JP5614394B2 - Cleanliness evaluation method for vapor phase growth apparatus - Google Patents
Cleanliness evaluation method for vapor phase growth apparatus Download PDFInfo
- Publication number
- JP5614394B2 JP5614394B2 JP2011233743A JP2011233743A JP5614394B2 JP 5614394 B2 JP5614394 B2 JP 5614394B2 JP 2011233743 A JP2011233743 A JP 2011233743A JP 2011233743 A JP2011233743 A JP 2011233743A JP 5614394 B2 JP5614394 B2 JP 5614394B2
- Authority
- JP
- Japan
- Prior art keywords
- growth apparatus
- wafer
- vapor phase
- phase growth
- cleanliness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001947 vapour-phase growth Methods 0.000 title claims description 59
- 230000003749 cleanliness Effects 0.000 title claims description 38
- 238000011156 evaluation Methods 0.000 title claims description 17
- 238000011109 contamination Methods 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 235000012431 wafers Nutrition 0.000 description 107
- 230000035945 sensitivity Effects 0.000 description 19
- 239000012535 impurity Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- 238000006388 chemical passivation reaction Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
Images
Landscapes
- Chemical Vapour Deposition (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
本発明は、エピタキシャルウエーハを作製するために用いる気相成長装置の清浄度を評価する方法に関する。 The present invention relates to a method for evaluating the cleanliness of a vapor phase growth apparatus used for producing an epitaxial wafer.
シリコンウエーハ中の金属不純物の検出方法としてウエーハライフタイム(以下略してWLTということがある。)法があり(例えば非特許文献1参照)、このWLT法の代表的な方法として、マイクロ波光導電減衰法少数キャリアライフタイム法(以下略してμPCD法)がある。この方法は、例えば試料(基板)に対して光を当てて、発生する少数キャリアの寿命をマイクロ波の反射率の変化で検出することで、試料中の金属不純物を評価するものである。 As a method for detecting metal impurities in a silicon wafer, there is a wafer lifetime (hereinafter sometimes referred to as WLT) method (see, for example, Non-Patent Document 1). As a typical method of this WLT method, microwave photoconductive decay is used. There is a legal minority carrier lifetime method (hereinafter referred to as a μPCD method). In this method, for example, light is applied to a sample (substrate), and the lifetime of the minority carriers generated is detected by a change in the reflectance of the microwave, thereby evaluating the metal impurities in the sample.
そして、ウエーハ内に金属が取り込まれると、このWLT値が小さくなるため、熱処理や気相成長させたウエーハのWLT値を測定して評価することで、熱処理炉内の金属汚染の管理を行うことができる。つまり、清浄度評価用のモニタウエーハを準備して実工程で用いる熱処理炉で熱処理を行い、熱処理後のウエーハのWLT値を測定することで、熱処理炉が金属不純物に汚染されているかいないかを判定することができる。 When the metal is taken into the wafer, the WLT value becomes small. Therefore, the metal contamination in the heat treatment furnace can be managed by measuring and evaluating the WLT value of the heat-treated or vapor-grown wafer. Can do. In other words, by preparing a monitor wafer for cleanliness evaluation and performing heat treatment in a heat treatment furnace used in the actual process, and measuring the WLT value of the wafer after heat treatment, it is determined whether or not the heat treatment furnace is contaminated with metal impurities. Can be determined.
この方法は、簡便でありながら微量の汚染でも高感度に検出できる為、熱処理炉の管理や気相成長装置の清浄度評価に広く用いられている。特に気相成長装置の場合、P−やN−の導電型を持つウエーハを準備し、評価対象となる気相成長装置を用いてそのウエーハの上にエピタキシャル層を成膜し、そのエピタキシャルウエーハを上述のμPCD法で測定することで気相成長装置の清浄度評価を行うことができる。 Since this method is simple but can detect even a small amount of contamination with high sensitivity, it is widely used for the management of a heat treatment furnace and the cleanliness evaluation of a vapor phase growth apparatus. In particular, in the case of a vapor phase growth apparatus, a wafer having a P − or N − conductivity type is prepared, an epitaxial layer is formed on the wafer using the vapor phase growth apparatus to be evaluated, and the epitaxial wafer is formed. By measuring by the above-mentioned μPCD method, the cleanliness of the vapor phase growth apparatus can be evaluated.
一方、μPCD法で測定されるライフタイムが受ける影響は、モニタウエーハの導電型と汚染元素の種類によって異なることが知られている(例えば、非特許文献2)。具体的には不純物がCuの場合、モニタウエーハの導電型がP/P型では汚染量に対する感度が低い。また、不純物がFeの場合は、P/P型の導電型のモニタウエーハの方が感度が高い。このように不純物の種類とモニタウエーハの導電型によって検出感度が変わってくるため、様々な不純物に対して高感度に汚染を評価するには、モニタウエーハの導電型を使い分けなければならず、複数枚のモニタウエーハを用いて評価する必要があった。 On the other hand, it is known that the influence of the lifetime measured by the μPCD method varies depending on the conductivity type of the monitor wafer and the type of contaminating element (for example, Non-Patent Document 2). Specifically, when the impurity is Cu, the sensitivity to the amount of contamination is low when the conductivity type of the monitor wafer is P / P type. Further, when the impurity is Fe, the sensitivity of the P / P conductivity type monitor wafer is higher. As described above, since the detection sensitivity varies depending on the type of impurity and the conductivity type of the monitor wafer, in order to evaluate contamination with high sensitivity to various impurities, the conductivity type of the monitor wafer must be used properly. It was necessary to evaluate using a single monitor wafer.
本発明は、上記問題に鑑みなされたものであって、気相成長装置内の汚染不純物の種類によってモニタウエーハの導電型を使い分ける必要なく、高感度で正確に清浄度を評価することのできる気相成長装置の清浄度評価方法を提供することを目的とする。 The present invention has been made in view of the above problems, and it is possible to accurately evaluate cleanliness with high sensitivity without the need to use different conductivity types of monitor wafers depending on the types of contaminating impurities in the vapor phase growth apparatus. An object of the present invention is to provide a method for evaluating the cleanliness of a phase growth apparatus.
本発明は、上記課題を解決するためになされたものであって、気相成長装置の清浄度を評価する方法であって、
前記気相成長装置を用いて、シリコンウエーハ上に導電型がP型のエピタキシャル層とN型のエピタキシャル層を順不同で連続して成長させたモニタウエーハを製造して、該モニタウエーハのライフタイム値を測定し、
前記モニタウエーハのライフタイム値から前記気相成長装置の清浄度を評価することを特徴とする気相成長装置の清浄度評価方法を提供する。
The present invention has been made to solve the above problems, and is a method for evaluating the cleanliness of a vapor phase growth apparatus,
Using the vapor phase growth apparatus, a monitor wafer in which a P type epitaxial layer and an N type epitaxial layer are continuously grown in random order on a silicon wafer is manufactured, and the lifetime value of the monitor wafer Measure and
A cleanliness evaluation method for a vapor phase growth apparatus is provided, wherein the cleanliness of the vapor phase growth apparatus is evaluated from a lifetime value of the monitor wafer.
このような気相成長装置の清浄度評価方法であれば、気相成長装置内の汚染不純物の種類によってモニタウエーハの導電型を使い分ける必要なく、高感度で正確に清浄度を評価することができる。また、一枚のモニタウエーハで高感度で正確に清浄度を評価することができるため評価コストを削減することも可能である。 With such a method for evaluating the cleanliness of a vapor phase growth apparatus, it is possible to accurately evaluate the cleanliness with high sensitivity without having to use a different conductivity type of the monitor wafer depending on the type of contaminating impurities in the vapor phase growth apparatus. . Moreover, since the cleanliness can be accurately evaluated with high sensitivity with a single monitor wafer, the evaluation cost can be reduced.
また、前記モニタウエーハのライフタイム値の測定は、μPCD法で行うことが好ましい。 The lifetime value of the monitor wafer is preferably measured by the μPCD method.
このようにμPCD法を用いることで、簡単にライフタイム値の測定を精度良く行うことができる。 By using the μPCD method in this way, the lifetime value can be easily measured with high accuracy.
さらに、前記気相成長装置の清浄度の評価において、Cuの汚染度とFeの汚染度を同時に評価することができる。 Furthermore, in the evaluation of the cleanliness of the vapor phase growth apparatus, the contamination degree of Cu and the contamination degree of Fe can be simultaneously evaluated.
このようにモニタウエーハの導電型を使い分けることなく、1枚のウエーハでCuのようにP型エピタキシャル層ではライフタイム値を下げにくい元素の汚染とFeのようにN型エピタキシャル層ではライフタイム値を下げにくい元素の汚染を同時に評価することができる。 Thus, without using different conductivity types of monitor wafers, the contamination of an element that hardly lowers the lifetime value in a P-type epitaxial layer such as Cu with one wafer and the lifetime value in an N-type epitaxial layer such as Fe. It is possible to simultaneously evaluate the contamination of elements that are difficult to lower.
また、本発明は上述の気相成長装置の清浄度評価方法により評価した気相成長装置を用いてエピタキシャルウエーハを製造する方法を提供する。 The present invention also provides a method of manufacturing an epitaxial wafer using the vapor phase growth apparatus evaluated by the above-described method for evaluating the cleanliness of the vapor phase growth apparatus.
本発明の清浄度評価方法で汚染がないことを評価した気相成長装置でエピタキシャルウエーハを製造すれば、様々な汚染の少ない高品位なエピタキシャルウエーハを歩留まり良く製造することが可能となる。 If an epitaxial wafer is manufactured by a vapor phase growth apparatus that has been evaluated to be free of contamination by the cleanliness evaluation method of the present invention, various high-quality epitaxial wafers with little contamination can be manufactured with a high yield.
以上説明したように、本発明の気相成長装置の清浄度評価方法であれば、気相成長装置内の汚染不純物の種類によってモニタウエーハの導電型を使い分ける必要なく、高感度で正確に清浄度を評価することができる。また、一枚のモニタウエーハで高感度で正確に清浄度を評価することができるため評価コストを削減することができる。さらに、本発明の清浄度評価方法により汚染がないことを評価した気相成長装置でエピタキシャルウエーハを製造すれば、様々な汚染の少ない高品位なエピタキシャルウエーハを高歩留まりで製造することが可能となる。 As described above, according to the method for evaluating the cleanliness of the vapor phase growth apparatus of the present invention, it is not necessary to use the conductivity type of the monitor wafer depending on the type of contaminating impurities in the vapor phase growth apparatus, and the cleanliness is accurately and accurately. Can be evaluated. Moreover, since the cleanliness can be accurately evaluated with high sensitivity with a single monitor wafer, the evaluation cost can be reduced. Furthermore, if an epitaxial wafer is manufactured with a vapor phase growth apparatus that has been evaluated to be free of contamination by the cleanliness evaluation method of the present invention, it is possible to manufacture various high-quality epitaxial wafers with low contamination at a high yield. .
以下、本発明を詳細に説明するが、本発明はこれに限定されるものではない。上述のように、モニタウエーハの導電型を使い分ける必要なく、1枚のモニタウエーハで高感度で正確に清浄度を評価することのできる気相成長装置の清浄度評価方法が望まれていた。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto. As described above, there has been a demand for a method for evaluating the cleanliness of a vapor phase growth apparatus that can accurately evaluate cleanliness with high sensitivity by using a single monitor wafer without the need to use different conductivity types for monitor wafers.
本発明者らは、上記問題点について鋭意検討を重ねた結果、モニタウエーハの導電型によって検出しやすい汚染元素種があることに着目し、モニタウエーハが二つの導電型、すなわちP型とN型の両方のエピタキシャル層を具備すれば、P型とN型の導電型で検出されやすい不純物を同時に高感度に検出できることを見出して、本発明を完成させた。以下、本発明をより詳細に説明する。 As a result of intensive studies on the above problems, the present inventors pay attention to the fact that there are pollutant element species that are easy to detect depending on the conductivity type of the monitor wafer, and the monitor wafer has two conductivity types, that is, P type and N type. It was found that if both epitaxial layers were provided, impurities easily detected by the P-type and N-type conductivity types could be detected simultaneously with high sensitivity, and the present invention was completed. Hereinafter, the present invention will be described in more detail.
図1に本発明の気相成長装置の清浄度評価方法のフロー図を示す。まず本発明の清浄度評価方法では、評価対象となる気相成長装置を用いて、シリコンウエーハ上に導電型がP型のエピタキシャル層とN型のエピタキシャル層を順不同で連続して成長させたモニタウエーハを製造する(図1(A))。このときP型とN型のエピタキシャル層を成長させて2層エピタキシャル層とするが、P型、N型のエピタキシャル層の成長順序は特に制限されない。従って、P型を形成してからN型を形成しても、N型を形成してからP型を形成してもよい。また、用いるシリコンウエーハはP型のものを用いてもN型のものを用いても良い。 FIG. 1 shows a flowchart of the cleanliness evaluation method for the vapor phase growth apparatus of the present invention. First, in the cleanliness evaluation method of the present invention, a monitor in which a P type epitaxial layer and an N type epitaxial layer are continuously grown in random order on a silicon wafer using a vapor phase growth apparatus to be evaluated. A wafer is manufactured (FIG. 1A). At this time, the P-type and N-type epitaxial layers are grown to form a two-layer epitaxial layer, but the growth order of the P-type and N-type epitaxial layers is not particularly limited. Accordingly, the N type may be formed after the P type is formed, or the P type may be formed after the N type is formed. The silicon wafer to be used may be either a P type or an N type.
次に、モニタウエーハのライフタイム値を測定する(図1(B))。ライフタイム値の測定は、特に制限されないが、簡単に測定を行えるμPCD法で行うことが好ましい。 Next, the lifetime value of the monitor wafer is measured (FIG. 1B). The measurement of the lifetime value is not particularly limited, but is preferably performed by the μPCD method that allows easy measurement.
最後に、モニタウエーハのライフタイム値から気相成長装置の清浄度を評価する(図1(C))。モニタウエーハのエピタキシャル層に不純物、特に金属が取り込まれるとライフタイム値が小さくなる。そのため、評価対象となる気相成長装置を用いてモニタウエーハを製造した結果、そのモニタウエーハが汚染されてライフタイム値が小さくなっている場合には、気相成長装置の清浄度が低いと評価できる。逆に、ライフタイム値の減少が小さければ、気相成長装置に由来するモニタウエーハの汚染は少ないと評価でき、気相成長装置の清浄度は高いと評価できる。 Finally, the cleanliness of the vapor phase growth apparatus is evaluated from the lifetime value of the monitor wafer (FIG. 1C). When impurities, particularly metal, are taken into the epitaxial layer of the monitor wafer, the lifetime value becomes small. Therefore, if a monitor wafer is manufactured using the vapor phase growth apparatus to be evaluated and the monitor wafer is contaminated and the lifetime value is small, it is evaluated that the cleanness of the vapor phase growth apparatus is low. it can. Conversely, if the lifetime value decrease is small, it can be evaluated that the contamination of the monitor wafer derived from the vapor phase growth apparatus is small, and the cleanliness of the vapor phase growth apparatus can be evaluated to be high.
図2に示すように、本発明で用いるモニタウエーハ4の様に、第1エピタキシャル層1及び第2エピタキシャル層2としてシリコンウエーハ3上にP型とN型のエピタキシャル層を層状に積み重ねた構造の場合、ウエーハライフタイム値は近似的には各層のライフタイム値の逆数結合で表される。
1/Tw=1/T1+1/T2
Tw: モニタウエーハ4のウエーハライフタイム値
T1: 第1エピタキシャル層1のライフタイム値
T2: 第2エピタキシャル層1のライフタイム値
As shown in FIG. 2, the
1 / Tw = 1 / T1 + 1 / T2
Tw: Wafer lifetime value of the
このため、図2のようにいくつかのエピタキシャル層が積み重なっている場合、最もライフタイム値の低いエピタキシャル層がウエーハライフタイム値に対し支配的になる。これにより、気相成長装置内の汚染不純物の種類によってモニタウエーハの導電型を使い分ける必要なく、高感度で正確に清浄度を評価することが可能となる。 For this reason, when several epitaxial layers are piled up like FIG. 2, the epitaxial layer with the lowest lifetime value becomes dominant with respect to a wafer lifetime value. This makes it possible to accurately evaluate the cleanliness with high sensitivity without having to use the conductivity type of the monitor wafer depending on the type of contaminating impurities in the vapor phase growth apparatus.
例えば、本発明では、CuのようにP型エピタキシャル層ではライフタイム値を下げにくい元素の汚染があった場合でも、N型エピタキシャル層でライフタイム値が下がるため、トータルとしてのウエーハライフタイム値はN型エピタキシャル層のライフタイム値によって引き下げられ、感度良く汚染を検出することができる。逆にFe汚染の場合も、N型エピタキシャル層ではそれほどライフタイム値を下げにくいが、P型エピタキシャル層で大きくライフタイム値を下げるため、この場合も高感度に汚染を検出できることとなる。このようにして、CuのようにP型エピタキシャル層ではライフタイム値を下げにくい元素の汚染度とFeのようにN型エピタキシャル層ではライフタイム値を下げにくい元素の汚染度を同時に評価することができる。 For example, in the present invention, even when there is contamination of an element that is difficult to lower the lifetime value in the P-type epitaxial layer, such as Cu, the lifetime value decreases in the N-type epitaxial layer, so the total wafer lifetime value is It is lowered by the lifetime value of the N-type epitaxial layer, and contamination can be detected with high sensitivity. On the other hand, in the case of Fe contamination, the lifetime value is hardly lowered in the N-type epitaxial layer, but the lifetime value is greatly lowered in the P-type epitaxial layer. In this case as well, the contamination can be detected with high sensitivity. In this way, it is possible to simultaneously evaluate the contamination degree of an element whose lifetime value is difficult to be lowered in a P-type epitaxial layer such as Cu and the contamination degree of an element such as Fe which is difficult to reduce a lifetime value in an N-type epitaxial layer. it can.
さらに、本発明の気相成長装置の清浄度評価方法により評価した気相成長装置を用いてエピタキシャルウエーハを製造することが好ましい。このようにP型エピタキシャル層とN型エピタキシャル層の二層を堆積したモニタウエーハを用いると、従来のP型又はN型の単一エピタキシャル層のモニタウエーハでは見落としていた不純物種の汚染を見逃すことなく高感度に不純物を検出することができるようになる。そのため、本発明の清浄度評価方法で汚染がないことを評価した気相成長装置でエピタキシャルウエーハを製造すれば、汚染の少ない高品位なエピタキシャルウエーハを高歩留まりで製造することが可能となる。 Furthermore, it is preferable to manufacture an epitaxial wafer using the vapor phase growth apparatus evaluated by the method for evaluating the cleanliness of the vapor phase growth apparatus of the present invention. By using a monitor wafer in which two layers of a P-type epitaxial layer and an N-type epitaxial layer are deposited in this way, the contamination of impurity species that has been overlooked in the conventional monitor wafer of a single P-type or N-type epitaxial layer is overlooked. Impurities can be detected with high sensitivity. Therefore, if an epitaxial wafer is manufactured by a vapor phase growth apparatus that has been evaluated for contamination by the cleanliness evaluation method of the present invention, a high-quality epitaxial wafer with little contamination can be manufactured with a high yield.
以下、本発明の実施例および比較例を挙げてさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。 EXAMPLES Hereinafter, although the Example and comparative example of this invention are given and demonstrated further in detail, this invention is not limited to the following Example.
〔実施例〕
直径200mm、基板抵抗率10ΩcmのP型シリコンウエーハを準備した。次に、予めCuで汚染した気相成長装置、予めFeで汚染した気相成長装置、汚染していない気相成長装置を準備した。これらの気相成長装置を使って、このシリコンウエーハの上に、10ΩcmのP型エピタキシャル層を10μm堆積し、さらに引き続き10ΩcmのN型エピタキシャル層を10μm堆積させたモニタウエーハをそれぞれ作製した。
〔Example〕
A P-type silicon wafer having a diameter of 200 mm and a substrate resistivity of 10 Ωcm was prepared. Next, a vapor phase growth apparatus previously contaminated with Cu, a vapor phase growth apparatus previously contaminated with Fe, and an uncontaminated vapor phase growth apparatus were prepared. Using these vapor phase growth apparatuses, monitor wafers were prepared in which a 10 Ωcm P-type epitaxial layer was deposited on this silicon wafer by 10 μm and a 10 Ωcm N-type epitaxial layer was further deposited by 10 μm.
このようにして作製した各モニタウエーハについて、ケミカルパッシベーションによる表面処理を行い、μPCDウエーハライフタイム測定装置を使ってウエーハライフタイム値を測定した。図3に、実施例の各モニタウエーハのウエーハライフタイム値の面内平均値を示す。図3から明らかなように、予めCu汚染とFe汚染をした気相成長装置で作製したモニタウエーハのウエーハライフタイム値は、汚染がなかった気相成長装置で作製したモニタウエーハのウエーハライフタイム値に比べ大きく下がっており、CuとFeの汚染の有無を高感度に検出することができた。 Each monitor wafer thus produced was subjected to a surface treatment by chemical passivation, and a wafer lifetime value was measured using a μPCD wafer lifetime measuring device. FIG. 3 shows an in-plane average value of the wafer lifetime value of each monitor wafer of the example. As is apparent from FIG. 3, the wafer lifetime value of the monitor wafer manufactured with the vapor phase growth apparatus previously contaminated with Cu and Fe is the wafer lifetime value of the monitor wafer manufactured with the vapor phase growth apparatus without contamination. The presence or absence of contamination of Cu and Fe could be detected with high sensitivity.
〔比較例1〕
次に、直径200mm、基板抵抗率10ΩcmのP型シリコンウエーハを準備した。実施例と同じく、予めCuで汚染した気相成長装置、予めFeで汚染した気相成長装置、汚染していない気相成長装置を用いて、このP型シリコンウエーハの上に10ΩcmのP型エピタキシャル層を10μm堆積してモニタウエーハをそれぞれ作製した。
[Comparative Example 1]
Next, a P-type silicon wafer having a diameter of 200 mm and a substrate resistivity of 10 Ωcm was prepared. As in the example, a 10 Ωcm P-type epitaxial layer was formed on this P-type silicon wafer by using a vapor phase growth apparatus previously contaminated with Cu, a vapor phase growth apparatus previously contaminated with Fe, and an uncontaminated vapor phase growth apparatus. A monitor wafer was prepared by depositing 10 μm of layers.
このようにして作製した各モニタウエーハについて、ケミカルパッシベーションによる表面処理を行い、μPCDウエーハライフタイム測定装置を使ってウエーハライフタイム値を測定した。図3に、比較例1における各モニタウエーハのウエーハライフタイム値の面内平均値を示す。 Each monitor wafer thus produced was subjected to a surface treatment by chemical passivation, and a wafer lifetime value was measured using a μPCD wafer lifetime measuring device. FIG. 3 shows in-plane average values of the wafer lifetime values of the monitor wafers in Comparative Example 1.
P型シリコンウエーハの上にP型エピタキシャル層を堆積した比較例1のP/Pモニタウエーハの場合、Fe汚染した気相成長装置で作製したモニタウエーハのウエーハライフタイム値は汚染がなかった気相成長装置に比べ大きく値が下がっているが、Cu汚染した気相成長装置で作製した場合には汚染がなかった気相成長装置のものと値はほとんど変わっていない。 In the case of the P / P monitor wafer of Comparative Example 1 in which the P-type epitaxial layer was deposited on the P-type silicon wafer, the wafer lifetime value of the monitor wafer produced by the Fe-contaminated vapor phase growth apparatus was the vapor phase without contamination. Although the value is greatly lower than that of the growth apparatus, the value is almost the same as that of the vapor growth apparatus that was not contaminated when manufactured by the vapor growth apparatus contaminated with Cu.
〔比較例2〕
直径200mm、基板抵抗率10ΩcmのN型シリコンウエーハを準備した。実施例と同じく、予めCuで汚染した気相成長装置、予めFeで汚染した気相成長装置、汚染していない気相成長装置を用いて、このN型シリコンウエーハの上に10ΩcmのN型エピタキシャル層を10μm堆積してモニタウエーハをそれぞれ作製した。
[Comparative Example 2]
An N-type silicon wafer having a diameter of 200 mm and a substrate resistivity of 10 Ωcm was prepared. As in the embodiment, an N-type epitaxial layer of 10 Ωcm is formed on this N-type silicon wafer using a vapor phase growth apparatus previously contaminated with Cu, a vapor phase growth apparatus previously contaminated with Fe, and an uncontaminated vapor phase growth apparatus. A monitor wafer was prepared by depositing 10 μm of layers.
このようにして作製した各モニタウエーハについて、ケミカルパッシベーションによる表面処理を行い、μPCDウエーハライフタイム測定装置を使ってウエーハライフタイム値を測定した。図3に、比較例2における各モニタウエーハのウエーハライフタイム値の面内平均値を示す。 Each monitor wafer thus produced was subjected to a surface treatment by chemical passivation, and a wafer lifetime value was measured using a μPCD wafer lifetime measuring device. FIG. 3 shows an in-plane average value of the wafer lifetime value of each monitor wafer in Comparative Example 2.
N型シリコンウエーハの上にN型エピタキシャル層を堆積した比較例2のN/Nモニタウエーハの場合、Cu汚染した気相成長装置で作製したモニタウエーハのウエーハライフタイム値は汚染がなかった気相成長装置に比べ大きく値が下がっているが、Fe汚染した気相成長装置で作製した場合には汚染がなかった気相成長装置のものと値はほとんど変わっていない。 In the case of the N / N monitor wafer of Comparative Example 2 in which the N-type epitaxial layer is deposited on the N-type silicon wafer, the wafer lifetime value of the monitor wafer produced by the vapor-phase growth apparatus contaminated with Cu is the vapor phase in which there is no contamination. Although the value is significantly lower than that of the growth apparatus, the value is almost the same as that of the vapor growth apparatus that was not contaminated when manufactured with a vapor-contaminated vapor growth apparatus.
このように、比較例1〜2のようにN/NモニタウエーハやP/PモニタウエーハのときはCu、Feいずれか片方の汚染の検出ができるが、もう片方の不純物の検出能力は低く気相成長装置の清浄度評価に問題があることが確認された。これに比べ、実施例のようにN/P/PモニタウエーハのときはCu、Feの両方を高感度に検出でき、気相成長装置内の汚染不純物の種類によってモニタウエーハの導電型を使い分ける必要なく、高感度で正確に清浄度を評価することができることが示された。また、実施例では一枚のモニタウエーハでCu、Feの両方を高感度に検出できるため評価コストを削減できることも示された。 As described above, in the case of an N / N monitor wafer or a P / P monitor wafer as in Comparative Examples 1 and 2, contamination of either Cu or Fe can be detected, but the detection capability of the other impurity is low. It was confirmed that there was a problem in the cleanliness evaluation of the phase growth apparatus. Compared to this, in the case of an N / P / P monitor wafer as in the embodiment, both Cu and Fe can be detected with high sensitivity, and it is necessary to use the conductivity type of the monitor wafer depending on the type of contaminating impurities in the vapor phase growth apparatus. It was shown that the cleanliness can be accurately evaluated with high sensitivity. In addition, in the example, it was also shown that the evaluation cost can be reduced because both Cu and Fe can be detected with high sensitivity by one monitor wafer.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
1…第1エピタキシャル層、 2…第2エピタキシャル層、 3…シリコンウエーハ、 4…モニタウエーハ
DESCRIPTION OF
Claims (3)
前記気相成長装置を用いて、シリコンウエーハ上に導電型がP型のエピタキシャル層とN型のエピタキシャル層を順不同で連続して成長させたモニタウエーハを製造して、該モニタウエーハのライフタイム値を測定し、
前記モニタウエーハのライフタイム値から前記気相成長装置の清浄度を評価し、
前記気相成長装置の清浄度の評価において、Cuの汚染度とFeの汚染度を同時に評価することを特徴とする気相成長装置の清浄度評価方法。 A method for evaluating the cleanliness of a vapor phase growth apparatus,
Using the vapor phase growth apparatus, a monitor wafer in which a P type epitaxial layer and an N type epitaxial layer are continuously grown in random order on a silicon wafer is manufactured, and the lifetime value of the monitor wafer Measure and
Evaluating the cleanliness of the vapor phase growth apparatus from the lifetime value of the monitor wafer ,
In the evaluation of the cleanliness of the vapor phase growth apparatus, the cleanliness evaluation method of the vapor phase growth apparatus, wherein the contamination level of Cu and the contamination level of Fe are simultaneously evaluated .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011233743A JP5614394B2 (en) | 2011-10-25 | 2011-10-25 | Cleanliness evaluation method for vapor phase growth apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011233743A JP5614394B2 (en) | 2011-10-25 | 2011-10-25 | Cleanliness evaluation method for vapor phase growth apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013093406A JP2013093406A (en) | 2013-05-16 |
JP5614394B2 true JP5614394B2 (en) | 2014-10-29 |
Family
ID=48616322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011233743A Active JP5614394B2 (en) | 2011-10-25 | 2011-10-25 | Cleanliness evaluation method for vapor phase growth apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5614394B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2975815B2 (en) * | 1993-08-06 | 1999-11-10 | 株式会社東芝 | Apparatus and method for evaluating semiconductor light emitting device |
JPH09139408A (en) * | 1995-11-16 | 1997-05-27 | Sony Corp | Method of sorting semiconductor substrate, having epitaxial growth semiconductor layer and manufacture of semiconductor device |
JP5407212B2 (en) * | 2008-08-06 | 2014-02-05 | 株式会社Sumco | Heat treatment furnace evaluation method and semiconductor wafer manufacturing method |
JP5099024B2 (en) * | 2009-01-27 | 2012-12-12 | 信越半導体株式会社 | Epitaxial wafer manufacturing method and semiconductor device manufacturing method |
-
2011
- 2011-10-25 JP JP2011233743A patent/JP5614394B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013093406A (en) | 2013-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6300104B2 (en) | Method for measuring carbon concentration in silicon crystal, method for measuring carbon-related levels in silicon crystal | |
WO2018037831A1 (en) | Resistivity standard sample manufacturing method and epitaxial wafer resistivity measuring method | |
JP5024224B2 (en) | Silicon substrate evaluation method, contamination detection method, and epitaxial substrate manufacturing method | |
JP5439752B2 (en) | Contamination detection monitor wafer, contamination detection method, and epitaxial wafer manufacturing method | |
JP5018682B2 (en) | Silicon substrate evaluation method, contamination detection method, and epitaxial substrate manufacturing method | |
JP6061017B1 (en) | Method for evaluating contamination of semiconductor epitaxial wafer and method for evaluating contamination of epitaxial growth apparatus using the same | |
JP5434491B2 (en) | Semiconductor substrate evaluation method and semiconductor device manufacturing method | |
JP2010118487A (en) | Method of evaluating epitaxial wafer and method for manufacturing epitaxial wafer | |
JP5614394B2 (en) | Cleanliness evaluation method for vapor phase growth apparatus | |
JP5741467B2 (en) | Cleanliness evaluation method for vapor phase growth apparatus | |
JP5502528B2 (en) | Semiconductor wafer processing method and processed semiconductor wafer | |
JP5794212B2 (en) | Method for evaluating contamination of vapor phase growth apparatus and method for manufacturing silicon epitaxial wafer | |
JP2011021898A (en) | Standard sample for scanning probe microscope and carrier concentration measurement method | |
JP2013105914A (en) | Vapor deposition device cleanliness evaluation method | |
JP5077145B2 (en) | Method for evaluating silicon single crystal substrate and method for producing epitaxial substrate | |
WO2014192215A1 (en) | Semiconductor wafer evaluation method | |
JP6003447B2 (en) | Method for evaluating metal contamination of semiconductor substrate and method for manufacturing semiconductor substrate | |
JP7192757B2 (en) | Epitaxial silicon wafer, manufacturing method thereof, and X-ray detection sensor | |
JP6119680B2 (en) | Method for evaluating defect area of semiconductor substrate | |
JP5630426B2 (en) | Cleanliness evaluation method for vapor phase growth apparatus | |
JP5720557B2 (en) | Semiconductor substrate evaluation method and semiconductor substrate manufacturing method | |
JP5454298B2 (en) | Manufacturing method of semiconductor substrate | |
JP2014207369A (en) | Method of evaluating impurity in wafer, and inspection method of n-type silicon wafer | |
JP2020126985A (en) | SiC EPITAXIAL WAFER AND METHOD FOR MANUFACTURING THE SAME | |
JP7185879B2 (en) | Semiconductor sample evaluation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140812 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140825 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5614394 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |