JP5617679B2 - Semiconductor memory device - Google Patents
Semiconductor memory device Download PDFInfo
- Publication number
- JP5617679B2 JP5617679B2 JP2011035109A JP2011035109A JP5617679B2 JP 5617679 B2 JP5617679 B2 JP 5617679B2 JP 2011035109 A JP2011035109 A JP 2011035109A JP 2011035109 A JP2011035109 A JP 2011035109A JP 5617679 B2 JP5617679 B2 JP 5617679B2
- Authority
- JP
- Japan
- Prior art keywords
- write
- data
- data line
- input
- read
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 48
- 239000000872 buffer Substances 0.000 claims description 29
- 238000005520 cutting process Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 35
- 238000010586 diagram Methods 0.000 description 29
- 101150110971 CIN7 gene Proteins 0.000 description 7
- 101100286980 Daucus carota INV2 gene Proteins 0.000 description 7
- 101150110298 INV1 gene Proteins 0.000 description 7
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 description 7
- 101100397045 Xenopus laevis invs-b gene Proteins 0.000 description 7
- 230000007423 decrease Effects 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
Landscapes
- Engineering & Computer Science (AREA)
- Static Random-Access Memory (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
Description
本発明は、SRAMに使用される半導体記憶装置に関し、特に、低電力・超微細プロセスにおいてもマージン設計が容易、あるいはマージンフリー設計が可能な半導体記憶装置に関する。 The present invention relates to a semiconductor memory device used for an SRAM, and more particularly to a semiconductor memory device that can be easily designed for margin or can be margin-free designed even in a low power / ultrafine process.
従来から、SRAM(Static Random Access Memory)に使用される半導体記憶装置として、6トランジスタSRAMメモリセル(以下、「6T−SRAM」という。)が広く用いられている。図14は6T−SRAMの基本的な回路構成を表す図である。1つの6T−SRAMにつき、6個のMISFET(Metal-Insulator-Semiconductor Field-Effect Transistor) M1〜M6と2本のビット線BL,BLBと1本のワード線WLが使用される。MISFET M1,M2と、MISFET M3,M4とは、それぞれ、CMIS(Complementary Metal-Insulator-Semiconductor)インバータINV1,INV2を構成し、MISFET M5,M6は、ワード線WLにより通断されるトランスミッション・ゲートを構成する。CMISインバータINV1,INV2は互いにクロスカップリングされ、インバータ・ラッチ回路(フリップ・フロップ)が構成されている。そして、両CMISインバータINV1,INV2の入力は、それぞれ、トランスミッション・ゲートM5,M6を介して、ビット線BL,BLBに接続されている。 Conventionally, a 6-transistor SRAM memory cell (hereinafter referred to as “6T-SRAM”) has been widely used as a semiconductor memory device used in an SRAM (Static Random Access Memory). FIG. 14 is a diagram showing a basic circuit configuration of 6T-SRAM. For each 6T-SRAM, six MISFETs (Metal-Insulator-Semiconductor Field-Effect Transistors) M1 to M6, two bit lines BL, BLB, and one word line WL are used. The MISFETs M1 and M2 and the MISFETs M3 and M4 constitute CMIS (Complementary Metal-Insulator-Semiconductor) inverters INV1 and INV2, respectively. The MISFETs M5 and M6 have transmission gates cut off by the word line WL. Configure. The CMIS inverters INV1 and INV2 are cross-coupled with each other to form an inverter / latch circuit (flip-flop). The inputs of both CMIS inverters INV1 and INV2 are connected to bit lines BL and BLB via transmission gates M5 and M6, respectively.
リード動作時には、ワード線WLをHレベルとしてトランスミッション・ゲートM5,M6を導通状態とすることにより、両ビット線BL,BLBに、インバータ・ラッチ回路にラッチされた状態値が出力される。一方、ライト動作時には、書き込み値に応じて、ビット線BL,BLBのうち一方をHレベル、他方をLレベルとして書き込み値を設定し、この状態でワード線WLをHレベルとしてトランスミッション・ゲートM5,M6を導通状態とする。これにより、インバータ・ラッチ回路に書き込み値が設定される。 During the read operation, the word line WL is set to the H level and the transmission gates M5 and M6 are turned on, so that the state value latched by the inverter / latch circuit is output to both bit lines BL and BLB. On the other hand, during the write operation, according to the write value, one of the bit lines BL and BLB is set at the H level and the other is set at the L level. In this state, the word line WL is set at the H level and the transmission gate M5 is set. M6 is turned on. As a result, a write value is set in the inverter / latch circuit.
しかしながら、近年では、集積回路の微細化,低電圧化に伴い、CMISインバータ及びトランスミッション・ゲートに使用されるトランジスタM1〜M6の製造ばらつきの問題が顕在化してきている。図15は、CMOS素子の微細化の進展に伴う電源電圧とゲート長のばらつきの変遷を表す図である。図15のように、年々CMOS素子の低電圧化が進展してきており、それに伴ってばらつきが増大している。2010年では、ゲート長ばらつきは3σ/meanm(平均(mean)に対する標準偏差(σ)の3倍値の割合)で約50%に達しており、今後さらにばらつきが増大することが容易に推測できる。このようにばらつきが増大することにより、SRAMの動作マージンが減少する。 However, in recent years, with the miniaturization of integrated circuits and the reduction in voltage, problems of manufacturing variations of transistors M1 to M6 used for CMIS inverters and transmission gates have become apparent. FIG. 15 is a diagram showing the transition of variations in power supply voltage and gate length with the progress of miniaturization of CMOS elements. As shown in FIG. 15, the lowering of the voltage of the CMOS element has progressed year by year, and the variation has increased accordingly. In 2010, the gate length variation reached about 50% at 3σ / meanm (a ratio of the standard deviation (σ) to the mean (three times)), and it can be easily estimated that the variation will increase further in the future. . As the variation increases, the operation margin of the SRAM decreases.
図16は、(a)トランスミッション・ゲートのトランジスタ(M5,M6)のゲート幅に対する図14のインバータ・ラッチ回路の端子電圧(CH,CL)の関係、及び(b)6T−SRAMのリード時に於けるノイズマージンを表す図である。図16(a)において、横軸は、トランスミッション・ゲートのトランジスタ(M5,M6)のゲート幅WTNを表し、縦軸はリード/ライト時のインバータ・ラッチ回路(INV1,INV2)の端子電圧CH,CL(図14参照)を表す。点線(RD)はリード時、実線(WT)はライト時の各端子電圧である。リード時においては、ゲート幅WTNが小さく(トランスミッション・ゲートの抵抗が大きく)ても十分に読み出し可能であるが、ゲート幅WTNが大きくなるにつれてトランスミッション・ゲートの抵抗が下がり読み出し時に、インバータ・ラッチ回路の各端子からビット線BLへ電流が漏出するため端子電圧が低下する。そして、ゲート幅WTNがある閾値WTNRを超えると、リードの瞬間にインバータ・ラッチ回路に保持されたデータが破壊されるようになるため、メモリセルとしては成立しなくなる。一方、ライト時においては、ゲート幅WTNがあまり小さいと、トランスミッション・ゲートの抵抗が大きいため書き込みができなくなる。従って、ゲート幅WTNがある閾値WTNWより小さいと書き込みができず、メモリセルとしては成立しなくなる。従って、トランスミッション・ゲートのトランジスタ(M5,M6)のゲート幅WTNの許容範囲は、WTNW<WTN<WTNRとなる。 FIG. 16 shows (a) the relationship of the terminal voltage (CH, CL) of the inverter / latch circuit of FIG. 14 to the gate width of the transistors (M5, M6) of the transmission gate, and (b) at the time of reading the 6T-SRAM. It is a figure showing the noise margin. In FIG. 16A, the horizontal axis represents the gate width W TN of the transmission gate transistors (M5, M6), and the vertical axis represents the terminal voltage CH of the inverter latch circuit (INV1, INV2) at the time of reading / writing. , CL (see FIG. 14). A dotted line (RD) is a terminal voltage at the time of reading, and a solid line (WT) is a terminal voltage at the time of writing. At the time of reading, sufficient reading is possible even when the gate width WTN is small (the transmission gate resistance is large). However, as the gate width WTN increases, the resistance of the transmission gate decreases, Since current leaks from each terminal of the latch circuit to the bit line BL, the terminal voltage decreases. When the gate width W TN exceeds a certain threshold value W TNR , the data held in the inverter / latch circuit is destroyed at the moment of reading, so that the memory cell cannot be established. On the other hand, at the time of writing, if the gate width WTN is too small, writing becomes impossible because the resistance of the transmission gate is large. Therefore, if the gate width W TN is smaller than a certain threshold value W TNW , writing cannot be performed and the memory cell cannot be established. Therefore, the allowable range of the gate width W TN of the transmission gate transistors (M5, M6) is W TNW <W TN <W TNR .
また、図16(b)は、SRAMの動作マージンの指標として用いられている静的ノイズマージン(SNM)を表す図であり、一般にバタフライカーブ(メガネ特性)と呼ばれる特性図である。図16(b)の横軸,縦軸は、それぞれ、インバータ・ラッチ回路の端子電圧CL,CHを表している。VsがCMISインバータINV1,INV2の閾値電圧である。また、図16(b)に示した2つの曲線は、それぞれ、CMISインバータINV1,INV2のリード時における電圧転送曲線(VTC)を表す。リード時におけるSNMは、図16(b)に示した正方形の対角線の長さで表される。 FIG. 16B is a diagram showing a static noise margin (SNM) used as an index of the operation margin of the SRAM, and is a characteristic diagram generally called a butterfly curve (glasses characteristic). The horizontal and vertical axes in FIG. 16B represent the terminal voltages CL and CH of the inverter / latch circuit, respectively. Vs is the threshold voltage of the CMIS inverters INV1 and INV2. Also, the two curves shown in FIG. 16B represent voltage transfer curves (VTC) when the CMIS inverters INV1 and INV2 are read. The SNM at the time of reading is represented by the length of the diagonal line of the square shown in FIG.
上述したように、実際のLSIの製造プロセスでは、ゲート長のばらつきや、不純物のゆらぎ等により、メモリセルを構成する各トランジスタの性能ばらつきが大きいため、上述したトランジスタ(M5,M6)の設計においては、ゲート幅WTNの最適値に対して、さらにばらつきを考慮したマージン設計が必要となる。現在のところ、このマージン設計においては、多くの場合、各トランジスタのばらつき幅を20〜50%程度として設計が行われている。しかしながら、SRAM全体では、このようなメモリセルが何百万個も実装されているため、個々のメモリセルのばらつきのマージンが重畳することとなる。そのため、近い将来には、全体的に1/10〜10倍の範囲のマージンを見込んだ設計が必要とされることになる。 As described above, in the actual LSI manufacturing process, the performance variation of each transistor constituting the memory cell is large due to variations in gate length, fluctuations in impurities, and the like. Therefore, in designing the transistors (M5 and M6) described above. Therefore, it is necessary to design a margin in consideration of variations with respect to the optimum value of the gate width WTN . At present, in this margin design, in many cases, the design is performed with the variation width of each transistor being about 20 to 50%. However, since there are millions of such memory cells mounted in the entire SRAM, a margin of variation of individual memory cells is overlapped. Therefore, in the near future, a design that expects a margin in the range of 1/10 to 10 times as a whole will be required.
従って、このままメモリセルの微細化・低電圧化が進み、トランジスタ性能のばらつきがさらに増大すると、現在のマージン設計では破綻することが明らかである。そこで、トランジスタ性能のばらつきに影響されないマージンフリー設計が可能なSRAMメモリセル(半導体記憶装置)が必要とされている。 Therefore, it is clear that the current margin design will fail if the memory cell is further miniaturized and the voltage is lowered and the variation in transistor performance further increases. Therefore, there is a need for an SRAM memory cell (semiconductor memory device) capable of a margin-free design that is not affected by variations in transistor performance.
かかる半導体記憶装置に関するものとしては、特許文献1,2に記載のものが公知である。図17は、特許文献1に記載のSRAMメモリセルの回路図である。このメモリセルでは、ビット線として、書き込み専用のビット線WBL,WBLBと読み出し専用のビット線RBL,RBLBとを設けるとともに、各CMISインバータINV1,INV2に対し、書込専用ビット線WBL,WBLBに対するトランスミッション・ゲートWT1,WT2と、読出専用ビット線RBL,RBLBに対するトランスミッション・ゲートRT1,RT2とを設けた構成とされている。尚、図17において、カラム選択線CSLは、データを書き込むセルのカラムを選択する線である。また、カラム選択用トランジスタCT1,CT2は、カラム選択線CSLの電圧値によって通断される、カラム選択用のトランスミッション・ゲートである。
As the semiconductor memory device, those described in
このように、読み出し専用のトランスミッション・ゲートRT1,RT2と、書き込み専用のトランスミッション・ゲートWT1,WT2とを独立して設けることによって、書き込み時のトランスミッション・ゲートのゲート幅と、読み出し時のトランスミッション・ゲートのゲート幅を独立に設計することが可能となる。従って、図16において、書込用トランスミッション・ゲートWT1,WT2のゲート幅はWTNW以上であればよく、読出用トランスミッション・ゲートRT1,RT2のゲート幅はWTNR以下であればよいため、許容ゲート幅の制約が緩やかとなり、許容閾値WTNW,WTNRに対して十分余裕をもったゲート幅に設計すれば各トランスミッション・ゲートの性能ばらつきに対する設計マージンを大きくすることが可能である。 Thus, by providing the read-only transmission gates RT1 and RT2 and the write-only transmission gates WT1 and WT2 independently, the gate width of the transmission gate at the time of writing and the transmission gate at the time of reading are set. The gate width can be designed independently. Accordingly, since 16, as long gate width of each of the write transmission gate WT1, WT2 is W TNW long or more, the gate width of the readout transmission gates RT1, RT2 is W TNR less, allowed gate If the gate width is designed to have a sufficient margin with respect to the permissible thresholds W TNW and W TNR , the design margin for the performance variation of each transmission gate can be increased.
尚、図17において、カラム選択用トランジスタCT1,CT2により書き込みを行うメモリセルのカラムを選択するようにしているが、これは、書き込み時において、書き込みを行おうとするカラム以外のカラムのメモリセルが書き換えられることを防止するためである。 In FIG. 17, the column of memory cells to be written is selected by the column selection transistors CT1 and CT2. This is because the memory cells in columns other than the column to which writing is performed are written. This is to prevent rewriting.
また、図18は、特許文献2に記載のSRAMメモリセルの回路図である。図18の回路においても、書き込み専用のビット線BLW,BLWBと読み出し専用のビット線BLRとを設けるとともに、各CMISインバータINV1,INV2に対し、書込専用ビット線BLW,BLWBに対するトランスミッション・ゲートWT1,WT2と、読出専用ビット線BLRに対するトランスミッション・ゲートRT1及び読出トランジスタRT2とを設けた構成とされている。この回路では、書き込み側は図17の回路と同様であるが、読み出し側は、インバータ・ラッチ回路の出力を直接読み出し専用のビット線BLRに接続するのではなく、高インピーダンスの読出トランジスタRT2のゲートにより受けてから、トランスミッション・ゲートRT1を介して読み出し専用のビット線BLRに接続する構成とされている。これにより、図17の回路と同様、読み出し専用のトランスミッション・ゲートRT1及び読出トランジスタRT2と、書き込み専用のトランスミッション・ゲートWT1,WT2とを独立して設けることで、書き込み時のトランスミッション・ゲートのゲート幅と、読み出し時のトランスミッション・ゲートのゲート幅を独立に設計することが可能となる。また、読み出し時には高インピーダンスの読出トランジスタRT2のゲートを介してラッチされた値を出力するため、読み出し時にインバータ・ラッチ回路が保持する状態値が破壊される恐れがなくなる。
FIG. 18 is a circuit diagram of the SRAM memory cell described in
しかしながら、上記従来の半導体記憶装置では、ラッチ・インバータで構成される記憶保持部のデータを反転させる場合や、ラッチ・インバータ保持データを読み出す場合の、両方の場合あるいは片方の場合において、メモリセルを構成する全てのトランジスタ、またはその一部のトランジスタにおいて、そのゲートサイズ(ゲート幅/ゲート長)の選択の範囲に設計上の制約、いわゆるレシオ設計が必要であり、各トランジスタの性能ばらつきを考慮した上で、安定的に動作させるためには、さらに設計マージンの確保が必要であり、今後のトランジスタの性能ばらつきの増大においては、いずれ破綻をきたす恐れがあるという課題があった。 However, in the conventional semiconductor memory device described above, the memory cell is used in both cases or one of the cases of inverting the data in the memory holding unit constituted by the latch / inverter and reading the data held in the latch / inverter. In all the transistors to be configured, or a part of the transistors, design restrictions, so-called ratio design, are necessary in the selection range of the gate size (gate width / gate length), and the performance variation of each transistor is considered. On the other hand, in order to operate stably, it is necessary to secure a design margin, and there has been a problem that there is a risk of failure in the future in the increase in performance variation of transistors.
そこで本発明の目的は、回路を構成する各トランジスタの設計サイズ(ゲート幅/ゲート長)によらず、またマージン設計を行うことなしに、安定な動作が可能な半導体記憶装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor memory device capable of stable operation regardless of the design size (gate width / gate length) of each transistor constituting a circuit and without performing margin design. is there.
本発明に係る半導体記憶装置の第1の構成は、リード選択信号が入力されるリードワード線と、
ライト選択信号が入力されるライトワード線と、
ライトデータ信号が入力されるライトデータ線と、
リードデータ信号が出力されるリードデータ線と、
前記ライトデータ線に接続されたデータ入力端子、前記ライトワード線に接続された書込許可入力端子、及びデータ出力端子を有し、前記書込許可入力端子に入力される前記ライト選択信号がアサートされると前記データ入力端子に入力されるライトデータ信号の論理レベル電圧をスルーし、前記ライト選択信号がネゲートされると前記データ入力端子に入力されるライトデータ信号の論理レベル電圧をホールドし、スルーまたはホールドされる論理レベル電圧又はその反転値を前記データ出力端子から出力するDラッチ回路、
並びに前記Dラッチ回路の前記データ出力端子と前記リードデータ線との間に接続され、前記リード選択信号がアサートされると前記データ出力端子の論理レベル電圧又はその反転値を前記リードデータ線へ出力し前記リード選択信号がネゲートされると出力が高インピーダンス状態となるトライステートバッファを具備するメモリセルと、を備えたことを特徴とする。
A first configuration of a semiconductor memory device according to the present invention includes a read word line to which a read selection signal is input;
A write word line to which a write selection signal is input;
A write data line to which a write data signal is input;
A read data line from which a read data signal is output;
A data input terminal connected to the write data line, a write enable input terminal connected to the write word line, and a data output terminal, and the write selection signal input to the write enable input terminal is asserted The logic level voltage of the write data signal input to the data input terminal is passed, and when the write selection signal is negated, the logic level voltage of the write data signal input to the data input terminal is held, A D latch circuit for outputting a through- or held logic level voltage or its inverted value from the data output terminal;
The D latch circuit is connected between the data output terminal and the read data line, and when the read selection signal is asserted, the logic level voltage of the data output terminal or its inverted value is output to the read data line. And a memory cell having a tristate buffer whose output is in a high impedance state when the read selection signal is negated.
この構成によれば、データを保持する各メモリセルをDラッチ回路とトライステートバッファを用いて構成することにより、メモリセルへのデータ書き込み、メモリセルからのデータ読み出しの両方の場合において、メモリセルの動作が全てデジタル動作となり、基本的にその動作の可否は、構成する各トランジスタの設計値(ゲート幅/ゲート長)には依存しなくなる。 According to this configuration, each memory cell that holds data is configured by using a D latch circuit and a tristate buffer, so that in both cases of data writing to the memory cell and data reading from the memory cell, the memory cell These operations are all digital operations, and basically, whether or not the operations are possible does not depend on the design value (gate width / gate length) of each transistor that constitutes.
本発明に係る半導体記憶装置の第2の構成は、前記第1の構成において、前記Dラッチ回路は、
第1のCMISインバータと、
入力端子に前記第1のCMISインバータの出力端子が接続された第2のCMISインバータと、
前記第2のCMISインバータの出力端子と前記第1のCMISインバータの入力端子との間に接続され、前記書込許可入力端子から入力されるライト選択信号がネゲートされたときに両端子を接続し、アサートされたときに両端子を切断するループゲート回路と、
前記データ入力端子と前記第1のCMISインバータの入力端子との間に接続され、前記書込許可入力端子から入力されるライト選択信号がアサートされたときに両端子を接続し、ネゲートされたときに両端子を切断する入力ゲート回路と、を備えたことを特徴とする。
A second configuration of the semiconductor memory device according to the present invention is the first configuration, wherein the D latch circuit is
A first CMIS inverter;
A second CMIS inverter having an input terminal connected to the output terminal of the first CMIS inverter;
Which is connected between the output terminal of the second CMIS inverter and the input terminal of said first CMIS inverter, connected to both terminals when the write selection signal inputted from the write enable input terminal is negated A loop gate circuit that disconnects both terminals when asserted, and
Connected between the data input terminal and the input terminal of the first CMIS inverter. When a write selection signal input from the write enable input terminal is asserted, both terminals are connected and negated. And an input gate circuit for cutting both terminals.
この構成によれば、メモリセルを構成するDラッチ回路部を、単純なCMISインバータとトランスファー・ゲート回路のみで構成でき、小型化、低電圧化が図れる。 According to this configuration, the D latch circuit portion constituting the memory cell can be configured only by a simple CMIS inverter and a transfer gate circuit, and the size and voltage can be reduced.
本発明に係る半導体記憶装置の第3の構成は、前記第2の構成において、前記トライステートバッファは、CMISインバータと、前記CMISインバータの出力端子に接続され、前記リード選択信号がアサートされたときに両端子を接続し、ネゲートされたときに両端子を切断する出力ゲート回路と、を備えたことを特徴とする。
According to a third configuration of the semiconductor memory device of the present invention, in the second configuration, the tristate buffer is connected to a CMIS inverter and an output terminal of the CMIS inverter, and the read selection signal is asserted. And an output gate circuit for connecting both terminals to each other and disconnecting both terminals when negated.
この構成によれば、メモリセルを構成するトライステートバッファを、単純なCMISインバータとトランスファー・ゲート回路のみで構成でき、小型化、低電圧化が図れる。 According to this configuration, the tristate buffer configuring the memory cell can be configured with only a simple CMIS inverter and a transfer gate circuit, and the size and voltage can be reduced.
本発明に係る半導体記憶装置の第4の構成は、前記第3の構成において、前記リードワード線及び前記ライトワード線のペアであるワード線ペアと、前記ライトデータ線及び前記リードデータ線のペアであるデータ線ペアとが、前記各ワード線ペアを行とし前記各データ線ペアを列として格子状に複数配設され、前記各ワード線ペアと前記各データ線ペアとの交点のそれぞれに前記メモリセルが配設されており、
書込データの論理レベル電圧が入力されるデータ入力端子と、
データの書込を行うメモリセルに接続する前記データ線ペアの列を選択する列アドレス信号が入力される列アドレス入力端子と、
前記各データ線ペアのそれぞれに対して当該データ線ペアの前記ライトデータ線を、当該データ線ペアの前記リードデータ線又は前記データ入力端子の何れかに選択的に接続する書込用セレクタと、を備え、
前記各書込用セレクタは、当該書込用セレクタの列が前記列アドレス信号により選択された列の場合、前記ライトデータ線を前記データ入力端子に接続し、それ以外の場合、前記ライトデータ線を前記リードデータ線に接続することを特徴とする。
According to a fourth configuration of the semiconductor memory device of the present invention, in the third configuration, a word line pair that is a pair of the read word line and the write word line, and a pair of the write data line and the read data line. A plurality of data line pairs are arranged in a grid pattern with each word line pair as a row and each data line pair as a column, and at each intersection of each word line pair and each data line pair, Memory cells are arranged,
A data input terminal to which the logic level voltage of the write data is input;
A column address input terminal to which a column address signal for selecting a column of the data line pair connected to a memory cell to which data is written is input;
A write selector for selectively connecting the write data line of the data line pair to either the read data line or the data input terminal of the data line pair for each of the data line pairs; With
Each of the write selectors connects the write data line to the data input terminal when the column of the write selector is a column selected by the column address signal; otherwise, the write data line Is connected to the read data line.
この構成によれば、本発明のメモリセルで、メモリセルアレイを構成した場合に、書き込み動作時に、行アドレス信号では選択されているが、列アドレス信号では指定されていない本発明のメモリセルにおいて、保持していたデータを、リードデータ線、ライトデータ線経由でループバックを行い、メモリセル内のデータを消失することなく、正しく保持することが可能となる。 According to this configuration, when the memory cell array is configured with the memory cell of the present invention, in the memory cell of the present invention that is selected by the row address signal but not specified by the column address signal during the write operation, The held data is looped back via the read data line and the write data line, so that the data in the memory cell can be held correctly without being lost.
本発明に係る半導体記憶装置の第5の構成は、前記第3の構成において、前記入力ゲート回路と、前記出力ゲート回路は、それぞれ逆極性の片チャネルMISFETで構成されることを特徴とする。
A fifth configuration of the semiconductor memory device according to the present invention is characterized in that, in the third configuration, the input gate circuit and the output gate circuit are each composed of a single-channel MISFET having a reverse polarity.
この構成によれば、情報記憶部の保持特性を維持したまま、メモリセルを構成するトランジスタ数が削減でき、また、NMISFETとPMISFETの数が同数となり、レイアウトの容易化、小型化が図れる。 According to this configuration, the number of transistors constituting the memory cell can be reduced while maintaining the retention characteristics of the information storage unit, and the number of NMISFETs and PMISFETs is the same, facilitating layout and miniaturization.
本発明に係る半導体記憶装置の第5の構成は、前記第5の構成において、前記入力ゲート回路はPMISFET、前記出力ゲート回路はNMISFETで構成されることを特徴とする。 A fifth configuration of the semiconductor memory device according to the present invention is characterized in that, in the fifth configuration, the input gate circuit is configured by PMISFET and the output gate circuit is configured by NMISFET.
この構成によれば、SRAMの最大の特長である高速な読み出し速度を維持したまま、情報記憶部の保持特性を維持し、メモリセルを構成するトランジスタ数が削減でき、また、NMISFETとPMISFETの数が同数となり、レイアウトの容易化、小型化が図れる。 According to this configuration, the retention characteristic of the information storage unit can be maintained while maintaining the high-speed reading speed which is the greatest feature of the SRAM, the number of transistors constituting the memory cell can be reduced, and the number of NMISFETs and PMISFETs As a result, the layout can be simplified and miniaturized.
本発明に係る半導体記憶装置の第7の構成は、前記第3の構成において、前記入力ゲート回路と、前記ループゲート回路と、前記出力ゲート回路のうち少なくとも1つは、片チャネルMISFETで構成されることを特徴とする。
According to a seventh configuration of the semiconductor memory device of the present invention, in the third configuration, at least one of the input gate circuit, the loop gate circuit, and the output gate circuit is configured by a single channel MISFET. It is characterized by that.
この構成によれば、メモリセルを構成するトランジスタ数を削減でき、レイアウトが容易になり、小型化が図れる。 According to this configuration, the number of transistors constituting the memory cell can be reduced, the layout becomes easy, and the size can be reduced.
本発明に係る半導体記憶装置の第8の構成は、前記第7の構成において、隣接するメモリセルでは、前記入力ゲート回路、前記ループゲート回路、前記出力ゲートを構成する片チャンネルMISFETの一部、または全てにおいて、その極性が逆となっていることを特徴とする。 According to an eighth configuration of the semiconductor memory device of the present invention, in the seventh configuration, in the adjacent memory cell, the input gate circuit, the loop gate circuit, a part of the single channel MISFET configuring the output gate, Or, in all, the polarity is reversed.
この構成によれば、隣接する複数のメモリセルを構成するNMISFETとPMISFETの数が同数となり、レイアウトが容易になり、小型化が図れる。 According to this configuration, the number of NMISFETs and PMISFETs that constitute a plurality of adjacent memory cells is the same, which facilitates the layout and reduces the size.
以上のように、本発明によれば、データを保持する各メモリセルをDラッチ回路とトライステートバッファを用いて構成したことにより、回路を構成する各トランジスタの設計値(ゲート幅/ゲート長)によらずマージンフリーな設計を行うことが可能な半導体記憶装置を提供することが可能となる。 As described above, according to the present invention, each memory cell that holds data is configured using the D latch circuit and the tristate buffer, so that the design value (gate width / gate length) of each transistor that configures the circuit. Therefore, it is possible to provide a semiconductor memory device capable of performing a margin-free design.
以下、本発明を実施するための形態について、図面を参照しながら説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
図1は、本発明の実施例1に係る半導体記憶装置のメモリセルの構成を表す回路ブロック図である。
FIG. 1 is a circuit block diagram showing a configuration of a memory cell of a semiconductor memory device according to
図1において、半導体記憶装置は、リードワード線RW及びライトワード線WWのペアであるワード線ペアと、ライトデータ線WD及びリードデータ線RDのペアであるデータ線ペアとが格子状に配設され(図4参照)、各ワード線ペアと各データ線ペアとの交点のそれぞれにメモリセル1が配設されている。リードワード線RWには、リード選択信号が入力される。ライトワード線WWには、ライト選択信号が入力される。ライトデータ線WDには、ライトデータ信号が入力される。リードデータ線RDには、リードデータ信号が出力される。
In FIG. 1, in the semiconductor memory device, a word line pair that is a pair of a read word line RW and a write word line WW and a data line pair that is a pair of a write data line WD and a read data line RD are arranged in a lattice pattern. (See FIG. 4), the
メモリセル1は、Dラッチ回路2とトライステートバッファ3を備えている。
The
Dラッチ回路2は、ライトデータ線WDに接続されたデータ入力端子D、ライトワード線WWに接続された書込許可入力端子φ、及びデータ出力端子Q−を備えている。Dラッチ回路2は、書込許可入力端子φに入力されるライト選択信号がアサートされるとデータ入力端子Dに入力されるライトデータ信号の論理レベル電圧をスルーし、ライト選択信号がネゲートされるとライトデータ信号の論理レベル電圧をホールドする。また、Dラッチ回路2は、ラッチされた論理レベル電圧をデータ出力端子Q−から出力する。尚、本実施例では、データ出力端子Q−からは、ラッチされた論理レベル電圧の反転値が出力されるように構成されているが、本発明では非反転値が出力されるように構成してもよい。
トライステートバッファ3は、入力端子がDラッチ回路2のデータ出力端子Q−に接続され、出力端子がリードデータ線RDとの間に接続され、制御端子がリードワード線RWに接続された反転出力トライステートバッファである。トライステートバッファ3は、リード選択信号がアサートされるとデータ出力端子の論理レベル電圧の反転値をリードデータ線へ出力し、リード選択信号がネゲートされると出力が高インピーダンス状態となる。尚、データ出力端子Q−からラッチされた論理レベル電圧の非反転値を出力する構成とする場合には、トライステートバッファ3には非反転出力トライステートバッファを使用すればよい。 Tri-state buffer 3, an input terminal the D data output terminal of the latch circuit 2 Q - is connected to the output terminal is connected between the read data line RD, the inverted output control terminal connected to the read word line RW Tri-state buffer. The tristate buffer 3 outputs the inverted value of the logic level voltage of the data output terminal to the read data line when the read selection signal is asserted, and the output is in a high impedance state when the read selection signal is negated. The data output terminal Q - in the case of the structure which outputs a non-inverted value of the logical level voltage latched from, the tri-state buffer 3 may be used a non-inverting output tri-state buffer.
図2は、図1のDラッチ回路2の内部構成を表す回路図である。Dラッチ回路2は、CMISインバータ4,5、ループゲート回路6、入力ゲート回路7、及びインバータ8を備えている。
FIG. 2 is a circuit diagram showing the internal configuration of the
CMISインバータ5の入力端子には、CMISインバータ4の出力端子が接続されている。また、ループゲート回路6は、nMISFET M1とpMISFET M2とのチャネルを並列接続したトランスミッション・ゲートであり、チャネル両端子がCMISインバータ5の出力端子とCMISインバータ4の入力端子との間に接続されている。ループゲート回路6のpMISFET M2のゲートは書込許可入力端子φに接続され、ループゲート回路6のnMISFET M1のゲートはインバータ8を介して書込許可入力端子φに接続されている。これにより、ループゲート回路6は、書込許可入力端子φから入力されるライト選択信号がネゲートされたとき(Lレベルのとき)に両端子を接続し、アサートされたとき(Hレベルのとき)に両端子を切断する。CMISインバータ4,5は、ループゲート回路6を間挿して出力と入力とが互いにクロスカップリングされることで、フリップ・フロップを構成している。
The output terminal of the
また、CMISインバータ4の出力端子は、データ出力端子Q−に接続されている。従って、データ出力端子Q−からは、CMISインバータ4,5からなるフリップ・フロップでラッチされた論理レベル電圧の反転値が出力される。
The output terminal of the
入力ゲート回路7は、nMISFET M3とpMISFET M4とのチャネルを並列接続したトランスミッション・ゲートであり、チャネル両端子がデータ入力端子DとCMISインバータ4の入力端子との間に接続されている。入力ゲート回路7のnMISFET M3のゲートは書込許可入力端子φに接続され、入力ゲート回路7のpMISFET M4のゲートはインバータ8を介して書込許可入力端子φに接続されている。これにより、入力ゲート回路7は、書込許可入力端子φから入力されるライト選択信号がネゲートされたとき(Lレベルのとき)に両端子を切断し、アサートされたとき(Hレベルのとき)に両端子を接続する。
The
図3は、図1のトライステートバッファ3の内部構成を表す回路図である。トライステートバッファ3は、出力ゲート回路9及びインバータ10,11を備えている。出力ゲート回路9は、nMISFET M5とpMISFET M6とのチャネルを並列接続して構成されたトランスミッション・ゲートであり、nMISFET M5のゲートは制御端子ENBに接続され、pMISFET M6のゲートはインバータ10を介して制御端子ENBに接続されている。また、制御端子ENBは、リードワード線RWに接続されている。
FIG. 3 is a circuit diagram showing the internal configuration of the tri-state buffer 3 of FIG. The tristate buffer 3 includes an
また、出力ゲート回路9の入力端子は、インバータ11を介してトライステートバッファ3の入力端子inに接続され、出力ゲート回路9の出力端子は、トライステートバッファ3の出力端子outに接続されている。尚、トライステートバッファ3の入力端子inは、Dラッチ回路2のデータ出力端子Q−に接続され、トライステートバッファ3の出力端子outは、リードデータ線RDに接続されている。
The input terminal of the
図4は、本発明の実施例1に係る半導体記憶装置の全体構成を表す回路ブロック図である。図4において、実施例1の半導体記憶装置は、リードワード線RWn(n=1,2,…)及びライトワード線WWnのペアであるワード線ペアWnと、ライトデータ線WDm(m=1,2,…)及びリードデータ線RDmのペアであるデータ線ペアDmとが、各ワード線ペアWnを行とし各データ線ペアDmを列として格子状に配設されている。各ワード線ペアWnと各データ線ペアDmとの交点のそれぞれに、図1のメモリセル1が配設されている。また、各ライトデータ線WDm及びリードデータ線RDmの一端には、列選択回路12が接続されている。
FIG. 4 is a circuit block diagram showing the overall configuration of the semiconductor memory device according to the first embodiment of the invention. 4, the semiconductor memory device according to the first embodiment includes a word line pair Wn that is a pair of a read word line RWn (n = 1, 2,...) And a write word line WWn, and a write data line WDm (m = 1, 2,...) And a data line pair Dm, which is a pair of read data lines RDm, are arranged in a grid pattern with each word line pair Wn as a row and each data line pair Dm as a column. A
列選択回路12は、データ入力端子Din,データ出力端子Dout,及び列アドレス入力端子Y0を備えている。データ入力端子Dinからは、何れかのメモリセル1に書き込むデータの論理レベル電圧が入力される。データ出力端子Doutからは、何れかのメモリセル1から読み出されたデータの論理レベル電圧が出力される。また、列アドレス入力端子Y0には、データの書込を行うメモリセルに接続するデータ線ペアDm(m=1,2,…)を選択する列アドレス信号が入力される。
The
列選択回路12は、各データ線ペアD1,D2,…に対して、それぞれ書込用セレクタ13−1,13−2,…を備えている。これらの書込用セレクタ13−m(m=1,2,…)は、対応するデータ線ペアDmのライトデータ線WDmとリードデータ線RDmとの一端とデータ入力端子Dinとに接続されている。各書込用セレクタ13−m(m=1,2,…)は、接続されたライトデータ線WDmを、リードデータ線RDm又はデータ入力端子Dinの何れかに選択的に接続するセレクタである。各書込用セレクタ13−m(m=1,2,…)は、接続するデータ線ペアDmの列mが、列アドレス信号により選択された列のときはライトデータ線WDmをデータ入力端子Dinに接続し、それ以外のときは、ライトデータ線WDmをリードデータ線WDmに接続する。これにより、列選択回路12は、列アドレス信号に従って、選択されたデータ線ペアDiのライトデータ線WDiをデータ入力端子Dinに接続し、それ以外のデータ線ペアDj(j≠i)のライトデータ線WDj及びリードデータ線WDjを接続するように動作する。
The
また、列選択回路12は、列アドレス信号により選択されたリードデータ線RDiをデータ出力端子Doutに選択的に接続する出力セレクタ14を備えている。
The
以上のように構成された本実施例に係る半導体記憶装置について、以下その動作を説明する。 The operation of the semiconductor memory device according to this embodiment configured as described above will be described below.
(1)リード動作
図5は、図4の回路のリード動作時における各信号のタイムチャートである。図5は、一例として、1行2列目のメモリセル1(図4において符号Bを付したメモリセル)のデータを読み出す場合を示している。
(1) Read Operation FIG. 5 is a time chart of each signal during the read operation of the circuit of FIG. FIG. 5 shows, as an example, a case where data is read from the
データの読み出しを行う場合、まず、読み出しを行うセルの列を選択する列アドレス信号を列アドレス入力端子Y0に入力する。これにより、選択された列のリードデータ線RD2がデータ出力端子Doutに接続される。 When reading data, first, a column address signal for selecting a column of cells to be read is input to the column address input terminal Y0. As a result, the read data line RD2 of the selected column is connected to the data output terminal Dout.
次に、読み出しを行うセルの行のリードワード線RW1のリード選択信号をアサートする(Hレベルにする)。これにより、リードワード線RW1に接続されたすべてのメモリセル1のトライステートバッファ3が接続状態となり、各リードデータ線RDm(m=1,2,…)には、1行目の各メモリセル1にラッチされている論理レベル電圧Dold11,Dold12,…が出力される。このとき、データ出力端子Doutには選択されたリードデータ線RD2のみが接続されているため、データ出力端子Doutには1行2列目のメモリセル1にラッチされている論理レベル電圧Dold12が出力される。
Next, the read selection signal of the read word line RW1 of the row of the cell to be read is asserted (set to H level). As a result, the tristate buffers 3 of all the
以上のような動作により、選択されたメモリセル1にラッチされているデータの読み出しが行われる。
Through the operation as described above, the data latched in the selected
(2)ライト動作
図6は、図4の回路のライト動作時における選択されたメモリセルの各信号のタイムチャート、図7は、図4の回路のライト動作時における非選択のメモリセルの各信号のタイムチャートである。図6,図7では、一例として、1行2列目のメモリセル1(図4において符号Bを付したメモリセル)にデータを書き込む場合を示している。
(2) Write Operation FIG. 6 is a time chart of each signal of the selected memory cell during the write operation of the circuit of FIG. 4, and FIG. 7 is a diagram of each of the non-selected memory cells during the write operation of the circuit of FIG. It is a time chart of a signal. 6 and 7 show an example in which data is written to the
データの書き込みを行う場合、まず、書き込みを行うセルの行のリードワード線RW1のリード選択信号をアサートする(Hレベルにする)(時刻t1)。これにより、各列のリードデータ線RD1,RD2,…には、選択されたリードワード線RW1に接続する各列のメモリセル1にラッチされた論理レベル電圧Dold11,Dold12,…が出力される(時刻t2)。
When writing data, first, the read selection signal of the read word line RW1 of the row of the cell to be written is asserted (set to H level) (time t1). As a result, the logical data voltages D old11 , D old12 ,... Latched in the
このとき、列アドレス信号はまだ入力されていないため、すべての列の書込用セレクタ13−2は接続状態にある。従って、各列のリードデータ線RDm(m=1,2,…)に出力された論理レベル電圧Dold1mは、ペアであるライトデータ線WDmに伝達され、ライトデータ線WDmの電圧は論理レベル電圧Dold1mとなる(時刻t3)。 At this time, since the column address signal has not yet been input, the write selectors 13-2 of all the columns are in a connected state. Therefore, the logic level voltage Dold1m output to the read data line RDm (m = 1, 2,...) Of each column is transmitted to the paired write data line WDm, and the voltage of the write data line WDm is the logic level voltage. D old1m (time t3).
次に、データ入力端子Dinに書き込みを行う書込データの論理レベル電圧Dnewを入力する(時刻t4)。 Then, enter the logic level voltage D new new write data for writing to the data input terminal Din (time t4).
次に、書き込みを行うセルの列を選択する列アドレス信号を列アドレス入力端子Y0に入力する。これにより、選択された列の書込用セレクタ13−2は、ライトデータ線WD2をデータ入力端子Dinに接続する。また、それ以外の書込用セレクタ13−j(j≠2)では、ライトデータ線WDjがリードデータ線RDjに接続された状態のままである(t5)。これによって、選択された列のライトデータ線WD2は、書込データの論理レベル電圧Dnewとなる。一方、選択されなかった列のライトデータ線WDj(j≠2)はリードデータ線RDjと接続されたままの状態であるため、選択行のj列目のメモリセル1は、トライステートバッファ3の出力端子とDラッチ回路2のデータ入力端子Dが短絡されたループ状態となっている。
Next, a column address signal for selecting a column of cells to be written is input to the column address input terminal Y0. As a result, the write selector 13-2 of the selected column connects the write data line WD2 to the data input terminal Din. In the other write selector 13-j (j ≠ 2), the write data line WDj remains connected to the read data line RDj (t5). Thereby, the write data lines WD2 of the selected column, the logic level voltage D new new write data. On the other hand, since the write data line WDj (j ≠ 2) in the unselected column remains connected to the read data line RDj, the
次に、書き込みを行う行のライトワード線WW1のライト選択信号をアサートする(Hレベルとする)(時刻t6)。これにより、選択された行(1行目)のすべてのメモリセル1のDラッチ回路2に、そのメモリセル1が属する列m(m=1,2,…)のライトデータ線WDmに設定された電圧が設定される。このとき、選択された列のライトデータ線WD2には、書込データの論理レベル電圧Dnewが設定されているので、1行2列目のメモリセル1のDラッチ回路2には論理レベル電圧Dnewが設定され(時刻t7)、それに伴い、2列目のリードデータ線RD2の電圧も論理レベル電圧Dnewとなる(時刻t8)。一方、選択されなかった列のライトデータ線WDj(j≠2)には、選択行(1行目)のメモリセル1にラッチされている論理レベル電圧Dold1jが設定されているので、1行1列目のメモリセル1のDラッチ回路2の設定電圧はそのまま維持される。
Next, the write selection signal of the write word line WW1 of the row to be written is asserted (set to H level) (time t6). As a result, the write data line WDm of the column m (m = 1, 2,...) To which the
次に、ライトワード線WW1のライト選択信号をネゲートする(Lレベルとする)。これにより、1行目の各メモリセル1のDラッチ回路2は、その時点におけるデータ入力端子Dの電圧をラッチする(時刻t9)。
Next, the write selection signal of the write word line WW1 is negated (set to L level). As a result, the
最後に、列アドレス信号の入力を停止するとともに、書き込み行のリードワード線RW1のリード選択信号をネゲートする(Lレベルにする)(時刻t10)。これにより、1行目の各列のメモリセル1のDラッチ回路2からリードデータ線RD1,RD2,…へのデータの出力が停止される(時刻t11,t12)。
Finally, the input of the column address signal is stopped and the read selection signal of the read word line RW1 in the write row is negated (set to L level) (time t10). As a result, the output of data from the
以上の動作によって、1行2列目のメモリセル1に新しいデータが書き込まれ、1行1列目のメモリセル1は従前のデータを保持する。
Through the above operation, new data is written in the
以上のように、本実施例の半導体記憶装置では、各メモリセル1にDラッチ回路2とトライステートバッファ3を使用し、トライステートバッファ3によりDラッチ回路2の出力を高インピーダンスで受けてリードデータ線RDから分離することにより、Dラッチ回路2の入力ゲート回路7に使用する各トランジスタM3,M4の設計値(ゲート幅/ゲート長)と出力ゲート回路9に使用する各トランジスタM5,M6の設計値(ゲート幅/ゲート長)を全く独立に決めることが可能となる。そのため、各トランジスタM3,M4,M5,M6の設計値(ゲート幅/ゲート長)に制限されることなく設計を行うことが可能となる。また、各トランジスタM3,M4,M5,M6の設計値(ゲート幅/ゲート長)に関係なく設計が可能であるので、各トランジスタM3,M4,M5,M6及び、各インバータ回路を構成するトランジスタを、プロセスの最小レベルのサイズとして設計することも可能となる。従って、全体として回路を小型化することができる。
As described above, in the semiconductor memory device of this embodiment, the
図8は、本発明の実施例2に係る半導体記憶装置のメモリセルの構成を表す回路図である。図8において、リードワード線RW、ライトワード線WW、ライトデータ線WD、リードデータ線RD、メモリセル1、Dラッチ回路2、トライステートバッファ3、CMISインバータ4,5、ループゲート回路6、入力ゲート回路7、出力ゲート回路9及びインバータ11は、図1〜図3の同符号のものと同様である。また、図8の各トランジスタM1〜M6は、図2,図3の同符号のものに対応する。
FIG. 8 is a circuit diagram showing a configuration of a memory cell of the semiconductor memory device according to the second embodiment of the present invention. In FIG. 8, read word line RW, write word line WW, write data line WD, read data line RD,
本実施例の半導体記憶装置では、図2のDラッチ回路2のインバータ8及び図3のトライステートバッファ3のインバータ10が省略されており、その代わりに、リードワード線RWの論理反転値が入力されるリードワード線RW−と、ライトワード線WWの論理反転値が入力されるライトワード線WW−とを備えている。そして、トランジスタM1,M4のゲートにはライトワード線WW−が接続され、トランジスタM6のゲートにはリードワード線RW−が接続されている。
In the semiconductor memory device of this embodiment, the
このような構成としても、実施例1と同様の作用効果を得ることができる。尚、本実施例の回路構成では、実施例1と比べてインバータ8,10が省略されるため、実施例1に比べて1つのメモリセル1あたり、少なくとも4個のトランジスタを減らすことができるが、その代わり、1行あたり2本の新たな配線(リードワード線RW−,ライトワード線WW−)が必要となる。
Even with this configuration, the same effects as those of the first embodiment can be obtained. In the circuit configuration of this embodiment, since the
図9は、本発明の実施例3に係る半導体記憶装置のメモリセルの構成を表す回路図である。図9において、リードワード線RW、ライトワード線WW、ライトデータ線WD、リードデータ線RD、メモリセル1、Dラッチ回路2、トライステートバッファ3、CMISインバータ4,5、ループゲート回路6、入力ゲート回路7、出力ゲート回路9、インバータ11、及びトランジスタM2,M3,M5は、実施例2の図8の同符号のものに対応する。図8と比較して、本実施例のメモリセル1では、ループゲート回路6、入力ゲート回路7、及び出力ゲート回路9を、両チャネルのトランスミッション・ゲートの代わりに、片チャネルのトランスファー・ゲートによって構成した点が異なる。これにより、図8のリードワード線RW−及びライトワード線WW−が不要となる。
FIG. 9 is a circuit diagram showing a configuration of a memory cell of a semiconductor memory device according to Embodiment 3 of the present invention. In FIG. 9, read word line RW, write word line WW, write data line WD, read data line RD,
片チャネルのトランスファー・ゲートを使用した場合、例えばpMISFETのみではLow側の信号が正確に伝達されないという弱点はあるが、このような構成でも本発明の半導体記憶装置を構成することが可能である。 When a single-channel transfer gate is used, for example, the pMISFET alone has a weak point that a low-side signal cannot be accurately transmitted. Even in such a configuration, the semiconductor memory device of the present invention can be configured.
尚、本実施例において、図4の各メモリセル1は、すべて図9に示した同じ構成のものとしたが、他の例として、図4の隣接するメモリセル1では、入力ゲート回路7、ループゲート回路6、及び出力ゲート回路9を構成する片チャンネルMISFET M3,M2,M5の一部、または全てにおいて、その極性が逆となるように構成することもできる(実施例7参照)。これにより、チップ全体のレイアウト面積を小さくすることができる。
In this embodiment, each
図10は、本発明の実施例4に係る半導体記憶装置のメモリセル1の構成を表す回路図である。図10において、リードワード線RW、ライトワード線WW、ライトデータ線WD、リードデータ線RD、メモリセル1、Dラッチ回路2、トライステートバッファ3、CMISインバータ4,5、ループゲート回路6、入力ゲート回路7、出力ゲート回路9、インバータ11、及びトランジスタM1,M2,M3,M5は、実施例2の図8の同符号のものに対応する。図10のメモリセル1は、図9のメモリセル1を改良したものである。図9と比較すると、ループゲート回路6に、実施例1と同様の両チャネルのトランスミッション・ゲートを使用した点のみが相違する。
FIG. 10 is a circuit diagram showing a configuration of the
CMISインバータ4,5から構成されるフリップ・フロップに内挿されたループゲート回路6のみを両チャネルのトランスミッション・ゲートとした理由は、ループゲート回路6を図9のように片チャンネルとすると、Lowレベル側の特性がきれいに出ないため、リーク電流が増加し、フリップ・フロップにおける状態の保持を補償するためにループゲート回路6のマージンを厳しくして設計する必要が生じるからである。図10のように両チャネルのトランスミッション・ゲートを使用すれば、そのような問題は解消される。
The reason why only the
尚、本実施例において、図4の各メモリセル1は、すべて図10に示した同じ構成のものとしたが、他の例として、図4の隣接するメモリセル1,1では、入力ゲート回路7、及び出力ゲート回路9を構成する片チャンネルMISFET M7,M9の一部、または全てにおいて、その極性が逆となるように構成することもできる(実施例7参照)。これにより、チップ全体のレイアウト面積を小さくすることができる。
In this embodiment, each
図11は、本発明の実施例5に係る半導体記憶装置のメモリセル1の構成を表す回路図である。図11のメモリセル1は、図10のメモリセル1を改良したものである。図10と比較すると、ループゲート回路6とインバータ5を一体化した、ループゲート・インバータ回路15を使用しており、また、出力ゲート回路9を、PMISFETのM6で構成している点が異なる。
FIG. 11 is a circuit diagram showing a configuration of the
インバータと、その出力にあるトランスファー・ゲートを、15のようなループゲート・インバータ回路へ接続変更して用いることは、機能的に等価であり、レイアウト等の都合上よく行われる。また、出力ゲート回路9をPMISFETで構成することで、図11の回路では、メモリセルを構成するNMISFETと、PMISFETの数が、それぞれ5個ずつと揃うため、レイアウトが容易となり、小型化も図り易くなる。
It is functionally equivalent to use the inverter and the transfer gate at the output of the inverter by changing the connection to a loop gate inverter circuit such as 15, and this is done conveniently for layout and the like. Further, by configuring the
図12は、本発明の実施例6に係る半導体記憶装置のメモリセル1の構成を表す回路図である。図12のメモリセル1は、図11のメモリセル1を変形したものである。図11と比較すると、ループゲート・インバータ回路15内において、直列に接続されるそれぞれPMISFET、NMISFETの接続順が入れ替わった構成になっている。また、入力ゲート回路7と出力ゲート回路9を構成するトランジスタの極性が逆になっており、出力ゲート回路9にNMISFETを用いているため、SRAMで最も重要な特長であるデータ読み出し速度に影響を与えることがない。
FIG. 12 is a circuit diagram showing a configuration of the
図10のインバータとその出力にあるトランスファー・ゲートを、図11あるいは図12におけるループゲート・インバータ回路15へ接続変更して用いることは、機能的に等価であり、この部分のトランジスタの接続は、レイアウト等の都合で選択すればよい。また、入力ゲート回路7と出力ゲート回路9を片チャンネル化する場合は、図10、図11、図12のように、PMISFET、NMISFETのいずれでもよく、レイアウト容易性や、小型化等を考慮して選択すればよい。
It is functionally equivalent to use the inverter of FIG. 10 and the transfer gate at the output thereof by changing the connection to the loop
図13は、本発明の実施例7に係る半導体記憶装置の複数のメモリセル1の構成を表す回路図である。図13の半導体記憶装置は、図9のメモリセル1と、さらに、メモリセル1のループゲート回路6,入力ゲート回路7,及び出力ゲート回路9を構成する片チャンネルトランジスタM2,M3,M5の極性を逆にしたトランジスタM1,M4,M6で構成されたループゲート回路6’,入力ゲート回路7’,及び出力ゲート回路9’を備えたメモリセル1’から構成されている。
FIG. 13 is a circuit diagram showing a configuration of a plurality of
図9の回路は、メモリセル1を構成するトランジスタ総数が9個と、図9〜図12の回路の中で、最も素子数が少ないが、素子総数が奇数であるために、PMISFET、NMISFETの数は同数ではなく、例えば、レイアウトを行う際に小型化が図りにくい。そこで、図13のように、隣接するメモリセルでは、片チャンネルMISFETで構成されるトランスファー・ゲートの全て、あるいは一部を逆極性として、複数のメモリセルにおいて、PMISFET、NMISFETのトランジスタ数を同数とする。図13の例では、上下の2つのメモリセル1,1’内では、PMISFET、NMISFETの数はそれぞれ9個と同数になり、前記課題を解決できる。また、図13の例では、2つの隣接するメモリセルの、少なくとも出力ゲート回路9の部分のみを逆極性とすることで、本効果が得られる。
The circuit of FIG. 9 has nine transistors in the
1,1’ メモリセル
2 Dラッチ回路
3 トライステートバッファ
4,5 CMISインバータ
6,6’ ループゲート回路
7,7’ 入力ゲート回路
8 インバータ
9,9’ 出力ゲート回路
10,11 インバータ
12 列選択回路
13−1,13−2,… 書込用セレクタ
14 出力セレクタ
15 ループゲート・インバータ回路
RW リードワード線
RW− リードワード線
WW ライトワード線
WW− ライトワード線
WD ライトデータ線
RD リードデータ線
D データ入力端子
φ 書込許可入力端子
Q− データ出力端子
Din データ入力端子
Dout データ出力端子
Y0 列アドレス入力端子
1, 1 'memory cell 2 D latch circuit 3
Claims (7)
ライト選択信号が入力されるライトワード線と、
ライトデータ信号が入力されるライトデータ線と、
リードデータ信号が出力されるリードデータ線と、
前記ライトデータ線に接続されたデータ入力端子、前記ライトワード線に接続された書込許可入力端子、及びデータ出力端子を有し、前記書込許可入力端子に入力される前記ライト選択信号がアサートされると前記データ入力端子に入力されるライトデータ信号の論理レベル電圧をスルーし、前記ライト選択信号がネゲートされると前記データ入力端子に入力されるライトデータ信号の論理レベル電圧をホールドし、スルーまたはホールドされる論理レベル電圧又はその反転値を前記データ出力端子から出力するDラッチ回路、
並びに前記Dラッチ回路の前記データ出力端子と前記リードデータ線との間に接続され、前記リード選択信号がアサートされると前記データ出力端子の論理レベル電圧又はその反転値を前記リードデータ線へ出力し前記リード選択信号がネゲートされると出力が高インピーダンス状態となるトライステートバッファを具備するメモリセルと、を備え、
前記リードワード線及び前記ライトワード線のペアであるワード線ペアと、前記ライトデータ線及び前記リードデータ線のペアであるデータ線ペアとが、前記各ワード線ペアを行とし前記各データ線ペアを列として格子状に複数配設され、前記各ワード線ペアと前記各データ線ペアとの交点のそれぞれに前記メモリセルが配設されており、
書込データの論理レベル電圧が入力されるデータ入力端子と、
データの書込を行うメモリセルに接続する前記データ線ペアの列を選択する列アドレス信号が入力される列アドレス入力端子と、
前記各データ線ペアのそれぞれに対して当該データ線ペアの前記ライトデータ線を、当該データ線ペアの前記リードデータ線又は前記データ入力端子の何れかに選択的に接続する書込用セレクタと、を備え、
前記各書込用セレクタは、当該書込用セレクタの列が前記列アドレス信号により選択された列の場合、前記ライトデータ線を前記データ入力端子に接続し、それ以外の場合、前記ライトデータ線を前記リードデータ線に接続することを特徴とする半導体記憶装置。 A read word line to which a read selection signal is input; and
A write word line to which a write selection signal is input;
A write data line to which a write data signal is input;
A read data line from which a read data signal is output;
A data input terminal connected to the write data line, a write enable input terminal connected to the write word line, and a data output terminal, and the write selection signal input to the write enable input terminal is asserted The logic level voltage of the write data signal input to the data input terminal is passed, and when the write selection signal is negated, the logic level voltage of the write data signal input to the data input terminal is held, A D latch circuit for outputting a through- or held logic level voltage or its inverted value from the data output terminal;
The D latch circuit is connected between the data output terminal and the read data line, and when the read selection signal is asserted, the logic level voltage of the data output terminal or its inverted value is output to the read data line. And a memory cell including a tristate buffer whose output is in a high impedance state when the read selection signal is negated ,
The word line pair, which is a pair of the read word line and the write word line, and the data line pair, which is a pair of the write data line and the read data line, use the word line pair as a row, and the data line pair. Are arranged in a grid pattern, and the memory cells are arranged at the intersections of the word line pairs and the data line pairs,
A data input terminal to which the logic level voltage of the write data is input;
A column address input terminal to which a column address signal for selecting a column of the data line pair connected to a memory cell to which data is written is input;
A write selector for selectively connecting the write data line of the data line pair to either the read data line or the data input terminal of the data line pair for each of the data line pairs; With
Each of the write selectors connects the write data line to the data input terminal when the column of the write selector is a column selected by the column address signal; otherwise, the write data line Is connected to the read data line .
第1のCMISインバータと、
入力端子に前記第1のCMISインバータの出力端子が接続された第2のCMISインバータと、
前記第2のCMISインバータの出力端子と前記第1のCMISインバータの入力端子との間に接続され、前記書込許可入力端子から入力されるライト選択信号がネゲートされたときに両端子を接続し、アサートされたときに両端子を切断するループゲート回路と、
前記データ入力端子と前記第1のCMISインバータの入力端子との間に接続され、前記書込許可入力端子から入力されるライト選択信号がアサートされたときに両端子を接続し、ネゲートされたときに両端子を切断する入力ゲート回路と、を備えたことを特徴とする請求項1記載の半導体記憶装置。 The D latch circuit is
A first CMIS inverter;
A second CMIS inverter having an input terminal connected to the output terminal of the first CMIS inverter;
Which is connected between the output terminal of the second CMIS inverter and the input terminal of said first CMIS inverter, connected to both terminals when the write selection signal inputted from the write enable input terminal is negated A loop gate circuit that disconnects both terminals when asserted, and
Connected between the data input terminal and the input terminal of the first CMIS inverter. When a write selection signal input from the write enable input terminal is asserted, both terminals are connected and negated. 2. A semiconductor memory device according to claim 1, further comprising an input gate circuit for cutting both terminals.
CMISインバータと、前記CMISインバータの出力端子に接続され、前記リード選択信号がアサートされたときに両端子を接続し、ネゲートされたときに両端子を切断する出力ゲート回路と、を備えたことを特徴とする請求項2に記載の半導体記憶装置。 The tri-state buffer is
A CMIS inverter; and an output gate circuit connected to the output terminal of the CMIS inverter, connecting both terminals when the read selection signal is asserted, and disconnecting both terminals when negated. The semiconductor memory device according to claim 2 , wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011035109A JP5617679B2 (en) | 2011-02-21 | 2011-02-21 | Semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011035109A JP5617679B2 (en) | 2011-02-21 | 2011-02-21 | Semiconductor memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012174306A JP2012174306A (en) | 2012-09-10 |
JP5617679B2 true JP5617679B2 (en) | 2014-11-05 |
Family
ID=46977082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011035109A Active JP5617679B2 (en) | 2011-02-21 | 2011-02-21 | Semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5617679B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201503156A (en) | 2013-07-15 | 2015-01-16 | Zhi-Cheng Xiao | Semiconductor memory not requiring sensing amplifier |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4431422A (en) * | 1981-04-29 | 1984-02-14 | Outboard Marine Corporation | Marine hydraulic steering system control |
JPS5940395A (en) * | 1982-08-31 | 1984-03-06 | Toshiba Corp | Storage circuit |
JP3214132B2 (en) * | 1993-03-01 | 2001-10-02 | 三菱電機株式会社 | Memory cell array semiconductor integrated circuit device |
JP3459099B2 (en) * | 1993-12-21 | 2003-10-20 | 三菱電機株式会社 | Semiconductor integrated circuit device |
JPH087571A (en) * | 1994-04-20 | 1996-01-12 | Hitachi Ltd | Gate circuit, semiconductor integrated circuit, semiconductor storage circuit and semiconductor integrated circuit device using them, information processing device using them |
JP3104671B2 (en) * | 1998-03-09 | 2000-10-30 | 株式会社日立製作所 | Semiconductor storage device |
US6097651A (en) * | 1999-06-30 | 2000-08-01 | Quicklogic Corporation | Precharge circuitry in RAM circuit |
-
2011
- 2011-02-21 JP JP2011035109A patent/JP5617679B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012174306A (en) | 2012-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6373779B1 (en) | Block RAM having multiple configurable write modes for use in a field programmable gate array | |
US5216636A (en) | Cmos memory cell | |
JP4005535B2 (en) | Semiconductor memory device | |
US9275710B2 (en) | Three dimensional cross-access dual-port bit cell design | |
JP5179496B2 (en) | MEMORY CIRCUIT AND MEMORY WRITE METHOD | |
US8964451B2 (en) | Memory cell system and method | |
WO2010137198A1 (en) | Semiconductor memory device | |
US20190295656A1 (en) | Sram memory | |
KR101251676B1 (en) | Sram having improved cell stability and method therefor | |
US8693264B2 (en) | Memory device having sensing circuitry with automatic latching of sense amplifier output node | |
JP2005025863A (en) | Semiconductor memory device | |
US6778462B1 (en) | Metal-programmable single-port SRAM array for dual-port functionality | |
TW200401435A (en) | Dual port static memory cell and semiconductor memory device having the same | |
US7746722B2 (en) | Metal programmable self-timed memories | |
JP5617679B2 (en) | Semiconductor memory device | |
JP4925953B2 (en) | Memory circuit | |
Ramakrishnan et al. | Design of 8T ROM embedded SRAM using double wordline for low power high speed application | |
WO2013146563A1 (en) | Semiconductor memory device | |
JP2013211063A (en) | Semiconductor storage device | |
Geethumol et al. | Power and area efficient 10T SRAM with improved read stability | |
TWI737534B (en) | Memory integrated circuit and method, signal netword for operating the same | |
KR20080071815A (en) | Semiconductor memory device capable of reducing static noise margin | |
Reichling et al. | A quad ported SRAM | |
US8693265B2 (en) | Data inversion for dual-port memory | |
CN117476072A (en) | SRAM (static random Access memory) storage unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140613 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5617679 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |