JP5618065B2 - Bi-based inoculant for spheroidal graphite cast iron and method for producing spheroidal graphite cast iron using the same - Google Patents
Bi-based inoculant for spheroidal graphite cast iron and method for producing spheroidal graphite cast iron using the same Download PDFInfo
- Publication number
- JP5618065B2 JP5618065B2 JP2010174948A JP2010174948A JP5618065B2 JP 5618065 B2 JP5618065 B2 JP 5618065B2 JP 2010174948 A JP2010174948 A JP 2010174948A JP 2010174948 A JP2010174948 A JP 2010174948A JP 5618065 B2 JP5618065 B2 JP 5618065B2
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- spheroidal graphite
- graphite cast
- mass
- inoculant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002054 inoculum Substances 0.000 title claims description 47
- 229910001141 Ductile iron Inorganic materials 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 42
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- 229910001018 Cast iron Inorganic materials 0.000 claims description 12
- 238000011081 inoculation Methods 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 29
- 229910002804 graphite Inorganic materials 0.000 description 29
- 239000010439 graphite Substances 0.000 description 29
- 230000000694 effects Effects 0.000 description 20
- 238000005266 casting Methods 0.000 description 19
- 239000000203 mixture Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 229910001152 Bi alloy Inorganic materials 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D1/00—Treatment of fused masses in the ladle or the supply runners before casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/20—Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/10—Making spheroidal graphite cast-iron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/08—Making cast-iron alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
本発明は、球状黒鉛鋳鉄用Bi系接種剤およびこれを用いる球状黒鉛鋳鉄の製造方法に関する。 The present invention relates to a Bi-based inoculant for spheroidal graphite cast iron and a method for producing spheroidal graphite cast iron using the same.
非特許文献1に記載されるように、球状黒鉛鋳鉄の製造では、鋳鉄溶湯(以下、単に、溶湯ともいう)に黒鉛球状化剤(以下、単に、球状化剤ともいう)および接種剤が添加される。
球状化剤として、Mg、Mg系合金、Ca系合金、REM(希土類元素)系合金、Si系合金が実用され、中でもMg、Mg系合金が最も多用されている。
As described in Non-Patent
As spheroidizing agents, Mg, Mg-based alloys, Ca-based alloys, REM (rare earth element) -based alloys, and Si-based alloys are practically used, and among these, Mg and Mg-based alloys are most frequently used.
接種は、黒鉛粒数を増加し、機械的特性を向上させたり、チル化の防止やまた異常黒鉛の発生防止を目的として行われる。接種剤としては主にフェロシリコン(Fe-Si(Ca含有))が使われ、その添加量はSi量で0.4%以下である。
一方、Biについては接種剤としての作用効果があることが知られている(特許文献1〜3)。
Inoculation is performed for the purpose of increasing the number of graphite grains and improving mechanical properties, preventing chilling, and preventing abnormal graphite. Ferrosilicon (Fe-Si (containing Ca)) is mainly used as the inoculum, and the amount added is 0.4% or less in terms of Si.
On the other hand, Bi is known to have an effect as an inoculum (
特許文献1では、遠心鋳造製複合ロールの内層にするダクタイル鋳鉄の溶湯組成にB:0.0005〜0.05%の限定を加えた理由として、微量のBi添加は黒鉛を微細晶出させる効果があり、黒鉛粒数が増加するが、過量添加では黒鉛量が減少し、鋳鉄の脆化をもたらす傾向が顕現する旨述べている([0017])。
特許文献2では、遠心鋳造製圧延用複合ロールの内層組成の限定要件にBi:0.001〜0.05%を加えた理由として、有害元素として位置づけられているBiについて、溶湯中に微粒子として分散し、溶湯とこれらBiの液相との間に新たな界面を多数形成することに着目して実験を行い、過少では黒鉛の均一微細分散効果が少なく、過多ではBi含有炭化物の生成により材質が脆くなる知見を得た旨述べている([0012])。
In
In
特許文献3には次の諸点が記載されている。すなわち、Bi添加の効果が著しく認められるのは小物鋳物に限られ、圧延用ロールのような大型鋳物では黒鉛の微細晶出効果はほとんど認められなかった点([0014])、その理由としてBiの添加のみでは鋳造後の凝固まで(黒鉛が晶出するまでの間)Biの効果が持続する時間が極めて短く、大型鋳物においては、鋳造後、凝固時間が多く要するためその効果を奏し得ないと予想される点([0014])、これに対し同文献記載の発明では、微量のBi(Bi:0.0005〜0.05%)と同時に、SnまたはSn+Cuを適量(Sn:0.01〜0.2%、Cu:0.1〜2.0%)含有させることで、それらの相乗効果によって、圧延用ロールのような大型鋳物でも黒鉛の微細晶出効果が顕著に認められるようになると共に、凝固速度の特に遅い圧延用複合ロールの内層の上軸端部に発生していた異常黒鉛(チャンキー黒鉛)の発生を防止でき、内層の強靭性を大幅に上昇させることが可能になった点([0015])である。
しかし上記従来の、Biのみを用いた接種技術では、Biの歩留まりが低く不安定である、黒鉛粒数の増加効果が不安定である、特に厚肉鋳物(ロール軸材)では効果が現れにくい、といった課題があった。このような、Biの接種効果が不安定であるという課題は、特許文献3の技術をもってしても、十分に解決されたとは言い難い。
However, with the conventional inoculation technique using only Bi, the yield of Bi is low and unstable, and the effect of increasing the number of graphite grains is unstable. Particularly, the effect is difficult to appear in a thick cast (roll shaft material). There was a problem such as. Such a problem that the inoculation effect of Bi is unstable is not sufficiently solved even with the technique of
発明者らは、前記課題を解決するために実験・検討を重ねた結果、Bi系接種剤として、BiをNiおよびCuと混合した、あるいは好ましくは合金化した、ものを使用することにより、Biの歩留まりを向上させ、黒鉛粒数を増加させ、厚肉鋳物でもBi接種効果を十分発揮させ得ることを見出し、本発明をなした。
すなわち、本発明は、以下のとおりである。
(1) 球状黒鉛鋳鉄の鋳鉄溶湯に接種を行うためのBi系接種剤であって、Bi:0.1質量%以上40質量%未満、Mg:0〜30質量%、Si:0〜50質量%、Cu:1〜50質量%を含有し、残部Niおよび不可避的不純物からなることを特徴とする、球状黒鉛鋳鉄用Bi系接種剤。
(2) 前記Bi系接種剤に、質量%でMg:0.5%以上30%以下を含有させてなる前記(1)に記載の球状黒鉛鋳鉄用Bi接種剤。
(3) 球状黒鉛鋳鉄の製造方法において、鋳鉄溶湯に添加する接種剤の少なくとも一部として前記(1)または(2)に記載の球状黒鉛鋳鉄用Bi系接種剤を使用することを特徴とする球状黒鉛鋳鉄の製造方法。
Inventors have made repeated experiments and studies in order to solve the above problems, as a Bi-based inoculant, a Bi was mixed with Ni and Cu, or preferably alloyed by using a thing The present inventors have found that the yield of Bi can be improved, the number of graphite grains can be increased, and that the Bi inoculation effect can be sufficiently exerted even in thick castings.
That is, the present invention is as follows.
(1) A Bi-based inoculant for inoculating a cast iron melt of spheroidal graphite cast iron, Bi : 0.1% by mass or more and less than 40% by mass, Mg: 0-30% by mass, Si: 0-50% by mass, Cu: containing from 1 to 50% by weight, and wherein the Rukoto a balance being Ni and unavoidable impurities, Bi-based inoculant for spheroidal graphite cast iron.
(2) the in Bi-based inoculant, Mg in mass%: Bi inoculant for spheroidal graphite cast iron according to is contained 0.5% or more and 30% or less formed by the (1).
( 3 ) In the method for producing spheroidal graphite cast iron, the Bi-based inoculant for spheroidal graphite cast iron described in (1) or (2) above is used as at least part of the inoculant added to the molten cast iron. Method for producing spheroidal graphite cast iron.
前記(3)においては、使用する接種剤を黒鉛球状化剤と共に鍋内に設置し、該鍋内に鋳鉄溶湯を注湯するのがよく、あるいは、鋳鉄溶湯への接種剤の添加時もしくは添加直後に鋳鉄溶湯を攪拌するようにしてもよい。 In the above ( 3 ), the inoculum to be used is placed in a pan together with the graphite spheroidizing agent, and the cast iron melt is poured into the pan, or at the time of addition or addition of the inoculum to the cast iron melt Immediately after that, the cast iron melt may be stirred.
本発明によれば、Biの歩留まりを安定的に向上させ、黒鉛粒数を増加させ、厚肉鋳物でもBi接種効果を十分発揮させることが可能となる。 According to the present invention, the yield of Bi can be stably improved, the number of graphite grains can be increased, and the Bi inoculation effect can be sufficiently exerted even in a thick casting.
本発明者らは、溶湯へのBi接種(Bi系接種剤添加の意、以下同じ)が黒鉛粒数を増加させるメカニズムを図1のように予想した。すなわち、Biは溶湯2に溶けず液体Bi粒子1として2相分離して溶湯2中に浮遊する特異な元素であり、液体Bi粒子1が黒鉛3の核生成物質として作用していると考えられる。
Bi接種後の溶湯中Bi濃度は数10ppm以下と極めて低く、その分散状況については未だ詳細は不明であるが、本発明者らは、Biの分散粒子間がNiおよびCuで埋まった形態を有する混合物もしくは好ましくは合金(Ni‐Cu‐Bi合金であり、さらにMgやSiを含有してもよい)を、Bi系接種剤として用いることで、溶湯中で液体Bi粒子をより微細に安定して分散させることができ、さらには、従来と比べ溶湯中の核生成サイトを減らすことなくBi添加量を低減できるため、黒鉛の形状悪化やザク欠陥等の品質問題も解決されることを究明した。
The present inventors predicted the mechanism by which Bi inoculation of molten metal (meaning of Bi-based inoculant addition, hereinafter the same) increases the number of graphite grains as shown in FIG. That is, Bi is a unique element that does not dissolve in the
Bi melt in Bi concentration after inoculation as low as several 10ppm or less, but is still more information is known about the dispersion status, the present inventors have found that among the dispersed particles of Bi was filled with Ni and Cu form (a Ni -Cu-Bi alloy, and it may contain Mg or Si et) mixture or preferably an alloy having a, by using as the Bi-based inoculant, more liquid Bi particles in the melt It can be finely and stably dispersed, and furthermore, the amount of Bi added can be reduced without reducing the nucleation sites in the molten metal compared to the conventional case, so that quality problems such as deterioration of the shape of graphite and Zaku defects are also solved. I found out.
前記Bi系接種剤を用いることによる効果は次の如く予想される。例えばNiを含有するBi系接種剤が溶湯中で溶融する際、BiとNiは互いに溶融し、Ni-Bi融液(合金)となる。次にこのNi‐Bi融液はFeを主成分とする溶湯中へ分散していくが、その際、図2(a)に示すようにNi‐Bi融液4からはNiが溶出するためその界面反応に伴いNi‐Bi融液4と溶湯2との界面張力は大幅に低下する。溶湯中のNi‐Bi融液は準粘性領域での分散液滴とみなせるため、その液滴径は乱流の渦のエネルギー消散密度の1/2乗に反比例し、界面張力に比例することから、界面張力の大幅な低下により、Ni‐Bi融液4はより細かく分散する。さらに、図2(b)に示すように、分散された微細なNi‐Bi融液4からはその後もNiが溶出するため体積が縮小し最後はさらに小さな液体Bi粒子1が生成する。また、Ni-Bi融液の周囲にはNiの濃化層が形成されるため、黒鉛核の生成温度が高くなり、結果として、黒鉛の核生成能が向上する。なお、Biと組み合わせる元素として、Niに代えてあるいは加えて、Cuを用いても同様の効果が期待できる。
The effect of using the Bi-based inoculant is expected as follows. For example, when a Bi-based inoculant containing Ni is melted in a molten metal, Bi and Ni are melted together to form a Ni-Bi melt (alloy). Next, this Ni-Bi melt is dispersed into the melt mainly composed of Fe. At that time, Ni elutes from the Ni-Bi
もっとも、Bi系接種剤中のBi含有量(質量%)は、0.1%以上40%未満とする。これが0.1%未満では、NiやCuの添加量が多くなり、実質的に本技術の適用が困難であり、一方、40%以上ではBiの微細分散が困難となるためである。
また、前記Bi系接種剤中に、さらに質量%でMg:0.5%以上30%以下を含有させると、Mgの爆発的な反応でNi-Bi融液がより微細に分散されるため好ましい。
However, Bi content in Bi-based inoculant (mass%) shall be the less than 0.1% to 40%. If this is less than 0.1%, the amount of Ni or Cu added will increase, making it difficult to apply the present technology. On the other hand, if it is 40% or more, fine dispersion of Bi will be difficult.
Further, it is preferable to add Mg: 0.5% to 30% by mass% in the Bi-based inoculant because the Ni-Bi melt is more finely dispersed by Mg explosive reaction.
前述のように、本発明のBi系接種剤は、混合物であるよりも合金である方が、Bi接種効果の更なる安定化の観点から好ましい。かかる合金の好ましい組成(成分含有量;質量%)は次のとおりである。
・Ni‐Cu‐Bi合金:Bi:0.1%以上40%未満、Mg:0(より好ましくは0.5)〜30%、Si:0〜50%、Cu:1〜50%、残部Ni及び不可避的不純物
本発明の製造方法では、鋳鉄溶湯に添加する接種剤の少なくとも一部として本発明のBi系接種剤を使用する。本発明のBi系接種剤は、単独で使用することができるが、他の接種剤、例えば従来から主に使用されているフェロシリコン等と併用することもできる。溶湯組成は通常のものでよい。
As described above, the Bi-based inoculant of the present invention is preferably an alloy rather than a mixture from the viewpoint of further stabilizing the Bi-inoculation effect. A preferred composition (component content; mass%) of such an alloy is as follows.
· Ni -Cu-Bi alloy: Bi: less than 0.1% or more 40%, Mg: 0 (more preferably 0.5) ~30%, Si: 0~50 %, Cu: 1~50%, balance Ni and incidental Impurities In the production method of the present invention, the Bi-based inoculant of the present invention is used as at least a part of the inoculant added to the molten cast iron. The Bi-based inoculant of the present invention can be used alone, but can also be used in combination with other inoculants such as ferrosilicon which has been mainly used conventionally. The molten metal composition may be a normal one.
溶湯への好ましい添加方法としては、置注法(非特許文献1、p.81参照)が挙げられる。すなわち、使用する接種剤を球状化剤と共に鍋(取鍋)内に設置し、該鍋内に鋳鉄溶湯を注湯するというものである。なお、球状化剤は従来から実用されているものでよい。置注法では、球状化剤の爆発的な反応により鍋内溶湯が攪拌されることで添加物質と溶湯との反応が促進されるので、溶湯を攪拌する攪拌手段は別に必要とされない。また、置注法以外の方法も採用できるが、その場合、溶湯への添加時もしくは添加直後に溶湯を別の攪拌手段で攪拌することで添加物質と溶湯との反応を促進させる必要があり、かかる別の攪拌手段として、機械式攪拌、ガスバブリング、あるいは注湯流への添加などが挙げられる。但し、前述のMg含有接種剤では、攪拌を省略することも可能である。
As a preferable addition method to the molten metal, there is a pouring method (see Non-Patent
また、溶湯へのBi系接種剤の添加量は、該溶湯から鋳造される鋳物製品中のBi含有量(質量%)が0.0005〜0.0025%となるように決定するのがよい。 Moreover, it is good to determine the addition amount of Bi type inoculant to a molten metal so that Bi content (mass%) in the casting product cast from this molten metal may be 0.0005-0.0025%.
実施例として次の鋳造実験を行った。この実験では、図3に示すように、高周波溶解炉5(定格溶解量30kg)で溶製した通常の鋳鉄溶湯組成範囲内の組成を有する溶湯2(溶湯重量21kg)を、Mg処理用鍋6に注湯し、置注法にて球状化処理および接種を行った後、Yブロック鋳型7に鋳込んで、図3に寸法を示すYブロック鋳物11を鋳造した。鋳込温度は1330〜1380℃とした。
The following casting experiment was conducted as an example. In this experiment, as shown in FIG. 3, molten metal 2 (molten metal weight 21 kg) having a composition within a normal cast iron molten metal composition range melted in a high-frequency melting furnace 5 (rated molten amount 30 kg) was converted into an
置注法は、次の各水準で行った。
(水準1) Mg処理用鍋6の鍋底に設けたポケット内に、注湯に先立って、球状化剤8としてMg合金と、接種剤9としてフェロシリコンとを設置し、その上をカバー材10で被覆しておく。球状化剤8と接種剤9とは、溶湯中の含有量(質量%)が、球状化剤Mg合金では1.6%(Mg 0.08%相当)、接種剤フェロシリコンでは0.27%(Si 0.2%相当)となる量だけ設置した。
(水準2) 水準1において、さらに、球状化剤8と接種剤9との間にBi系接種剤9Aとして金属Biを、溶湯中の含有量(質量%)が0.005%となる量だけ設置した。それ以外は水準1と同様とした。
(水準3) 水準2において、Bi系接種剤9Aとして金属Biに代えてNi-Bi合金(Ni-1.0Bi(数値単位は質量%))を、溶湯中の含有量(質量%)が0.5%(Bi 0.005%相当)となる量だけ設置した。それ以外は水準1と同様とした。
(水準4) 水準2において、Bi系接種剤9Aとして金属Biに代えてCu-Bi合金(Cu-1.0Bi(数値単位は質量%))を、溶湯中の含有量(質量%)が0.5%(Bi 0.005%相当)となる量だけ設置した。それ以外は水準1と同様とした。
(水準5) 水準2において、Bi系接種剤9Aとして金属Biに代えてNi-Cu-Bi合金(Ni-40Cu-1.0Bi(数値単位は質量%))を、溶湯中の含有量(質量%)が0.5%(Bi 0.005%相当)となる量だけ設置した。それ以外は水準1と同様とした。
(水準6) 水準2において、Bi系接種剤9Aとして金属Biに代えてNi-Mg-Bi合金(Ni-5.0Mg-1.0Bi(数値単位は質量%))を、溶湯中の含有量(質量%)が0.5%(Bi 0.005%相当)となる量だけ設置した。それ以外は水準1と同様とした。
(水準7) 水準2において、Bi系接種剤9Aとして金属Biに代えて金属Biと金属Niとの混合物(Bi質量/Ni質量=1/99)を、溶湯中の含有量(質量%)が0.5%(Bi 0.005%相当)となる量だけ設置した。それ以外は水準1と同様とした。
The infusion method was performed at the following levels.
(Level 1) Prior to pouring, Mg alloy as
(Level 2) In
(Level 3) In
(Level 4) In
(Level 5) In
(Level 6) In
(Level 7) In
得られたYブロック鋳物について、次の調査を行った。
(A)化学分析により組成を調べた。その結果を表1に示す。
The following investigation was performed about the obtained Y block casting.
(A) The composition was examined by chemical analysis. The results are shown in Table 1.
表1の鋳物中のBi量と前記溶湯中のBi含有量(Bi歩留まり100%とした場合のBi含有量)とを見比べると、本発明例では、比較例に比べBiの歩留まりが高くなっている。
(B)Yブロック鋳物の底からの高さが65mmの部位から試験片を採取して、研磨面(ノーエッチ)の光学顕微鏡観察による黒鉛粒数密度の測定、並びにYブロック長手方向の引張試験(試験片直径10mm)による引張強度TS及び伸びELの測定を行った。その結果も表1に併せて示す。
Comparing the Bi content in the casting of Table 1 with the Bi content in the molten metal (Bi content when the Bi yield is 100%), the present invention example has a higher Bi yield than the comparative example. Yes.
(B) A test piece is taken from a portion having a height of 65 mm from the bottom of the Y block casting, and the number density of graphite particles is measured by observing the polished surface (no etching) with an optical microscope, and a tensile test in the longitudinal direction of the Y block ( The tensile strength TS and elongation EL were measured using a test piece diameter of 10 mm. The results are also shown in Table 1.
表1に示すように、本実施例において、Bi系接種剤を添加していない水準1(比較例)では、チャンキー黒鉛が発生し、黒鉛粒数密度は著しく低く、伸びが低位であった。また、Bi金属を接種剤として用いた水準2(比較例)では、チャンキー黒鉛の発生はなかったものの、黒鉛粒数密度は98個/mm2と低く、強度-延性のバランス特性を示すTS×ELはおよそ7000(MPa・%)程度であり、さらには、Biの歩留まりは18%と低い値を示した。 As shown in Table 1, in this example, at level 1 (comparative example) in which no Bi-based inoculant was added, chunky graphite was generated, the graphite particle number density was extremely low, and the elongation was low. . In Level 2 (comparative example) where Bi metal was used as an inoculum, chunky graphite was not generated, but the graphite particle number density was as low as 98 particles / mm 2 , indicating a balance between strength and ductility. × EL was about 7000 (MPa ·%), and Bi yield was as low as 18%.
一方、本発明例ではチャンキー黒鉛の発生がないとともに、黒鉛粒数密度は140個/mm2以上と黒鉛の微細分散がなされている。また、Bi歩留は40〜50%と格段に上昇しており、本発明による接種効果の安定性を示すものと思われる。さらに、強度-延性のバランス特性を示すTS×ELは8500(MPa・%)以上であり、本発明による機械的特性向上効果が明らかに示されている。
On the other hand, in the present invention embodiment with no occurrence of background Yanki graphite, graphite grain number density is made 140 pieces / mm 2 or more and graphite fine dispersion. Further, the Bi yield is markedly increased to 40 to 50%, which is considered to indicate the stability of the inoculation effect according to the present invention. Further, TS × EL indicating the balance between strength and ductility is 8500 (MPa ·%) or more, and the mechanical property improving effect according to the present invention is clearly shown.
なお、上記の本発明の実施例では、図3に示した鋳型で鋳込み実験を行った場合の効果について示したが、本発明は鋳型サイズや溶湯量に制限されるものではなく、より小型、もしくは、熱間圧延用ロールのような大型の鋳物においても効果を十分に発揮するものである。 In the above-described embodiment of the present invention, the effect of performing the casting experiment with the mold shown in FIG. 3 was shown, but the present invention is not limited to the mold size or the amount of molten metal, and is smaller. Alternatively, the effect is sufficiently exhibited even in a large casting such as a hot rolling roll.
1 液体Bi粒子
2 溶湯
3 黒鉛
4 Ni‐Bi融液
5 高周波溶解炉
6 鍋(Mg処理用鍋)
7 Yブロック鋳型
8 球状化剤
9 接種剤
9A Bi系接種剤
10 カバー材
11 Yブロック鋳物
1 Liquid Bi particles
2 Molten metal
3 Graphite
4 Ni-Bi melt
5 induction melting furnace
6 Pan (Mg processing pan)
7 Y block mold
8 Spheroidizing agent
9 Inoculum
9A Bi-based inoculum
10 Cover material
11 Y block casting
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010174948A JP5618065B2 (en) | 2010-08-04 | 2010-08-04 | Bi-based inoculant for spheroidal graphite cast iron and method for producing spheroidal graphite cast iron using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010174948A JP5618065B2 (en) | 2010-08-04 | 2010-08-04 | Bi-based inoculant for spheroidal graphite cast iron and method for producing spheroidal graphite cast iron using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012036423A JP2012036423A (en) | 2012-02-23 |
JP5618065B2 true JP5618065B2 (en) | 2014-11-05 |
Family
ID=45848726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010174948A Expired - Fee Related JP5618065B2 (en) | 2010-08-04 | 2010-08-04 | Bi-based inoculant for spheroidal graphite cast iron and method for producing spheroidal graphite cast iron using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5618065B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016132783A (en) * | 2015-01-15 | 2016-07-25 | トヨタ自動車株式会社 | Manufacturing method of spheroidal graphite cast iron |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2635534B1 (en) * | 1988-08-12 | 1992-04-03 | Pechiney Electrometallurgie | PROCESS FOR OBTAINING SPHEROIDAL GRAPHITE FOUNDS |
EP0410603A1 (en) * | 1989-07-26 | 1991-01-30 | Foseco International Limited | Casting of molten iron and filters for use therein |
JPH0841581A (en) * | 1994-08-02 | 1996-02-13 | Fukushima Seiko Kk | Spheroidal graphite cast iron and its production |
JP3819101B2 (en) * | 1997-03-17 | 2006-09-06 | 日本鋳造株式会社 | Welding material for welding and joining spheroidal graphite cast iron and mild steel and welding material for welding repair of spheroidal graphite cast iron |
JPH11335715A (en) * | 1998-05-27 | 1999-12-07 | Nippon Steel Corp | Graphite sphering processing agent of cast iron |
JP3971217B2 (en) * | 2001-03-28 | 2007-09-05 | 株式会社栗本鐵工所 | Ductile cast iron pipe by centrifugal casting method and manufacturing method thereof |
JP3798389B2 (en) * | 2003-05-16 | 2006-07-19 | 株式会社木村鋳造所 | Cast iron inoculum and inoculation method using the cast iron inoculum |
EP2184372B9 (en) * | 2007-08-31 | 2015-03-11 | Kabushiki Kaisha Toyota Jidoshokki | Austenitic cast iron, process for manufacturing the same, austenitic cast iron castings, and exhaust system parts |
-
2010
- 2010-08-04 JP JP2010174948A patent/JP5618065B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012036423A (en) | 2012-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101364472B1 (en) | Grain refiners for steel-Manufacturing methods and use | |
JP2003521582A (en) | Steel grain refining method, steel grain refining alloy and method for producing grain refining alloy | |
KR102107888B1 (en) | How to process cast iron molten metal | |
JP2007245217A (en) | Composite rolling mill roll | |
JP2010189706A (en) | Spheroidal graphite cast iron tube and method for producing the same | |
JP5712560B2 (en) | Spheroidal graphite cast iron products with excellent wear resistance | |
CN104651729B (en) | Steel for bucket teeth of construction machinery and preparation method of bucket teeth | |
JPH10237528A (en) | Agent and method for spheroidizing of nodular graphite cast iron | |
JP5618065B2 (en) | Bi-based inoculant for spheroidal graphite cast iron and method for producing spheroidal graphite cast iron using the same | |
JP5712525B2 (en) | Spheroidal graphite cast iron products with excellent wear resistance | |
JP5589646B2 (en) | Spheroidal graphite cast iron products with excellent wear resistance | |
WO2010029564A1 (en) | Nodulizer for the production of spheroidal graphite iron | |
JP6993646B2 (en) | Inoculant for cast iron | |
WO2022202914A1 (en) | Spheroidal graphite cast iron, spheroidal graphite cast iron manufacturing method, and spheroidizing treatment agent | |
JP4569458B2 (en) | Continuous casting method of steel material with finely dispersed precipitates and slab for steel material | |
Fay et al. | Inoculation solutions against metallurgical problems | |
RU2490351C1 (en) | Aluminium-based cast alloy | |
JP2010149129A (en) | Holder for die-casting die, and method for producing the same | |
JP6728934B2 (en) | Continuous casting method for molten steel | |
JPH11279681A (en) | High strength cast iron | |
RU2715513C1 (en) | Method of producing cast composite material based on copper | |
CN104651721A (en) | Alloy steel for bucket teeth and preparation method of bucket teeth | |
Wang | Study on refine and morphology change of AlFeSi phase in A380 alloy by K addition | |
JP2626417B2 (en) | Graphite spheroidizing alloy in mold and graphite spheroidizing method | |
US20240247346A1 (en) | Ferrosilicon vanadium and/or niobium alloy, production of a ferrosilicon vanadium and/or niobium alloy, and the use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20111114 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130419 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140219 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5618065 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |