance test B) under the HH environment and the LL environment described above and after the image evaluation, the cleaning blade wear was evaluated. When a portion corresponding to the contact portion with the electrophotographic photosensitive member in the cleaning blade is observed in the longitudinal direction, and there is a chip or a gap, the depth D [μm] and the width W [ μm] was measured. Specifically, the profile was measured with a laser microscope (VK-8510, manufactured by Keyence Co., Ltd.) with a magnification of the objective lens of 50 and observed in 0.02 μm steps, and then under simple ± 2 smoothing conditions.
深さD[μm]と幅W[μm]の積であるD×W[μm2]の最大値をクリーニングブレード損耗の指標として、以下のA〜Dの4段階で評価した。
A:D×W≦40μm2:クリーニングブレード損耗無し。
B:40μm2<D×W≦100μm2:クリーニングブレード損耗はあるが、クリーニング性に問題無し。
C:100μm2<D×W≦200μm2:塩基性粒子や無機粒子などの粒子の抜けが多い。画像には発生せず。
D:200μm2<D×W:クリーニング不良発生する場合あり。
The maximum value of D × W [μm 2 ], which is the product of the depth D [μm] and the width W [μm], was used as an index of cleaning blade wear and evaluated in the following four stages A to D.
A: D × W ≦ 40 μm 2 : No cleaning blade wear.
B: 40 μm 2 <D × W ≦ 100 μm 2 : Although there is wear on the cleaning blade, there is no problem in cleaning properties.
C: 100 μm 2 <D × W ≦ 200 μm 2 : There are many omissions of particles such as basic particles and inorganic particles. It does not occur in the image.
D: 200 μm 2 <D × W: A cleaning failure may occur.
〈電子写真感光体損耗の評価〉
上記のHH環境下およびLL環境下での耐久試験(耐久試験B)の初期および画像評価後に、電子写真感光体の表面層(保護層)の膜厚の測定を行い、100000回転あたりの摩耗量[μm/100krot]を算出した。また、耐久試験用画像の白地部に相当する位置を含めて電子写真感光体の表面の長手方向で10箇所、それぞれ周方向で6箇所の計60箇所について傷の有無および傷の大きさを測定した。観測および計測条件はクリーニングブレード損耗の評価と同様である。
<Evaluation of electrophotographic photoreceptor wear>
After the initial stage of the durability test (endurance test B) in the HH environment and the LL environment and after image evaluation, the film thickness of the surface layer (protective layer) of the electrophotographic photosensitive member is measured, and the amount of wear per 100,000 rotations. [Μm / 100 krot] was calculated. Also, the presence / absence of scratches and the size of the scratches were measured at a total of 60 locations including 10 locations in the longitudinal direction of the surface of the electrophotographic photosensitive member including 6 locations in the circumferential direction including the position corresponding to the white background portion of the image for durability test. did. The observation and measurement conditions are the same as in the evaluation of cleaning blade wear.
電子写真感光体の表面層(保護層)の100000回転あたりの摩耗量と、電子写真感光体の表面の傷を電子写真感光体の損耗の指標として、以下のA〜Dの4段階で評価した。
A:摩耗量≦5×10−2[μm/100krot]。深さ0.5μm以上の傷無し。
B:5×10−2[μm/100krot]<摩耗量≦30×10−2[μm/100krot]。深さ0.5μm以上の傷無し。
C:30×10−2[μm/100krot]<摩耗量≦50×10−2[μm/100krot]。深さ1.0μm以上の傷無し。
D:50×10−2[μm/100krot]<摩耗量、または、深さ1.0μm以上の傷あり。
The abrasion amount per 100,000 rotations of the surface layer (protective layer) of the electrophotographic photosensitive member and the scratches on the surface of the electrophotographic photosensitive member were evaluated in the following four grades A to D as an index of wear of the electrophotographic photosensitive member. .
A: Abrasion amount ≦ 5 × 10 −2 [μm / 100 krot]. No scratches with a depth of 0.5 μm or more.
B: 5 × 10 −2 [μm / 100 krot] <wear amount ≦ 30 × 10 −2 [μm / 100 krot]. No scratches with a depth of 0.5 μm or more.
C: 30 × 10 −2 [μm / 100 krot] <wear amount ≦ 50 × 10 −2 [μm / 100 krot]. No scratches with a depth of 1.0 μm or more.
D: 50 × 10 −2 [μm / 100 krot] <Amount of wear or scratches with a depth of 1.0 μm or more.
〔実施例1〕
電子写真感光体(P01)と、標準トナーを用意した。また、塩基性粒子(E15)と無機粒子(K02)からなる粒子源を用意して、これらを評価機1にセットした。この評価機1を3機用意し、1つは画像流れ回復性の評価を行った。残り2機は、それぞれHH環境下での耐久試験(耐久試験B)およびLL環境下での耐久試験(耐久試験B)に用い、画像流れの評価、フィルミングの評価、クリーニングブレード損耗の評価および電子写真感光体損耗の評価を行った。
[Example 1]
An electrophotographic photosensitive member (P01) and a standard toner were prepared. Further, a particle source composed of basic particles (E15) and inorganic particles (K02) was prepared, and these were set in the evaluation machine 1. Three evaluation machines 1 were prepared, and one of the evaluation machines 1 was evaluated for image flow recoverability. The remaining two aircraft were used for the durability test under HH environment (endurance test B) and the endurance test under LL environment (endurance test B), respectively, for image flow evaluation, filming evaluation, cleaning blade wear evaluation and The electrophotographic photosensitive member was evaluated for wear.
評価条件および評価結果を表4に示す。 Table 4 shows the evaluation conditions and the evaluation results.
〔実施例2〕
電子写真感光体(P01)と、塩基性粒子(E15)と無機粒子(K02)を外添してなるトナー粒子からなるトナーを用意して、これらを評価機2にセットした。この評価機2を3機用意し、実施例1と同様に各評価を行った。
[Example 2]
A toner composed of toner particles obtained by externally adding an electrophotographic photosensitive member (P01), basic particles (E15), and inorganic particles (K02) was prepared, and these were set in the evaluation machine 2. Three evaluation machines 2 were prepared, and each evaluation was performed in the same manner as in Example 1.
評価条件および評価結果を表4に示す。 Table 4 shows the evaluation conditions and the evaluation results.
なお、表中の“供給方法”とは、塩基性粒子や無機粒子の供給方法である。評価機1を用いた場合は“部材”と表記し、現像剤に添加して(トナー粒子に外添して)評価機2を用いた場合は“外添”と表記した。 The “supply method” in the table is a method for supplying basic particles and inorganic particles. When the evaluation machine 1 is used, it is expressed as “member”, and when it is added to the developer (externally added to the toner particles) and the evaluation machine 2 is used, it is expressed as “external addition”.
電子写真感光体(P01)の例示化合物(U−2)の使用量を5部から0.5部、5.0部、15部、25部に変更した電子写真感光体を製造し、上記と同様の評価を行ったところ、実施例1および2と同様の良好な結果が得られた。 An electrophotographic photosensitive member was produced in which the amount of the exemplified compound (U-2) used in the electrophotographic photosensitive member (P01) was changed from 5 parts to 0.5 parts, 5.0 parts, 15 parts, and 25 parts. When the same evaluation was performed, the same good results as in Examples 1 and 2 were obtained.
〔実施例3〜11および比較例1〜4〕
評価条件としての電子写真感光体、塩基性粒子、無機粒子および供給方法を表5に示すようにした以外は、実施例1と同様にして各評価を行った。評価条件および評価結果を表5に示す。画像流れ回復性の評価結果については図7にも示す。なお、比較例1では粒子源を設置しなかった。
[Examples 3 to 11 and Comparative Examples 1 to 4]
Each evaluation was performed in the same manner as in Example 1 except that the electrophotographic photosensitive member, basic particles, inorganic particles, and supply method as evaluation conditions were as shown in Table 5. Table 5 shows the evaluation conditions and the evaluation results. FIG. 7 also shows the evaluation result of the image flow recoverability. In Comparative Example 1, no particle source was installed.
図7より、塩基性粒子を用いていない比較例1(図7中の△)に対して、pHが11.0以下の塩基性粒子を用いた場合、画素回復指数が20以上となった。特にpHが7.5以上10.5以下の塩基性粒子を用いた場合では、非常に良好な画像流れ回復性が見られた。一方、塩基性でない(pHが7.0以下)粒子またはpHが11.0を超える塩基性粒子を使用した比較例2〜4は、画像流れ回復性が良好ではなかった。pHが7.0より大である塩基性粒子を用いることで、放電生成物に作用し、画像流れの回復に寄与しているものと考えられる。一方、pHが11.0より大きい塩基性粒子を使用した場合は、塩基性粒子自体の親水性が高くなるためか、イオン性が強いためか、あるいは、形成される塩が強電離性となるためか、十分な効果が得られなかった。 From FIG. 7, when using basic particles having a pH of 11.0 or less, the pixel recovery index was 20 or more compared to Comparative Example 1 (Δ in FIG. 7) that did not use basic particles. In particular, when basic particles having a pH of 7.5 or more and 10.5 or less were used, very good image flow recovery was observed. On the other hand, Comparative Examples 2 to 4 using particles that are not basic (pH is 7.0 or less) or basic particles having a pH of more than 11.0 did not have good image flow recoverability. By using basic particles having a pH higher than 7.0, it is considered that they act on the discharge product and contribute to the recovery of image flow. On the other hand, when basic particles having a pH of greater than 11.0 are used, the basic particles themselves are highly hydrophilic, are strongly ionic, or the formed salt is strongly ionized. For this reason, a sufficient effect was not obtained.
塩基性粒子として潤滑性に優れる炭酸カルシウムを使用した実施例6〜7では、実施例3〜5および実施例8〜11に比べて、クリーニングブレードの損耗がより抑えられている。 In Examples 6 to 7 using calcium carbonate excellent in lubricity as basic particles, the wear of the cleaning blade is further suppressed as compared with Examples 3 to 5 and Examples 8 to 11.
また、表面の弾性変形率(We%)が40%以上である電子写真感光体(P05)を使用した実施例11では、実施例3〜10に比べて、フィルミングがより抑えられている。 Further, in Example 11 using the electrophotographic photosensitive member (P05) having a surface elastic deformation rate (We%) of 40% or more, filming is further suppressed as compared with Examples 3 to 10.
〔実施例12〜19および比較例5〜6〕
評価条件としての電子写真感光体、塩基性粒子、無機粒子および供給方法を表6に示すようにした以外は、実施例12〜16および比較例5〜6については実施例1と同様にして、実施例17〜19については実施例2と同様にして各評価を行った。評価条件および評価結果を表6に示す。画像流れ回復性の評価結果については図8にも示す。
[Examples 12 to 19 and Comparative Examples 5 to 6]
Except that the electrophotographic photosensitive member, basic particles, inorganic particles and supply method as the evaluation conditions are as shown in Table 6, Examples 12 to 16 and Comparative Examples 5 to 6 were the same as Example 1, Each of Examples 17 to 19 was evaluated in the same manner as Example 2. Table 6 shows the evaluation conditions and the evaluation results. The evaluation result of the image flow recoverability is also shown in FIG.
図8より、塩基性粒子の個数平均粒径が30nm以上500nm以下のとき、画像流れ回復性が高く、非常に良好であった。一方、塩基性粒子の個数平均粒径が30nm未満の比較例5および500nmを超える比較例6では、画像流れ回復性が十分でない。 From FIG. 8, when the number average particle diameter of the basic particles is 30 nm or more and 500 nm or less, the image flow recoverability is high and very good. On the other hand, in Comparative Example 5 in which the number average particle diameter of the basic particles is less than 30 nm and in Comparative Example 6 in which the number average particle diameter exceeds 500 nm, the image flow recoverability is not sufficient.
表面の弾性変形率(We%)が40%以上である電子写真感光体(P05)を使用した実施例12〜19では、実施例11と同様にフィルミングが抑えられている。 In Examples 12 to 19 using the electrophotographic photosensitive member (P05) having a surface elastic deformation rate (We%) of 40% or more, filming is suppressed as in Example 11.
比較例5では、画像流れが十分に抑えられなかった。画像流れ回復性と耐久試験による画像流れで、比較例5と比較例6との優劣は逆転している。これは、比較例5では、塩基性粒子の粒径が小さいため、画像流れの抑制の即効性は高いが、電子写真感光体の表面に残留しやすいため、画像流れの要因になっていると考えられる。 In Comparative Example 5, the image flow was not sufficiently suppressed. The superiority and inferiority of Comparative Example 5 and Comparative Example 6 are reversed in the image flow recovery property and the image flow by the durability test. In Comparative Example 5, since the basic particle size is small, the immediate effect of suppressing the image flow is high, but it tends to remain on the surface of the electrophotographic photosensitive member, which is a factor of the image flow. Conceivable.
個数平均粒径が30〜500nmのpH11.0以下の塩基性粒子を現像剤に含有させた実施例17〜19においても、実施例12、13および16と同様の結果が得られた。 In Examples 17 to 19 in which basic particles having a number average particle size of 30 to 500 nm and having a pH of 11.0 or less were contained in the developer, the same results as in Examples 12, 13 and 16 were obtained.
〔実施例20〜28〕
評価条件としての電子写真感光体、塩基性粒子、無機粒子および供給方法を表7に示すようにした以外は、実施例1と同様にして各評価を行った。評価条件および評価結果を表7に示す。
[Examples 20 to 28]
Each evaluation was performed in the same manner as in Example 1 except that the electrophotographic photosensitive member, basic particles, inorganic particles, and supply method as evaluation conditions were as shown in Table 7. Table 7 shows the evaluation conditions and the evaluation results.
上記一般式(4)で示され、かつ、3≦m+n≦10を満たす化合物を重合性官能基を有する化合物として使用した実施例22〜28では、実施例20〜21に比べて、画像流れがより抑えられている。 In Examples 22 to 28 in which the compound represented by the above general formula (4) and satisfying 3 ≦ m + n ≦ 10 was used as the compound having a polymerizable functional group, the image flow was lower than that in Examples 20 to 21. More suppressed.
〔実施例29〜39〕
評価条件としての電子写真感光体、塩基性粒子、無機粒子および供給方法を表8に示すようにした以外は、実施例29〜36については実施例1と同様にして、実施例37〜39については実施例2と同様にして各評価を行った。評価条件および評価結果を表8に示す。
[Examples 29 to 39]
Examples 29 to 36 are the same as Example 1 except that the electrophotographic photosensitive member, basic particles, inorganic particles, and supply method as evaluation conditions are shown in Table 8. Examples 37 to 39 Were evaluated in the same manner as in Example 2. Table 8 shows the evaluation conditions and the evaluation results.
モース硬度が5以上の無機粒子を使用した実施例29〜39では、実施例3〜28に比べて、電子写真感光体の損耗がより抑えられている。モース硬度が5以上の無機粒子を使用することによって、電子写真感光体とクリーニングブレードの当接部の負荷や、負荷のばらつきが低減されていると考えられる。モース硬度が5以上の無機粒子が、塩基性粒子の掻き取りに寄与していると考えられる。 In Examples 29 to 39 using inorganic particles having a Mohs hardness of 5 or more, the wear of the electrophotographic photosensitive member is further suppressed as compared with Examples 3 to 28. By using inorganic particles having a Mohs hardness of 5 or more, it is considered that the load at the contact portion between the electrophotographic photosensitive member and the cleaning blade and the variation in the load are reduced. It is considered that inorganic particles having a Mohs hardness of 5 or more contribute to scraping of the basic particles.
また、個数平均粒径が塩基性粒子より大きくかつ1000nm以下の無機粒子を用いた実施例29〜33および実施例35〜39では、実施例34に比べて、クリーニングブレード損耗もより抑えられている。 In Examples 29 to 33 and Examples 35 to 39 using inorganic particles having a number average particle size larger than the basic particles and 1000 nm or less, the cleaning blade wear is further suppressed as compared with Example 34. .
塩基性粒子の掻き取りをより効率的にするためには、無機粒子がクリーニングブレードと電子写真感光体の当接部のくさび部位にある程度入れる一方で、塩基性粒子よりもくさび部の奥側へ入り込みすぎないことが好ましく、その観点から、無機粒子の個数平均粒径は、塩基性粒子より大きくかつ1000nm以下であることが好ましい。 In order to make scraping of the basic particles more efficient, the inorganic particles are introduced to the wedge part of the contact portion between the cleaning blade and the electrophotographic photosensitive member to some extent, but to the deeper side of the wedge portion than the basic particles. From the viewpoint, it is preferable that the number average particle diameter of the inorganic particles is larger than the basic particles and 1000 nm or less.
なお、実施例および比較例で使用したトナーには、個数平均粒径20nmの疎水化シリカ粒子が外添剤として用いられており、そのモース硬度は6であるが、小粒径(塩基性粒子の個数平均粒径の下限値の30nmよりも小さい)であるため、塩基性粒子の掻き取りへの寄与が特に現れていないと考えられる。 In the toners used in Examples and Comparative Examples, hydrophobized silica particles having a number average particle diameter of 20 nm are used as an external additive, and the Mohs hardness is 6, but the small particle diameter (basic particles) is used. It is considered that the contribution to scraping of the basic particles does not appear particularly.
〔比較例7〜19〕
評価条件としての電子写真感光体、塩基性粒子、無機粒子および供給方法を表9に示すようにした以外は、実施例1と同様にして各評価を行った。評価条件および評価結果を表9に示す。
[Comparative Examples 7 to 19]
Each evaluation was performed in the same manner as in Example 1 except that the electrophotographic photosensitive member, basic particles, inorganic particles, and supply method as evaluation conditions were as shown in Table 9. Table 9 shows the evaluation conditions and the evaluation results.
本発明に用いられる上記一般式(1)で示される化合物に対して、比較例7〜16で用いた上記式(U−N2)〜(U−N9)で示される化合物は、アリール基の間の構造が長すぎる、アリール基同士が向かい合う構造をとりにくい、または、向かい合うアリール基がないため、フィルミングが十分に抑えられなかった。 The compounds represented by the above formulas (U-N2) to (U-N9) used in Comparative Examples 7 to 16 with respect to the compound represented by the above general formula (1) used in the present invention are an aryl group. The filming was not sufficiently suppressed because the structure was too long, it was difficult to have a structure in which aryl groups face each other, or there was no aryl group facing each other.
また、比較例17で用いたレゾール型フェノール樹脂は、重合あるいは架橋による硬化がしにくいため、上記一般式(1)で示される化合物を用いているにも関わらず、フィルミングが十分に抑えられなかった。 Further, since the resol type phenolic resin used in Comparative Example 17 is hard to be cured by polymerization or crosslinking, filming can be sufficiently suppressed in spite of the use of the compound represented by the general formula (1). There wasn't.
また、上記一般式(1)で示される化合物を用いていない比較例19では、電子写真感光体の表面の弾性変形率(We%)は、実施例26〜27の電子写真感光体と近いにも関わらず、フィルミングが十分に抑えられなかった。 In Comparative Example 19 in which the compound represented by the general formula (1) was not used, the elastic deformation rate (We%) of the surface of the electrophotographic photosensitive member was close to that of the electrophotographic photosensitive members of Examples 26 to 27. Nevertheless, filming was not sufficiently suppressed.
101 電子写真感光体
101a 支持体
101b 導電層
101c 下引き層
101d 電荷発生層
101e 電荷輸送層
101f 保護層
102 放電を伴う帯電手段
103 像露光光
104 現像手段
105 転写手段
106 クリーニング手段
107 クリーニングブレード
107S 付勢手段
108 廃トナー搬送手段
109 粒子源
110 供給部材
X 電子写真感光体の表面の進行方向
θ クリーニングブレードの設定角
L クリーニングブレードの自由長(固定されていない部分の長さ)
T クリーニングブレードの厚さ
a 小粒径粒子
b 大粒径粒子
c 付着物
d トナー(転写残トナー)
Idis 放電電流量
Vac 交流電圧
Vpp 交流電圧の振幅
Iac 交流電流量
W クリーニングブレードの欠けまたはえぐれの幅
D クリーニングブレードの欠けまたはえぐれの深さ
DESCRIPTION OF SYMBOLS 101 Electrophotographic photoreceptor 101a Support body 101b Conductive layer 101c Undercoat layer 101d Charge generation layer 101e Charge transport layer 101f Protective layer 102 Charging means with discharge 103 Image exposure light 104 Developing means 105 Transfer means 106 Cleaning means 107 Cleaning blade 107S With Force means 108 Waste toner conveying means 109 Particle source 110 Supply member X Traveling direction of surface of electrophotographic photosensitive member θ Setting angle of cleaning blade L Free length of cleaning blade (length of unfixed portion)
T Thickness of cleaning blade a Small particles b Large particles c Deposits d Toner (transfer residual toner)
Idis Discharge current amount Vac AC voltage Vpp Amplitude of AC voltage Iac AC current amount W Defect or chipping width of the cleaning blade D Depth of chipping or squashing of the cleaning blade
Claims (8)
該電子写真感光体の表面層は、2つ以上の重合性官能基を有する電荷輸送性化合物の重合物からなる樹脂、および、下記一般式(1)で示される化合物を含有し、
該電子写真装置は、該電子写真感光体の表面と該クリーニングブレードとが当接する部位に個数平均粒径30〜500nm、かつpH11.0以下の塩基性粒子を供給する手段をさらに有する
ことを特徴とする電子写真装置。
The surface layer of the electrophotographic photoreceptor contains a resin composed of a polymer of a charge transporting compound having two or more polymerizable functional groups, and a compound represented by the following general formula (1):
The electrophotographic apparatus further includes means for supplying basic particles having a number average particle size of 30 to 500 nm and a pH of 11.0 or less to a portion where the surface of the electrophotographic photosensitive member is in contact with the cleaning blade. An electrophotographic apparatus.
該電子写真感光体の表面層は、2つ以上の重合性官能基を有する電荷輸送性化合物の重合物からなる樹脂、および、下記一般式(1)で示される化合物を含有し、
該現像手段は、個数平均粒径30〜500nm、かつpH11.0以下の塩基性粒子を含有する現像剤を有することを特徴とする電子写真装置。
The surface layer of the electrophotographic photoreceptor contains a resin composed of a polymer of a charge transporting compound having two or more polymerizable functional groups, and a compound represented by the following general formula (1):
The electrophotographic apparatus is characterized in that the developing means has a developer containing basic particles having a number average particle diameter of 30 to 500 nm and a pH of 11.0 or less .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010264128A JP5618785B2 (en) | 2010-11-26 | 2010-11-26 | Electrophotographic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010264128A JP5618785B2 (en) | 2010-11-26 | 2010-11-26 | Electrophotographic equipment |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2012113239A JP2012113239A (en) | 2012-06-14 |
JP2012113239A5 JP2012113239A5 (en) | 2014-01-09 |
JP5618785B2 true JP5618785B2 (en) | 2014-11-05 |
Family
ID=46497475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010264128A Active JP5618785B2 (en) | 2010-11-26 | 2010-11-26 | Electrophotographic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5618785B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6192411B2 (en) * | 2013-07-31 | 2017-09-06 | キヤノン株式会社 | Image forming method |
JP6387716B2 (en) * | 2014-07-10 | 2018-09-12 | 富士ゼロックス株式会社 | Image forming apparatus |
JP6572060B2 (en) * | 2015-08-20 | 2019-09-04 | キヤノン株式会社 | Image forming apparatus |
JP7336355B2 (en) * | 2019-10-30 | 2023-08-31 | キヤノン株式会社 | Electrophotographic photoreceptor, electrophotographic apparatus and process cartridge |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002162767A (en) * | 2000-11-24 | 2002-06-07 | Fuji Xerox Co Ltd | Image carrier, image recording device using the same, and method for recording image |
JP2005208325A (en) * | 2004-01-22 | 2005-08-04 | Canon Inc | Image forming apparatus |
JP2006010936A (en) * | 2004-06-24 | 2006-01-12 | Canon Inc | Image forming method |
JP2007248525A (en) * | 2006-03-13 | 2007-09-27 | Ricoh Co Ltd | Cleaning device, and process unit and image forming apparatus equipped with the same |
JP5380975B2 (en) * | 2008-09-26 | 2014-01-08 | 富士ゼロックス株式会社 | Image forming apparatus and process cartridge |
JP2010085459A (en) * | 2008-09-29 | 2010-04-15 | Ricoh Co Ltd | Image carrier protecting agent, protection layer forming apparatus, image forming method, process cartridge, and image forming apparatus |
-
2010
- 2010-11-26 JP JP2010264128A patent/JP5618785B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012113239A (en) | 2012-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006267652A (en) | Electrophotographic photoreceptor, process cartridge and image forming apparatus | |
US9639010B2 (en) | Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, image-forming apparatus and image-forming method | |
JP5929882B2 (en) | Organic photoreceptor, image forming apparatus and image forming method | |
JP5618785B2 (en) | Electrophotographic equipment | |
JP6398926B2 (en) | Electrophotographic photosensitive member, and image forming apparatus and image forming method using the same | |
JP2005157178A (en) | Image forming method and image forming apparatus | |
JP2011069906A (en) | Electrophotographic photoreceptor, image forming apparatus, and process cartridge | |
JP2011175140A (en) | Image forming apparatus | |
JP5900451B2 (en) | Electrophotographic photoreceptor, image forming apparatus and image forming method | |
JP2006235524A (en) | Image forming method | |
US7536134B2 (en) | Image holding member and image forming apparatus | |
JP2006113553A (en) | Image forming apparatus, electrophotographic toner, and electrophotographic developer | |
JP2016188950A (en) | Electrophotographic photoreceptor, image forming apparatus, and image forming method | |
JP2008129450A (en) | Image forming method and image forming apparatus | |
JP7146459B2 (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP2006276272A (en) | Image forming apparatus | |
JP2006267733A (en) | Image forming apparatus | |
JP2012150390A (en) | Image forming apparatus | |
JP2011085621A (en) | Image forming apparatus | |
JP5935700B2 (en) | Image forming apparatus, image forming method, and process cartridge | |
JP2004109920A (en) | Image forming apparatus | |
CN104849989A (en) | Image forming apparatus | |
JP2012150391A (en) | Image forming apparatus | |
JP6561488B2 (en) | Electrophotographic photosensitive member and electrophotographic image forming apparatus | |
JP5470712B2 (en) | External additive for toner, toner for developing electrostatic image, developer for developing electrostatic image, image forming apparatus, developer cartridge, process cartridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131120 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140819 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140916 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5618785 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |