JP5618305B2 - Electromagnetic forming method for polygonal cross-section member - Google Patents

Electromagnetic forming method for polygonal cross-section member Download PDF

Info

Publication number
JP5618305B2
JP5618305B2 JP2011252082A JP2011252082A JP5618305B2 JP 5618305 B2 JP5618305 B2 JP 5618305B2 JP 2011252082 A JP2011252082 A JP 2011252082A JP 2011252082 A JP2011252082 A JP 2011252082A JP 5618305 B2 JP5618305 B2 JP 5618305B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
section
cross
alloy material
electromagnetic forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011252082A
Other languages
Japanese (ja)
Other versions
JP2013107091A (en
Inventor
秀樹 石飛
秀樹 石飛
寛哲 細井
寛哲 細井
圭輔 赤崎
圭輔 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011252082A priority Critical patent/JP5618305B2/en
Publication of JP2013107091A publication Critical patent/JP2013107091A/en
Application granted granted Critical
Publication of JP5618305B2 publication Critical patent/JP5618305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/14Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces applying magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/08Tube expanders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)

Description

本発明は、筒状のアルミニウム合金素材を電磁成形で拡管し、多角形状の断面形状を有する部材(多角形断面部材)を製造する方法に関する。   The present invention relates to a method for producing a member (polygonal cross-section member) having a polygonal cross-sectional shape by expanding a tubular aluminum alloy material by electromagnetic forming.

筒状の周壁を有するアルミニウム合金素材を内周面が多角形断面を有する金型の内部に配置し、かつ電磁成形用コイルを前記アルミニウム合金素材の内部に配置し、その状態で電磁成形用コイルに通電して、前記アルミニウム合金素材を前記金型の内周面又は/及び端面に沿った断面形状に拡管成形する電磁成形方法が、種々の部材の成形に適用されている。
例えば特許文献1には、アルミニウム合金素材の端部を拡開して、フランジ付きのバンパーステイを成形することが記載されている。特許文献2には、アルミニウム合金素材の前方部分をバンパーリインフォースに形成した貫通穴に挿入し、後方部分の周囲を金型で包囲し、前記アルミニウム合金素材の全長を拡管成形し、バンパーリインフォースにかしめ締結することが記載されている。特許文献3には、1回目の拡管成形でアルミニウム合金素材の後方部分を径大に成形すると同時に後端にフランジを成形し、2度目の拡管成形では、前半部をバンパーリインフォースに形成した貫通穴に挿入して拡管成形し、バンパーリインフォースにかしめ締結することが記載されている。また、特許文献4には、円形断面のアルミニウム合金素材を、多角形等の異形断面に拡管成形することが記載されている。
An aluminum alloy material having a cylindrical peripheral wall is disposed inside a mold having an inner circumferential surface having a polygonal cross section, and an electromagnetic forming coil is disposed inside the aluminum alloy material, and in this state, the electromagnetic forming coil An electromagnetic forming method in which the aluminum alloy material is expanded and formed into a cross-sectional shape along the inner peripheral surface and / or end surface of the mold is applied to forming various members.
For example, Patent Document 1 describes that an end portion of an aluminum alloy material is expanded to form a flanged bumper stay. In Patent Document 2, the front part of an aluminum alloy material is inserted into a through-hole formed in a bumper reinforcement, the periphery of the rear part is surrounded by a mold, the entire length of the aluminum alloy material is expanded, and crimped to the bumper reinforcement. It is described that it is concluded. Patent Document 3 discloses a through-hole in which the rear portion of the aluminum alloy material is formed in a large diameter in the first tube expansion molding, and at the same time a flange is formed in the rear end, and in the second tube expansion molding, the front half is formed as a bumper reinforcement. It is described that it is inserted into a tube and expanded to form a tube, and then crimped to a bumper reinforcement. Patent Document 4 describes that an aluminum alloy material having a circular cross section is subjected to tube expansion forming into a deformed cross section such as a polygon.

特開2004−189062号公報JP 2004-189062 A 特開2004−237818号公報JP 2004-237818 A 特開2010−69927号公報JP 2010-69927 A 特開平6−31226号公報JP-A-6-31226

電磁成形による拡管では、電磁成形用コイルとして、一般に中空四角形断面の導体を同一径でらせん状に巻いた円断面コイルが用いられる。これは、円断面コイルは成形しやすく、かつ導体を取り巻く絶縁樹脂層が電磁成形時の反発力が繰り返し加わっても破損しにくいためである。また、電磁成形力はアルミニウム合金素材と電磁成形コイルの距離の3乗に反比例するから、アルミニウム合金素材と電磁成形用コイルの隙間がごく小さくなるように、アルミニウム合金素材は同じく円形断面のものが用いられている。   In pipe expansion by electromagnetic forming, a circular cross-sectional coil in which a conductor having a hollow quadrangular cross-section is spirally wound with the same diameter is generally used as an electromagnetic forming coil. This is because the circular cross-section coil is easy to mold, and the insulating resin layer surrounding the conductor is not easily damaged even if the repulsive force at the time of electromagnetic molding is repeatedly applied. Also, since the electromagnetic forming force is inversely proportional to the cube of the distance between the aluminum alloy material and the electromagnetic forming coil, the aluminum alloy material must also have a circular cross section so that the gap between the aluminum alloy material and the electromagnetic forming coil is very small. It is used.

このような電磁成形用コイルとアルミニウム合金素材を用いて、特許文献4に示すように、例えば四角形断面部材を電磁成形しようとすると、電磁成形力の制約、電磁成形用コイルの耐久性、及び材料の延び限界等のため、四角形断面部材のコーナー部のR(半径)を小さく成形できないという問題がある。この点について図6〜8を参照して説明する。
まず、図6(a)では、円筒状のアルミニウム合金素材1を内周面が四角形断面(この例では正四角形)を有する金型3の内部に配置し、かつアルミニウム合金素材1の内部に円形断面の電磁成形用コイル2を配置している。金型3のコーナー部3aの内周面のRは、目標とする四角形断面部材の断面形状に合わせて比較的小さく形成されている。
Using such an electromagnetic forming coil and an aluminum alloy material, as shown in Patent Document 4, for example, when attempting to electromagnetically form a rectangular cross-section member, restrictions on electromagnetic forming force, durability of the electromagnetic forming coil, and materials There is a problem that the R (radius) of the corner portion of the quadrangular cross-section member cannot be formed small due to the extension limit of the shape. This point will be described with reference to FIGS.
First, in FIG. 6A, a cylindrical aluminum alloy material 1 is arranged inside a mold 3 whose inner peripheral surface has a square cross section (in this example, a regular square), and a circular shape is formed inside the aluminum alloy material 1. A cross-sectional electromagnetic forming coil 2 is arranged. R of the inner peripheral surface of the corner portion 3a of the mold 3 is formed to be relatively small in accordance with the cross-sectional shape of the target quadrangular cross-section member.

図6(a)の状態で電磁成形用コイル2に通電してアルミニウム合金素材1を拡管成形する。このとき、アルミニウム合金素材1が、金型3の内周面のコーナー部3aに達するまで変形(拡管)すれば、成形された四角形断面部材は、図6(b)に2点鎖線で示す目標断面形状5のようになる。しかし、この目標断面形状5のようなコーナーRの小さい四角形断面部材を成形するのは一般的には困難であり、実際に成形される四角形断面部材4は、図6(b)に実線で示すように、コーナー部4aのRが目標断面形状5(金型3の内周面に沿った形状)のコーナー部5aのRに比べて大きくなってしまう。つまり、アルミニウム合金素材1が、金型3の内周面のコーナー部3aに達するほどの変形(拡管)をしないということである。   In the state of FIG. 6A, the electromagnetic forming coil 2 is energized and the aluminum alloy material 1 is expanded. At this time, if the aluminum alloy material 1 is deformed (expanded) until it reaches the corner portion 3a of the inner peripheral surface of the mold 3, the formed quadrangular cross-section member has a target indicated by a two-dot chain line in FIG. The cross-sectional shape is 5. However, it is generally difficult to form a rectangular cross-section member having a small corner R like the target cross-sectional shape 5, and the actually formed quadrangular cross-section member 4 is indicated by a solid line in FIG. Thus, R of corner part 4a will become large compared with R of corner part 5a of target section shape 5 (shape along the inner peripheral surface of metallic mold 3). That is, the aluminum alloy material 1 is not deformed (expanded) enough to reach the corner portion 3 a of the inner peripheral surface of the mold 3.

仮に、この拡管成形において、電磁成形用コイル2に投入する電気エネルギーが大きく、アルミニウム合金素材1に十分大きい電磁成形力が生じた場合、アルミニウム合金素材1が金型3のコーナー部3aの内周面に達するまで変形(拡管)し、その結果、コーナー部のRの小さい四角形断面部材を成形することができる。しかし、投入する電気エネルギーが大きいと、電磁成形用コイル2の耐久性が低下する。また、金型3のコーナー部3a付近ではアルミニウム合金素材1の周長の変化(材料の延び)が大きくなることで、四角形断面部材の肉厚がコーナー部において局部的に減少し、さらに破断に至るということも生じ得る。従って、現状の電磁成形用コイルとアルミニウム合金素材を用いて、現実に四角形断面部材を電磁成形する場合、図6(b)に示すとおり、コーナー部4aのRを目標どおりに小さく成形するのは一般的に困難である。   In this pipe expansion molding, if the electric energy input to the electromagnetic forming coil 2 is large and a sufficiently large electromagnetic forming force is generated in the aluminum alloy material 1, the aluminum alloy material 1 becomes the inner periphery of the corner portion 3 a of the mold 3. It deforms (expands) until it reaches the surface, and as a result, a rectangular cross-section member with a small R at the corner can be formed. However, if the electric energy to be input is large, the durability of the electromagnetic forming coil 2 is lowered. In addition, the change in the circumferential length of the aluminum alloy material 1 (extension of the material) increases in the vicinity of the corner portion 3a of the mold 3, so that the thickness of the quadrilateral cross-section member is locally reduced at the corner portion and further breaks. Can also occur. Therefore, when actually forming a rectangular cross-section member by electromagnetic forming using the current electromagnetic forming coil and aluminum alloy material, as shown in FIG. Generally difficult.

次に、図7では、円筒状のアルミニウム合金素材11を金型13の内部に配置し、かつアルミニウム合金素材11の内部に円形断面の電磁成形用コイル12を配置し、この状態で電磁成形用コイル12に通電して、アルミニウム合金素材11を拡管成形している。金型13は内周面が四角形断面(この例では正四角形)で、長さ方向に沿って大断面部13Aと小断面部13Bを有し、両者の間に段差部13Cが形成されている。この電磁成形により、図8に示すとおり、大断面部14Aと小断面部14B及び両者の間の段差部14Cからなる四角形断面部材(バンパーステイ)14が成形される。
この例でも、電磁成形力の制約、電磁成形用コイルの耐久性、及び材料の延び限界のため、目標断面形状(金型13の内周面に沿った形状)が得られず、実際に成形される四角形断面部材14は、大断面部14A、小断面部14B、及び打差部14Cの全てのコーナー部のRが、前記目標断面形状のコーナー部のRに比べて大きくなってしまう。
Next, in FIG. 7, the cylindrical aluminum alloy material 11 is disposed inside the mold 13, and the electromagnetic forming coil 12 having a circular cross section is disposed inside the aluminum alloy material 11. The coil 12 is energized, and the aluminum alloy material 11 is expanded. The mold 13 has a rectangular cross section (in this example, a regular quadrilateral) and has a large cross section 13A and a small cross section 13B along the length direction, and a step 13C is formed therebetween. . By this electromagnetic forming, as shown in FIG. 8, a rectangular cross-section member (bumper stay) 14 composed of a large cross-sectional portion 14A, a small cross-sectional portion 14B, and a stepped portion 14C therebetween is formed.
In this example as well, the target cross-sectional shape (the shape along the inner peripheral surface of the mold 13) cannot be obtained due to restrictions on the electromagnetic forming force, durability of the coil for electromagnetic forming, and the extension of the material. In the square cross-section member 14, the R of all corner portions of the large cross-section portion 14 </ b> A, the small cross-section portion 14 </ b> B, and the striking portion 14 </ b> C is larger than the R of the corner portion of the target cross-sectional shape.

バンパーステイ14は、図8に示すように、小断面部14Bが2点鎖線で示すサイドメンバー15の断面内に挿入され、段差部14Cがサイドメンバ15の先端のフランジ15Aに当接し、小断面部14Bとサイドメンバー15がボルト締結され、これによりバンパーステイ14はサイドメンバー15に固定される。衝突時にバンパーステイ14に掛かる荷重は、バンパーステイ14の大断面部14Aから、フランジ15Aを介してサイドメンバー15に伝達される。ここで、サイドメンバーは一般にコーナー部のRが小さく、稜線部が明確な四角形〜八角形の多角形断面を有しており、このサイドメンバー15も同じく、コーナー部15aのRが小さく、稜線部が明確な正四角形断面を有している。   As shown in FIG. 8, the bumper stay 14 has a small cross section 14B inserted into the cross section of the side member 15 indicated by a two-dot chain line, and the stepped portion 14C abuts against the flange 15A at the tip of the side member 15, The part 14 </ b> B and the side member 15 are bolted, whereby the bumper stay 14 is fixed to the side member 15. The load applied to the bumper stay 14 at the time of the collision is transmitted from the large cross section 14A of the bumper stay 14 to the side member 15 through the flange 15A. Here, the side member generally has a rectangular R-octagon polygonal cross section with a small corner portion R and a clear ridgeline portion. Similarly, the side member 15 has a small R at the corner portion 15a and a ridgeline portion. Has a clear square cross section.

従って、図8(a)に示すように、バンパーステイ14の大断面部14Aとサイドメンバー15は、軸方向に見たとき、断面のコーナー部14a,15aにおいて一致しない。このため、バンパーステイ14に係る衝突荷重を、大径部14Aのコーナー部14aからサイドメンバー15のコーナー部15aに伝達することができず、その結果、バンパーステイ14の変形形態が不安定になったり、変形に伴う荷重変動が大きくなったりして、所定のエネルギー吸収性能を確保できないという問題が生じる。   Therefore, as shown in FIG. 8A, the large cross-sectional portion 14A of the bumper stay 14 and the side member 15 do not coincide with each other at the cross-sectional corner portions 14a and 15a when viewed in the axial direction. For this reason, the collision load related to the bumper stay 14 cannot be transmitted from the corner portion 14a of the large diameter portion 14A to the corner portion 15a of the side member 15, and as a result, the deformation form of the bumper stay 14 becomes unstable. Or a change in load caused by deformation increases, resulting in a problem that a predetermined energy absorption performance cannot be ensured.

本発明は、従来の電磁成形方法の上記問題点に鑑みてなされたもので、筒状の周壁を有するアルミニウム合金素材を電磁成形で拡管し、多角形断面の部材を成形する場合に、断面のコーナー部のRをより小さく成形できるようにすることを目的とする。   The present invention has been made in view of the above problems of the conventional electromagnetic forming method, and in the case of expanding a tubular aluminum alloy material having a cylindrical peripheral wall by electromagnetic forming and forming a member having a polygonal cross section, The object is to make the corner portion R smaller.

本発明は、筒状の周壁を有するアルミニウム合金素材を内周面が多角形断面を有する金型の内部に配置し、かつ電磁成形用コイルを前記アルミニウム合金素材の内部に配置し、その状態で前記電磁成形用コイルに通電して、前記アルミニウム合金素材を前記金型の内周面に沿った断面形状に拡管成形する多角形断面部材の電磁成形方法を改良したもので、特にアルミニウム合金素材の断面形状と、アルミニウム合金素材の金型内での配置形態に特徴がある。具体的には、前記アルミニウム合金素材の周壁の断面は、略円形の基本断面の周方向に沿った複数の円弧状領域と、前記円弧状領域に挟まれた複数の凹凸領域からなり、前記凹凸領域では周壁が前記基本断面から外れて内向き又は/及び外向きに突出し、各凹凸領域の周壁の周長は同領域が前記基本断面の周方向に沿って円弧状に形成された場合より長く形成されている。前記凹凸領域は、全て前記金型のコーナー部に対向して配置される。ここで、前記略円形の基本断面とは、前記円弧状領域を連結して得られる仮想的な断面を意味する。   According to the present invention, an aluminum alloy material having a cylindrical peripheral wall is disposed inside a mold having an inner circumferential surface having a polygonal cross section, and an electromagnetic forming coil is disposed inside the aluminum alloy material. It is an improved electromagnetic forming method for a polygonal cross-section member that energizes the electromagnetic forming coil and expands and forms the aluminum alloy material into a cross-sectional shape along the inner peripheral surface of the mold. It is characterized by a cross-sectional shape and an arrangement form of the aluminum alloy material in the mold. Specifically, the cross section of the peripheral wall of the aluminum alloy material includes a plurality of arc-shaped regions along a circumferential direction of a substantially circular basic cross-section, and a plurality of uneven regions sandwiched between the arc-shaped regions, In the region, the peripheral wall protrudes inwardly and / or outwardly from the basic cross section, and the peripheral length of the peripheral wall of each uneven region is longer than that in the case where the same region is formed in an arc shape along the peripheral direction of the basic cross section. Is formed. The uneven regions are all disposed so as to face the corners of the mold. Here, the substantially circular basic cross section means a virtual cross section obtained by connecting the arc-shaped regions.

上記電磁成形方法において、電磁成形用コイルは、導体を螺旋状に巻いた円断面コイルである。
上記電磁成形方法において、前記アルミニウム合金素材を拡管成形すると同時に、前記アルミニウム合金素材の一方又は両方の端部を外向きに拡開してフランジを成形することができる。
上記電磁成形方法において、前記多角形断面部材は例えば軸方向に圧縮の荷重を受けたとき圧壊変形してエネルギーを吸収するエネルギー吸収部材である。この場合、前記アルミニウム合金素材を拡管成形すると同時に、周壁に内向きに窪む複数個のクラッシュビード(膨出量が相対的に少ないため窪みとなる)を形成することができる。このエネルギー吸収部材は、特に自動車用として用いるに好適である。
In the electromagnetic forming method, the electromagnetic forming coil is a circular cross-sectional coil in which a conductor is spirally wound .
In the electromagnetic forming method, the flange can be formed by expanding one or both ends of the aluminum alloy material outward at the same time that the aluminum alloy material is expanded.
In the electromagnetic forming method, the polygonal cross-sectional member is an energy absorbing member that absorbs energy by being crushed when receiving a compressive load in the axial direction, for example. In this case, the aluminum alloy material can be expanded and formed, and at the same time, a plurality of crush beads (indented because the bulging amount is relatively small) can be formed. This energy absorbing member is particularly suitable for use in automobiles.

上記電磁成形方法において、前記多角形断面部材は例えば自動車のバンパーステイ(上記エネルギー吸収部材の一種)である。
上記電磁成形方法において、前記アルミニウム合金素材を電磁成形で拡管し、多角形断面のバンパーステイを成形すると同時に、バンパーリインフォースにかしめ接合することができる。この場合、バンパーリインフォースに前後方向に貫通する穴を形成し、前記穴に前記アルミニウム合金素材の一部を挿入し、前記アルミニウム合金素材の前記穴から後方側に突出した箇所を前記金型で包囲して電磁成形を行う。なお、バンパーステイに関して前後方向をいう場合、衝突面側が前、車体側(サイドメンバー側)が後である。
前記アルミニウム合金素材は、長手方向に沿って実質的に同一断面を有するものが望ましく、押出材のほか、板材を筒状に成形したものも含まれる。
In the electromagnetic forming method, the polygonal cross-sectional member is, for example, an automobile bumper stay (a kind of the energy absorbing member).
In the electromagnetic forming method, the aluminum alloy material can be expanded by electromagnetic forming to form a bumper stay having a polygonal cross section, and at the same time, it can be caulked and joined to bumper reinforcement. In this case, a hole penetrating in the front-rear direction is formed in the bumper reinforcement, a part of the aluminum alloy material is inserted into the hole, and a portion protruding backward from the hole of the aluminum alloy material is surrounded by the mold. And electromagnetic forming. When referring to the front-rear direction with respect to the bumper stay, the collision surface side is the front, and the vehicle body side (side member side) is the rear.
The aluminum alloy material preferably has substantially the same cross section along the longitudinal direction, and includes not only extruded materials but also those obtained by forming a plate material into a cylindrical shape.

本発明に係るアルミニウム合金素材は、前記凹凸領域の周壁の周長が、同領域が単なる円弧状断面である場合に比べて長く形成されている。本発明では、そのことを凹凸領域の周壁が余剰線長を有するという。本発明に係るアルミニウム合金素材は、凹凸領域の周壁が前記余剰線長を有し、かつこの凹凸領域が金型の内周面のコーナー部に対向して配置されるから、アルミニウム合金素材を電磁成形で拡管したとき、前記凹凸領域の周壁が金型のコーナー部の内周面に向かって、前記余剰線長の分だけ容易に深く入り込み、前記金型のコーナー部の内周面に沿って、コーナー部のRが小さく稜線が明確な多角形断面部材を成形することができる。   In the aluminum alloy material according to the present invention, the circumferential length of the peripheral wall of the concavo-convex region is longer than that when the region has a simple arc-shaped cross section. In the present invention, this is called that the peripheral wall of the uneven region has a surplus line length. In the aluminum alloy material according to the present invention, the peripheral wall of the concavo-convex region has the surplus line length, and the concavo-convex region is arranged to face the corner portion of the inner peripheral surface of the mold. When the tube is expanded by molding, the peripheral wall of the uneven region easily enters deeply by the excess line length toward the inner peripheral surface of the corner portion of the mold, along the inner peripheral surface of the corner portion of the mold. A polygonal cross-section member having a small corner portion R and a clear ridgeline can be formed.

アルミニウム合金素材が前記凹凸領域において前記余剰線長を有することから、前記余剰線長の分だけアルミニウム合金素材の周長の変化(材料の延び)が緩和され、これにより多角形断面部材の特にコーナー部における局部的な肉厚減少が緩和され、かつ破断を防止することができる。
また、アルミニウム合金素材の周壁は、前記凹凸領域が一部に形成されているほかは、前記基本断面の周方向に沿った複数個の円弧状領域からなるので、従来どおりアルミニウム合金素材と電磁成形用コイルの隙間を小さくして、アルミニウム合金素材に十分な電磁成形力を作用させることができる。
Since the aluminum alloy material has the surplus line length in the concavo-convex region, the change in the circumference of the aluminum alloy material (elongation of the material) is alleviated by the surplus line length, and in particular, the corner of the polygonal cross-section member is reduced. The local thickness reduction in the portion is alleviated and breakage can be prevented.
In addition, the peripheral wall of the aluminum alloy material is composed of a plurality of arc-shaped regions along the circumferential direction of the basic cross section except that the uneven region is partially formed. The gap between the coils for use can be reduced, and a sufficient electromagnetic forming force can be applied to the aluminum alloy material.

本発明に掛かる多角形断面部材の製造方法を、軸方向に圧壊してエネルギーを吸収するエネルギー吸収部材の成形に適用した場合、圧壊変形時にエネルギー吸収量への寄与の多いコーナー部(稜線部)の肉厚減少を抑制でき、軽量でエネルギー吸収特性に優れたエネルギー吸収部材となる。また、エネルギー吸収部材のうちバンパーステイの成形に適用した場合、バンパーステイの断面形状を通常多角形断面を有するサイドメンバーの断面形状と一致させることができる。これにより、衝突時にバンパーステイに掛かる荷重を、バンパーステイの周壁全周からサイドメンバーの周壁全周に伝達することができ、衝突時のパーステイの変形形態が安定化し、変形に伴う荷重変動を抑え、所定のエネルギー吸収性能が確保できるようになる。   When the method for producing a polygonal cross-section member according to the present invention is applied to molding of an energy absorbing member that absorbs energy by crushing in the axial direction, a corner portion (ridge line portion) that greatly contributes to energy absorption during crushing deformation It is possible to suppress the reduction of the wall thickness, and it is an energy absorbing member that is lightweight and has excellent energy absorption characteristics. In addition, when applied to molding of the bumper stay among the energy absorbing members, the sectional shape of the bumper stay can be made to coincide with the sectional shape of the side member having a generally polygonal section. As a result, the load applied to the bumper stay at the time of collision can be transmitted from the entire circumference of the bumper stay to the entire circumference of the side member. The predetermined energy absorption performance can be secured.

本発明に係る電磁成形方法を説明する模式図であり、アルミニウム合金素材の平面図(a)、金型と金型内に配置したアルミニウム合金素材及び電磁成形用コイルの平面図(b)、及び電磁成形で得られた多角形断面部材の平面図(c)を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram explaining the electromagnetic forming method concerning this invention, The top view (a) of an aluminum alloy raw material, the top view (b) of the aluminum alloy raw material and electromagnetic forming coil which have been arrange | positioned in a metal mold | die, and The top view (c) of the polygonal cross-section member obtained by electromagnetic forming is shown. 本発明に係る電磁成形方法の別の例を説明する模式図であり、金型と金型内に配置したアルミニウム合金素材及び電磁成形用コイルの平面図(a)、その断面図(b)、及び電磁成形で得られた多角形断面部材(バンパーステイ)の平面図(c)を示す。It is a schematic diagram explaining another example of the electromagnetic forming method which concerns on this invention, The top view (a) of the aluminum alloy raw material and electromagnetic forming coil which have been arrange | positioned in a metal mold | die, and its cross section (b), And the top view (c) of the polygonal cross-section member (bumper stay) obtained by electromagnetic forming is shown. 本発明に係る電磁成形方法をバンパーステイの成形及びバンパーリインフォースとのかしめ締結に適用した例を説明する斜視図であり、バンパーリインフォースの斜視図(a)、バンパーリインフォースと、バンパーリインフォースに形成した貫通穴に挿入したアルミニウム合金素材の正面図(b)、及びその側面図(c)である。It is a perspective view explaining the example which applied the electromagnetic forming method concerning the present invention to formation of a bumper stay, and caulking fastening with bumper reinforcement. It is the front view (b) of the aluminum alloy raw material inserted in the hole, and its side view (c). 電磁成形後のバンパーステイとバンパーリインフォース、及びサイドメンバーを示す斜視図である。It is a perspective view which shows the bumper stay and bumper reinforcement after electromagnetic forming, and a side member. 本発明に係る電磁成形方法のさらに別の例を説明する模式図であり、金型と金型内に配置したアルミニウム合金素材及び電磁成形用コイルの平面図(a)、その断面図(b)、及び電磁成形で得られた多角形断面部材(バンパーステイ)の平面図(c)を示す。It is a schematic diagram explaining another example of the electromagnetic forming method which concerns on this invention, The top view (a) of the aluminum alloy raw material arrange | positioned in a metal mold | die and a metal mold | die, and the coil for electromagnetic forming, Its sectional drawing (b) The top view (c) of the polygonal cross-section member (bumper stay) obtained by electromagnetic forming is shown. 四角形断面部材を成形する従来の電磁成形方法を説明する平面模式図であり、金型と金型内に配置したアルミニウム合金素材及び電磁成形用コイルの平面図(a)、及び電磁成形で得られた四角形断面部材(b)を示す。It is a plane schematic diagram explaining the conventional electromagnetic forming method which shape | molds a square cross-section member, The top view (a) of the aluminum alloy raw material arrange | positioned in a metal mold | die and a metal mold | die, and an electromagnetic forming coil, and obtained by electromagnetic forming A rectangular cross-section member (b) is shown. 四角形断面部材(バンパーステイ)を成形する従来の電磁成形方法を説明する模式図であり、金型と金型内に配置したアルミニウム合金素材及び電磁成形用コイルの平面図(a)、同断面図(b)を示す。It is a schematic diagram explaining the conventional electromagnetic forming method which shape | molds a square cross-section member (bumper stay), The top view (a) of the aluminum alloy raw material and electromagnetic forming coil which were arrange | positioned in a metal mold | die, and the same sectional drawing (B) is shown. 従来の電磁成形方法で得られた四角形断面部材(バンパーステイ)とサイドメンバーを組み合わせた平面図(a)、及び断面図(b)である。It is the top view (a) which combined the square cross-section member (bumper stay) and side member which were obtained with the conventional electromagnetic forming method, and sectional drawing (b).

以下、図1〜図5を参照し、本発明に係る電磁成形方法について、より具体的に説明する。
図1は、本発明に係る電磁成形方法を説明する模式図である。金型3及び電磁成形コイル2は、図6に示すものと同じである。
アルミニウム合金素材21は、筒状の周壁を有するアルミニウム合金押出材を所定長さに切断したもので、前記周壁が、周方向に沿った複数の円弧状領域22と、円弧状領域22に挟まれた複数の凹凸領域23からなる。
円弧状領域22は略円形の基本断面24(図1に2点鎖線で示す)の周方向に沿って配置され、この例では円弧状領域22の中心角(円弧状領域22の両端と基本断面の24の中心Oのなす角度)はいずれもθに設定されている。基本断面24は、先に述べたとおり、円弧状領域22を連結して得られる仮想的な断面であり、従来のアルミニウム合金素材1(図6参照)の断面に相当する。
Hereinafter, the electromagnetic forming method according to the present invention will be described more specifically with reference to FIGS.
FIG. 1 is a schematic view for explaining an electromagnetic forming method according to the present invention. The mold 3 and the electromagnetic forming coil 2 are the same as those shown in FIG.
The aluminum alloy material 21 is obtained by cutting an aluminum alloy extruded material having a cylindrical peripheral wall into a predetermined length, and the peripheral wall is sandwiched between a plurality of arc-shaped regions 22 along the circumferential direction and the arc-shaped region 22. It consists of a plurality of uneven regions 23.
The arcuate region 22 is disposed along the circumferential direction of a substantially circular basic cross section 24 (indicated by a two-dot chain line in FIG. 1). In this example, the central angle of the arcuate region 22 (both ends of the arcuate region 22 and the basic cross section). angle) of the center O of 24 is set to theta 1 none. As described above, the basic cross section 24 is a virtual cross section obtained by connecting the arc-shaped regions 22 and corresponds to a cross section of the conventional aluminum alloy material 1 (see FIG. 6).

凹凸領域23では周壁が基本断面24から外れて外向きに突出している。この凹凸領域23についても、円弧状領域22と同様に中心角(凹凸領域23の両端と基本断面の24の中心Oのなす角度)という考え方を導入すると、この例では凹凸領域23の中心角はいずれもθに設定されている。同じ中心角θで比較すると、凹凸領域23における周壁の長さ(周長)Lは、円弧状領域22(又は基本断面24)の周壁の長さ(周長)Lと比較すると、周壁が外向きに湾曲して突出している分だけ長い。この周長の差(L−L)が、凹凸領域23における余剰線長である。アルミニウム合金素材21の断面全体でみれば、余剰線長はこの例では4×(L−L)である。 In the uneven region 23, the peripheral wall protrudes outwardly from the basic cross section 24. As for the uneven area 23, similarly to the arc-shaped area 22, if the concept of a central angle (an angle formed by both ends of the uneven area 23 and the center O of 24 of the basic cross section) is introduced, in this example, the central angle of the uneven area 23 is both are set to θ 2. When compared with the same central angle θ 2 , the length (circumferential length) L 1 of the peripheral wall in the uneven region 23 is compared with the length (peripheral length) L 0 of the peripheral wall of the arc-shaped region 22 (or the basic cross section 24). It is long as the peripheral wall is curved outward and protrudes. This circumference difference (L 1 −L 0 ) is the surplus line length in the uneven region 23. Looking at the whole cross section of the aluminum alloy material 21, the excess line length in this example is 4 × (L 1 -L 0) .

電磁成形にあたっては、アルミニウム合金素材21を金型3の内部に配置し、かつ電磁成形用コイル2をアルミニウム合金素材21の内部に配置する。このとき、金型3内において、アルミニウム合金素材21を、各凹凸領域23が金型3の各コーナー部3aにそれぞれ対向するように配置する。
この状態で電磁成形用コイル2に通電すると、アルミニウム合金素材21は拡管成形され、周壁が全周にわたり金型3の内周面(コーナー部3aを含めて)に達して拡管成形が終了する。この場合、アルミニウム合金素材21の拡管は、金型3の内周面の全周で拘束されることになる。
In electromagnetic forming, the aluminum alloy material 21 is disposed inside the mold 3, and the electromagnetic forming coil 2 is disposed inside the aluminum alloy material 21. At this time, in the mold 3, the aluminum alloy material 21 is arranged so that each uneven area 23 faces each corner 3 a of the mold 3.
When the electromagnetic forming coil 2 is energized in this state, the aluminum alloy material 21 is expanded and the peripheral wall reaches the inner peripheral surface (including the corner portion 3a) of the mold 3 over the entire periphery, and the expanded tube is finished. In this case, the expansion of the aluminum alloy material 21 is constrained on the entire circumference of the inner peripheral surface of the mold 3.

余剰線長(L−L)を有する凹凸領域23が、金型3のコーナー部3aの内周面に対向して配置されているため、電磁成形で拡管するとき、凹凸領域23の周壁は周長の変化が少なく、つまり肉厚を大きく減少させることなく比較的容易に前記コーナー部3aの内周面の奥まで達し、全体的に金型3の内周面に沿った断面形状、すなわちコーナー部25aのRが小さく稜線が明確に出た四角形断面部材25が成形される。
この四角形断面部材25は、例えば軸方向に圧縮の荷重を受けたとき圧壊変形してエネルギーを吸収するエネルギー吸収部材として用いるのに適する。四角形断面部材25は、圧壊変形時にエネルギー吸収量への寄与の多いコーナー部(稜線部)の肉厚減少が抑制されているので、軽量でエネルギー吸収特性に優れたエネルギー吸収部材となる。
Since the uneven region 23 having the surplus line length (L 1 -L 0 ) is disposed to face the inner peripheral surface of the corner portion 3 a of the mold 3, the peripheral wall of the uneven region 23 is expanded when expanding the tube by electromagnetic forming. Has a small change in the circumferential length, that is, it reaches the back of the inner peripheral surface of the corner portion 3a relatively easily without greatly reducing the wall thickness, and the cross-sectional shape along the inner peripheral surface of the mold 3 as a whole, That is, the rectangular section member 25 having a small R at the corner portion 25a and a clear ridgeline is formed.
The rectangular cross-section member 25 is suitable for use as an energy absorbing member that absorbs energy by being crushed when receiving a compressive load in the axial direction, for example. The rectangular cross-section member 25 is light in weight and has excellent energy absorption characteristics because the thickness reduction of the corner portion (ridge line portion) that greatly contributes to energy absorption during crushing deformation is suppressed.

図2は、本発明に係る電磁成形方法を利用してバンパーステイを成形する方法を説明する模式図である。電磁成形コイル12及び金型13は、図7に示すものと同じである。
アルミニウム合金素材31は、アルミニウム合金素材21と全く同様に、筒状の周壁を有するアルミニウム合金押出材を所定長さに切断したもので、前記周壁が、周方向に沿った複数の円弧状領域32と、円弧状領域32に挟まれた複数の凹凸領域33からなる。円弧状領域32は略円形の基本断面34(図2に2点鎖線で示す)の周方向に沿って配置され、凹凸領域33では周壁が基本断面34から外れて外向きに突出している。従って、凹凸領域33の周壁は、アルミニウム合金素材21の凹凸領域23と同様に余剰線長を有する。
FIG. 2 is a schematic view for explaining a method of forming a bumper stay using the electromagnetic forming method according to the present invention. The electromagnetic forming coil 12 and the mold 13 are the same as those shown in FIG.
The aluminum alloy material 31 is obtained by cutting an aluminum alloy extruded material having a cylindrical peripheral wall into a predetermined length just like the aluminum alloy material 21, and the peripheral wall has a plurality of arc-shaped regions 32 along the circumferential direction. And a plurality of concave and convex regions 33 sandwiched between the circular arc regions 32. The arc-shaped region 32 is disposed along the circumferential direction of a substantially circular basic cross section 34 (indicated by a two-dot chain line in FIG. 2), and in the uneven region 33, the peripheral wall protrudes outward from the basic cross section 34. Therefore, the peripheral wall of the uneven region 33 has a surplus line length, like the uneven region 23 of the aluminum alloy material 21.

電磁成形にあたっては、アルミニウム合金素材31を金型13の内部に配置し、かつ電磁成形用コイル12をアルミニウム合金素材31の内部に配置する。このとき、金型13内において、アルミニウム合金素材31を、各凹凸領域33が金型13の各コーナー部13aに対向するように配置する。
この状態で電磁成形用コイル12に通電すると、アルミニウム合金素材31は拡管成形され、周壁が全周にわたり金型13の内周面(コーナー部13aを含めて)に達して拡管成形が終了する。余剰線長を有する凹凸領域33が、金型13のコーナー部の内周面に対向して配置されているため、電磁成形で拡管するとき、凹凸領域23の周壁は周長の変化が少なく、つまり肉厚を大きく減少させることなく比較的容易に前記コーナー部の奥まで達し、全体的に金型13の内周面に沿った断面形状、すなわち図2(c)に示すようにコーナー部のRが小さく稜線が明確に出たバンパーステイ35が成形される。
In electromagnetic forming, the aluminum alloy material 31 is disposed inside the mold 13, and the electromagnetic forming coil 12 is disposed inside the aluminum alloy material 31. At this time, in the mold 13, the aluminum alloy material 31 is arranged so that each uneven region 33 faces each corner 13 a of the mold 13.
When the electromagnetic forming coil 12 is energized in this state, the aluminum alloy material 31 is expanded and the peripheral wall reaches the inner peripheral surface (including the corner portion 13a) of the mold 13 over the entire periphery, and the expanded tube is finished. Since the uneven region 33 having a surplus line length is disposed opposite to the inner peripheral surface of the corner portion of the mold 13, when the pipe is expanded by electromagnetic forming, the peripheral wall of the uneven region 23 has little change in the peripheral length, That is, it reaches the back of the corner portion relatively easily without greatly reducing the wall thickness, and the cross-sectional shape along the inner peripheral surface of the mold 13 as a whole, that is, as shown in FIG. A bumper stay 35 having a small R and a clear ridgeline is formed.

バンパーステイ35は、バンパーステイ14と同様の形態でサイドメンバー15(図8参照)に固定される。バンパーステイ35では、大断面部35Aの断面形状を、コーナー部を含めてサイドメンバー15の断面形状とほぼ一致させることができる。従って、衝突時にバンパーステイ35に掛かる荷重は、バンパーステイ35の大断面部35Aのコーナー部からも、フランジ15A(図8参照)を介してサイドメンバー15に伝達され、バンパーステイ14のように変形形態が不安定になったり、変形に伴う荷重変動が大きくなったりして、所定のエネルギー吸収性能を確保できないという問題が生じない。また、バンパーステイ35は、圧壊変形時にエネルギー吸収量への寄与の多いコーナー部(稜線部)の肉厚減少を抑制できるので、軽量でエネルギー吸収特性に優れたバンパーステイとなる。   The bumper stay 35 is fixed to the side member 15 (see FIG. 8) in the same manner as the bumper stay 14. In the bumper stay 35, the cross-sectional shape of the large cross-sectional portion 35 </ b> A can be made to substantially match the cross-sectional shape of the side member 15 including the corner portion. Therefore, the load applied to the bumper stay 35 at the time of collision is also transmitted from the corner portion of the large cross section 35A of the bumper stay 35 to the side member 15 via the flange 15A (see FIG. 8), and deformed like the bumper stay 14. There is no problem that the form becomes unstable or the load fluctuation accompanying the deformation becomes large, and the predetermined energy absorption performance cannot be secured. Further, since the bumper stay 35 can suppress a decrease in the thickness of the corner portion (ridge line portion) that greatly contributes to the amount of energy absorption during crushing deformation, the bumper stay 35 is a lightweight bumper stay having excellent energy absorption characteristics.

一方、バンパーステイ35の小断面部35Bは、その外周面形状を、コーナー部を含めてサイドメンバー15(図8参照)の内周面形状とほぼ一致させることができる。従って、前記小断面部35Bをサイドメンバー15の断面内にほぼ隙間なく挿入することができ、そのうえで小断面部35Bとサイドメンバ−15を側面からボルト締結することで、バンパーステイ35とサイドメンバー15(図8参照)の固定がより確実となる。   On the other hand, the small cross-sectional portion 35B of the bumper stay 35 can have its outer peripheral surface shape substantially identical to the inner peripheral surface shape of the side member 15 (see FIG. 8) including the corner portion. Therefore, the small cross section 35B can be inserted into the cross section of the side member 15 with almost no gap, and then the small cross section 35B and the side member 15 are bolted from the side, so that the bumper stay 35 and the side member 15 are fastened. (Refer to FIG. 8) is more securely fixed.

図3,4は、本発明に係る電磁成形方法を利用して、バンパーステイを成形すると同時に、該バンパーステイをバンパーリインフォースに固定する方法を説明する模式図である。
図3において、アルミニウム合金素材41は、筒状の周壁を有するアルミニウム合金押出材を所定長さに切断したもので、前記周壁はアルミニウム合金素材31と同じく、周方向に沿った複数の円弧状領域42と、円弧状領域42に挟まれた複数の凹凸領域43からなり、円弧状領域42はこれまで述べたような略円形の基本断面(図示せず)の周方向に沿って配置されている。ただし、アルミニウム合金素材41は、サイドメンバー44(図4参照)の断面形状が上下にやや長い長方形であるため、それに合わせて、凹凸領域43の上下間隔dを左右間隔dより少し大きく設定している。
3 and 4 are schematic diagrams for explaining a method of fixing the bumper stay to the bumper reinforcement at the same time as forming the bumper stay using the electromagnetic forming method according to the present invention.
In FIG. 3, an aluminum alloy material 41 is obtained by cutting an aluminum alloy extruded material having a cylindrical peripheral wall into a predetermined length, and the peripheral wall, like the aluminum alloy material 31, has a plurality of arc-shaped regions along the circumferential direction. 42 and a plurality of concave and convex regions 43 sandwiched between the arc-shaped regions 42, and the arc-shaped regions 42 are arranged along the circumferential direction of the substantially circular basic cross section (not shown) as described above. . However, the aluminum alloy material 41, since the cross-sectional shape of the side member 44 (see FIG. 4) is slightly longer rectangle vertically, accordingly, slightly larger than the lateral distance d 2 vertically spacing d 1 of the irregular region 43 doing.

バンパーリインフォース45は断面口形のアルミニウム合金押出材からなり、左右の端部近傍において、前後の縦壁45a,45bに上下方向にやや長い長方形の穴46,47が形成されている。穴46,47は、サイドメンバー44の断面の内側輪郭(内周形状)とほぼ同一形状に形成されている。アルミニウム合金素材41は、バンパーリインフォース45の穴46,47に挿入され、前端が穴46の先に突出している。
なお、前記穴46,47はバーリング穴とすることが望ましい。前方(衝突)側の穴46をバーリング穴とする場合、該バーリング穴の穴フランジは、衝突時にバンパーカバーが破断するのを防止する観点から、後方側(サイドメンバー44側)に向いて突出するように形成することが望ましい(特開2010-116129号公報参照)。
The bumper reinforcement 45 is made of an aluminum alloy extruded material having a mouth-shaped cross section, and rectangular holes 46 and 47 that are slightly long in the vertical direction are formed in the front and rear vertical walls 45a and 45b in the vicinity of the left and right ends. The holes 46 and 47 are formed in substantially the same shape as the inner contour (inner peripheral shape) of the cross section of the side member 44. The aluminum alloy material 41 is inserted into the holes 46 and 47 of the bumper reinforcement 45, and the front end protrudes beyond the hole 46.
The holes 46 and 47 are preferably burring holes. When the front (collision) side hole 46 is a burring hole, the hole flange of the burring hole protrudes toward the rear side (side member 44 side) from the viewpoint of preventing the bumper cover from being broken at the time of collision. It is desirable to form it as described above (see JP 2010-116129 A).

続いて、アルミニウム合金素材41の後方部分(バンパーリインフォース45の穴47から後方側に突出している部分)の周囲に、図示しない金型が配置され、かつアルミニウム合金素材41の内部に図示しない電磁成形用コイルが配置される。
前記金型は、内周面が四角形断面(ただしこの例では上下方向がやや長い長方形)で、金型13と同様に、小断面部と大断面部及び両者の間の段差部からなる。前記大断面部の内周面形状は、サイドメンバー44の断面の外側輪郭とほぼ同一形状に形成されている。ただし、前記金型の大断面部の平面領域(コーナー部以外の箇所)には、内側に突出する突起が複数個、適当な配置で形成されている。この突起はバンパーステイにクラッシュビードを形成するためのものである。前記小断面部の内周面形状は、サイドメンバー44の断面の内側輪郭(内周形状)とほぼ同一形状に形成されている。
前記電磁成形用コイルは、電磁成形用コイル12と同様の円断面コイルである。
Subsequently, a mold (not shown) is disposed around the rear portion of the aluminum alloy material 41 (portion protruding rearward from the hole 47 of the bumper reinforcement 45), and electromagnetic molding (not shown) is formed inside the aluminum alloy material 41. A coil for use is arranged.
The mold has a rectangular cross section (however, in this example, a rectangle with a slightly long vertical direction), and, like the mold 13, is composed of a small cross section and a large cross section, and a step between the two. The shape of the inner peripheral surface of the large cross section is formed to be substantially the same as the outer contour of the cross section of the side member 44. However, a plurality of protrusions protruding inward are formed in an appropriate arrangement in a planar region (a portion other than the corner portion) of the large cross section of the mold. This protrusion is for forming a crash bead on the bumper stay. The shape of the inner peripheral surface of the small cross section is formed to be substantially the same as the inner contour (inner peripheral shape) of the cross section of the side member 44.
The electromagnetic forming coil is a circular coil similar to the electromagnetic forming coil 12.

続いて、この状態で前記電磁成形用コイルに通電し、アルミニウム合金素材41を拡管成形して、図4に示すバンパーステイ48を成形し、同時にバンパーリインフォース45にかしめ締結する。
アルミニウム合金素材41の前記後方部分は、前記金型の内部で拡管してコーナー部を含めて前記金型の内周面に拘束されて変形し、ここに大断面部48A、小断面部48B、及び両者の間の段差部48Cが成形される。大断面部48Aはコーナー部48aを含めてサイドメンバー44の断面の外側輪郭とほぼ同形状の四角形断面を有し、小断面部48Bは、コーナー部48bを含めてサイドメンバー44の断面の内側輪郭とほぼ同形状の四角形断面を有する。大断面部48Aと小断面部48Bは、いずれもコーナー部48a,48bのRが小さく、稜線部が明確な四角形断面を有している。また、大断面部48Aの平面領域には、前記金型の突起に対応する窪み(クラッシュビード49)が成形されている。隣接する平面領域において、クラッシュビード49,49,・・は軸方向にみて異なる位置に、すなわち千鳥足配置で形成されている。
Subsequently, in this state, the electromagnetic forming coil is energized, the aluminum alloy material 41 is expanded and formed, and the bumper stay 48 shown in FIG. 4 is formed, and at the same time, it is caulked and fastened to the bumper reinforcement 45.
The rear portion of the aluminum alloy material 41 is expanded inside the mold and is constrained and deformed by the inner peripheral surface of the mold including the corner portion, and includes a large cross section 48A, a small cross section 48B, And the level | step-difference part 48C between both is shape | molded. The large cross section 48A has a rectangular cross section that is substantially the same shape as the outer contour of the cross section of the side member 44 including the corner section 48a, and the small cross section 48B includes the inner contour of the cross section of the side member 44 including the corner section 48b. And has a quadrangular cross section of substantially the same shape. The large cross-sectional portion 48A and the small cross-sectional portion 48B each have a rectangular cross section with a small R at the corner portions 48a and 48b and a clear ridgeline portion. In addition, a recess (crash bead 49) corresponding to the protrusion of the mold is formed in the planar region of the large cross section 48A. In adjacent planar regions, the crush beads 49, 49,... Are formed at different positions in the axial direction, that is, in a staggered arrangement.

一方、アルミニウム合金素材41の前方部分(前記後方部分以外の部分)は、バンパーリインフォース45内及びバンパーリインフォース45の前方で拡管して、縦壁45a,45bの部分ではコーナー部を含めて穴46,47の内周面に密着し、かつ縦壁45a,45bの間の空間では金型の拘束なしに膨張し、前端は拡開してフランジ51が成形される。
電磁成形後、バンパーステイ48の小断面部48Bの両側面にボルト穴52が形成される。続いてバンパーステイ48の小断面部84Bがサイドメンバー44の断面内に挿入され、段差部48Cがサイドメンバー44の先端のフランジ44aに当接し、小断面部48Bとサイドメンバー44がボルト締結され、これによりバンパーステイ48がサイドメンバー44に固定される。
On the other hand, the front portion (portion other than the rear portion) of the aluminum alloy material 41 is expanded in the bumper reinforcement 45 and in front of the bumper reinforcement 45, and the vertical walls 45a and 45b include the holes 46, including the corner portions. In close contact with the inner peripheral surface of 47, the space between the vertical walls 45a and 45b expands without restriction of the mold, the front end is expanded, and the flange 51 is formed.
After the electromagnetic forming, bolt holes 52 are formed on both side surfaces of the small cross section 48B of the bumper stay 48. Subsequently, the small cross-sectional portion 84B of the bumper stay 48 is inserted into the cross-section of the side member 44, the stepped portion 48C contacts the flange 44a at the tip of the side member 44, and the small cross-sectional portion 48B and the side member 44 are bolted. As a result, the bumper stay 48 is fixed to the side member 44.

図5は、本発明に係る電磁成形方法を利用して、フランジ付きバンパーステイを成形する方法を説明する模式図である。
アルミニウム合金素材61は、アルミニウム合金素材21と全く同様に、筒状の周壁を有するアルミニウム合金押出材を所定長さに切断したもので、前記周壁が、周方向に沿った複数の円弧状領域62と、円弧状領域62に挟まれた複数の凹凸領域63からなる。円弧状領域62は略円形の基本断面64(図5に2点鎖線で示す)の周方向に沿って配置され、凹凸領域63では周壁が基本断面64から外れて外向きに突出している。従って、凹凸領域63の周壁は、アルミニウム合金素材21の凹凸領域23と同様に余剰線長を有する。
FIG. 5 is a schematic view for explaining a method of forming a flanged bumper stay using the electromagnetic forming method according to the present invention.
The aluminum alloy material 61 is obtained by cutting an aluminum alloy extruded material having a cylindrical peripheral wall into a predetermined length just like the aluminum alloy material 21, and the peripheral wall has a plurality of arc-shaped regions 62 along the circumferential direction. And a plurality of concave and convex regions 63 sandwiched between the arc-shaped regions 62. The arc-shaped region 62 is disposed along the circumferential direction of a substantially circular basic cross section 64 (indicated by a two-dot chain line in FIG. 5), and in the uneven region 63, the peripheral wall protrudes outward from the basic cross section 64. Therefore, the peripheral wall of the uneven region 63 has a surplus line length as with the uneven region 23 of the aluminum alloy material 21.

電磁成形にあたっては、アルミニウム合金素材61を金型66内に挿入し、アルミニウム合金素材61の一端を金型66の一方の端面66bから突出させ、かつ電磁成形用コイル65をアルミニウム合金素材61の内部に配置する。このとき、金型66内において、アルミニウム合金素材61を、各凹凸領域63が金型66の各コーナー部66aに対向するように配置する。
この状態で電磁成形用コイル65に通電すると、アルミニウム合金素材61は拡管成形され、金型66の内部では周壁が全周にわたり金型66の内周面(コーナー部66aを含めて)に達し、金型66の端面66bから突出した部分では、周壁が拡開して端面66bに打ち当たり、拡管成形が終了する。
In electromagnetic forming, the aluminum alloy material 61 is inserted into the mold 66, one end of the aluminum alloy material 61 is protruded from one end surface 66 b of the mold 66, and the electromagnetic forming coil 65 is placed inside the aluminum alloy material 61. To place. At this time, in the mold 66, the aluminum alloy material 61 is arranged so that each uneven area 63 faces each corner 66 a of the mold 66.
When the electromagnetic forming coil 65 is energized in this state, the aluminum alloy material 61 is expanded and the inner wall of the mold 66 reaches the inner peripheral surface (including the corner portion 66a) of the mold 66 over the entire circumference. At the portion protruding from the end surface 66b of the mold 66, the peripheral wall expands and strikes the end surface 66b, and the tube expansion molding is completed.

この電磁成形で得られたフランジ付きバンパーステイ67は、図5(c)に示すように、四角形断面部68と端部のフランジ69からなる。余剰線長を有する凹凸領域63が、金型66のコーナー部66aに対向して配置されているため、電磁成形で拡管したとき、凹凸領域63の周壁は周長の変化が少なく、つまり肉厚を大きく減少させることなく比較的容易に前記コーナー部66aの奥まで達し、全体的に金型66の内周面に沿った断面形状、すなわち図5(c)に示すようにコーナー部のRが小さく稜線が明確に出た四角形断面部68を有するバンパーステイ67が成形される。同時に、前記余剰線長の存在により、フランジ69の局部的な肉厚減少が緩和され、破断を防止することができる   As shown in FIG. 5C, the flanged bumper stay 67 obtained by this electromagnetic forming is composed of a quadrangular cross section 68 and a flange 69 at the end. Since the concavo-convex region 63 having a surplus line length is arranged to face the corner portion 66a of the mold 66, when the pipe is expanded by electromagnetic forming, the peripheral wall of the concavo-convex region 63 has little change in the peripheral length, that is, the wall thickness. The corner portion 66a can be reached relatively easily without greatly reducing the cross-sectional shape along the inner peripheral surface of the mold 66, that is, as shown in FIG. A bumper stay 67 having a square cross section 68 with a small ridge line clearly formed is formed. At the same time, due to the presence of the surplus line length, the local thickness reduction of the flange 69 is alleviated and breakage can be prevented.

本発明に係る多角形断面部材の製造方法において、アルミニウム合金素材は例えば次のような実施の形態をとることができる。
(1)以上説明した例では、アルミニウム合金素材の凹凸領域には、各1個の凸部が形成されていたが、この凹凸領域には、複数個の凸部、1又は複数個の凹部(周壁が前記基本断面から外れて内向きに突出した箇所)、あるいは凸部と凹部の両方が例えば波形状に形成されていてもよい。いずれにしても、この凹凸領域において前記余剰線長が生じていなければならない。
In the method for manufacturing a polygonal cross-section member according to the present invention, the aluminum alloy material can take, for example, the following embodiments.
(1) In the example described above, one convex portion is formed in each concave and convex region of the aluminum alloy material. In this concave and convex region, a plurality of convex portions, one or a plurality of concave portions ( A portion where the peripheral wall protrudes inwardly from the basic cross section), or both the convex portion and the concave portion may be formed in a wave shape, for example. In any case, the surplus line length must be generated in the uneven region.

(2)アルミニウム合金素材に複数の凹凸領域が存在する場合、各凹凸領域における凹部又は凸部の形状若しくは余剰線長の長さは同一である必要はなく、電磁成形で成形される多角形断面部材の形状に応じて適宜調整することができる。
また、アルミニウム合金素材の凹凸領域は、電磁成形で成形される多角形断面部材の各コーナー部(稜線部)に対応して同数個形成することが望ましいが、電磁成形時にアルミニウム合金素材の周長の変化(材料の延び)が小さい箇所(例えば多角形断面部材のコーナー部のうちコーナー角度が比較的大きい箇所)では、同箇所に対応する凹凸領域を形成しなくてもよい。
(2) When there are a plurality of uneven regions in the aluminum alloy material, the shape of the recesses or protrusions in each uneven region or the length of the extra line length need not be the same, and the polygonal cross section formed by electromagnetic forming It can adjust suitably according to the shape of a member.
In addition, it is desirable to form the same number of uneven regions of the aluminum alloy material corresponding to each corner (ridge line) of the polygonal cross-section member formed by electromagnetic forming. In a portion where the change (elongation of the material) is small (for example, a portion having a relatively large corner angle among the corner portions of the polygonal cross-section member), it is not necessary to form an uneven region corresponding to the same portion.

(3)アルミニウム合金として、電磁成形時の導電率20%IACS以上、耐力150MPa以下が望ましく、JIS1000系、3000系、5000系、6000系、7000系のアルミニウム合金から選択する。熱処理型アルミニウム合金の場合、T1又はT4状態のアルミニウム合金素材、あるいは全体又は局部的に復元処理して軟化させたアルミニウム合金素材を用いることができる。この場合、電磁成形後に時効硬化処理(T5,T6処理)を行えばよく、図3,4の例では、バンパーステイ48とバンパーリインフォース45をかしめ締結後に、前記時効硬化処理を行うことになる。
(4)アルミニウム合金素材の外周長をLb、電磁成形時にアルミニウム合金素材の変形を拘束する金型の内周面の周長をLaとしたとき、0.9<La/Lb<1.3に設定する。La/Lbが0.9以下だと電磁成形された多角形断面部材にシワが発生し、1.3以上だと材料が破断するおそれがある。LaとLbはほぼ同等であることが望ましい。
(3) The aluminum alloy preferably has an electrical conductivity of 20% IACS or more and a proof stress of 150 MPa or less at the time of electromagnetic forming, and is selected from JIS 1000 series, 3000 series, 5000 series, 6000 series, and 7000 series aluminum alloys. In the case of a heat-treatable aluminum alloy, an aluminum alloy material in a T1 or T4 state, or an aluminum alloy material softened by being restored entirely or locally can be used. In this case, an age hardening process (T5, T6 process) may be performed after the electromagnetic forming. In the examples of FIGS. 3 and 4, the age hardening process is performed after the bumper stay 48 and the bumper reinforcement 45 are caulked and fastened.
(4) When the outer peripheral length of the aluminum alloy material is Lb and the peripheral length of the inner peripheral surface of the mold that restrains deformation of the aluminum alloy material during electromagnetic forming is La, 0.9 <La / Lb <1.3 Set. If La / Lb is 0.9 or less, wrinkles are generated in the electromagnetically formed polygonal cross-section member, and if it is 1.3 or more, the material may be broken. It is desirable that La and Lb are substantially equal.

(5)アルミニウム合金素材の肉厚は全周で一定である必要はなく、周方向に沿って変化させることができる。例えば、(a)電磁成形用コイルの成形力が相対的に及びにくい箇所(中心Oから遠い箇所)、すなわち凹凸領域と必要に応じてその近傍を相対的に薄肉とする、(b)エネルギー吸収部材を製造する場合、逆に、エネルギー吸収への寄与の大きいコーナー部(稜線部)に対応する凹凸領域と必要に応じてその近傍を相対的に厚肉とする、(c)電磁成形でフランジ付き多角形断面部材を成形する場合、ボルト締結予定箇所を相対的に厚肉とする、等が考えられる。 (5) The thickness of the aluminum alloy material need not be constant over the entire circumference, and can be varied along the circumferential direction. For example, (a) a portion where the forming force of the coil for electromagnetic forming is relatively difficult (a portion far from the center O), that is, an uneven region and its vicinity are made relatively thin if necessary, (b) energy absorption When manufacturing a member, conversely, an uneven region corresponding to a corner portion (ridgeline portion) that greatly contributes to energy absorption and, if necessary, the vicinity thereof is made relatively thick. (C) Flange by electromagnetic forming In the case of forming the attached polygonal cross-section member, it is conceivable that the bolt fastening scheduled portion is relatively thick.

(6)以上説明した例では、電磁成形に供するアルミニウム合金素材は、押出材を切断しただけのものであったが、予備加工したアルミニウム合金素材を用いることもできる(特開2010-116129号公報の図16参照)。例えば図4,5の例において、多角形断面に電磁成形で拡管する前に、フランジを別途例えば電磁成形又はプレス成形等により成形しておくことができる。
(7)アルミニウム合金素材として、金属板をプレス成形又はロール成形し、筒状としたものを用いることができる。
(6) In the example described above, the aluminum alloy material used for electromagnetic forming is only cut from the extruded material, but a pre-processed aluminum alloy material can also be used (Japanese Patent Laid-Open No. 2010-116129). FIG. 16). For example, in the example of FIGS. 4 and 5, the flange can be separately formed by, for example, electromagnetic forming or press forming before expanding into a polygonal cross section by electromagnetic forming.
(7) As the aluminum alloy material, it is possible to use a metal plate that is formed by press molding or roll molding into a cylindrical shape.

12,65 電磁成形用コイル
13,66 金型
21,31,41,61 アルミニウム合金素材
22,32,42,62 円弧状領域
23,33,43,63 凹凸領域
24,34,64 基本断面
25,35,48,67 四角形断面部材(バンパーステイ)
44 サイドメンバー
45 バンパーリインフォース
12, 65 Electromagnetic forming coil 13, 66 Mold 21, 31, 41, 61 Aluminum alloy material 22, 32, 42, 62 Arc-shaped region 23, 33, 43, 63 Uneven region 24, 34, 64 Basic cross section 25, 35, 48, 67 Square section member (bumper stay)
44 Side member 45 Bumper reinforcement

Claims (5)

筒状の周壁を有するアルミニウム合金素材を内周面が多角形断面を有する金型の内部に配置し、かつ電磁成形用コイルを前記アルミニウム合金素材の内部に配置し、その状態で前記電磁成形用コイルに通電して、前記アルミニウム合金素材を前記金型の内周面に沿った断面形状に拡管成形する多角形断面部材の電磁成形方法において、前記電磁成形用コイルが、導体を螺旋状に巻いた円断面コイルであり、前記アルミニウム合金素材の周壁の断面は、略円形の基本断面の周方向に沿った複数の円弧状領域と、前記円弧状領域に挟まれた複数の凹凸領域からなり、前記凹凸領域では周壁が前記基本断面から外れて内向き又は/及び外向きに突出し、各凹凸領域の周壁の周長は同領域が前記基本断面の周方向に沿って円弧状に形成された場合より長く、前記アルミニウム合金素材は、前記凹凸領域が前記金型のコーナー部に対向して配置されることを特徴とする多角形断面部材の電磁成形方法。 An aluminum alloy material having a cylindrical peripheral wall is arranged inside a mold having an inner peripheral surface having a polygonal cross section, and an electromagnetic forming coil is arranged inside the aluminum alloy material, and in that state, the electromagnetic forming material In the electromagnetic forming method for a polygonal cross-section member in which a coil is energized and the aluminum alloy material is expanded and formed into a cross-sectional shape along the inner peripheral surface of the mold, the electromagnetic forming coil spirally winds a conductor. The cross section of the peripheral wall of the aluminum alloy material consists of a plurality of arc-shaped regions along the circumferential direction of a substantially circular basic cross-section, and a plurality of uneven regions sandwiched between the arc-shaped regions, In the uneven region, the peripheral wall protrudes inward and / or outwardly from the basic cross section, and the peripheral wall of each uneven region has a circumferential length formed in an arc shape along the circumferential direction of the basic cross section Than Ku, the aluminum alloy material, electromagnetic forming method of polygonal cross-section member, characterized in that the irregular region are disposed to face the corner portion of the mold. 前記アルミニウム合金素材を拡管成形すると同時に、前記アルミニウム合金素材の一方又は両方の端部を外向きに拡開してフランジを成形することを特徴とする請求項1に記載された多角形断面部材の電磁成形方法。 2. The polygonal cross-section member according to claim 1 , wherein at the same time that the aluminum alloy material is expanded and formed, one or both ends of the aluminum alloy material are expanded outward to form a flange. Electromagnetic forming method. 前記多角形断面部材がエネルギー吸収部材であり、前記アルミニウム合金素材を拡管成形すると同時に、周壁に内向きに窪む複数個のクラッシュビードを形成することを特徴とする請求項1又は2に記載された多角形断面部材の電磁成形方法。 The polygonal cross-section member is an energy absorbing member, and at the same time bulge forming said aluminum alloy material according to claim 1 or 2, characterized in that forming a plurality of crush beads recessed inwardly to the peripheral wall Electromagnetic forming method for a polygonal cross-section member. 前記多角形断面部材がバンパーステイであることを特徴とする請求項3に記載された多角形断面部材の製造方法。 The method for manufacturing a polygonal cross-section member according to claim 3 , wherein the polygonal cross-section member is a bumper stay. バンパーリインフォースに前後方向に貫通する穴が形成されており、前記穴に前記アルミニウム合金素材の一部を挿入し、前記アルミニウム合金素材の前記穴から後方側に突出した箇所を前記金型で包囲して電磁成形を行い、前記バンパーリインフォースにかしめ締結することを特徴とする請求項4に記載された多角形断面部材の電磁成形方法。 A hole penetrating in the front-rear direction is formed in the bumper reinforcement, a part of the aluminum alloy material is inserted into the hole, and a portion protruding backward from the hole of the aluminum alloy material is surrounded by the mold. The method for electromagnetic forming of a polygonal cross-section member according to claim 4 , wherein electromagnetic forming is performed, and the bumper reinforcement is caulked and fastened.
JP2011252082A 2011-11-17 2011-11-17 Electromagnetic forming method for polygonal cross-section member Active JP5618305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011252082A JP5618305B2 (en) 2011-11-17 2011-11-17 Electromagnetic forming method for polygonal cross-section member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252082A JP5618305B2 (en) 2011-11-17 2011-11-17 Electromagnetic forming method for polygonal cross-section member

Publications (2)

Publication Number Publication Date
JP2013107091A JP2013107091A (en) 2013-06-06
JP5618305B2 true JP5618305B2 (en) 2014-11-05

Family

ID=48704430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252082A Active JP5618305B2 (en) 2011-11-17 2011-11-17 Electromagnetic forming method for polygonal cross-section member

Country Status (1)

Country Link
JP (1) JP5618305B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5837472B2 (en) * 2012-10-02 2015-12-24 株式会社神戸製鋼所 Electromagnetic tube expansion method for rectangular cross-section members
JP6044795B2 (en) * 2014-06-19 2016-12-14 マツダ株式会社 Front body structure of the vehicle
JP6044794B2 (en) * 2014-06-19 2016-12-14 マツダ株式会社 Front body structure of the vehicle
JP6605775B1 (en) * 2018-08-08 2019-11-13 株式会社神戸製鋼所 Caulking and joining method for pipe members

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06312226A (en) * 1993-04-28 1994-11-08 Showa Alum Corp Production of hollow material with changing cross section in longitudinal direction
JPH11333526A (en) * 1998-05-25 1999-12-07 Nissan Motor Co Ltd Manufacture of cylindrical member for vehicle body structure
JP3863100B2 (en) * 2002-12-10 2006-12-27 株式会社神戸製鋼所 Energy absorbing member for vehicle body and electromagnetic forming method for forming flange on energy absorbing member for vehicle body
JP4439273B2 (en) * 2003-03-17 2010-03-24 株式会社神戸製鋼所 Tubular member with flange
JP4645131B2 (en) * 2004-09-30 2011-03-09 日産自動車株式会社 Bumper structure for vehicle and method for forming the same
JP2008149343A (en) * 2006-12-15 2008-07-03 Toyota Motor Corp Tube hydroforming method

Also Published As

Publication number Publication date
JP2013107091A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
WO2013115066A1 (en) Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
US8814234B2 (en) Vehicle bumper beam and method for manufacturing same
EP2746614B1 (en) Shock absorbing member
US20070181393A1 (en) Impact absorbing device of vehicle
JP5618305B2 (en) Electromagnetic forming method for polygonal cross-section member
JPH08216684A (en) Door guard beam for automobile
JP2013540067A (en) Extensive vehicle crash can
JP2008261493A (en) Shock absorbing member and its manufacturing method
JP5177397B2 (en) Bumper structure
JP2006347265A (en) Vehicular impact absorbing member
JP4365232B2 (en) Shock absorber for vehicle
EP3489055B1 (en) Door beam
JP6728077B2 (en) Structural member
JP3939286B2 (en) Manufacturing method of tubular member with flange
JP2006335241A (en) Bumper stay and bumper device
JP2006160260A (en) Energy absorbing member for vehicle body
JP5322882B2 (en) Bumper stay manufacturing method and bumper stay manufacturing method
JP4527613B2 (en) Bumper stay and bumper equipment
JP2012111356A (en) Method for manufacturing energy absorbing structure, and energy absorbing structure
JP5094544B2 (en) Bumper structure
JP5837472B2 (en) Electromagnetic tube expansion method for rectangular cross-section members
JP5912593B2 (en) Manufacturing method of energy absorbing member
JP3237319B2 (en) Vehicle bumper structure
JP2012140026A (en) Shock absorbing member for vehicle
JP6340896B2 (en) Steel member for center pillar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R150 Certificate of patent or registration of utility model

Ref document number: 5618305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150