JP5610513B2 - Dry ammonia decomposition treatment method, dry ammonia decomposition treatment apparatus and power generation equipment - Google Patents

Dry ammonia decomposition treatment method, dry ammonia decomposition treatment apparatus and power generation equipment Download PDF

Info

Publication number
JP5610513B2
JP5610513B2 JP2010039450A JP2010039450A JP5610513B2 JP 5610513 B2 JP5610513 B2 JP 5610513B2 JP 2010039450 A JP2010039450 A JP 2010039450A JP 2010039450 A JP2010039450 A JP 2010039450A JP 5610513 B2 JP5610513 B2 JP 5610513B2
Authority
JP
Japan
Prior art keywords
gas
ammonia
catalyst
oxygen
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010039450A
Other languages
Japanese (ja)
Other versions
JP2010285595A (en
Inventor
靖 小沢
靖 小沢
義久 栃原
義久 栃原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2010039450A priority Critical patent/JP5610513B2/en
Publication of JP2010285595A publication Critical patent/JP2010285595A/en
Application granted granted Critical
Publication of JP5610513B2 publication Critical patent/JP5610513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は乾式アンモニア分解処理方法及びアンモニア分解処理装置及び発電設備に関し、特に石炭ガス化ガス等、アンモニアを含み、水素や一酸化炭素に富む燃料ガス中の前記アンモニアを乾式で分解させる場合に適用して有用なものである。   The present invention relates to a dry ammonia decomposition treatment method, an ammonia decomposition treatment apparatus, and a power generation facility, and more particularly, to a case where the ammonia in a fuel gas containing ammonia such as coal gasification gas and rich in hydrogen and carbon monoxide is decomposed dry. It is useful.

埋蔵量の豊富な石炭を、COの放出を抑制しつつクリーンに利用する環境保全性に優れた技術として石炭ガス化複合発電(IGCC)が提案されている。かかる、石炭ガス化複合発電においては石炭ガス化炉で生成した石炭ガス化ガス中の硫黄分や、アンモニア分等の不純物を除去するガス精製を行っている。そして、かかる精製ガスを燃料ガスとしてガスタービンに供給してこれを駆動するとともに、その排熱により蒸気タービンを駆動して高効率な発電を可能にしている。 Coal gasification combined cycle power generation (IGCC) has been proposed as an environmentally friendly technology that uses abundant coal in a clean manner while suppressing CO 2 emission. In the combined coal gasification combined power generation, gas purification is performed to remove impurities such as sulfur and ammonia in the coal gasification gas generated in the coal gasification furnace. And while supplying this refined gas to a gas turbine as fuel gas and driving this, the steam turbine is driven with the exhaust heat, and highly efficient electric power generation is enabled.

ところで、この種の石炭ガス化複合発電におけるガス精製システムとしては湿式法が主として採用されてきた。ただ、湿式法は、技術的な完成度が高いものの、燃料ガスが低温に冷却されることから、顕熱損失や水蒸気の損失などを生じ、熱効率が低下する。   By the way, a wet method has been mainly employed as a gas purification system in this type of coal gasification combined power generation. However, although the wet process is technically complete, the fuel gas is cooled to a low temperature, which causes sensible heat loss, water vapor loss, and the like, resulting in reduced thermal efficiency.

そこで、さらに発電効率を向上させるべく乾式ガス精製システムの開発が検討されている。その一環として特許文献1に例示されるような乾式アンモニア分解処理方法の検討も進められている。これは、燃料ガス中のアンモニアの窒素と水への分解反応を選択的に進めるとともに、触媒表面で一酸化炭素等の炭素原子を含む化合物が炭素に分解される反応を抑制するように工夫したものである。   Therefore, development of a dry gas purification system is being studied in order to further improve power generation efficiency. As part of this, a dry ammonia decomposition method as exemplified in Patent Document 1 is also being studied. This was devised to selectively advance the decomposition reaction of ammonia in the fuel gas into nitrogen and water, and to suppress the reaction of compounds containing carbon atoms such as carbon monoxide to carbon on the catalyst surface. Is.

特開2006―56935号公報JP 2006-56935 A

上述の石炭ガス化ガス等、アンモニアとともに可燃ガス成分を含むガスの精製においては、アンモニアの分解反応を促進させると同時に、それ以外の燃料ガスの劣化の原因となる可燃ガス成分の反応を可及的に抑制することが肝要である。上記特許文献1に開示する場合でもガスのアンモニアの分解反応を促進させると同時に、それ以外の燃料ガスの可燃成分の反応の抑制は行っているが、より効果的に燃料ガスの燃料としての劣化を抑制しつつガス中のアンモニアの分解反応を良好に促進させることができる触媒の開発が待望されている。   In refining gases containing combustible gas components along with ammonia, such as the coal gasification gas mentioned above, it is possible to accelerate the decomposition reaction of ammonia and at the same time to react with other combustible gas components that cause deterioration of the fuel gas. It is important to suppress it. Even in the case disclosed in the above-mentioned Patent Document 1, the decomposition reaction of the ammonia in the gas is promoted and the reaction of the combustible component of the other fuel gas is suppressed, but the fuel gas is more effectively deteriorated as the fuel. Development of a catalyst capable of favorably promoting the decomposition reaction of ammonia in the gas while suppressing the above is awaited.

なお、上述の如くアンモニアの分解反応を促進させると同時に、それ以外の可燃ガス成分の反応を可及的に抑制することは、例えばバイオマス、重質油、都市ゴミ等の燃料をガス化炉で加熱分解して得る可燃性ガスを精製する場合も同様である。これらは、何れも原料中に窒素化合物が含まれているため、燃料をガス化する際にアンモニアが生成されて燃料中に混入するが、アンモニアが混入した燃料ガスをそのまま燃焼させると、アンモニア中の窒素と酸素が反応してフュエルNOxが発生するからである。   In addition, as described above, the ammonia decomposition reaction is promoted, and at the same time, the reaction of other combustible gas components is suppressed as much as possible. For example, fuel such as biomass, heavy oil, municipal waste, etc. is used in a gasifier. The same applies when purifying combustible gas obtained by thermal decomposition. Since all of these contain nitrogen compounds in the raw material, ammonia is generated and mixed into the fuel when the fuel is gasified. However, if the fuel gas mixed with ammonia is burned as it is, This is because fuel NOx is generated by the reaction of nitrogen and oxygen.

本発明は、上述の点に鑑み、燃料としての劣化を可及的に抑制しつつガス中のアンモニアの分解反応を良好に促進させることができる乾式アンモニア分解処理方法及びアンモニア分解処理装置を提供することを目的とする。   In view of the above, the present invention provides a dry ammonia decomposition treatment method and an ammonia decomposition treatment apparatus capable of favorably promoting the decomposition reaction of ammonia in gas while suppressing deterioration as a fuel as much as possible. For the purpose.

また、本発明は、上述の点に鑑み、燃料としての劣化を可及的に抑制しつつ燃料ガス中のアンモニアの分解反応を良好に促進させることができる乾式アンモニア分解処理装置を備えた発電設備を提供することを目的とする。   In addition, in view of the above-described points, the present invention provides a power generation facility including a dry ammonia decomposition treatment apparatus that can favorably promote the decomposition reaction of ammonia in fuel gas while suppressing deterioration as a fuel as much as possible. The purpose is to provide.

上記目的を達成するための請求項1に係る本発明の乾式アンモニア分解処理方法は、炭素原子を含む可燃化合物とともにアンモニアを含むガスに酸素を添加し、酸素を添加したガスを触媒に接触させることにより前記アンモニアを分解し、燃料ガスを精製する乾式アンモニア分解処理方法において、前記触媒として、SiO、Alが構成成分であり酸素10員環のゼオライトであるZSM−5を担体として遷移金属であるニッケルを担持させたものを用いることを特徴とする。 In order to achieve the above object, the dry ammonia decomposition treatment method of the present invention according to claim 1 comprises adding oxygen to a gas containing ammonia together with a combustible compound containing carbon atoms, and bringing the gas added with oxygen into contact with the catalyst. In the dry ammonia decomposition method for decomposing the ammonia and purifying the fuel gas, the catalyst is transitioned using ZSM-5, which is a zeolite having 10-membered ring and SiO 2 and Al 2 O 3 as constituents, as the catalyst. What carries | supports nickel which is a metal is used, It is characterized by the above-mentioned.

請求項1に係る本発明では、ガスを酸素とともにSiO、Alが構成成分であり酸素10員環のゼオライトであるZSM−5を担体として遷移金属であるニッケルを担持させた触媒に接触させることにより、ガス中のアンモニアを窒素と水に分解する反応を良好に促進させることができる。一方、それ以外のアンモニアの反応(一酸化窒素、二酸化窒素、亜酸化窒素、シアン化水素等の窒素化合物の生成)及びガスの反応(水素、一酸化炭素の酸化、炭素、炭化水素の生成等の反応)を可及的に抑制することができる。 With the present invention according to claim 1, and the ZSM-5 is a zeolite and 10-membered oxygen ring in the component SiO 2, Al 2 O 3 gas together with oxygen by supporting nickel is a transition metal as a supported catalyst By making it contact, the reaction which decomposes | disassembles ammonia in gas into nitrogen and water can be accelerated | stimulated favorably. On the other hand, other ammonia reactions (formation of nitrogen compounds such as nitrogen monoxide, nitrogen dioxide, nitrous oxide and hydrogen cyanide) and gas reactions (reactions such as oxidation of hydrogen and carbon monoxide, production of carbon and hydrocarbons) ) Can be suppressed as much as possible.

また、請求項に係る本発明の乾式アンモニア分解処理方法は、請求項1に記載の乾式アンモニア分解処理方法において、前記アンモニアを分解する際の反応温度は、200℃乃至450℃であることを特徴とする。また、請求項に係る本発明の乾式アンモニア分解処理方法は、請求項1又は請求項2に記載の乾式アンモニア分解処理方法において、前記酸素の添加量は、前記アンモニアに対しモル比で0.75mol/mol以上で且つ15mol/mol以下であることを特徴とする。 The dry ammonia decomposition treatment method of the present invention according to claim 2 is the dry ammonia decomposition treatment method according to claim 1 , wherein the reaction temperature when decomposing the ammonia is 200 ° C to 450 ° C. Features. Further, the dry ammonia decomposition treatment method of the present invention according to claim 3 is the dry ammonia decomposition treatment method according to claim 1 or 2 , wherein the oxygen is added in a molar ratio of 0.1 to the ammonia. It is 75 mol / mol or more and 15 mol / mol or less.

請求項に係る本発明では、反応温度を適正にすることができ、請求項に係る本発明では、酸素の添加量を適正にすることができる。 In the present invention according to claim 2 , the reaction temperature can be made appropriate, and in the present invention according to claim 3 , the amount of oxygen added can be made appropriate.

上記目的を達成するための請求項に係る本発明の乾式アンモニア分解処理装置は、炭素原子を含む可燃化合物とともにアンモニアを含有するガスに酸素を添加する酸素添加手段と、前記酸素添加手段により酸素が添加された前記ガスが接触することで前記ガスのアンモニアを分解する触媒とを備え、前記触媒は、SiO及びAlが構成成分であり酸素10員環のゼオライトであるZSM−5を担体として遷移金属であるニッケルを担持させた触媒であることを特徴とする。 In order to achieve the above object, a dry ammonia decomposition treatment apparatus according to claim 4 of the present invention includes an oxygen addition means for adding oxygen to a gas containing ammonia together with a combustible compound containing carbon atoms, and an oxygen addition means by the oxygen addition means. And a catalyst for decomposing ammonia in the gas by contact with the gas, wherein the catalyst is ZSM-5, wherein SiO 2 and Al 2 O 3 are constituents and a 10-membered oxygen zeolite It is a catalyst which supported nickel which is a transition metal by using as a carrier.

請求項に係る本発明では、ガスを酸素とともにSiO、Alが構成成分であり酸素10員環のゼオライトであるZSM−5を担体として遷移金属であるニッケルを担持させた触媒に接触させることにより、ガス中のアンモニアを窒素と水に分解する反応を良好に促進させることができる。一方、それ以外のアンモニアの反応(一酸化窒素、二酸化窒素、亜酸化窒素、シアン化水素等の窒素化合物の生成)及びガスの反応(水素、一酸化炭素の酸化、炭素、炭化水素の生成等の反応)を可及的に抑制することができる。 With the present invention according to claim 4, and the ZSM-5 is a zeolite and 10-membered oxygen ring in the component SiO 2, Al 2 O 3 gas together with oxygen by supporting nickel is a transition metal as a supported catalyst By making it contact, the reaction which decomposes | disassembles ammonia in gas into nitrogen and water can be accelerated | stimulated favorably. On the other hand, other ammonia reactions (formation of nitrogen compounds such as nitrogen monoxide, nitrogen dioxide, nitrous oxide and hydrogen cyanide) and gas reactions (reactions such as oxidation of hydrogen and carbon monoxide, production of carbon and hydrocarbons) ) Can be suppressed as much as possible.

請求項に係る本発明では、アンモニアの選択酸化による分解反応を促進させると同時に、触媒の表面で一酸化炭素等が炭素に分解される反応等を抑制する状態に酸素を侵入させることができる細孔構造を適用し、ニッケルを担持させることができる。 In the present invention according to claim 4 , it is possible to promote the decomposition reaction by selective oxidation of ammonia, and at the same time, allow oxygen to enter into a state in which the reaction of carbon monoxide or the like being decomposed into carbon on the surface of the catalyst is suppressed. A pore structure can be applied to support nickel.

上記目的を達成するための請求項に係る本発明の発電設備は、ガスを生成するガス化炉と、前記ガス化炉で生成されたガスのアンモニアを乾式で分解する請求項4に記載の乾式アンモニア分解処理装置と、前記乾式アンモニア分解処理装置で精製された精製ガスを燃料として発電を行う発電手段とを備えたことを特徴とする。 In order to achieve the above object, a power generation facility according to a fifth aspect of the present invention provides a gasification furnace for generating gas, and ammonia in the gas generated in the gasification furnace in a dry manner . A dry ammonia decomposition apparatus and a power generation means for generating electricity using the purified gas purified by the dry ammonia decomposition apparatus as a fuel.

請求項に係る本発明では、ガス化ガス中のアンモニアを窒素と水に分解する反応が良好に促進され、それ以外のアンモニアの反応(一酸化窒素、二酸化窒素、亜酸化窒素、シアン化水素等の窒素化合物の生成)及びガスの反応(水素、一酸化炭素の酸化、炭素、炭化水素の生成等の反応)が可及的に抑制された精製ガスを得て、得られた精製ガスを燃料ガスとして発電に用いることができ、発電効率を向上させることができる。 In the present invention according to claim 5 , the reaction of decomposing ammonia in the gasification gas into nitrogen and water is favorably promoted, and other ammonia reactions (nitrogen monoxide, nitrogen dioxide, nitrous oxide, hydrogen cyanide, etc.) Nitrogen compound formation) and gas reaction (hydrogen, carbon monoxide oxidation, carbon, hydrocarbon production, etc.) are suppressed as much as possible, and the purified gas is used as fuel gas. Can be used for power generation, and power generation efficiency can be improved.

そして、請求項に係る本発明の発電設備は、請求項に記載の発電設備において、前記ガス化炉は、石炭が熱分解されて、炭素、水素等を含む可燃成分と共にアンモニアを含む石炭ガス化ガスが生成される石炭ガス化炉であることを特徴とする。 And the power generation equipment of the present invention according to claim 6 is the power generation equipment according to claim 5 , wherein the gasifier is a coal containing ammonia together with a combustible component containing carbon, hydrogen, etc., as the coal is thermally decomposed. It is a coal gasification furnace in which gasification gas is generated.

請求項に係る本発明では、石炭ガス化ガスを燃料ガスとして発電を行うことができる。 In the present invention according to claim 6 , power generation can be performed using coal gasification gas as fuel gas.

本発明によれば、ガスを酸素とともに触媒に接触させることにより、ガス中のアンモニアを窒素と水に分解する反応を良好に促進させることができる。一方、それ以外のアンモニアの反応(一酸化窒素、二酸化窒素、亜酸化窒素、シアン化水素等の窒素化合物の生成)及びガスの反応(水素、一酸化炭素の酸化、炭素、炭化水素の生成等の反応)を可及的に抑制することができる。   According to the present invention, the reaction of decomposing ammonia in the gas into nitrogen and water can be favorably promoted by bringing the gas into contact with the catalyst together with oxygen. On the other hand, other ammonia reactions (formation of nitrogen compounds such as nitrogen monoxide, nitrogen dioxide, nitrous oxide and hydrogen cyanide) and gas reactions (reactions such as oxidation of hydrogen and carbon monoxide, production of carbon and hydrocarbons) ) Can be suppressed as much as possible.

この結果、ガスの燃料としての劣化を可及的に抑制しつつガスが含有するアンモニアを良好に分解して高品質のガス精製を行うことができる。   As a result, it is possible to perform high-quality gas purification by satisfactorily decomposing ammonia contained in the gas while suppressing deterioration of the gas as fuel as much as possible.

本発明の実施の形態に係る石炭ガス化ガス発電設備を示すブロック線図である。It is a block diagram which shows the coal gasification gas power generation equipment which concerns on embodiment of this invention. 試料触媒の調整手順を示すフローチャートである。It is a flowchart which shows the adjustment procedure of a sample catalyst. 基礎実験における温度・燃料供給プログラムを示す説明図である。It is explanatory drawing which shows the temperature and fuel supply program in a basic experiment. 各試料触媒のアンモニア分解特性を示すグラフである。It is a graph which shows the ammonia decomposition characteristic of each sample catalyst. 各試料触媒のNOの生成特性を示すグラフである。Is a graph showing the production characteristics of the N 2 O of each sample catalyst. 各試料触媒のHCNの生成特性を示すグラフである。It is a graph which shows the production | generation characteristic of HCN of each sample catalyst. 各試料触媒のCO、COの反応・生成特性を示すグラフである。CO of each sample catalyst is a graph showing the reaction-product properties of CO 2. 各試料触媒のH、CHの反応・生成特性を示すグラフである。Is a graph showing the reaction-product properties of H 2, CH 4 of each sample catalyst.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本形態に係る乾式アンモニア分解処理方法は、炭素原子を含む可燃成分とともにアンモニアを含むガスを処理対象とするものであり、ガスに含まれるアンモニアを触媒に接触させて分解する。すなわち、触媒に接触させるガスに、触媒の上流で当該ガスを気相燃焼させ得ない量の酸素を添加し、触媒の表面に供給される酸素によって、ガス中のアンモニアの選択酸化による窒素と水への分解反応を促進させると同時に、触媒の表面で可燃成分である一酸化炭素等が炭素に分解される反応等を抑制する。   The dry ammonia decomposition method according to the present embodiment is intended to treat a gas containing ammonia together with a combustible component containing carbon atoms, and decomposes the ammonia contained in the gas by contacting it with a catalyst. That is, an amount of oxygen that cannot gas-phase-combust the gas upstream of the catalyst is added to the gas to be brought into contact with the catalyst, and nitrogen and water by selective oxidation of ammonia in the gas are added by oxygen supplied to the surface of the catalyst. At the same time, the decomposition reaction of carbon monoxide, which is a combustible component, is suppressed to carbon on the surface of the catalyst.

ここで、本形態における触媒としては、酸素10員環(10員環構造)のゼオライトを担体とするものが好適である。ここで、10員環とは酸素原子数10の員環構造をいう。 Here, as the catalyst in the present embodiment, a catalyst using an oxygen 10-membered ring (10-membered ring structure ) zeolite as a carrier is suitable. Here, the 10-membered ring means a membered ring structure having 10 oxygen atoms.

細孔径が小さい酸素8員環のゼオライトでは細孔内に分子の大きさが大きい酸素が進入しにくく、したがって細孔内でアンモニアとの選択酸化反応も起こりにくい。これに対し細孔径が大きい酸素10員環以上の構造のゼオライトは細孔内に酸素が容易に進入できるので細孔内でのアンモニアとの選択酸化反応が促進される。ところが、細孔径が大きいほど細孔内で炭素の成長及び含炭素化合物の重合がし易くなり、炭素析出が生じ易くなる。   In an 8-membered oxygen zeolite with a small pore diameter, oxygen having a large molecular size is unlikely to enter the pores, and therefore, selective oxidation reaction with ammonia does not easily occur in the pores. On the other hand, zeolite having a structure with a large pore diameter and having a 10-membered ring or more oxygen allows oxygen to easily enter the pores, so that the selective oxidation reaction with ammonia in the pores is promoted. However, the larger the pore diameter, the easier the growth of carbon and the polymerization of the carbon-containing compound in the pores, and the easier the carbon deposition occurs.

このため、アンモニアの選択酸化による分解反応を促進させると同時に、触媒の表面で一酸化炭素等が炭素に分解される反応等を抑制するには、細孔構造が10員環構造のゼオライトが最適である。10員環構造のゼオライトとしてはZSM−5ゼオライトを挙げることができる Therefore, at the same time to promote the decomposition reaction by selective oxidation of ammonia to suppress the reaction such as carbon monoxide on the surface of the catalyst is decomposed to carbon, the pore structure is 10-membered ring structure of the zeolite Is optimal. The zeolite 10-membered ring structure can be mentioned ZSM-5 zeolite and.

なお、シリカ/アルミナ比が大きいほどゼオライトの結晶安定性が向上し、高温・高水蒸気条件下でもゼオライトの構造が維持されるので触媒寿命が延伸される。触媒の活性物質としては遷移金属であるニッケルが好適である。 As the silica / alumina ratio is increased, the crystal stability of the zeolite is improved, and the structure of the zeolite is maintained even under high temperature and high steam conditions, so that the catalyst life is extended. As the active substance of the catalyst, nickel which is a transition metal is suitable.

すなわち、本形態における触媒は10員環構造のゼオライトを担体としてニッケルを担持させて形成しである。ここで、触媒の形状に特別な制限はない。粉末状、ペレット状、ハニカム形状等の何れであっても構わない。また、活性物質の担持形態にも特別な限定はない。 That is, the catalyst of the present embodiment is a zeolite bets 10-membered ring structure is formed by supporting nickel as a carrier. Here, there is no particular limitation on the shape of the catalyst. Any of a powder form, a pellet form, a honeycomb form and the like may be used. Also, there is no particular limitation on the active substance loading form.

すなわち、所定形状の担体の少なくとも表面にニッケル等の遷移金属を担持させても良いし、粉末状の担体に遷移金属を担持させ、そのまま、又は粒状に成形して使用しても良い。さらに、これをスラリー状にして型に流し込み、焼成してハニカム等の所定形状に成形しても良い。   That is, a transition metal such as nickel may be supported on at least the surface of a carrier having a predetermined shape, or a transition metal may be supported on a powder carrier and used as it is or in a granular form. Further, it may be formed into a slurry shape, poured into a mold, fired, and formed into a predetermined shape such as a honeycomb.

炭素原子を含む可燃成分とともにアンモニアを含むガスとしては、例えば石炭ガス化炉で生成される石炭ガス化ガスが好適である。ちなみに、石炭ガス化炉で生成される石炭ガス化ガスは、一酸化炭素及び水素を可燃分の主成分として含み、その他メタンやアンモニア等を含むガスである。   As a gas containing ammonia together with a combustible component containing carbon atoms, for example, a coal gasification gas generated in a coal gasification furnace is suitable. Incidentally, the coal gasification gas generated in the coal gasification furnace is a gas containing carbon monoxide and hydrogen as main components of combustibles and other gases such as methane and ammonia.

また、選択酸化を促進すると同時に可燃成分が分解される反応を抑制するための酸素の添加量は、アンモニアに対しモル比で0.75mol/mol以上で且つ15mol/mol以下であることが望ましいが、気相燃焼を回避するためには限界酸素濃度以下の濃度にする必要がある。ちなみに、アンモニアが1000ppm含まれるガス(石炭ガス化ガス)の場合、アンモニアに対するモル比が15mol/molの酸素濃度は1.5vol%である。   Further, it is desirable that the amount of oxygen added for promoting selective oxidation and at the same time suppressing the reaction in which the combustible components are decomposed is 0.75 mol / mol or more and 15 mol / mol or less in terms of a molar ratio with respect to ammonia. In order to avoid gas phase combustion, it is necessary to make the concentration below the critical oxygen concentration. Incidentally, in the case of a gas containing 1000 ppm of ammonia (coal gasification gas), the oxygen concentration with a molar ratio to ammonia of 15 mol / mol is 1.5 vol%.

ここで、限界酸素濃度とは、所定の温度、圧力において可燃ガスが気相燃焼できなくなるような酸素濃度をいい、水素は1.5vol%、一酸化炭素は5.6vol%、メタンは12.1vol%、アンモニアはそれ以上である。かかる限界酸素濃度は反応場の温度や圧力により変化するので運転条件に即して調整することが肝要である。また、アンモニア分解の際の反応温度は200℃乃至450℃程度が好ましい。   Here, the critical oxygen concentration refers to an oxygen concentration at which a combustible gas cannot be vapor-phase combusted at a predetermined temperature and pressure. Hydrogen is 1.5 vol%, carbon monoxide is 5.6 vol%, and methane is 12. 1 vol%, ammonia is more than that. Since this critical oxygen concentration changes depending on the temperature and pressure of the reaction field, it is important to adjust it according to the operating conditions. The reaction temperature during ammonia decomposition is preferably about 200 ° C. to 450 ° C.

かかる本形態によれば、ガスが触媒に接触することにより、
4NH + 3O →2N+6H
で示されるアンモニアの選択酸化反応が促進され、同時にそれ以外のアンモニアの反応(一酸化窒素、二酸化窒素、亜酸化窒素、シアン化水素等の窒素化合物の生成)及びガスの反応(水素、一酸化炭素の酸化、炭素、炭化水素の生成等の反応)を効果的に抑制しつつガスの精製を行うことができる。
According to the present embodiment, when the gas contacts the catalyst,
4NH 3 + 3O 2 → 2N 2 + 6H 2 O
The selective oxidation reaction of ammonia is promoted, while other ammonia reactions (formation of nitrogen compounds such as nitric oxide, nitrogen dioxide, nitrous oxide, hydrogen cyanide) and gas reactions (hydrogen, carbon monoxide It is possible to purify the gas while effectively suppressing oxidation, reaction of carbon, production of hydrocarbons, and the like.

かかるアンモニア分解処理方法を実現するアンモニア分解処理装置を、これを適用した石炭ガス化ガス発電設備とともに図1に示す。同図に示すように、石炭ガス化炉1では酸素とともに供給された原料となる石炭を熱分解して炭素、水素等を含む可燃成分とともにアンモニアを含む石炭ガス化ガスを生成している。   FIG. 1 shows an ammonia decomposition treatment apparatus that realizes such an ammonia decomposition treatment method together with a coal gasification gas power generation facility to which the ammonia decomposition treatment apparatus is applied. As shown in the figure, in the coal gasification furnace 1, coal as a raw material supplied together with oxygen is pyrolyzed to generate coal gasification gas containing ammonia together with combustible components including carbon, hydrogen and the like.

ここで、酸素は、本形態においては空気分離装置2に取り入れた空気から分離して得られ、この酸素を、ガスタービンの圧縮機から供給される空気を圧縮機3でさらに圧縮して得られる空気と混合して、石炭ガス化炉1に供給している。ここで、石炭ガス化炉1は、例えば酸素富化空気吹き噴流床ガス化炉で構成している。また、石炭ガス化炉1内へは酸素を追加せずに空気のみを直接供給するようにしても良い。   Here, oxygen is obtained by separating from the air taken into the air separation device 2 in this embodiment, and this oxygen is obtained by further compressing the air supplied from the compressor of the gas turbine by the compressor 3. It is mixed with air and supplied to the coal gasifier 1. Here, the coal gasification furnace 1 is constituted by, for example, an oxygen-enriched air blown-bed gasification furnace. Further, only the air may be directly supplied into the coal gasification furnace 1 without adding oxygen.

石炭ガス化炉1で生成された石炭ガス化ガスは、硫黄分や、アンモニア分等の不純物、その他の塵埃を含むため次段のガス精製設備4でガス精製を行っている。本例におけるガス精製設備4は乾式集塵を行うポーラスフィルタ5、乾式脱硫処理を行う脱硫処理装置6及び乾式アンモニア分解処理を行うアンモニア分解処理装置7を上流側から下流側に向けて直列に接続して構成してある。   The coal gasification gas generated in the coal gasification furnace 1 contains sulfur, impurities such as ammonia, and other dusts, and is therefore subjected to gas purification by the gas purification equipment 4 in the next stage. The gas purification equipment 4 in this example is connected in series from a porous filter 5 that performs dry dust collection, a desulfurization treatment device 6 that performs dry desulfurization treatment, and an ammonia decomposition treatment device 7 that performs dry ammonia decomposition treatment from the upstream side toward the downstream side. Configured.

したがって、アンモニア分解処理装置7には集塵及び脱硫後のガスが供給される。このことにより、硫化水素によるアンモニア分解処理のための触媒の被毒を防止することができる。ここで、アンモニア分解処理装置7に導入されるガスは炭素原子を含む可燃化合物とともにアンモニアを含んでいる。   Therefore, the gas after dust collection and desulfurization is supplied to the ammonia decomposition treatment device 7. Thus, poisoning of the catalyst for the ammonia decomposition treatment with hydrogen sulfide can be prevented. Here, the gas introduced into the ammonia decomposition treatment apparatus 7 contains ammonia together with the combustible compound containing carbon atoms.

本形態におけるアンモニア分解処理装置7は、アンモニア分解のための触媒を充填した反応容器内に酸素とともに石炭ガス化ガスを導入することによりアンモニアを窒素と水に分解する。   The ammonia decomposition treatment apparatus 7 in this embodiment decomposes ammonia into nitrogen and water by introducing coal gasification gas together with oxygen into a reaction vessel filled with a catalyst for ammonia decomposition.

ここで、触媒としては10員環構造のゼオライトを担体として遷移金属であるニッケルを担持させて形成してある。石炭ガス化ガスとともに導入される酸素は空気分離装置2から供給される。 Here, as the catalyst Aru zeolites 10-membered ring structure formed by supporting the nickel is a transition metal as a carrier. The oxygen introduced together with the coal gasification gas is supplied from the air separation device 2.

このときの酸素の量は、アンモニアに対しモル比で0.75mol/mol以上で且つ15mol/mol以下であり、またアンモニア分解の際の反応温度は200℃乃至450℃程度とする。前述の如く、アンモニアの選択酸化反応を促進させ、同時にそれ以外のアンモニアの反応及び石炭ガス化ガスの反応を効果的に抑制するためである。   The amount of oxygen at this time is 0.75 mol / mol or more and 15 mol / mol or less in terms of a molar ratio with respect to ammonia, and the reaction temperature at the time of ammonia decomposition is about 200 ° C. to 450 ° C. As described above, the selective oxidation reaction of ammonia is promoted, and at the same time, other ammonia reactions and coal gasification gas reactions are effectively suppressed.

なお、本形態において、アンモニア分解のための酸素は空気分離装置2から供給される酸素を用いているが、酸素の代わりに空気を直接アンモニア分解処理装置7に供給し、空気中の酸素を利用するようにしても良い。このときの酸素の量も、前記と同様にアンモニアに対しモル比で0.75mol/mol以上で且つ15mol/mol以下が好ましい。   In this embodiment, oxygen supplied from the air separation device 2 is used as oxygen for ammonia decomposition, but instead of oxygen, air is supplied directly to the ammonia decomposition treatment device 7 and oxygen in the air is used. You may make it do. The amount of oxygen at this time is also preferably 0.75 mol / mol or more and 15 mol / mol or less in a molar ratio with respect to ammonia, as described above.

ガス精製設備4で精製された精製ガス(燃料ガス)はガスタービン設備8の燃焼器9に供給され、圧縮機10を介して供給される空気とともに燃焼して膨張タービン11を駆動する。ガスタービン設備8の排ガスは排熱回収ボイラ12で排熱を回収される。この結果、排熱回収ボイラ12では蒸気が作られ、この蒸気により蒸気タービン13が駆動される。   The purified gas (fuel gas) purified by the gas purification facility 4 is supplied to the combustor 9 of the gas turbine facility 8 and burns with the air supplied via the compressor 10 to drive the expansion turbine 11. Exhaust heat of the exhaust gas from the gas turbine facility 8 is recovered by the exhaust heat recovery boiler 12. As a result, steam is produced in the exhaust heat recovery boiler 12, and the steam turbine 13 is driven by the steam.

この結果、発電機14はガスタービン設備8と蒸気タービン13とを原動機として駆動され高効率の発電を行う。排熱回収ボイラ12で排熱を回収された排ガスは排煙脱硝装置15を経て煙突16から環境に排出される。   As a result, the generator 14 is driven using the gas turbine facility 8 and the steam turbine 13 as a prime mover, and performs highly efficient power generation. The exhaust gas whose exhaust heat has been recovered by the exhaust heat recovery boiler 12 is exhausted from the chimney 16 to the environment through the exhaust gas denitration device 15.

上述の如く乾式アンモニア分解処理のための触媒を、10員環構造のゼオライトを担体としてニッケルを担持させたものを使用したのは次の実験に基づく知見を基礎としたものである。かかる実験では、高活性な触媒の探索および炭素析出を抑制可能な反応条件の把握を目的に、担体成分の異なる種々の試作触媒の反応特性を検討した。 The catalyst for dry ammonia decomposition process as described above, the 10-membered ring structure of the zeolite bets were used those obtained by supporting nickel as a carrier is that the basis of the findings based on the following experiment. In this experiment, the reaction characteristics of various prototype catalysts with different support components were examined for the purpose of searching for a highly active catalyst and grasping reaction conditions capable of suppressing carbon deposition.

<実験方法>
1.触媒の調製と分析方法
触媒の活性成分として、ニッケル(Ni)を選定し、触媒を調製した。担体は、参考としてアルミナ(Al)、シリカ(SiO)、実施例としてシリカ・アルミナ(SiO・Al)、ZSM−5ゼオライト(ZSM−5)、ベータゼオライト(Beta)、Y型ゼオライト(Y)を用いた。
<Experiment method>
1. Catalyst Preparation and Analysis Method Nickel (Ni) was selected as the active component of the catalyst to prepare a catalyst. Supports are alumina (Al 2 O 3 ), silica (SiO 2 ) for reference, silica-alumina (SiO 2 .Al 2 O 3 ), ZSM-5 zeolite (ZSM-5), beta zeolite (Beta) as examples. Y-type zeolite (Y) was used.

触媒の調製手順を図2に示す。同図に示すように、硝酸ニッケル六水和物(和光純薬工業製特級)の水溶液に乾燥担体粉末を加え十分攪拌した。続いてホットプレート上で蒸発乾固を行い、溶媒を蒸発させた後粉末を採取した。得られた粉末を電気炉に入れ、シリカゲルによる乾燥空気気流中5℃/minで昇温、500℃で5時間焼成し、自然放冷した。得られた触媒をプレス成形後破砕しJIS篩で1〜2mmメッシュに整粒した。   The catalyst preparation procedure is shown in FIG. As shown in the figure, the dry carrier powder was added to an aqueous solution of nickel nitrate hexahydrate (special grade manufactured by Wako Pure Chemical Industries) and stirred sufficiently. Subsequently, evaporation to dryness was performed on a hot plate, and after evaporating the solvent, a powder was collected. The obtained powder was put into an electric furnace, heated in a dry air stream of silica gel at 5 ° C./min, fired at 500 ° C. for 5 hours, and allowed to cool naturally. The obtained catalyst was crushed after press molding and sized with a JIS sieve to 1 to 2 mm mesh.

このようにして形成した試作触媒の一覧を表1に示す。   Table 1 shows a list of the prototype catalysts thus formed.

Figure 0005610513
Figure 0005610513

なお、ニッケルの形態は、担持量が少ないためにX線解析(XRD)では同定できなかったが、金属ニッケル、酸化ニッケル(NiO)、担体と一部化合したニッケル等の形態で担持されているものと推測される。   The form of nickel could not be identified by X-ray analysis (XRD) due to the small amount of support, but it was supported in the form of metallic nickel, nickel oxide (NiO), nickel partially combined with the carrier, etc. Presumed to be.

アンモニア分解反応後の触媒の炭素析出量を、CHN分析計によって求めた。具体的には、約2mgの試料を錫セルに充填し、酸素による975℃の燃焼で生成する二酸化炭素をTCDで定量することにより測定し、2回の測定値を平均した。   The amount of carbon deposited on the catalyst after the ammonia decomposition reaction was determined by a CHN analyzer. Specifically, about 2 mg of a sample was filled in a tin cell, and carbon dioxide produced by combustion at 975 ° C. with oxygen was measured by TCD, and the two measurements were averaged.

2.アンモニア分解実験方法
ボンベから窒素(N)、水素(H)、一酸化炭素(CO)、二酸化炭素(CO)、酸素(O)、2%NH/Nを混合器に供給し、定量ポンプを用いて蒸留水をスプレーノズルから混合器に噴射した。混合されたガスを反応管に供給し、反応ガスを分析した。配管および混合器はステンレス製で、混合器は石英管を内蔵し、石英管をシール剤で固定し、ガラス球を内部に充填する構造である。反応管は耐熱合金製外管と石英製内管の二重管構造で、内管をシール剤で固定する構造である。また、中心軸に熱電対挿入用の耐熱合金製シース管を装着し、触媒層の軸方向温度分布をK型熱電対で3点測定した。石英管の内径は16mm、シース管の外径は3.2mmで、石英製目皿の上に石英ウールを敷き、温度が最も高くなる位置に触媒を充填した。なお、目皿より下流のシース管外周は石英管で覆った。サンプルチューブはテフロン(登録商標)を用いた。配管、サンプルチューブおよび混合器は140℃に加熱し、反応管はマッフル炉で加熱した。ガス流量は質量流量調節計を用いて測定した。蒸留水の流量は、容器中の蒸留水の単位時間当たりの重量減少を測定することにより求めた。
2. Ammonia decomposition experiment method Supply nitrogen (N 2 ), hydrogen (H 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ), oxygen (O 2 ), and 2% NH 3 / N 2 from a cylinder to the mixer. Then, distilled water was sprayed from the spray nozzle to the mixer using a metering pump. The mixed gas was supplied to the reaction tube, and the reaction gas was analyzed. The pipe and the mixer are made of stainless steel. The mixer has a built-in quartz tube, the quartz tube is fixed with a sealant, and a glass bulb is filled inside. The reaction tube has a double tube structure of a heat resistant alloy outer tube and a quartz inner tube, and the inner tube is fixed with a sealant. In addition, a heat-resistant alloy sheath tube for inserting a thermocouple was attached to the central axis, and the axial temperature distribution of the catalyst layer was measured at three points with a K-type thermocouple. The quartz tube had an inner diameter of 16 mm, and the sheath tube had an outer diameter of 3.2 mm. Quartz wool was spread on a quartz plate, and the catalyst was filled at the highest temperature. The outer periphery of the sheath tube downstream from the eye plate was covered with a quartz tube. Teflon (registered trademark) was used as the sample tube. The piping, sample tube and mixer were heated to 140 ° C., and the reaction tube was heated in a muffle furnace. The gas flow rate was measured using a mass flow controller. The flow rate of distilled water was determined by measuring the weight loss per unit time of distilled water in the container.

ガス中のアンモニア(NH)、シアン化水素(HCN)、一酸化窒素(NO)、二酸化窒素(NO)及び一酸化二窒素(NO)の濃度は、フーリエ変換赤外分光光度計を用い、ガスセルを53℃に保持して測定した。水素(H)、メタン(CH)〜ブタン(C10)、一酸化炭素(CO)、二酸化炭素(CO)、窒素(N)及び酸素(O)の濃度は、塩化カルシウムを用いて室温で除湿後、マイクロガスクロマトグラフィで測定した。
基準とした実験条件を表2に示す。
The concentrations of ammonia (NH 3 ), hydrogen cyanide (HCN), nitric oxide (NO), nitrogen dioxide (NO 2 ) and dinitrogen monoxide (N 2 O) in the gas were measured using a Fourier transform infrared spectrophotometer. The measurement was carried out with the gas cell held at 53 ° C. The concentrations of hydrogen (H 2 ), methane (CH 4 ) to butane (C 4 H 10 ), carbon monoxide (CO), carbon dioxide (CO 2 ), nitrogen (N 2 ) and oxygen (O 2 ) After dehumidifying with calcium at room temperature, it was measured by micro gas chromatography.
Table 2 shows the standard experimental conditions.

Figure 0005610513
Figure 0005610513

ガスの組成は、乾式給炭酸素富化空気吹き噴流床ガス化炉を用いた石炭ガス化複合発電プラントの脱硫装置出口のガス組成を模擬することとし、ガスに酸素を酸素/燃料比(O/Fuel)で0.008mol/mol(NHに対しモル比で約8mol/mol)添加した。実験は、空間速度(S.V.)が20000h−1、圧力が0.9MPaの条件で行った。 The composition of the gas is to simulate the gas composition at the outlet of the desulfurization unit of a coal gasification combined power plant using a dry feed carbon dioxide-enriched air-blown entrained bed gasification furnace. 2 / Fuel) was added at 0.008 mol / mol (approximately 8 mol / mol in terms of molar ratio to NH 3 ). The experiment was performed under the conditions of a space velocity (SV) of 20000 h −1 and a pressure of 0.9 MPa.

本実験の温度・燃料供給プログラムを図3に示す。同図に示すように、窒素(N)気流中で触媒層を150℃に昇温して温度が安定した後に燃料を供給し、ガス組成の分析値が安定するまで保持した。 The temperature / fuel supply program of this experiment is shown in FIG. As shown in the figure, the temperature of the catalyst layer was raised to 150 ° C. in a nitrogen (N 2 ) stream and the temperature was stabilized, and then the fuel was supplied and held until the analytical value of the gas composition was stabilized.

次に、触媒層を所定の温度に昇温後20分間一定温度に保持し、データを取得する操作を50℃毎に600℃まで繰り返した。測定終了後入口ガス濃度を測定し、窒素(N)気流中で反応管を自然放冷した。アンモニア(NH)の窒素(N)への転換率は、分解したアンモニア(NH)から、生成したシアン化水素(HCN)、一酸化窒素(NO)、二酸化窒素(NO)及び一酸化二窒素(NO)を差し引いた濃度として次式(1)を用いて計算した。また、アンモニア(NH)の分解に伴うシアン化水素(HCN)、一酸化窒素(NO)、二酸化窒素(NO)及び一酸化二窒素(NO)の生成率は次式(2)を用いて計算した。 Next, the temperature of the catalyst layer was raised to a predetermined temperature and kept at a constant temperature for 20 minutes, and the operation of acquiring data was repeated up to 600 ° C. every 50 ° C. After the measurement, the inlet gas concentration was measured, and the reaction tube was naturally cooled in a nitrogen (N 2 ) stream. The conversion rate of ammonia (NH 3 ) to nitrogen (N 2 ) is determined from the decomposed ammonia (NH 3 ), hydrogen cyanide (HCN), nitrogen monoxide (NO), nitrogen dioxide (NO 2 ), and dioxide monoxide. The concentration obtained by subtracting nitrogen (N 2 O) was calculated using the following formula (1). The production rate of hydrogen cyanide (HCN), nitrogen monoxide (NO), nitrogen dioxide (NO 2 ), and dinitrogen monoxide (N 2 O) accompanying the decomposition of ammonia (NH 3 ) uses the following formula (2). Calculated.

CR(N)=100×(C(NHin)−C(ΣXN))/C(NHin)
・・・(1)
PR(Nx)=100×C(Nx)/C(NHin) ・・・(2)
CR(N);NHのNへの転換率[%]
PR(Nx);Nx生成率[%]
Nx;HCN、NO、NO又はN
C(NHin);入口NHモル濃度 [mol%]
C(ΣXN);出口全含窒素成分モル濃度 [mol%]
ΣXN=NH+HCN+NO+NO+N
C(Nx);出口Nxモル濃度[mol%]
CR (N 2 ) = 100 × (C (NH 3 in) −C (ΣXN)) / C (NH 3 in)
... (1)
PR (Nx) = 100 × C (Nx) / C (NH 3 in) (2)
CR (N 2 ); conversion rate of NH 3 to N 2 [%]
PR (Nx); Nx generation rate [%]
Nx; HCN, NO, NO 2 or N 2 O
C (NH 3 in); inlet NH 3 molar concentration [mol%]
C (ΣXN); outlet total nitrogen-containing component molar concentration [mol%]
ΣXN = NH 3 + HCN + NO + NO 2 + N 2 O
C (Nx); outlet Nx molarity [mol%]

なお、NxはNH以外に燃料中のNから生成する可能性もあり、特に、NHが分解せずにNxが生成する条件ではCR(N)が負になる。 Nx may be generated from N 2 in the fuel in addition to NH 3 , and CR (N 2 ) becomes negative particularly under the condition that Nx is generated without decomposition of NH 3 .

3.実験結果
各触媒のアンモニア分解特性を図4に示す。同図に示すように、NHのNへの転換率は、Ni/ZSN−5の場合300〜350℃で最高値の94%となり、次いでNi/Alが400℃で36%、Ni/Yが450℃で18%、Ni/Betaが300℃で17%、Ni/SiO・Alが450℃で13%となった。
3. Experimental Results FIG. 4 shows the ammonia decomposition characteristics of each catalyst. As shown in the figure, the conversion rate of NH 3 to N 2 is 94% at the maximum value at 300 to 350 ° C. in the case of Ni / ZSN-5, and then Ni / Al 2 O 3 is 36% at 400 ° C. Ni / Y was 18% at 450 ° C., Ni / Beta was 17% at 300 ° C., and Ni / SiO 2 · Al 2 O 3 was 13% at 450 ° C.

なお、Ni/SiOは500℃以上で触媒出口NH濃度が入口より35ppm以上高くなり、後述するNOなどの生成も加わって転換率の計算値が−12%以下となった。 Ni / SiO 2 had a catalyst outlet NH 3 concentration of 35 ppm or more higher than the inlet at 500 ° C. or higher, and the calculated value of the conversion rate was −12% or lower due to the addition of N 2 O and the like described later.

各触媒ともにNO及びNOはほとんど生成しなかったが、NO及びHCNが若干生成した。NOの生成特性を図5に示す。同図に示すように、450℃以下でNOはほとんど生成しなかったが、500℃以上で生成率が増加する傾向を示し、生成率はNi/SiO・Al<Ni/ZSM−5<Ni/Y< Ni/Al < Ni/SiO<Ni/Betaの順に高くなった。 Although NO and NO 2 was generated almost in both the catalyst, N 2 O and HCN were generated slightly. N 2 O production characteristics are shown in FIG. As shown in the figure, N 2 O was hardly produced at 450 ° C. or lower, but the production rate tended to increase at 500 ° C. or higher. The production rate was Ni / SiO 2 .Al 2 O 3 <Ni / ZSM-5 <becomes higher in the order of Ni / Y <Ni / Al 2 O 3 <Ni / SiO 2 <Ni / Beta.

また、HCNの生成特性を図6に示す。同図に示すように、各触媒のHCNの生成率は低く、温度上昇とともに生成率が緩やかに増加する傾向を示し、Ni/ZSM−5<Ni/Beta< Ni/Y<Ni/SiO<Ni/SiO・Al<Ni/Alの順に高くなった。 Further, the generation characteristics of HCN are shown in FIG. As shown in the figure, the HCN production rate of each catalyst is low, and the production rate tends to increase gradually as the temperature rises. Ni / ZSM-5 <Ni / Beta <Ni / Y <Ni / SiO 2 < Ni / SiO 2 · Al 2 O 3 < was higher in the order of Ni / Al 2 O 3.

CO、COの反応・生成特性を図7に、またH、CHの反応・生成特性を図8にそれぞれ示す。両図に示すように、450℃を超える温度で各濃度の変化が大きくなる触媒があり、その傾向は、Ni/SiO・Al<Ni/ZSM−5<Ni/Y<Ni/Al<Ni/Beta<Ni/SiOの順に高くなった。なお、エタン(C)、エチレン(C)、プロパン(C)、プロピレン(C)、ブタン(i,n−C10)は全く検出されなかった。 FIG. 7 shows the reaction / generation characteristics of CO and CO 2 , and FIG. 8 shows the reaction / generation characteristics of H 2 and CH 4 . As shown in both figures, there is a catalyst in which the change of each concentration becomes large at a temperature exceeding 450 ° C., and the tendency thereof is Ni / SiO 2 .Al 2 O 3 <Ni / ZSM-5 <Ni / Y <Ni / Al 2 O 3 <Ni / Beta < was higher in the order of Ni / SiO 2. Incidentally, ethane (C 2 H 6), ethylene (C 2 H 4), propane (C 3 H 8), propylene (C 3 H 6), butane (i, n-C 4 H 10) is not detected It was.

これらの結果から、本実験において主として下記の反応が進行したと推測される。   From these results, it is estimated that the following reaction proceeded mainly in this experiment.

4NH+3O→2N+6HO(選択酸化反応) ・・・(3)
2H+O→2HO ・・・(4)
2CO+O→2CO ・・・(5)
2CO+2H→CH+CO(メタネーション反応) ・・・(6)
2CO→2CO+C(ブドアール反応) ・・・(7)
2NH+2O→NO+3HO ・・・(8)
4NH 3 + 3O 2 → 2N 2 + 6H 2 O (selective oxidation reaction) (3)
2H 2 + O 2 → 2H 2 O (4)
2CO + O 2 → 2CO 2 (5)
2CO + 2H 2 → CH 4 + CO 2 (methanation reaction) (6)
2CO → 2CO 2 + C (Budard reaction) (7)
2NH 3 + 2O 2 → N 2 O + 3H 2 O (8)

参考としてアルミナ(Al)、シリカ(SiO)のNi担持触媒、及び、実施例としてシリカ・アルミナ(SiO・Al)、ZSM−5ゼオライト(ZSM−5)、ベータゼオライト(Beta)、Y型ゼオライト(Y)のNi担持触媒の性能により、反応(4)及び(5)は250℃以上で進行し、反応(3)との競争反応となる。250〜450℃の温度域で反応(3)(NHの選択酸化分解反応)が進行し、Oが消費されるが、それ以上の温度では反応(4)及び(5)が優位となり、反応(3)は停止する。450℃を超える温度では反応(4)、(5)に加え(6)〜(8)が進行し、CO及びH濃度の減少、CO濃度の上昇、触媒への炭素析出およびNO濃度の上昇を生じる。なお、Oの添加は450℃を超える温度においても反応(5)を優先的に進行させるため、Oが消失するまで反応(6)及び(7)、すなわち炭素析出及びCH生成を抑制すると思われる。 For reference, alumina (Al 2 O 3 ), silica (SiO 2 ) Ni-supported catalyst, and examples of silica-alumina (SiO 2 .Al 2 O 3 ), ZSM-5 zeolite (ZSM-5), beta zeolite (Beta) Due to the performance of the Ni-supported catalyst of Y-type zeolite (Y), the reactions (4) and (5) proceed at 250 ° C. or higher and become a competitive reaction with the reaction (3). Reaction (3) (selective oxidative decomposition reaction of NH 3 ) proceeds in the temperature range of 250 to 450 ° C., and O 2 is consumed. At temperatures higher than that, reactions (4) and (5) are dominant, Reaction (3) stops. At temperatures exceeding 450 ° C., reactions (6) to (8) proceed in addition to reactions (4) and (5), reducing CO and H 2 concentration, increasing CO 2 concentration, carbon deposition on the catalyst and N 2 O This causes an increase in concentration. In addition, since addition of O 2 preferentially proceeds reaction (5) even at a temperature exceeding 450 ° C., reactions (6) and (7), that is, carbon precipitation and CH 4 generation are suppressed until O 2 disappears. It seems to be.

4.まとめ
以上の結果、SiOとAlの両方を主な担体構成成分とするゼオライトのNi担持触媒、およびシリカ・アルミナのNi担持触媒(実施例としてSiO・Al、ZSM−5、Beta、Y型ゼオライトのNi担持触媒)、および参考としてAlのNi担持触媒が、250〜450℃でNHの選択接触酸化分解活性を示し、450℃以下で、実施例の触媒が燃料の消費、炭素析出、CH・NO・HCN生成などの副反応を抑制できると考えられ、特にNi/ZSM−5が高いNH分解活性及び副反応の抑制能力を有することが明らかとなった。
4). Summary As a result of the above, a zeolite-supported Ni catalyst comprising both SiO 2 and Al 2 O 3 as main support components, and a silica-alumina Ni-supported catalyst (for example, SiO 2 .Al 2 O 3 , ZSM- 5, Beta, Y-zeolite Ni-supported catalyst) and, as a reference, Al 2 O 3 Ni-supported catalyst showed selective catalytic oxidative decomposition activity of NH 3 at 250-450 ° C. It is considered that the catalyst can suppress side reactions such as fuel consumption, carbon deposition, and CH 4 · N 2 O · HCN generation, and in particular, Ni / ZSM-5 has high NH 3 decomposition activity and side reaction suppression capability. Became clear.

さらに詳言すると、石炭ガス化複合発電の乾式ガス精製技術として検討しているNHの選択接触酸化分解方式への適用を目指した場合、SiOとAlの両方を主な構成成分とするゼオライトの担体にNiを担持した触媒(実施例としてSiO・Al、ZSM−5、Beta、Y型ゼオライトのNi担持触媒)はNH選択酸化分解活性を有すること、450℃以下で反応させることによって炭素析出などの副反応を大きく抑制できること、特にNi/ZSM−5、Ni/Y及びNi/SiO・AlはNH選択酸化分解活性を有し、同時に広い温度範囲で炭素析出などの副反応を抑制できることが明らかとなった。その中でも、Ni/ZSM−5が顕著なNH選択酸化分解活性を有し、かつ広い温度範囲で炭素析出などの副反応を抑制できることが明らかとなった。 More specifically, when aiming at application to the selective catalytic oxidative decomposition method of NH 3 which is being studied as a dry gas purification technology for coal gasification combined power generation, both SiO 2 and Al 2 O 3 are the main constituents. The catalyst in which Ni is supported on the zeolite carrier (Ni-supported catalyst of SiO 2 .Al 2 O 3 , ZSM-5, Beta, Y-type zeolite as an example) has NH 3 selective oxidative decomposition activity, 450 ° C. Side reactions such as carbon precipitation can be greatly suppressed by reacting in the following, in particular, Ni / ZSM-5, Ni / Y and Ni / SiO 2 .Al 2 O 3 have NH 3 selective oxidative decomposition activity, and at the same time wide It became clear that side reactions such as carbon deposition can be suppressed in the temperature range. Among these, it has been clarified that Ni / ZSM-5 has a remarkable NH 3 selective oxidative decomposition activity and can suppress side reactions such as carbon deposition in a wide temperature range.

この結果、10員環構造のゼオライトであるZSM−5である担体に遷移金属であるニッケルを担持させた触媒を使用した場合には石炭ガス化ガス等の燃料ガスとしての劣化を可及的に抑制しつつ含有するアンモニアを良好に分解することができることが裏付けられた。 As a result, as much as possible the degradation of the fuel gas such as a coal gasification gas when using 10-membered ring structure zeolite in a ZSM-5 carriers in transition metal catalysts where the nickel is supported is that the It was confirmed that the ammonia contained can be decomposed satisfactorily while being suppressed.

なお、上記実施の形態では実施形態に係るアンモニア分解処理装置を石炭ガス化ガス発電設備に適用した場合を示したが、これに限定する必要は、勿論ない。要は、炭素原子を含む可燃化合物とともにアンモニアを含むガスの乾式アンモニア分解処理を伴う設備であれば特に制限はない。例えば、石炭ガス化炉の代わりにバイオマス、重質油、都市ゴミ等を燃料とするガス化炉を有する設備に適用でき、同様の効果を得ることができる。また、精製した後の精製ガス(燃料ガス)は、発電設備に限らず燃料合成設備にも供給でき、この場合も同様の効果を期待できる。   In addition, although the case where the ammonia decomposition processing apparatus which concerns on embodiment was applied to the coal gasification gas power generation equipment was shown in the said embodiment, of course, it is not necessary to limit to this. In short, there is no particular limitation as long as it is a facility that involves a dry ammonia decomposition treatment of a gas containing ammonia together with a combustible compound containing carbon atoms. For example, it can be applied to a facility having a gasification furnace using biomass, heavy oil, municipal waste or the like as fuel instead of a coal gasification furnace, and the same effect can be obtained. Further, the purified gas (fuel gas) after purification can be supplied not only to the power generation facility but also to the fuel synthesis facility, and in this case, the same effect can be expected.

本発明は、例えば石炭ガス化複合発電の際に得る燃料ガスの乾式精製を行う産業分野において有効に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used in an industrial field where dry purification of fuel gas obtained at the time of combined gasification combined power generation is performed, for example.

1 石炭ガス化炉
4 ガス精製設備
7 アンモニア分解処理装置
8 ガスタービン設備
12 排熱回収ボイラ
13 蒸気タービン
14 発電機
DESCRIPTION OF SYMBOLS 1 Coal gasifier 4 Gas refinery equipment 7 Ammonia decomposition processing apparatus 8 Gas turbine equipment 12 Waste heat recovery boiler 13 Steam turbine 14 Generator

Claims (6)

炭素原子を含む可燃化合物とともにアンモニアを含むガスに酸素を添加し、酸素を添加したガスを触媒に接触させることにより前記アンモニアを分解し、燃料ガスを精製する乾式アンモニア分解処理方法において、
前記触媒として、SiO、Alが構成成分であり酸素10員環のゼオライトであるZSM−5を担体として遷移金属であるニッケルを担持させたものを用いる
ことを特徴とする乾式アンモニア分解処理方法。
In a dry ammonia decomposition method for purifying a fuel gas by adding oxygen to a gas containing ammonia together with a combustible compound containing carbon atoms, decomposing the ammonia by contacting the oxygen-added gas with a catalyst,
As the catalyst, a dry ammonia decomposition method using a catalyst in which ZSM-5, which is a constituent component of SiO 2 and Al 2 O 3 and a 10-membered oxygen ring zeolite, is supported on a transition metal nickel. Processing method.
請求項1に記載の乾式アンモニア分解処理方法において、
前記アンモニアを分解する際の反応温度は、200℃乃至450℃である
ことを特徴とする乾式アンモニア分解処理方法。
The dry ammonia decomposition treatment method according to claim 1 ,
The dry ammonia decomposition method, wherein a reaction temperature when decomposing the ammonia is 200 ° C. to 450 ° C.
請求項1又は請求項2に記載の乾式アンモニア分解処理方法において、
前記酸素の添加量は、前記アンモニアに対しモル比で0.75mol/mol以上で且つ15mol/mol以下である
ことを特徴とする乾式アンモニア分解処理方法。
In the dry ammonia decomposition treatment method according to claim 1 or 2 ,
The amount of oxygen added is 0.75 mol / mol or more and 15 mol / mol or less in molar ratio with respect to the ammonia.
炭素原子を含む可燃化合物とともにアンモニアを含有するガスに酸素を添加する酸素添加手段と、
前記酸素添加手段により酸素が添加された前記ガスが接触することで前記ガスのアンモニアを分解する触媒とを備え、
前記触媒は、SiO及びAlが構成成分であり酸素10員環のゼオライトであるZSM−5を担体として遷移金属であるニッケルを担持させた触媒である
ことを特徴とする乾式アンモニア分解処理装置。
An oxygen addition means for adding oxygen to a gas containing ammonia together with a combustible compound containing carbon atoms;
A catalyst that decomposes ammonia in the gas by contacting the gas to which oxygen has been added by the oxygen addition means;
The catalyst is a catalyst that supports nickel , which is a transition metal , using ZSM-5, which is a zeolite having 10-membered ring oxygen and SiO 2 and Al 2 O 3 as constituents, as a carrier. Processing equipment.
ガスを生成するガス化炉と、
前記ガス化炉で生成されたガスのアンモニアを乾式で分解する請求項に記載の乾式アンモニア分解処理装置と、
前記乾式アンモニア分解処理装置で精製された精製ガスを燃料として発電を行う発電手段とを備えた
ことを特徴とする発電設備。
A gasifier for generating gas;
The dry ammonia decomposition apparatus according to claim 4 , wherein ammonia in the gas generated in the gasification furnace is decomposed dry.
And a power generation means for generating power using the purified gas purified by the dry ammonia decomposition apparatus as a fuel.
請求項5に記載の発電設備において、
前記ガス化炉は、
石炭が熱分解されて、炭素、水素等を含む可燃成分と共にアンモニアを含む石炭ガス化ガスが生成される石炭ガス化炉である
ことを特徴とする発電設備。
The power generation facility according to claim 5 ,
The gasifier is
A coal gasification furnace in which coal is pyrolyzed to produce coal gasification gas containing ammonia together with combustible components including carbon and hydrogen.
JP2010039450A 2009-05-12 2010-02-24 Dry ammonia decomposition treatment method, dry ammonia decomposition treatment apparatus and power generation equipment Active JP5610513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039450A JP5610513B2 (en) 2009-05-12 2010-02-24 Dry ammonia decomposition treatment method, dry ammonia decomposition treatment apparatus and power generation equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009115992 2009-05-12
JP2009115992 2009-05-12
JP2010039450A JP5610513B2 (en) 2009-05-12 2010-02-24 Dry ammonia decomposition treatment method, dry ammonia decomposition treatment apparatus and power generation equipment

Publications (2)

Publication Number Publication Date
JP2010285595A JP2010285595A (en) 2010-12-24
JP5610513B2 true JP5610513B2 (en) 2014-10-22

Family

ID=43540768

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010039449A Pending JP2010284640A (en) 2009-05-12 2010-02-24 Catalyst for decomposing ammonia
JP2010039450A Active JP5610513B2 (en) 2009-05-12 2010-02-24 Dry ammonia decomposition treatment method, dry ammonia decomposition treatment apparatus and power generation equipment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010039449A Pending JP2010284640A (en) 2009-05-12 2010-02-24 Catalyst for decomposing ammonia

Country Status (1)

Country Link
JP (2) JP2010284640A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284640A (en) * 2009-05-12 2010-12-24 Central Res Inst Of Electric Power Ind Catalyst for decomposing ammonia
US8101146B2 (en) * 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
JP5586809B2 (en) * 2012-04-06 2014-09-10 パナソニック株式会社 Hydrogen purification apparatus, hydrogen generation apparatus, and fuel cell system
ITUB20155975A1 (en) * 2015-11-27 2017-05-27 Alifax Srl PROCEDURE FOR DETECTION OF BACTERIAL ACTIVITY IN A BIOLOGICAL AND RELATIVE SAMPLE UNIT
JP7377694B2 (en) * 2019-12-16 2023-11-10 株式会社豊田中央研究所 Ammonia reforming type hydrogen supply device and ammonia reforming type hydrogen supply method using the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132465A (en) * 1977-04-26 1978-11-18 Kogyo Kaihatsu Kenkyusho Kk Method of removing nh3 from gas
JP2582139B2 (en) * 1988-10-14 1997-02-19 財団法人電力中央研究所 NOx reduction treatment method for coal gasified fuel
JP2566316B2 (en) * 1989-04-19 1996-12-25 三菱重工業株式会社 Method and apparatus for decomposing tar and ammonia in flammable gas
JPH07328440A (en) * 1994-06-14 1995-12-19 Ishikawajima Harima Heavy Ind Co Ltd Catalyst for decomposition of ammonia
JPH0871424A (en) * 1994-09-05 1996-03-19 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas
JP3229136B2 (en) * 1994-09-26 2001-11-12 三菱重工業株式会社 Ammonia decomposition method
JP3546908B2 (en) * 1996-02-06 2004-07-28 株式会社豊田中央研究所 Ammonia purification catalyst device
JPH10249165A (en) * 1997-03-07 1998-09-22 Masaru Ichikawa Treatment of ammonia-containing gas
JP3970093B2 (en) * 2002-05-17 2007-09-05 三菱重工業株式会社 Ammonia decomposition removal method
JPWO2005018807A1 (en) * 2003-08-26 2006-10-19 ズードケミー触媒株式会社 Ammonia decomposition catalyst and ammonia decomposition method using the catalyst
JP4511282B2 (en) * 2004-08-18 2010-07-28 財団法人電力中央研究所 Dry ammonia decomposition method
JP2006167493A (en) * 2004-12-10 2006-06-29 Sud-Chemie Catalysts Inc Tail gas deodorization method and tail gas deodorization catalyst system
EP1872852A1 (en) * 2005-03-30 2008-01-02 Sued-Chemie Catalysts Japan, Inc. Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
JP2010284640A (en) * 2009-05-12 2010-12-24 Central Res Inst Of Electric Power Ind Catalyst for decomposing ammonia

Also Published As

Publication number Publication date
JP2010284640A (en) 2010-12-24
JP2010285595A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
Li et al. A crucial role of O2− and O22− on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33
CN102427879B (en) Catalyst for reforming tar-containing gas, method for producing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar-containing gas, and method for regenerating catalyst for reforming tar
JP5494135B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP2007229548A (en) Reforming catalyst acted in biomass pyrolysis gasification process, its manufacturing method and modification process using the reforming catalyst, biomass pyrolytic gasifying device, and method for regenerating catalyst
JP5610513B2 (en) Dry ammonia decomposition treatment method, dry ammonia decomposition treatment apparatus and power generation equipment
AU2013200891B2 (en) Method of gas purification, coal gasification plant, and shift catalyst
JP5606064B2 (en) Method for reforming gas containing tar-like impurities
JP5032101B2 (en) Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst
US20140147362A1 (en) Shift Catalyst, Gas Purification Method and Equipment of Coal Gasifier Plant
JP5659536B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
BR112015014205B1 (en) process for the use of a co-product gas and use of carbon produced
JP5511169B2 (en) Method for reforming tar-containing gas
CZ2004426A3 (en) Use of synthesis gas produced by conversion for regeneration SCR type catalyst
JP2014506189A (en) Filtration structure coated with synthesis gas conversion catalyst and filtration method using the same
JP2017048087A (en) Method and apparatus for producing hydrogen from fossil fuel
Wang et al. Effective syngas cleanup and reforming using Ni
JP5659532B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Rao et al. An ammonia-free denitration method: Direct reduction of NOx over activated carbon promoted by Cu-K bimetals
JP2007237135A (en) Ceramic filter and system using this ceramic filter
JP5688748B2 (en) Dry gas refining equipment and coal gasification combined power generation equipment
Wang et al. Self-catalytic nickel hollow fiber membrane reactor for hydrogen production via toluene steam reforming
JP5720107B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5659533B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Waglöhner et al. Studies on the Effect of Physico‐Chemical Soot Properties and Feed Gas Composition on the Kinetics of Soot Oxidation on Fe2O3 Catalyst
RU2290363C1 (en) Hydrogen generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140828

R150 Certificate of patent or registration of utility model

Ref document number: 5610513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250