JP5032101B2 - Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst - Google Patents

Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst Download PDF

Info

Publication number
JP5032101B2
JP5032101B2 JP2006321902A JP2006321902A JP5032101B2 JP 5032101 B2 JP5032101 B2 JP 5032101B2 JP 2006321902 A JP2006321902 A JP 2006321902A JP 2006321902 A JP2006321902 A JP 2006321902A JP 5032101 B2 JP5032101 B2 JP 5032101B2
Authority
JP
Japan
Prior art keywords
catalyst
tar
gas
gasification
tar gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006321902A
Other languages
Japanese (ja)
Other versions
JP2008132458A (en
Inventor
公仁 鈴木
久継 北口
健一郎 藤本
吉浩 石田
賢 堀江
秀雄 西山
亮太 日高
康文 羽島
圭一 冨重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2006321902A priority Critical patent/JP5032101B2/en
Publication of JP2008132458A publication Critical patent/JP2008132458A/en
Application granted granted Critical
Publication of JP5032101B2 publication Critical patent/JP5032101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、炭素質原料を熱分解した際に発生するタールを、改質して水素、一酸化炭素、メタンを中心とするガスへ変換する触媒と、その触媒を用いたタールガス化方法、及びタールガス化により生成したタールガス化ガスの利用方法、並びにタールガス化用触媒が劣化した際の再生方法に関するものである。   The present invention relates to a catalyst for reforming tar generated when pyrolyzing a carbonaceous raw material into a gas mainly composed of hydrogen, carbon monoxide and methane, a tar gasification method using the catalyst, and The present invention relates to a method for using a tar gasification gas generated by tar gasification and a regeneration method when a tar gasification catalyst is deteriorated.

近年の地球温暖化問題により、二酸化炭素排出量削減の有効手段として炭素質原料の一つであるバイオマス利用が注目されており、バイオマスの高効率エネルギー転換に関する研究が各所で行われている。また昨今のエネルギー資源確保の観点から、過去精力的に行われてきた石炭の有効活用に関する研究も実用化に向けて見直されてきている。   Due to the global warming problem in recent years, the use of biomass, which is one of carbonaceous raw materials, has attracted attention as an effective means of reducing carbon dioxide emissions, and research on high-efficiency energy conversion of biomass has been conducted in various places. In addition, from the viewpoint of securing energy resources in recent years, research on effective utilization of coal, which has been vigorously performed in the past, has been reviewed for practical use.

例えば、特許文献1に記載されているように、廃棄物の処理方法と熱分解ガスの回収方法及び装置が提案されている。前記装置は、熱分解ガス中のタールをガス化するために、熱分解炉で発生した熱分解ガスの一部を部分燃焼し、1000℃以上の高温とする必要があった。そのため、得られるガスの発熱量は低く、ガスエネルギーの回収率も低くなる問題があった。更に、熱分解ガスを1000℃以上にするために改質炉の耐熱構造化、部分燃焼時の酸素富化によりガスカロリーを上げるために必要となる酸素発生装置が必要となるため、装置自体も高価となる。   For example, as described in Patent Document 1, a waste processing method and a pyrolysis gas recovery method and apparatus have been proposed. In order to gasify the tar in the pyrolysis gas, the apparatus needs to partially burn part of the pyrolysis gas generated in the pyrolysis furnace so as to have a high temperature of 1000 ° C. or higher. Therefore, there is a problem that the calorific value of the obtained gas is low and the gas energy recovery rate is also low. Furthermore, in order to increase the pyrolysis gas to 1000 ° C or higher, a heat-resistant structure of the reforming furnace and an oxygen generator required to increase gas calories due to oxygen enrichment during partial combustion are required. It becomes expensive.

そのため、部分燃焼をせずに500〜800℃の低温域でタールをガス化する手段として、触媒が注目され開発が進められてきた。例えば、非特許文献1に記載のドロマイトや、特許文献2に記載されているようにシリカをベースとしてその表面上に助触媒として酸化セリウム、触媒活性金属としてロジウムを担持させた触媒(Rh/CeO2/SiO2)が提案されている。また特許文献3にはライトナフサの水蒸気改質触媒としてルテニウムと酸化セリウムを担体に担持させた触媒(Ru/CeO2/Al2O3)が提案されている。さらに特許文献4には軽質石油留分のガス化触媒としてロジウムをアルミナ上に担持させた触媒が提案されている。しかし、貴金属であるロジウムは高価な為、特許文献4に示されているような5質量%も担持させた場合には触媒製造費自体も高価となる。またロジウムやルテニウムは貴金属の中でも特異的に触媒活性を発揮するが、ニッケルなどの遷移金属と比べて比較的低温からのタールのガス化活性が低いという問題があった。 Therefore, as a means for gasifying tar in a low temperature range of 500 to 800 ° C. without partial combustion, a catalyst has attracted attention and has been developed. For example, dolomite described in Non-Patent Document 1, or a catalyst in which cerium oxide is supported on the surface of silica as described in Patent Document 2, and rhodium is supported as a catalytically active metal (Rh / CeO). 2 / SiO 2) has been proposed. Patent Document 3 proposes a catalyst (Ru / CeO 2 / Al 2 O 3 ) in which ruthenium and cerium oxide are supported on a carrier as a steam reforming catalyst for light naphtha. Further, Patent Document 4 proposes a catalyst in which rhodium is supported on alumina as a gasification catalyst for a light petroleum fraction. However, since rhodium, which is a noble metal, is expensive, the catalyst manufacturing cost itself becomes expensive when 5 mass% as shown in Patent Document 4 is supported. Further, rhodium and ruthenium exhibit catalytic activity specifically among noble metals, but there is a problem that tar gasification activity from a relatively low temperature is low as compared with transition metals such as nickel.

一方、石炭乾留時に発生するタールをガス化する触媒として、非特許文献2に水蒸気改質用ニッケル系工業触媒も提案されているが、ガス化反応前に還元雰囲気下で十分還元する必要があることや、またガス化反応時に外部から空気や酸素などの酸化性ガスを導入すると触媒活性種のニッケルが酸化するために十分な活性が得られないという問題があった。   On the other hand, although a nickel-based industrial catalyst for steam reforming is proposed in Non-Patent Document 2 as a catalyst for gasifying tar generated during coal dry distillation, it is necessary to sufficiently reduce it in a reducing atmosphere before the gasification reaction. In addition, when an oxidizing gas such as air or oxygen is introduced from the outside during the gasification reaction, there is a problem that sufficient activity cannot be obtained because the catalytically active nickel is oxidized.

特開平11-290810号公報JP-A-11-290810 特開2003-246990号公報JP 2003-246990 特開昭56-81392号公報JP 56-81392 A 特開昭50-126005号公報JP 50-126005 A Ind.Eng.Chem.Res., Vol.36, p.3800 (1997)Ind.Eng.Chem.Res., Vol.36, p.3800 (1997) Energy&Fuels, Vol.13, p.702 (1999)Energy & Fuels, Vol.13, p.702 (1999)

本発明は、炭素質原料の熱分解時に発生するタールを触媒と接触分解してガス化するタールガス化反応に関して、比較的低い反応温度で高活性を示し、比較的安価であって、且つ反応前の還元処理が不要である触媒、及び当該触媒を用いたタールガス化方法を提供することを目的とする。   The present invention relates to a tar gasification reaction in which tar generated during pyrolysis of a carbonaceous raw material is gasified by catalytic cracking with a catalyst, exhibits high activity at a relatively low reaction temperature, is relatively inexpensive, and is pre-reaction. It is an object of the present invention to provide a catalyst that does not require the reduction treatment and a tar gasification method using the catalyst.

また、本触媒を用いてガス化反応中、熱分解ガスと共に酸素または空気を導入して酸化性雰囲気にすることにより、触媒上の析出炭素や吸着硫黄を除去し、性能低下の少ない安定した運転が可能になるタールガス化用触媒の再生方法を提供することを目的とする。   In addition, during the gasification reaction using this catalyst, oxygen or air is introduced into the oxidizing atmosphere together with the pyrolysis gas, thereby removing the precipitated carbon and adsorbed sulfur on the catalyst, and stable operation with little performance degradation. An object of the present invention is to provide a method for regenerating a tar gasification catalyst.

更に、本触媒を用いたタールガス化により得られたタールガス化ガスをガスエンジン、ガスタービン、燃料電池用の燃料として、高効率に動力利用または発電利用するタールガス化ガスの利用方法を提供することを目的とする。   Furthermore, the tar gasification gas obtained by tar gasification using this catalyst is used as a fuel for gas engines, gas turbines, and fuel cells, and a method for using tar gasification gas that uses power or generates electricity efficiently is provided. Objective.

本発明者らは、触媒を構成する元素、組成に着目して鋭意検討したところ、シリカ、アルミナの少なくともいずれかの担体に、触媒活性種であるニッケルの酸化物及びセリウム、ジルコニウム、チタン、マグネシウムのうちの一種または二種以上の酸化物を含んだものを担持し、更に、白金族化合物を少量担持して調製したタールガス化用触媒を用いることにより、炭素質原料を熱分解した際に発生するガス状のタールを接触分解し、タールを改質して水素、一酸化炭素、メタンを主体とするガスに変換するタールガス化反応に対して比較的低い温度域から高活性を発揮すること、また反応前の還元が不要になるのに加え、反応中に熱分解ガスと共に酸素または空気を導入した混合ガスを接触させることにより触媒上の析出炭素や吸着硫黄を抑制でき性能低下の少ない長期間安定した運転が可能になることを見出した。また本触媒を利用すれば、そこで得られる水素、一酸化炭素、メタンを主体とするガスを動力または発電設備へ利用することが可能であることを見出し、本発明に至った。 The present inventors have found that the elements constituting the catalyst was examined intensively by focusing on the composition, the silica, on at least one carrier of alumina, oxides and cerium nickel as the catalyst active species, zirconium, titanium, When a carbonaceous raw material is pyrolyzed by supporting a catalyst containing one or more oxides of magnesium and further using a tar gasification catalyst prepared by supporting a small amount of a platinum group compound. Highly active from a relatively low temperature range for the tar gasification reaction by catalytically cracking the generated gaseous tar and reforming the tar into a gas mainly composed of hydrogen, carbon monoxide and methane Moreover, in addition to eliminating the need for reduction before the reaction, the deposited carbon and adsorbed sulfur on the catalyst can be reduced by contacting the mixed gas into which oxygen or air is introduced together with the pyrolysis gas during the reaction. A long period of time less can of performance degradation control has been found that it is possible to stable operation. Moreover, if this catalyst was utilized, it discovered that the gas mainly consisting of hydrogen, carbon monoxide, and methane obtained there could be utilized for a motive power or power generation equipment, and came to this invention.

以下に、その特徴を示す。   The characteristics are shown below.

(1) ニッケルの酸化物、及びセリウム、ジルコニウム、チタン、マグネシウムのうちの一種または二種以上の酸化物、並びに白金族化合物を、シリカ、アルミナの少なくともいずれかの担体に担持してなるタールガス化用触媒であって、前記ニッケルの酸化物における金属成分の合計量の前記触媒全体に占める割合が、1〜40質量%であり、前記セリウム、ジルコニウム、チタン、マグネシウムのうちの一種または二種以上の酸化物の合計量の前記触媒全体に占める割合が、1〜50質量%であり、前記白金族化合物における白金族元素成分の合計量の前記触媒全体に占める割合が、0.01〜1質量%であることを特徴とする炭素質原料の熱分解タールを改質してガス化するタールガス化用触媒。 (1) oxides of nickel, and cerium, comprising carrying zirconium, titanium, one or two or more oxides of magnesium, as well as platinum group compounds, silica, on at least one carrier of alumina Tarugasu The ratio of the total amount of metal components in the nickel oxide to the total catalyst is 1 to 40% by mass, and one or two of cerium, zirconium, titanium, and magnesium The ratio of the total amount of the oxides to the entire catalyst is 1 to 50% by mass, and the ratio of the total amount of the platinum group element components in the platinum group compound to the total catalyst is 0.01 to 1% by mass. A tar gasification catalyst for reforming and gasifying a pyrolytic tar of a carbonaceous raw material.

(2) 前記白金族化合物における白金族元素が、白金、ルテニウム、パラジウム、ロジウムから選ばれる少なくとも1種類の元素であることを特徴とする(1)記載のタールガス化用触媒。   (2) The tar gasification catalyst according to (1), wherein the platinum group element in the platinum group compound is at least one element selected from platinum, ruthenium, palladium, and rhodium.

(3) (1)又は(2)に記載の触媒を製造する方法であって、シリカ、アルミナの少なくともいずれかの担体に、セリウム、ジルコニウム、チタン、マグネシウム化合物のうちの一種または二種以上の溶液を含浸後、乾燥及び焼成を行い、その後、乾燥及び焼成を行ったものにニッケルの化合物の溶液を含浸後、乾燥及び焼成を行い、さらにその後、乾燥及び焼成を行ったものに白金族化合物溶液を含浸後、乾燥及び焼成を行うことを特徴とするタールガス化用触媒の製造方法。 ( 3 ) A method for producing the catalyst according to (1) or (2) , wherein at least one of silica and alumina is supported on one or more of cerium, zirconium, titanium and magnesium compounds. after impregnation solution and dried and calcined, then after impregnated with a solution of a compound of nickel to those performed drying and firing, followed by drying and firing, platinum and further was followed by drying and baking A method for producing a catalyst for tar gasification, which comprises drying and calcination after impregnation with a group compound solution.

(4) (1)又は(2)に記載の触媒を製造する方法であって、シリカ、アルミナの少なくともいずれかの担体に、ニッケルの化合物、及びセリウム、ジルコニウム、チタン、マグネシウム化合物のうちの一種または二種以上の化合物の混合溶液を含浸後、乾燥及び焼成を行い、その後、乾燥及び焼成を行ったものに白金族化合物溶液を含浸後、乾燥及び焼成を行うことを特徴とするタールガス化用触媒の製造方法。 (4) (1) or a method for producing a catalyst according to (2), silica, on at least one carrier of alumina, a compound of nickel, and cerium, zirconium, titanium, of the magnesium compound Tar gasification characterized by impregnating a mixed solution of one or two or more compounds, drying and firing, and then impregnating the dried and fired platinum group compound solution, followed by drying and firing. For producing a catalyst for use.

(5) (1)又は(2)に記載の触媒に、炭素質原料を熱分解した際に発生するタールを含む熱分解ガス、または、当該タールを含む熱分解ガスに空気もしくは酸素を加えた混合ガスを接触させてタールを改質してガス化するタールガス化方法。 ( 5 ) To the catalyst described in (1) or (2) , air or oxygen is added to the pyrolysis gas containing tar generated when the carbonaceous raw material is pyrolyzed, or to the pyrolysis gas containing the tar. A tar gasification method for reforming and gasifying tar by bringing a mixed gas into contact therewith.

(6) 前記触媒に、熱分解ガスまたは混合ガスを接触させる温度を、400〜1000℃とすることを特徴とする(5)記載のタールガス化方法。 ( 6 ) The tar gasification method according to ( 5 ), wherein the temperature at which the pyrolysis gas or mixed gas is brought into contact with the catalyst is 400 to 1000 ° C.

(7) 前記炭素質原料の熱分解に、外熱式ロータリーキルンを用いることを特徴とする(5)又は(6)に記載のタールガス化方法。 ( 7 ) The tar gasification method according to ( 5 ) or ( 6 ), wherein an externally heated rotary kiln is used for the thermal decomposition of the carbonaceous raw material.

(8) 前記炭素質原料を熱分解した際に熱分解ガスと共に生成する固形炭化物を、部分酸化して可燃性ガスとし、当該可燃性ガスを燃焼して前記外熱式ロータリーキルンの熱源として利用することを特徴とする(5)〜(7)のいずれかに記載のタールガス化方法。 ( 8 ) The solid carbide generated together with the pyrolysis gas when the carbonaceous raw material is pyrolyzed is partially oxidized into a combustible gas, and the combustible gas is burned to be used as a heat source for the externally heated rotary kiln. The tar gasification method according to any one of ( 5 ) to ( 7 ), wherein

(9) (5)〜(8)のいずれかに記載のタールガス化方法により生成した、タール改質ガスおよび熱分解ガスからなるタールガス化ガスを、ガスエンジン、ガスタービン、または燃料電池用の燃料として利用することを特徴とするタールガス化ガスの利用方法。 ( 9 ) A tar gasification gas comprising a tar reforming gas and a pyrolysis gas produced by the tar gasification method according to any one of ( 5 ) to ( 8 ) is used as a fuel for a gas engine, a gas turbine, or a fuel cell. A method for using tar gasification gas, characterized in that it is used as:

(10) (5)〜(8)のいずれかに記載のタールガス化方法により、前記触媒が、炭素析出、又は硫黄被毒により性能劣化した場合に、前記触媒に水蒸気、または空気の少なくともいずれかを接触させることを特徴とするタールガス化用触媒の再生方法。 ( 10 ) When the catalyst is deteriorated in performance by carbon deposition or sulfur poisoning by the tar gasification method according to any one of ( 5 ) to ( 8 ), the catalyst has at least one of water vapor and air. A method for regenerating a catalyst for tar gasification, which comprises contacting the catalyst.

本発明によれば、炭素質原料の熱分解時タールを比較的低温度で高効率に改質してガス化する高い触媒活性を有し且つ安価で、還元が不要に加えて長期間の使用が可能な改質用触媒を製造でき、該触媒にタールを含む熱分解ガス、または熱分解ガスと空気もしくは酸素を加えた混合ガスと共に接触させて、水素、一酸化炭素、メタンを主体とするガスに改質することができる。またそこで得られた水素、一酸化炭素、メタンを主体とするガスを清浄化した後に動力または発電設備へ利用することができる。   According to the present invention, the carbonaceous raw material is thermally decomposed tar at a relatively low temperature with high efficiency and gasified, has high catalytic activity, is inexpensive, does not require reduction, and is used for a long time. Can be produced, and the catalyst is brought into contact with a pyrolysis gas containing tar or a mixed gas obtained by adding pyrolysis gas and air or oxygen to the catalyst, and mainly contains hydrogen, carbon monoxide, and methane. It can be reformed to gas. Further, after the gas mainly composed of hydrogen, carbon monoxide, and methane is purified, it can be used for power or power generation equipment.

以下、具体例を示して、本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples.

本発明のタールガス化用触媒は、ニッケルの酸化物と、セリウム、ジルコニウム、チタン、マグネシウムのうちの一種または二種以上の酸化物を、シリカ、アルミナの少なくともいずれかの担体に担持させ、さらに白金族化合物を担持させることからなるタールガス化用触媒であって、前記ニッケルの酸化物における金属成分の合計量の前記触媒全体に占める割合が、1〜40質量%であり、前記セリウム、ジルコニウム、チタン、マグネシウムのうちの一種または二種以上の酸化物の合計量の前記触媒全体に占める割合が、1〜50質量%であり、前記白金族化合物における白金族元素成分の合計量の前記触媒全体に占める割合が、0.01〜1質量%であるTarugasu of catalyst of the present invention, an oxide of nickel, cerium, zirconium, titanium, one or two or more oxides of magnesium, silica, supported on at least one carrier of alumina, further A tar gasification catalyst comprising supporting a platinum group compound , wherein a ratio of the total amount of metal components in the nickel oxide to the entire catalyst is 1 to 40% by mass, and the cerium, zirconium, The ratio of the total amount of one or more oxides of titanium and magnesium to the entire catalyst is 1 to 50% by mass, and the total amount of the platinum group element component in the platinum group compound is the entire catalyst The ratio to 0.01 is 0.01-1 mass% .

反応雰囲気下では、白金族化合物の一部または全部が金属状態になってスピルオーバー現象を起こし、酸化性雰囲気下であっても比較的低い温度域から主活性成分元素を還元状態に保って触媒機能を十分発揮するための助触媒の役割を果たし、そのためニッケルの酸化物の一部または全部が金属状態となって主活性成分として機能するようになり、セリウム、ジルコニウム、チタン、マグネシウムのうちの一種または二種以上の酸化物は酸素を吸蔵・放出する機能若しくは酸化物表面で二酸化炭素等酸素種を吸着する機能を保有することにより、主活性成分元素上での炭化水素の炭素析出に対して一酸化炭素として酸化除去する役割を発揮するために、触媒表面を清浄に保ち、触媒性能を長期間安定に保持できると思われる。またシリカ、アルミナの少なくともいずれかの担体は高強度で表面積が大きく、本反応を高効率に進行させる反応場を提供する役割を果たすと考えられる。 Under the reaction atmosphere, some or all of the platinum group compounds are in a metallic state, causing a spillover phenomenon. Even in an oxidizing atmosphere, the main active component elements are maintained in a reduced state from a relatively low temperature range, thereby providing a catalytic function. the acts of cocatalyst to sufficiently exhibited, therefore some or all of the oxides of nickel is to function as a main active ingredient a metallic state, cerium, zirconium, titanium, of magnesium One or more oxides have the function of occluding and releasing oxygen or the function of adsorbing oxygen species such as carbon dioxide on the surface of the oxide, thereby preventing hydrocarbons from depositing on the main active component elements. Therefore, it is considered that the catalyst surface can be kept clean and the catalyst performance can be stably maintained for a long period of time in order to exhibit the role of oxidizing and removing as carbon monoxide. Further, it is considered that at least one of the supports of silica and alumina has a high strength and a large surface area, and serves to provide a reaction field that allows the reaction to proceed efficiently.

ここでいう炭素質原料とは、熱分解してタールを生成する炭素を含む原料のことで、石炭並びに廃棄物など構成元素に炭素を含む広範囲なものを指すが、中でも廃棄物とは、林地残材、間伐材、未利用樹、製材残材、建設廃材、稲わら等の木質系廃棄物、またはそれらを原料とした木質チップ、ペレット等の2次製品や、再生紙として再利用できなくなった古紙などの製紙系廃棄物、容器包装類、農業残渣、厨芥類等の食品廃棄物、活性汚泥などを指す。   The carbonaceous raw material here is a raw material containing carbon that is pyrolyzed to produce tar, and refers to a wide range of materials that contain carbon as a constituent element such as coal and waste. Remaining wood, thinned wood, unused wood, wood leftover, construction waste, woody waste such as rice straw, or secondary products such as wood chips and pellets made from them, and reusable as recycled paper This refers to papermaking waste such as waste paper, containers and packaging, agricultural residues, food waste such as potatoes, and activated sludge.

また炭素質原料を熱分解した際に発生するタールとは、熱分解される原料により性状が異なるが、炭素が5個以上含まれた常温で液体の有機化合物であって、鎖状炭化水素、環状炭化水素のいずれか一方またはそれらの混合物を指し、石炭の熱分解であれば、ナフタレン、フェナンスレン、ピレン、アントラセンなど縮合多環芳香族などが主成分であり、木質系廃棄物の熱分解であれば、セルロース、リグニンなど含酸素化合物の他、化合物中に窒素などの異種原子を含むヘテロ化合物も含まれる。熱分解タールは、熱分解直後はガス状で存在する。   Further, tar generated when pyrolyzing a carbonaceous raw material is different in properties depending on the raw material to be pyrolyzed, but is an organic compound that is liquid at room temperature containing 5 or more carbons, and is a chain hydrocarbon, This refers to either cyclic hydrocarbons or a mixture of them, and in the case of coal pyrolysis, condensed polycyclic aromatics such as naphthalene, phenanthrene, pyrene, anthracene, etc. are the main components. If present, in addition to oxygen-containing compounds such as cellulose and lignin, hetero compounds containing hetero atoms such as nitrogen in the compound are also included. Pyrolysis tar exists in a gaseous state immediately after pyrolysis.

また、タールを接触分解してガス化するタールガス化反応は、反応経路が複雑で必ずしも明らかではないが、熱分解ガス中に存在する水素や水蒸気などとの間で起こりうる水蒸気改質反応や水素化反応、シフト反応を指す。   In addition, the tar gasification reaction, in which tar is gasified by catalytic cracking, has a complicated reaction path and is not always clear. However, a steam reforming reaction or hydrogen that can occur with hydrogen or steam present in the pyrolysis gas is not always clear. Refers to chemical reaction and shift reaction.

本発明の改質触媒においては、主活性成分であるニッケルは主として酸化物であるが、それ以外に水酸化物、硝酸化物、炭酸化物、硫酸化物、塩化物やそれらの混合物を含んでいてもよい。この主活性成分は、一定温度に加温した状態下、熱分解ガス中の還元性雰囲気下で助触媒成分として少量添加した白金族化合物のスピルオーバー現象によりその一部または全部が金属状態に還元されることにより、反応前の還元処理がなくても比較的低い温度域から触媒機能を発揮するようになると考えられる。 In the reforming catalyst of the present invention, is a main active ingredient nickel is primarily oxides, hydroxides otherwise, nitrates, halides carbonate, including the sulfates, chlorides and mixtures thereof Also good. A part or all of this main active component is reduced to a metal state by a spillover phenomenon of a platinum group compound added in a small amount as a promoter component in a reducing atmosphere in a pyrolysis gas in a state heated to a constant temperature. Thus, it is considered that the catalytic function is exhibited from a relatively low temperature range without the reduction treatment before the reaction.

また、本発明の触媒は、主活性成分であるニッケルの酸化物における前記ニッケルの金属成分の合計量が触媒全体に占める割合が1〜40質量%である。 Further, the catalyst of the present invention, the ratio of the total amount of the metal component of the nickel to the entire catalyst Ru 1-40% by mass of oxides of nickel which is the main active ingredient.

ここで主活性成分の金属成分の合計量が1質量%未満の場合には、触媒活性が十分でない。また主活性成分の金属成分の合計量が40質量%を超える場合には、助触媒として加えるセリウム等の酸化物、反応場を提供するアルミナ等の担体の割合が少なくなるため、それぞれの機能が十分発揮されない。 Here, when the total amount of the metal component of the main active ingredient is less than 1 wt%, the catalytic activity is not a sufficient. In addition, when the total amount of the main active component metal components exceeds 40% by mass, the ratio of oxides such as cerium added as a co-catalyst and a carrier such as alumina that provides a reaction field is reduced. sufficiently exhibited by such have.

さらに、本発明の触媒は、助触媒として加えるセリウム、ジルコニウム、チタン、マグネシウムのうちの一種または二種以上の酸化物の合計量が触媒全体に占める割合が1〜50質量%である。 Furthermore, the catalyst of the present invention, cerium added as a co-catalyst, zirconium, titanium, the proportion of the total amount of one or two or more oxides to the total catalyst of magnesium Ru 1-50% by mass.

ただし、各酸化物は一部水酸化物、硝酸化物、炭酸化物、硫酸化物、塩化物やそれらの混合物を含んでいてもよい。ここで酸化物の合計量が1質量%未満の場合には、酸化物の酸素吸蔵または放出機能等を利用した触媒上に析出する炭素成分の酸化除去の機能が十分でない。また、酸化物の合計量が50質量%を超える場合には、主活性成分であるニッケルの化合物の担持量が少なくなるため、触媒活性が十分でない。 However, each oxide may partially include hydroxide, nitrate, carbonate, sulfate, chloride, or a mixture thereof. Here, when the total amount of the oxide is less than 1 mass%, the function of the oxidation removal of carbon components deposited on utilizing oxygen storage or release functions of the oxide catalyst is not a sufficient. Also, if the total amount of the oxide is more than 50 wt% is a main active ingredient for the supported amount of a compound of nickel is low, the catalytic activity is not sufficient.

加えて、本発明の触媒は、助触媒として加える白金族化合物における白金族元素の含有量が、触媒全体に対して0.01〜1質量%である。ここで白金族元素の含有量が0.01質量%未満の場合には、白金族元素のスピルオーバー現象が起こりにくいため主活性成分が金属状態に十分還元されず、触媒機能が発揮されない。また、白金族元素の含有量が1質量%を超える場合には、効果は飽和していくため、経済的な面からは1質量%以下であるIn addition, the catalyst of the present invention, the content of platinum group elements in the platinum group compound added as co-catalyst, Ru 0.01% by mass relative to the total catalyst. When the content of the platinum group element is less than 0.01 wt% Here, hardly causes spillover phenomenon of platinum group elements without main active ingredient is sufficiently reduced to metallic state, the catalyst function is not such to exhibit. Further, if the content of platinum group elements exceeds 1 wt%, the effect is due to continue to saturate, the economic aspects at most 1 mass%.

また、上記の元素以外に触媒製造工程等で混入する不可避的不純物を含んでも構わないが、できるだけ不純物が混入しないようにするのが望ましい。   Further, in addition to the above elements, inevitable impurities that are mixed in the catalyst manufacturing process or the like may be included, but it is desirable that impurities are not mixed as much as possible.

また、本発明の触媒に用いる担体は、シリカ、アルミナの多孔質酸化物から選定されるものであり、粉体または球、タブレット、リングなど成型体として用いることができる。   The carrier used in the catalyst of the present invention is selected from porous oxides of silica and alumina, and can be used as a molded body such as powder, sphere, tablet or ring.

次に、本発明の触媒の製造方法としては、シリカ、アルミナの少なくともいずれかの担体にセリウム、ジルコニウム、チタン、マグネシウム化合物のうちの一種または二種以上の化合物の溶液を含浸後、乾燥及び焼成を行い、その後、乾燥及び焼成を行ったものにニッケルの化合物の溶液を含浸後、乾燥及び焼成を行った後、さらに白金族化合物溶液を含浸、乾燥及び焼成を行うことで製造できる。 Next, as a method for producing the catalyst of the present invention, at least one of silica and alumina supports is impregnated with a solution of one or more compounds of cerium, zirconium, titanium, and magnesium compounds, and then dried and calcined. was carried out, then, after impregnated with a solution of a compound of nickel in those was dried and calcined, after drying and calcination, a more platinum group compound solution impregnation, or by carrying out the drying and firing.

または、シリカ、アルミナの少なくともいずれかの担体に、ニッケルの化合物及びセリウム、ジルコニウム、チタン、マグネシウム化合物のうちの一種または二種以上の化合物の混合溶液を含浸後、乾燥及び焼成を行い、その後、白金族化合物溶液を含浸後、乾燥及び焼成することで製造できる。 Or silica, on at least one carrier of alumina, after impregnation compound and cerium nickel, zirconium, titanium, a mixed solution of one or more compounds of the magnesium compound, followed by drying and firing, then It can be produced by impregnating the platinum group compound solution, followed by drying and baking.

尚、ここで言う含浸法とは、担体が有する細孔容積以下の容積の水または有機溶媒に担体表面に担持させたい金属化合物の溶液を担体表面に滴下し、担体表面が均一に濡れた状態且つ過剰な溶液が存在しない状態にした後、水又は有機溶媒を蒸発させるインシピエントウェットネス法や、担持させたい金属化合物の溶液中に担体を浸漬した後、攪拌しながら溶媒を蒸発させて金属化合物を担体表面に付着させる蒸発乾固法等がある。   The impregnation method referred to here is a state in which a solution of a metal compound to be supported on the support surface in water or an organic solvent having a volume smaller than the pore volume of the support is dropped on the support surface and the support surface is uniformly wetted. In addition, after leaving the solution in an excess state, the wet wet method in which water or the organic solvent is evaporated, or after immersing the carrier in the solution of the metal compound to be supported, the solvent is evaporated with stirring. There is an evaporation to dryness method in which a metal compound is attached to the surface of a carrier.

ここで本発明の触媒は、粉体、または成型体のいずれの形態としてもよく、成型体の場合には球状、シリンダー状、リング状、ホイール状、粒状など、さらに金属またはセラミックスのハニカム状基材へ触媒成分をコーティングしたものなどいずれでもよい。   Here, the catalyst of the present invention may be in the form of a powder or a molded body. In the case of a molded body, a spherical or cylindrical shape, a ring shape, a wheel shape, a granular shape, etc. Any of the materials coated with a catalyst component may be used.

次に本発明の触媒を用いたタールガス化方法としては、熱分解工程で生成するタールを含む熱分解ガス、またはこの熱分解ガスに空気もしくは酸素を加えた混合ガスに本発明の触媒を接触させて、水素、一酸化炭素、メタンを主体とするガスに改質することである。   Next, as a method for tar gasification using the catalyst of the present invention, the catalyst of the present invention is brought into contact with a pyrolysis gas containing tar produced in the pyrolysis step or a mixed gas obtained by adding air or oxygen to the pyrolysis gas. In other words, reforming to a gas mainly composed of hydrogen, carbon monoxide, and methane.

反応温度としては、400〜1000℃とすることが好ましい。反応温度が400℃未満の場合は、タールが水素、一酸化炭素、メタンを主体とするガスへ改質する際の触媒活性が十分でないため、好ましくない。一方、反応温度が1000℃を超える場合は、耐熱構造化が必要になるなど改質装置が高価になるため経済的に不利となる。さらに、ここで用いる反応形式としては、固定床、流動床、噴流床などさまざまなものを用いることができる。   The reaction temperature is preferably 400 to 1000 ° C. A reaction temperature of less than 400 ° C. is not preferable because the catalytic activity is not sufficient when the tar is reformed to a gas mainly composed of hydrogen, carbon monoxide, and methane. On the other hand, when the reaction temperature exceeds 1000 ° C., the reformer becomes expensive because, for example, a heat-resistant structure is required, which is economically disadvantageous. Furthermore, as a reaction format used here, various things, such as a fixed bed, a fluidized bed, and a spouted bed, can be used.

さらに、本発明で炭素質原料を熱分解する場合に外熱式ロータリーキルンを用いることが好ましい。外熱式ロータリーキルンは、内熱式加熱炉と比較して、炉内で可燃性ガスを燃焼することが無いために、その燃焼ガスが熱分解ガスと混合せず、熱分解ガスの保有する高いカロリーを保持することができ、熱効率的に大いに有利となる。   Furthermore, it is preferable to use an externally heated rotary kiln when the carbonaceous raw material is pyrolyzed in the present invention. Compared with internal heating furnaces, externally heated rotary kilns do not burn combustible gas in the furnace, so the combustion gas does not mix with pyrolysis gas, and the pyrolysis gas has a high It can hold calories and is highly advantageous in terms of heat efficiency.

また、炭素質原料を熱分解した際に熱分解ガスと共に生成する固形炭化物を、部分酸化して可燃性ガスとし、この可燃性ガスを燃焼して上記外熱式ロータリーキルンの熱源として利用することにより、さらに熱効率が高くなるため好ましい。   In addition, solid carbide generated together with the pyrolysis gas when pyrolyzing the carbonaceous raw material is partially oxidized into a combustible gas, and this combustible gas is burned and used as a heat source for the external heat rotary kiln. Further, it is preferable because the thermal efficiency becomes higher.

加えて、本発明では、タールを含む熱分解ガスを改質したタールガス化ガスを、ガスエンジンやガスタービン、燃料電池用の燃料として利用することが好ましい。タールガス化ガスは水素濃度が高く燃料電池用原料ガスとして適するため、有効に利用することが可能となる。特に、タールガス化ガスは数百℃程度の高い顕熱を保有するために、生成したタールガス化ガスを、その直後にガスエンジンやガスタービンへ導入して利用することで、高効率に利用することが可能となる。   In addition, in the present invention, it is preferable to use a tar gasification gas obtained by reforming a pyrolysis gas containing tar as a fuel for a gas engine, a gas turbine, or a fuel cell. Since the tar gasification gas has a high hydrogen concentration and is suitable as a raw material gas for a fuel cell, it can be used effectively. In particular, since tar gasification gas has a high sensible heat of several hundred degrees Celsius, the generated tar gasification gas is introduced into a gas engine or gas turbine immediately after that and used with high efficiency. Is possible.

更に、ガスエンジン、ガスタービン及び燃料電池の廃熱やドライガス化ガスから水素を精製する際にオフガスとして発生する可燃性ガスなども上記外熱式ロータリーキルンの熱源として利用することで、より一層熱効率を向上することができる。   In addition, waste heat from gas engines, gas turbines, and fuel cells, and flammable gas generated as off-gas when purifying hydrogen from dry gasification gas, can be used as a heat source for the above external heating rotary kiln. Can be improved.

次に、本発明の触媒を用いたタールガス化方法の詳細について説明する。   Next, the details of the tar gasification method using the catalyst of the present invention will be described.

図1にはタールガス化装置の概要例を示すが、特にこれに限定されるものではない。同図に示すように、タールガス化装置は、原料供給工程として原料を受け入れる受入ホッパー1とそれを炉上に搬送するコンベヤ2、コンベヤ2で反応された原料を一時貯留し、切り出し量を測定する秤量ホッパー3、大気遮断装置4、及びスクリューフィーダー5を備える。   Although FIG. 1 shows a schematic example of a tar gasifier, the present invention is not particularly limited to this. As shown in the figure, the tar gasification apparatus temporarily stores a receiving hopper 1 that receives a raw material as a raw material supply process, a conveyor 2 that conveys the raw material to the furnace, and a raw material that has reacted on the conveyor 2, and measures the cutout amount. A weighing hopper 3, an air blocking device 4, and a screw feeder 5 are provided.

また、原料の熱分解手段として外熱式ロータリーキルンの熱分解炉6を備え、その後段に、熱分解ガスを触媒に接触させて熱分解ガス中のタールを改質してガス化する触媒ドライガス化工程の反応場である触媒反応器7、熱分解により生成した固形炭化物を可燃性ガス化する手段として固定床式の部分燃焼ガス化炉9とこの部分燃焼ガス化炉9を遮断するガス遮断装置としてロータリーバルブ8を備える。   In addition, a pyrolysis furnace 6 of an externally heated rotary kiln is provided as a raw material pyrolysis means, and a catalyst dry gas for reforming and gasifying the tar in the pyrolysis gas by bringing the pyrolysis gas into contact with the catalyst at the subsequent stage. Catalyst reactor 7 which is a reaction field of the gasification step, fixed bed type partial combustion gasification furnace 9 as a means for combustible gasification of solid carbide generated by pyrolysis, and gas shut-off for shutting off this partial combustion gasification furnace 9 A rotary valve 8 is provided as a device.

さらに、触媒反応器7の後段には、ガスを冷却、洗浄、除塵、圧縮、貯留、発電利用するそれぞれスクラバー10、除塵器11、ガス圧縮機12、ガスホルダ13、ガスエンジン等の利用設備14を備える。   Further, downstream of the catalytic reactor 7 is a scrubber 10, a dust remover 11, a gas compressor 12, a gas holder 13, and a use facility 14 such as a gas engine for cooling, washing, dust removal, compression, storage and power generation. Prepare.

原料供給工程では、秤量ホッパー3で原料の供給量をバッチ測定し、二重化した大気遮断装置4を介し、熱分解炉6の炉内ガスを大気に放出することなく、また大気を炉内に吸い込むことなく、スクリューフィーダー5上に供給する。二重化した遮断装置間の空間は、蒸気、窒素等の不活性ガスでパージするとより効果的に遮断できる。熱分解炉へはスクリューフィ-ダー5で熱分解炉6へ連続的に挿入される。   In the raw material supply process, the supply amount of the raw material is batch measured with the weighing hopper 3, and the atmosphere in the pyrolysis furnace 6 is sucked into the furnace without releasing the gas in the pyrolysis furnace 6 into the atmosphere through the double atmosphere shut-off device 4. Without being supplied on the screw feeder 5. The space between the double shut-off devices can be shut off more effectively by purging with an inert gas such as steam or nitrogen. The pyrolysis furnace is continuously inserted into the pyrolysis furnace 6 by a screw feeder 5.

熱分解工程において、熱分解炉6は外熱式ロータリーキルンとなっており、外熱の熱源として、熱分解炉6で得られた固形炭化物を部分燃焼してガス化する部分燃焼ガス炉9で発生した可燃性ガスを導入し、外熱部6aで燃焼空気ファン15からの空気と混合するバーナー(図示せず)を備え、500〜900℃の温度で燃焼する。ロータリーキルンの炉殻6bは外熱部6aと遮断する構成の隔壁となっており、外熱部6aの燃焼ガスとキルン内部の熱分解ガスは混合せず、間接加熱となっている。また、処理する原料の滞留時間を20分〜3時間の間で調整する。すなわち、原料の付着水分に応じ、滞留時間を適宜調整することで、原料中の揮発分をほぼ揮発し、ガス化することが可能となる。滞留時間が20分未満では原料のガス化は完全には行われず、3時間超ではむやみに炉が大きくするのみで経済的でない。   In the pyrolysis process, the pyrolysis furnace 6 is an externally heated rotary kiln and is generated in a partial combustion gas furnace 9 that partially burns and solidifies the solid carbide obtained in the pyrolysis furnace 6 as a heat source for external heat. The burned gas (not shown) which introduces the combustible gas which was introduced and mixes with the air from the combustion air fan 15 in the external heat part 6a is combusted at a temperature of 500 to 900 ° C. The furnace shell 6b of the rotary kiln is a partition wall configured to be cut off from the external heat part 6a, and the combustion gas in the external heat part 6a and the pyrolysis gas inside the kiln are not mixed but indirectly heated. Moreover, the residence time of the raw material to process is adjusted between 20 minutes-3 hours. That is, by appropriately adjusting the residence time according to the moisture adhering to the raw material, the volatile component in the raw material can be substantially volatilized and gasified. If the residence time is less than 20 minutes, the raw material is not completely gasified, and if it is more than 3 hours, the furnace will be enlarged unnecessarily, which is not economical.

熱分解炉6に装入された原料は炉殻6bからの熱伝導により400〜900℃に昇温され、熱分解ガスと固形炭化物とに分離する。熱分解ガスは、原料中の付着水分と揮発分が乾燥、熱分解によりガス化したもので、H2、CO、CH4主体のガスと常温で液体化するタール蒸気や水蒸気等からなり、熱分解炉出口温度で400〜900℃となる。固形炭化物は、熱分解温度によっては一部揮発分が残留するが、大部分は、固定炭素分と灰分とからなる炭化物であり、熱分解炉出口温度で400〜900℃となる。 The raw material charged into the pyrolysis furnace 6 is heated to 400 to 900 ° C. by heat conduction from the furnace shell 6b and separated into pyrolysis gas and solid carbide. Pyrolysis gas is a gasification of the moisture and volatile matter in the raw material that has been dried and pyrolyzed, and consists of H 2 , CO, CH 4 main gas and tar vapor or water vapor that liquefies at room temperature. The decomposition furnace outlet temperature is 400 to 900 ° C. The solid carbide partially contains volatile components depending on the pyrolysis temperature, but most is a carbide composed of fixed carbon and ash, and the temperature of the pyrolysis furnace is 400 to 900 ° C.

触媒ドライガス化工程において、熱分解工程で発生した熱分解ガスが固定床触媒反応器7に入る。触媒反応器7の炉殻7aには本発明による触媒が充填されており、熱分解ガスが炉殻7aを通過し、炉殻7a内の触媒によりタール分は水素、一酸化炭素、メタンを主体とするガスに変換される。また、触媒反応器7の炉殻7aは外熱部7bと遮断する鋼製の隔壁となっており、外熱式ロータリーキルン6の外熱部6aから発生する500〜900℃の温度の燃焼排ガスを導入し、タールガス化時に必要な熱を間接的に補填する。   In the catalyst dry gasification step, the pyrolysis gas generated in the pyrolysis step enters the fixed bed catalyst reactor 7. The furnace shell 7a of the catalytic reactor 7 is filled with the catalyst according to the present invention, and the pyrolysis gas passes through the furnace shell 7a, and the tar content of the catalyst shell 7a is mainly hydrogen, carbon monoxide, and methane. It is converted into gas. Moreover, the furnace shell 7a of the catalytic reactor 7 is a steel partition wall that is cut off from the external heating part 7b, and the combustion exhaust gas at a temperature of 500 to 900 ° C. generated from the external heating part 6a of the external heating rotary kiln 6 is removed. Introduce and indirectly supplement the heat required for tar gasification.

固形炭化物は冷却せず、ロータリーバルブ8を介し部分燃焼ガス化炉9で空気により部分燃焼して可燃性ガスを発生する。この可燃性ガスの一部は前記の外熱ロータリーキルン6及び触媒反応器7の間接加熱用熱源として用いるが、残りは触媒反応器7出口で、改質ガスと合流して回収する。   The solid carbide is not cooled and combustible gas is generated by partial combustion with air in the partial combustion gasification furnace 9 via the rotary valve 8. A part of the combustible gas is used as a heat source for indirect heating of the external heat rotary kiln 6 and the catalytic reactor 7, and the rest is recovered at the outlet of the catalytic reactor 7 by joining with the reformed gas.

回収したガスは、ガス冷却及び洗浄工程でスクラバー10により冷却されると共に、ガス中の塩素、硫黄がNaOH槽16からのNaOHで中和除去される。スクラバー10の排水は固液分離機17で固形分を除いた後、循環使用される。スクラバー出口の温度は40℃以下に十分に低くし、含有水蒸気を抑え、高カロリーでクリーンな回収ガスとして、除塵器11、ガス圧縮機12を介し、ガスホルダー13に一時貯留した上で、ガスエンジンや燃料電池等の利用設備14で動力利用や発電利用する。この際、ガスエンジンの熱回収を蒸気や温水で行えば、他設備の熱供給も可能となり、炭素質原料の持つ熱量を最も効果的に利用できる。   The recovered gas is cooled by the scrubber 10 in a gas cooling and cleaning process, and chlorine and sulfur in the gas are neutralized and removed by NaOH from the NaOH tank 16. The waste water of the scrubber 10 is circulated after the solid content is removed by the solid-liquid separator 17. The temperature of the scrubber outlet is sufficiently lowered to 40 ° C. or lower, suppresses the water vapor contained therein, and is temporarily stored in the gas holder 13 through the dust remover 11 and the gas compressor 12 as a high-calorie and clean recovery gas. The power and power generation are used by the use facility 14 such as an engine or a fuel cell. At this time, if the heat recovery of the gas engine is performed with steam or hot water, heat can be supplied to other facilities, and the amount of heat of the carbonaceous raw material can be most effectively used.

また、原料の性状により、回収ガス中の硫黄分が少ない場合などは、スクラバー10を用いず、直接、または乾式脱硫装置を経由して、高温のガス顕熱を保持したまま、ガスエンジンやガスタービンに導入して、効率よく利用することも可能である。   In addition, when the sulfur content in the recovered gas is small due to the properties of the raw materials, the gas engine or gas is maintained without using the scrubber 10 or directly through a dry desulfurization device while maintaining high-temperature gas sensible heat. It can also be used efficiently by introducing it into a turbine.

また、触媒反応器7に内蔵されるタールガス化触媒は、タールから水素、一酸化炭素、メタンを主体とするガスへの転換時に触媒表面上に析出する炭素、もしくは前記熱分解工程で得られた熱分解ガス中に含まれる硫黄が触媒に吸着することで、触媒が性能劣化し、タールから水素、一酸化炭素、メタンを主体とするガスへの改質性能が低下する。そこで、劣化した触媒を再生する方法として、先ず、原料供給を停止し、外熱式ロータリーキルン6から窒素を投入し、外熱ロータリーキルン内部の熱分解ガス、触媒反応器7、スクラバー10、除塵器11内部の改質ガスを装置外に排出する。その後、窒素を停止し、外熱式ロータリーキルン6より水蒸気を投入させ、水蒸気と炭素の反応により触媒表面の炭素を除去、もしくは、水蒸気と硫黄の反応により触媒に吸着した硫黄を硫化水素の形で除去することで、触媒を再生することが可能となる。また、水蒸気の一部または全部を空気に変えて投入することで、空気中の酸素と炭素の燃焼反応により触媒表面の炭素を除去、もしくは酸素と硫黄の反応により触媒に吸着した硫黄を除去することで、触媒を再生することも可能となる。   Further, the tar gasification catalyst built in the catalyst reactor 7 was obtained by carbon deposited on the catalyst surface during the conversion from tar to a gas mainly composed of hydrogen, carbon monoxide, and methane, or obtained in the thermal decomposition step. The sulfur contained in the pyrolysis gas is adsorbed by the catalyst, so that the performance of the catalyst deteriorates, and the reforming performance from tar to gas mainly composed of hydrogen, carbon monoxide, and methane is lowered. Therefore, as a method of regenerating the deteriorated catalyst, first, the raw material supply is stopped, nitrogen is introduced from the external heating rotary kiln 6, the pyrolysis gas inside the external heating rotary kiln, the catalytic reactor 7, the scrubber 10, and the dust remover 11. The internal reformed gas is discharged outside the apparatus. Thereafter, nitrogen is stopped, and steam is introduced from the externally heated rotary kiln 6 to remove carbon on the catalyst surface by the reaction of steam and carbon, or sulfur adsorbed on the catalyst by the reaction of steam and sulfur in the form of hydrogen sulfide. By removing the catalyst, the catalyst can be regenerated. In addition, by replacing some or all of the water vapor with air, carbon on the catalyst surface is removed by the combustion reaction of oxygen and carbon in the air, or sulfur adsorbed on the catalyst is removed by the reaction of oxygen and sulfur. Thus, it is possible to regenerate the catalyst.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。
(実施例1)
1273Kで3時間かけて予備焼成したアルミナ粉末(表面積20m2/g)に酸化セリウム、及びニッケルの前駆体であるCe(NO3)3・6H2O、Ni(NO3)2・6H2O混合水溶液に含浸後、383Kで12時間かけて乾燥、その後773Kで3時間かけて焼成を行い、アルミナ担体上に酸化ニッケル、酸化セリウムを担持した粉末を得た。さらに本粉末に白金アセチルアセトナト溶液をインシピエントウェットネス法で白金の質量比が0.1%となるように担持した後、383Kで12時間乾燥、引き続き773Kで3時間焼成を行って触媒を調製した。このようにして最終的に、アルミナ担体上に酸化ニッケル、酸化セリウム、及び白金を担持し、担体を含めた触媒全体に対するニッケル質量比(金属換算)が10%、酸化セリウム質量比が30%、白金の質量比が0.1%の粉末状の触媒を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
Example 1
Ce (NO 3 ) 3 · 6H 2 O and Ni (NO 3 ) 2 · 6H 2 O, which are precursors of cerium oxide and nickel, to alumina powder (surface area 20m 2 / g) pre-fired at 1273K for 3 hours After impregnating with the mixed aqueous solution, drying was performed at 383 K for 12 hours and then baking was performed at 773 K for 3 hours to obtain a powder carrying nickel oxide and cerium oxide on an alumina carrier. Further, a platinum acetylacetonate solution was supported on this powder by an incipient wetness method so that the mass ratio of platinum was 0.1%, then dried at 383 K for 12 hours, and then calcined at 773 K for 3 hours to prepare a catalyst. did. In this way, finally, nickel oxide, cerium oxide, and platinum are supported on the alumina support, and the nickel mass ratio (metal conversion) to the entire catalyst including the support is 10%, the cerium oxide mass ratio is 30%, A powdery catalyst having a platinum mass ratio of 0.1% was obtained.

この触媒を用いて、固定床反応器を用いて、原料として杉の粉を用いてタールの触媒ドライガス化を行った。   Using this catalyst, tar was subjected to catalytic dry gasification using cedar powder as a raw material using a fixed bed reactor.

杉の粉は固定床反応器の上部よりN2をキャリアガスとして連続的に供給を行った。反応温度は反応器外壁に取り付けた熱電対により制御した。生成ガスの流量は石鹸膜流量計により測定し、ガス測定の分析はガスクロマトグラフを用いて行った。使用したガスクロマトグラフはShimadzu GC-14BでH2をTCD(モレキュラーシーブ13X)、それ以外の生成物はFID(ガスクロパック54)を用いて分析し、その記録はインテグレーター(Shimadzu クロマトパックCR-5A)で行った。反応器の下流には蒸気及びタールをトラップするために氷を入れたデューワー瓶を設置した。 Cedar flour was continuously fed from the top of the fixed bed reactor using N2 as the carrier gas. The reaction temperature was controlled by a thermocouple attached to the reactor outer wall. The flow rate of the product gas was measured with a soap film flow meter, and the gas measurement analysis was performed using a gas chromatograph. The gas chromatograph used was Shimadzu GC-14B, and H 2 was analyzed using TCD (Molecular Sieve 13X), and other products were analyzed using FID (Gas Chropack 54), and the records were recorded by an integrator (Shimadzu Chromatopack CR-5A). I went there. A Dewar bottle with ice was installed downstream of the reactor to trap steam and tar.

試験条件は、触媒量 1g、杉の粉供給速度 60mg/min(C 2191μmol/min、H 3543μmol/min、O 1475μmol/min)、キャリアガス用N2 60cc/min、H2O/C=0.5(H2O 1110μmol/min)、常圧下、反応温度823K、反応時間 15分とした。 The test conditions were as follows: catalyst amount 1 g, cedar powder supply rate 60 mg / min (C 2191 μmol / min, H 3543 μmol / min, O 1475 μmol / min), carrier gas N 2 60 cc / min, H 2 O / C = 0.5 ( H 2 O 1110 μmol / min), normal pressure, reaction temperature 823 K, reaction time 15 minutes.

触媒の性能は、炭素転化率(C-conv.%)、H2生成速度、供給されたバイオマスの総C量に対するコーク中のCの割合(coke%)、供給されたバイオマスの総C量に対するタール中のCの割合(tar%)で判断し、それらは出口ガス中の各成分濃度より、以下の式で算出した。 The performance of the catalyst is the carbon conversion rate (C-conv.%), H 2 production rate, the ratio of C in coke to the total amount of C of the supplied biomass (coke%), and the total amount of C of the supplied biomass. Judgment was based on the ratio of tar in tar (tar%), and these were calculated from the concentration of each component in the outlet gas by the following formula.

C-conv.%=(CO+CO2+CH4の生成速度) /(供給されたバイオマスのC供給量)×100
coke%=(コーク中のC量)/(供給されたバイオマスの総C量)×100
char%=(チャー中のC量)/(供給されたバイオマスの総C量)×100
tar%=(100−(C-conv.%)−(char%)−(coke%))
なお、cokeとは触媒表面に堆積した炭素、charとは、バイオマスの熱分解により生成されガス化されずに残った固定炭素分のことである。
C-conv.% = (CO + CO 2 + CH 4 production rate) / (C supply amount of supplied biomass) x 100
coke% = (C amount in coke) / (Total C amount of supplied biomass) × 100
char% = (C amount in char) / (Total amount of supplied biomass) x 100
tar% = (100-(C-conv.%)-(char%)-(coke%))
Note that coke is carbon deposited on the catalyst surface, and char is fixed carbon that is generated by pyrolysis of biomass and remains without being gasified.

反応温度を823Kにして、15分間の改質試験を行ったところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。   When the reforming test was conducted for 15 minutes at a reaction temperature of 823K, the results shown in Table 1 were obtained, and high performance was exhibited with low tar% and high C-conv.%. Was confirmed.

また、本試験における熱分解ガス成分は、H2-190μmol/min、CO-599μmol/min、CH4-195μmol/minであったのに対し、改質後のタールガス化ガス成分は、H2-1646μmol/min、CO-635μmol/min、CH4-206μmol/minとなり、水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例2)
ニッケル質量比が1%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、比較的高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例3)
ニッケル質量比が40%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
参考例4)
ニッケルの代わりにコバルトとし、その前駆体として硝酸コバルトを用いて、コバルト質量比が10%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、比較的高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
参考例5)
ニッケルの代わりに鉄とし、その前駆体として硝酸鉄を用いて、鉄質量比が10%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、比較的高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例6)
酸化セリウムの代わりに酸化ジルコニウムとし、その前駆体として硝酸酸化ジルコニウムを用いて、ニッケル質量比が10%、酸化ジルコニウム質量比が30%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例7)
酸化セリウムの代わりに酸化チタンとし、その前駆体として硫酸チタンを用いて、ニッケル質量比が10%、酸化チタン質量比が30%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例8)
酸化セリウムの代わりに酸化マグネシウムとし、その前駆体として硝酸マグネシウムを用いて、ニッケル質量比が10%、酸化マグネシウム質量比が30%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例9)
酸化セリウムの質量比が1%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例10)
酸化セリウムの質量比が50%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例11)
アルミナの代わりに予備焼成したシリカ粉末(表面積30m2/g)を用いた他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例12)
最終的に担持させる白金の質量比が0.01%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例13)
最終的に担持させる白金の質量比が1%となる他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例14)
実施例1と同様に予備焼成したアルミナ粉末に硝酸セリウム水溶液を含浸、383Kで12時間かけて乾燥、その後773Kで3時間かけて焼成を行い、続いて硝酸ニッケル水溶液を含浸、383Kで12時間かけて乾燥、その後773Kで3時間かけて焼成を行うことにより、ニッケル質量比が10%、酸化セリウム質量比が30%の粉末を得た。さらに本粉末に白金アセチルアセトナト溶液をインシピエントウェットネス法で白金の質量比が0.1%となるように担持した後、383Kで12時間乾燥、引き続き773Kで3時間焼成を行って触媒を調製した。このようにして最終的に、アルミナ担体上に酸化ニッケル、酸化セリウム、及び白金を担持し、担体を含めた触媒全体に対するニッケル質量比(金属換算)が10%、酸化セリウム質量比が30%、白金の質量比が0.1%の触媒を得た。触媒の評価方法は実施例1と同様の方法で評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例15)
実施例1と同様にして調製した触媒を用い、反応温度を973Kとした他は実施例1と同様にして評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例16)
実施例1と同様にして調製した触媒を用い、反応温度を1073Kとした他は実施例1と同様にして評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例17)
白金アセチルアセトナトの代わりに硝酸ロジウムを用いてロジウムが1質量%になるように担持する他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例18)
実施例17と同様にして調製した触媒を用い、反応温度を973Kとした他は実施例1と同様にして評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例19)
白金アセチルアセトナトの代わりにパラジウムアセチルアセトナトを用いてパラジウムが1質量%になるように担持する他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例20)
実施例19と同様にして調製した触媒を用い、反応温度を973Kとした他は実施例1と同様にして評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例21)
白金アセチルアセトナトの代わりにルテニウムアセチルアセトナトを用いてルテニウムが1質量%になるように担持する他は実施例1と同様の方法で触媒を調製し、触媒活性を評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例22)
実施例21と同様にして調製した触媒を用い、反応温度を973Kとした他は実施例1と同様にして評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例23)
実施例1と同様にして調製した触媒を用い、キャリアガスとしてN2 60ml/min、H2O/C=0.5(H2O 1110μmol/min)、O2/C=0.5(O2 1110μmol/min)とした他は実施例1と同様にして評価したところ、表1に示すような結果が得られ、tar%が低く且つC-conv.%が高い、高活性な性能を発揮することが確認された。この場合、反応時間を8hr程度まで継続させても、初期活性をほぼ維持したまま反応が進行することが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例24)
実施例1の条件で8hr継続して反応を進行させた後、原料の投入を停止し、キャリアガスとしてキャリアガス用N2 60cc/min、H2O/C=0.5(H2O 1110μmol/min)の状況下で触媒層温度を1073Kにして2hr保持して触媒上に堆積した炭素や硫黄を除去した後、新たに実施例1と同じ条件で原料の投入を開始したところ、表1に示すように再生前とほぼ同等の活性を示すことが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(実施例25)
実施例24と同様、実施例1の条件で8hr継続して反応を進行させた後、原料の投入を停止し、キャリアガスとしてキャリアガス用N2 60cc/min、空気60cc/minの状況下で触媒層温度を1073Kにして2hr保持して触媒上に堆積した炭素や硫黄を除去した後、新たに実施例1と同じ条件で原料の投入を開始したところ、表1に示すように再生前とほぼ同等の活性を示すことが確認された。また本試験におけるタールガス化ガス成分も水素濃度が高く、水素、一酸化炭素、メタンが主成分のガスに変換されたことが確認された。
(比較例1)
1273Kで3時間かけて予備焼成したアルミナ(表面積 20m2/g)に酸化セリウムの前駆体であるCe(NO3)3・6H2O水溶液に含浸後、383Kで12時間かけて乾燥、その後773Kで3時間かけて焼成を行い、その後ニッケルの前駆体であるNi(NO3)2・6H2O水溶液に含浸後、383Kで12時間かけて乾燥、その後773Kで3時間掛けて焼成を行った触媒調製方法で、最終的に、アルミナ担体上に酸化ニッケル、酸化セリウムを担持し、担体を含めた触媒全体に対するニッケル質量比(金属換算)が4%、酸化セリウム質量比が30%の触媒を得た。
The pyrolysis gas components in this test were H 2 -190 μmol / min, CO-599 μmol / min, and CH 4 -195 μmol / min, while the tar gasification gas component after reforming was H 2- 1646 μmol / min, CO-635 μmol / min, and CH 4 -206 μmol / min. The hydrogen concentration was high, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to main components.
(Example 2)
A catalyst was prepared in the same manner as in Example 1 except that the nickel mass ratio was 1%, and the catalytic activity was evaluated. As a result, the results shown in Table 1 were obtained, the tar% was low, and C-conv. % Has been confirmed to exhibit relatively high performance. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 3)
A catalyst was prepared in the same manner as in Example 1 except that the nickel mass ratio was 40%, and the catalytic activity was evaluated. As a result, the results shown in Table 1 were obtained, the tar% was low, and C-conv. It was confirmed that high performance was exhibited with high%. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
( Reference Example 4)
A catalyst was prepared in the same manner as in Example 1 except that cobalt was used instead of nickel, cobalt nitrate was used as a precursor, and the cobalt mass ratio was 10%. The results shown in the figure were obtained, and it was confirmed that the tar% was low and the C-conv.% Was high, exhibiting relatively high activity performance. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
( Reference Example 5)
A catalyst was prepared in the same manner as in Example 1 except that iron was used instead of nickel, iron nitrate was used as a precursor, and the iron mass ratio was 10%. The results shown in the figure were obtained, and it was confirmed that the tar% was low and the C-conv.% Was high, exhibiting relatively high activity performance. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 6)
A catalyst was prepared in the same manner as in Example 1 except that zirconium oxide was used instead of cerium oxide, zirconium nitrate oxide was used as its precursor, and the nickel mass ratio was 10% and the zirconium oxide mass ratio was 30%. When the catalytic activity was evaluated, the results shown in Table 1 were obtained, and it was confirmed that the tar% was low and the C-conv.% Was high, exhibiting highly active performance. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 7)
A catalyst was prepared in the same manner as in Example 1 except that titanium oxide was used instead of cerium oxide, titanium sulfate was used as a precursor, and the nickel mass ratio was 10% and the titanium oxide mass ratio was 30%. When the catalytic activity was evaluated, the results shown in Table 1 were obtained, and it was confirmed that high performance was exhibited with low tar% and high C-conv.%. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 8)
A catalyst was prepared in the same manner as in Example 1 except that magnesium oxide was used instead of cerium oxide, magnesium nitrate was used as a precursor, and the nickel mass ratio was 10% and the magnesium oxide mass ratio was 30%. When the catalytic activity was evaluated, the results shown in Table 1 were obtained, and it was confirmed that high performance was exhibited with low tar% and high C-conv.%. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
Example 9
A catalyst was prepared by the same method as in Example 1 except that the mass ratio of cerium oxide was 1%, and the catalytic activity was evaluated. As a result, the results shown in Table 1 were obtained. It was confirmed that conv.% is high and exhibits high activity. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 10)
Except that the mass ratio of cerium oxide was 50%, a catalyst was prepared in the same manner as in Example 1, and the catalytic activity was evaluated. As a result, the results shown in Table 1 were obtained, tar% was low, C- It was confirmed that conv.% is high and exhibits high activity. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 11)
A catalyst was prepared in the same manner as in Example 1 except that pre-calcined silica powder (surface area 30 m 2 / g) was used instead of alumina, and the catalytic activity was evaluated. The results shown in Table 1 were obtained. As a result, it was confirmed that the tar% is low and the C-conv.% Is high. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 12)
The catalyst was prepared in the same manner as in Example 1 except that the mass ratio of platinum to be finally supported was 0.01%, and the catalytic activity was evaluated. The results shown in Table 1 were obtained, and tar% was It was confirmed that high performance was exhibited with low and high C-conv.%. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 13)
The catalyst was prepared in the same manner as in Example 1 except that the mass ratio of platinum to be finally supported was 1%, and the catalytic activity was evaluated. The results shown in Table 1 were obtained, and tar% was It was confirmed that high performance was exhibited with low and high C-conv.%. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 14)
As in Example 1, pre-calcined alumina powder was impregnated with cerium nitrate aqueous solution, dried at 383K for 12 hours, then calcined at 773K for 3 hours, then impregnated with nickel nitrate aqueous solution, and at 383K for 12 hours drying, by performing firing over the next 3 hours at 773K Te, 10% nickel weight ratio of cerium oxide mass ratio was obtained 30% of the powder. Further, a platinum acetylacetonate solution was supported on this powder by an incipient wetness method so that the mass ratio of platinum was 0.1%, then dried at 383 K for 12 hours, and then calcined at 773 K for 3 hours to prepare a catalyst. did. In this way, finally, nickel oxide, cerium oxide, and platinum are supported on the alumina support, and the nickel mass ratio (metal conversion) to the entire catalyst including the support is 10%, the cerium oxide mass ratio is 30%, A catalyst having a platinum mass ratio of 0.1% was obtained. The evaluation method of the catalyst was evaluated in the same manner as in Example 1. As a result, the results as shown in Table 1 were obtained, and the high tar performance was low and the C-conv.% Was high. confirmed. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 15)
Evaluation was conducted in the same manner as in Example 1 except that the catalyst prepared in the same manner as in Example 1 was used and the reaction temperature was set to 973 K. As a result, the results shown in Table 1 were obtained. It was confirmed that conv.% is high and exhibits high activity. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 16)
Evaluation was conducted in the same manner as in Example 1 except that the catalyst prepared in the same manner as in Example 1 was used and the reaction temperature was set to 1073 K. As a result, the results shown in Table 1 were obtained. It was confirmed that conv.% is high and exhibits high activity. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 17)
The catalyst was prepared in the same manner as in Example 1 except that rhodium nitrate was used in place of platinum acetylacetonate so that rhodium was 1% by mass, and the catalyst activity was evaluated. As a result, it was confirmed that the tar% is low and the C-conv.% Is high, exhibiting highly active performance. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 18)
Evaluation was conducted in the same manner as in Example 1 except that the catalyst prepared in the same manner as in Example 17 was used and the reaction temperature was set to 973 K. As a result, the results shown in Table 1 were obtained. It was confirmed that conv.% is high and exhibits high activity. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 19)
A catalyst was prepared in the same manner as in Example 1 except that palladium acetylacetonate was used in place of platinum acetylacetonate and palladium was supported at 1% by mass, and the catalytic activity was evaluated. The results shown in the figure were obtained, and it was confirmed that the tar% was low and the C-conv.% Was high, exhibiting highly active performance. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 20)
Evaluation was conducted in the same manner as in Example 1 except that the catalyst prepared in the same manner as in Example 19 was used and the reaction temperature was set to 973 K. As a result, the results shown in Table 1 were obtained. It was confirmed that conv.% is high and exhibits high activity. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 21)
A catalyst was prepared in the same manner as in Example 1 except that ruthenium was supported at 1% by mass using ruthenium acetylacetonate instead of platinum acetylacetonate. The results shown in the figure were obtained, and it was confirmed that the tar% was low and the C-conv.% Was high, exhibiting highly active performance. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 22)
Evaluation was conducted in the same manner as in Example 1 except that the catalyst prepared in the same manner as in Example 21 was used and the reaction temperature was set to 973 K. As a result, the results shown in Table 1 were obtained. It was confirmed that conv.% is high and exhibits high activity. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 23)
Using the catalyst prepared in the same manner as in Example 1, N 2 60ml / min as a carrier gas, H 2 O / C = 0.5 (H 2 O 1110μmol / min), O 2 /C=0.5(O 2 1110μmol / min ) Was evaluated in the same manner as in Example 1. As a result, the results shown in Table 1 were obtained, and it was confirmed that the tar% was low and the C-conv.% Was high, exhibiting highly active performance. It was done. In this case, it was confirmed that the reaction proceeded while maintaining the initial activity even when the reaction time was continued up to about 8 hours. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 24)
After continuing the reaction for 8 hours under the conditions of Example 1, the charging of the raw materials was stopped, and carrier gas N 2 60 cc / min for carrier gas, H 2 O / C = 0.5 (H 2 O 1110 μmol / min) ), The catalyst layer temperature was maintained at 1073 K for 2 hours, and carbon and sulfur deposited on the catalyst were removed, and then the starting of the raw material was newly started under the same conditions as in Example 1. Table 1 shows Thus, it was confirmed that the activity was almost the same as that before the regeneration. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Example 25)
As in Example 24, the reaction was allowed to proceed for 8 hours under the conditions of Example 1, and then the charging of the raw material was stopped. Under the conditions of carrier gas N 2 60 cc / min and air 60 cc / min. After removing the carbon and sulfur deposited on the catalyst while maintaining the catalyst layer temperature at 1073 K for 2 hours, the starting of the raw material was newly started under the same conditions as in Example 1. As shown in Table 1, It was confirmed that the activity was almost the same. The tar gasification gas component in this test also has a high hydrogen concentration, and it was confirmed that hydrogen, carbon monoxide, and methane were converted to the main gas.
(Comparative Example 1)
Aluminium (surface area 20m 2 / g) pre-fired at 1273K for 3 hours was impregnated with Ce (NO 3 ) 3 · 6H 2 O aqueous solution, which is a precursor of cerium oxide, dried at 383K for 12 hours, and then 773K Baked for 3 hours, then impregnated with Ni (NO 3 ) 2 · 6H 2 O aqueous solution which is a precursor of nickel, dried at 383K for 12 hours, and then baked at 773K for 3 hours In the catalyst preparation method, finally, nickel oxide and cerium oxide are supported on an alumina support, and a catalyst having a nickel mass ratio (metal conversion) of 4% and a cerium oxide mass ratio of 30% with respect to the entire catalyst including the support is prepared. Obtained.

反応温度を823Kにて、15分間の改質試験を行ったところ、表1に示すような結果が得られた。C-conv.%が低く、tar%も高く、活性が低い結果となった。また本試験におけるタールガス化ガス成分の水素濃度は比較的低いことが確認された。さらにcoke%が非常に高いため、反応後に再生処理を行う場合には、高温または長期間酸化処理を行う必要があり、その際の大きな燃焼熱により触媒活性種のシンタリングを引き起こして再生後の性能がさらに低くなると予想される。
(比較例2)
特許文献3の実施例1にならい、塩化ルテニウムと硝酸セリウムからなる混合水溶液をアルミナ(表面積 20m2/g)上に蒸発乾固法で担持させた粉末を得た。これを383Kで12時間乾燥、引き続き823Kで2時間焼成を行って触媒を調製した。このようにして最終的に、アルミナ担体上にルテニウム及び酸化セリウムを担持し、担体を含めた触媒全体に対する触媒中のルテニウムの担持量が1質量%、セリウムがルテニウムに対して1原子比%の触媒を得た。
When a reforming test was conducted for 15 minutes at a reaction temperature of 823 K, the results shown in Table 1 were obtained. C-conv.% Was low, tar% was high, and the activity was low. Moreover, it was confirmed that the hydrogen concentration of the tar gasification gas component in this test was relatively low. Furthermore, since the coke% is very high, when the regeneration treatment is performed after the reaction, it is necessary to perform an oxidation treatment at a high temperature or for a long period of time. Performance is expected to be even lower.
(Comparative Example 2)
According to Example 1 of Patent Document 3, a powder in which a mixed aqueous solution composed of ruthenium chloride and cerium nitrate was supported on alumina (surface area 20 m 2 / g) by evaporation to dryness was obtained. This was dried at 383K for 12 hours and then calcined at 823K for 2 hours to prepare a catalyst. In this way, finally, ruthenium and cerium oxide are supported on the alumina support, and the supported amount of ruthenium in the catalyst with respect to the whole catalyst including the support is 1% by mass, and cerium is 1 atomic ratio to ruthenium. A catalyst was obtained.

反応温度を823Kにて、15分間の改質試験を行ったところ、表1に示すような結果が得られた。C-conv.%が低く、tar%も高く、活性が低い結果となった。また本試験におけるタールガス化ガス成分の水素濃度は比較的低いことが確認された。さらにcoke%が非常に高いため、反応後に再生処理を行う場合には、高温または長期間酸化処理を行う必要があり、その際の大きな燃焼熱により触媒活性種のシンタリングを引き起こして再生後の性能がさらに低くなると予想される。
(比較例3)
特許文献4の実施例1にならい、1273Kで3時間かけて予備焼成したアルミナ(表面積 20m2/g)上に塩化ロジウムを蒸発乾固法で担持させた後、383Kで12時間乾燥、引き続き823Kで2時間焼成を行って触媒を調製した。このようにして最終的にアルミナ担体上にロジウムを担持し、担体を含めた触媒全体に対するロジウムの担持量が5質量%の触媒を得た。
When a reforming test was conducted for 15 minutes at a reaction temperature of 823 K, the results shown in Table 1 were obtained. C-conv.% Was low, tar% was high, and the activity was low. Moreover, it was confirmed that the hydrogen concentration of the tar gasification gas component in this test was relatively low. Furthermore, since the coke% is very high, when the regeneration treatment is performed after the reaction, it is necessary to perform an oxidation treatment at a high temperature or for a long period of time. Performance is expected to be even lower.
(Comparative Example 3)
Following Example 1 of Patent Document 4, rhodium chloride was supported on alumina (surface area 20 m 2 / g) pre-calcined at 1273 K for 3 hours by evaporation to dryness, then dried at 383 K for 12 hours, and subsequently 823 K. The catalyst was prepared by calcination for 2 hours. In this manner, rhodium was finally supported on the alumina support, and a catalyst having a supported amount of rhodium of 5% by mass with respect to the entire catalyst including the support was obtained.

反応温度を823Kにて、15分間の改質試験を行ったところ、表1に示すような結果が得られた。C-conv.%が低く、tar%も高く、活性が低い結果となった。また本試験におけるタールガス化ガス成分の水素濃度は比較的低いことが確認された。さらにcoke%が非常に高いため、反応後に再生処理を行う場合には、高温または長期間酸化処理を行う必要があり、その際の大きな燃焼熱により触媒活性種のシンタリングを引き起こして再生後の性能がさらに低くなると予想される。
(比較例4)
1273Kで3時間かけて予備焼成したアルミナ(表面積 20m2/g)に酸化セリウムの前駆体であるCe(NO3)3・6H2O水溶液に含浸後、383Kで12時間かけて乾燥、その後773Kで3時間かけて焼成を行ったい、酸化セリウム質量比が30%の粉末を得た。さらに本粉末に硝酸ロジウム水溶液をインシピエントウェットネス法でロジウムの質量比が1%となるように担持した後、383Kで12時間乾燥、引き続き773Kで3時間焼成を行って触媒を調製した。このようにして最終的に、アルミナ担体上に酸化セリウム及びロジウムを担持し、担体を含めた触媒全体に対する酸化セリウム質量比が30%、ロジウムの質量比が1%の触媒を得た。
When a reforming test was conducted for 15 minutes at a reaction temperature of 823 K, the results shown in Table 1 were obtained. C-conv.% Was low, tar% was high, and the activity was low. Moreover, it was confirmed that the hydrogen concentration of the tar gasification gas component in this test was relatively low. Furthermore, since the coke% is very high, when the regeneration treatment is performed after the reaction, it is necessary to perform an oxidation treatment at a high temperature or for a long period of time. Performance is expected to be even lower.
(Comparative Example 4)
Aluminium (surface area 20m 2 / g) pre-fired at 1273K for 3 hours was impregnated with Ce (NO 3 ) 3 · 6H 2 O aqueous solution, which is a precursor of cerium oxide, dried at 383K for 12 hours, and then 773K Thus, a powder having a cerium oxide mass ratio of 30% was obtained. Further, a rhodium nitrate aqueous solution was supported on this powder by an incipient wetness method so that the mass ratio of rhodium was 1%, dried at 383 K for 12 hours, and then calcined at 773 K for 3 hours to prepare a catalyst. In this way, finally, cerium oxide and rhodium were supported on the alumina support, and a catalyst having a cerium oxide mass ratio of 30% and a rhodium mass ratio of 1% with respect to the entire catalyst including the support was obtained.

反応温度を823Kにて、15分間の改質試験を行ったところ、表1に示すような結果が得られた。C-conv.%が低く且つcoke%、tar%も高く、活性が低い結果となった。また本試験におけるタールガス化ガス成分の水素濃度は比較的低いことが確認された。
(比較例5)
触媒としてズードケミー触媒社製ナフサ一次リフォーミング用触媒(型番SC11NK、Ni20質量%、アルミナ担体)を用いた他は実施例1と同様にして改質試験を行ったところ、表1に示すような結果が得られた。C-conv.%が低く、tar%も高く、活性が低い結果となった。また本試験におけるタールガス化ガス成分の水素濃度は比較的低いことが確認された。さらにcoke%が非常に高いため、反応後に再生処理を行う場合には、高温または長期間酸化処理を行う必要があり、その際の大きな燃焼熱により触媒活性種のシンタリングを引き起こして再生後の性能がさらに低くなると予想される。
When a reforming test was conducted for 15 minutes at a reaction temperature of 823 K, the results shown in Table 1 were obtained. C-conv.% Was low and coke% and tar% were high, resulting in low activity. Moreover, it was confirmed that the hydrogen concentration of the tar gasification gas component in this test was relatively low.
(Comparative Example 5)
A modification test was conducted in the same manner as in Example 1 except that a catalyst for naphtha primary reforming (model number SC11NK, Ni 20% by mass, alumina support) manufactured by Zude Chemie Catalysts was used as a catalyst. The results shown in Table 1 were obtained. was gotten. C-conv.% Was low, tar% was high, and the activity was low. Moreover, it was confirmed that the hydrogen concentration of the tar gasification gas component in this test was relatively low. Furthermore, since the coke% is very high, when the regeneration treatment is performed after the reaction, it is necessary to perform an oxidation treatment at a high temperature or for a long period of time. Performance is expected to be even lower.

Figure 0005032101
Figure 0005032101

本発明のタールガス化装置の概要例である。It is an outline example of the tar gasification device of the present invention.

符号の説明Explanation of symbols

1 受入ホッパー
2 コンベア
3 秤量ホッパー
4 大気遮断装置
5 スクリューフィーダー
6 ロータリーキルン(熱分解炉)
6a ロータリーキルンの外熱部
6b ロータリーキルンの炉殻
7 触媒反応器
7a 触媒反応器の炉殻
7b 触媒反応器の外熱部
8 ロータリーバルブ(ガス遮断装置)
9 部分燃焼ガス化炉
10 スクラバー
11 除塵器
12 ガス圧縮機
13 ガスホルダー
14 ガスエンジン等の利用設備
15 燃焼空気ファン
16 NaOH槽
17 固液分離機
DESCRIPTION OF SYMBOLS 1 Receiving hopper 2 Conveyor 3 Weighing hopper 4 Air shut-off device 5 Screw feeder 6 Rotary kiln (pyrolysis furnace)
6a External heating part of rotary kiln 6b Furnace shell of rotary kiln 7 Catalytic reactor 7a Furnace shell of catalytic reactor 7b External heating part of catalytic reactor 8 Rotary valve (gas shut-off device)
DESCRIPTION OF SYMBOLS 9 Partial combustion gasifier 10 Scrubber 11 Dust remover 12 Gas compressor 13 Gas holder 14 Utilization facilities, such as a gas engine 15 Combustion air fan 16 NaOH tank 17 Solid-liquid separator

Claims (10)

ニッケルの酸化物、及びセリウム、ジルコニウム、チタン、マグネシウムのうちの一種または二種以上の酸化物、並びに白金族化合物を、シリカ、アルミナの少なくともいずれかの担体に担持してなる炭素質原料の熱分解タールを改質してガス化するタールガス化用触媒であって、
前記ニッケルの酸化物における金属成分の合計量の前記触媒全体に占める割合が、1〜40質量%であり、
前記セリウム、ジルコニウム、チタン、マグネシウムのうちの一種または二種以上の酸化物の合計量の前記触媒全体に占める割合が、1〜50質量%であり、
前記白金族化合物における白金族元素成分の合計量の前記触媒全体に占める割合が、0.01〜1質量%である
ことを特徴とするタールガス化用触媒。
Oxides of nickel, and cerium, zirconium, titanium, one or two or more oxides of magnesium, as well as platinum group compounds, silica, formed by carrying on at least one carrier of alumina, carbonaceous material A gasification catalyst for reforming and gasifying the pyrolysis tar of
The ratio of the total amount of metal components in the nickel oxide to the entire catalyst is 1 to 40% by mass,
The ratio of the total amount of one or more oxides of cerium, zirconium, titanium, and magnesium to the entire catalyst is 1 to 50% by mass,
The percentage of the total catalyst of the total amount of the platinum group element component in the platinum group compound, catalyst characteristics and to filter Rugasu the <br/> be 0.01 mass%.
前記白金族化合物における白金族元素が、白金、ルテニウム、パラジウム、ロジウムから選ばれる少なくとも1種類の元素であることを特徴とする請求項1記載のタールガス化用触媒。   2. The catalyst for tar gasification according to claim 1, wherein the platinum group element in the platinum group compound is at least one element selected from platinum, ruthenium, palladium, and rhodium. 請求項1又は2に記載の触媒を製造する方法であって、シリカ、アルミナの少なくともいずれかの担体に、セリウム、ジルコニウム、チタン、マグネシウム化合物のうちの一種または二種以上の溶液を含浸後、乾燥及び焼成を行い、その後、乾燥及び焼成を行ったものにニッケルの化合物の溶液を含浸後、乾燥及び焼成を行い、さらにその後、乾燥及び焼成を行ったものに白金族化合物溶液を含浸後、乾燥及び焼成を行うことを特徴とするタールガス化用触媒の製造方法。 The method for producing a catalyst according to claim 1 or 2 , wherein at least one of silica and alumina supports is impregnated with one or more solutions of cerium, zirconium, titanium, and magnesium compounds. followed by drying and firing, then, after impregnation the solvent solution of the compound of nickel to those performed drying and firing, followed by drying and firing, Thereafter, impregnated with a platinum group compound solution having been subjected to the drying and baking Then, drying and baking are performed, The manufacturing method of the catalyst for tar gasification characterized by the above-mentioned. 請求項1又は2に記載の触媒を製造する方法であって、シリカ、アルミナの少なくともいずれかの担体に、ニッケルの化合物、及びセリウム、ジルコニウム、チタン、マグネシウム化合物のうちの一種または二種以上の化合物の混合溶液を含浸後、乾燥及び焼成を行い、その後、乾燥及び焼成を行ったものに白金族化合物溶液を含浸後、乾燥及び焼成を行うことを特徴とするタールガス化用触媒の製造方法。 A method of manufacturing a catalyst according to claim 1 or 2, silica, on at least one carrier of alumina, a compound of nickel, and cerium, zirconium, titanium, one or two or more of the magnesium compound A method for producing a tar gasification catalyst comprising impregnating a mixed solution of the above compound, drying and calcining, then impregnating the dried and calcined material with a platinum group compound solution, followed by drying and calcining . 請求項1又は2に記載の触媒に、炭素質原料を熱分解した際に発生するタールを含む熱分解ガス、または、当該タールを含む熱分解ガスに空気もしくは酸素を加えた混合ガスを接触させてタールを改質してガス化するタールガス化方法。 The catalyst according to claim 1 or 2 is brought into contact with a pyrolysis gas containing tar generated when pyrolyzing a carbonaceous raw material, or a mixed gas obtained by adding air or oxygen to the pyrolysis gas containing the tar. Tar gasification method that reforms and gasifies tar. 前記触媒に、熱分解ガスまたは混合ガスを接触させる温度を、400〜1000℃とすることを特徴とする請求項記載のタールガス化方法。 The tar gasification method according to claim 5 , wherein a temperature at which the pyrolysis gas or mixed gas is brought into contact with the catalyst is 400 to 1000 ° C. 前記炭素質原料の熱分解に、外熱式ロータリーキルンを用いることを特徴とする請求項又はに記載のタールガス化方法。 The tar gasification method according to claim 5 or 6 , wherein an external heating type rotary kiln is used for thermal decomposition of the carbonaceous raw material. 前記炭素質原料を熱分解した際に熱分解ガスと共に生成する固形炭化物を、部分酸化して可燃性ガスとし、当該可燃性ガスを燃焼して前記外熱式ロータリーキルンの熱源として利用することを特徴とする請求項のいずれか1項に記載のタールガス化方法。 The solid carbide generated together with the pyrolysis gas when the carbonaceous raw material is pyrolyzed is partially oxidized into a combustible gas, and the combustible gas is burned to be used as a heat source for the external heat type rotary kiln. The tar gasification method according to any one of claims 5 to 7 . 請求項のいずれか1項に記載のタールガス化方法により生成した、タール改質ガスおよび熱分解ガスからなるタールガス化ガスを、ガスエンジン、ガスタービン、または燃料電池用の燃料として利用することを特徴とするタールガス化ガスの利用方法。 A tar gasification gas comprising a tar reforming gas and a pyrolysis gas produced by the tar gasification method according to any one of claims 5 to 8 is used as a fuel for a gas engine, a gas turbine, or a fuel cell. A method of using a tar gasification gas characterized by the above. 請求項のいずれか1項に記載のタールガス化方法により、前記触媒が、炭素析出、又は硫黄被毒により性能劣化した場合に、前記触媒に水蒸気、または空気の少なくともいずれかを接触させることを特徴とするタールガス化用触媒の再生方法。 The tar gasification method according to any one of claims 5 to 8 , wherein when the performance of the catalyst is deteriorated due to carbon deposition or sulfur poisoning, the catalyst is brought into contact with at least one of water vapor and air. A method for regenerating a catalyst for tar gasification characterized by the above.
JP2006321902A 2006-11-29 2006-11-29 Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst Expired - Fee Related JP5032101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321902A JP5032101B2 (en) 2006-11-29 2006-11-29 Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321902A JP5032101B2 (en) 2006-11-29 2006-11-29 Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst

Publications (2)

Publication Number Publication Date
JP2008132458A JP2008132458A (en) 2008-06-12
JP5032101B2 true JP5032101B2 (en) 2012-09-26

Family

ID=39557675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321902A Expired - Fee Related JP5032101B2 (en) 2006-11-29 2006-11-29 Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst

Country Status (1)

Country Link
JP (1) JP5032101B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021081A1 (en) * 2008-04-28 2009-10-29 Süd-Chemie AG A process for the catalytic reduction of tar content in gases from gasification processes using a noble metal based catalyst
JP5511169B2 (en) * 2008-09-24 2014-06-04 新日鐵住金株式会社 Method for reforming tar-containing gas
JP5572855B2 (en) * 2009-03-24 2014-08-20 昭和シェル石油株式会社 Biomass gasification reforming catalyst and method for producing synthesis gas using the same
JP5360972B2 (en) * 2009-04-09 2013-12-04 国立大学法人群馬大学 Catalyst and method for producing the same
BRPI1010991B1 (en) 2009-05-19 2020-02-11 Nippon Steel Corporation "CATALYST TO REFORM GAS CONTAINING TAR, METHOD TO PREPARE CATALYST TO REFORM A GAS CONTAINING TAR, AND METHOD TO REGENERATE CATALYST TO REFORM A GAS CONTAINING TAR.
JP5679160B2 (en) * 2010-07-12 2015-03-04 バイオコーク技研株式会社 Carbon carrier, carbon carrier production method, carbon carrier production device, gas generation method, gas generation device, power generation method, and power generation device
JP6083558B2 (en) * 2012-12-25 2017-02-22 常陽化成株式会社 Fuel gas generator
JP6570111B2 (en) * 2015-05-28 2019-09-04 国立大学法人東北大学 Hydrogen production method and system
JP6229115B2 (en) * 2016-02-03 2017-11-15 エクセルギー・パワー・システムズ株式会社 Power generation apparatus and power generation method
TWI658864B (en) * 2017-12-14 2019-05-11 財團法人工業技術研究院 Porous material and method for preparing the same, and catalyst composition employing the same
JP7334924B2 (en) * 2018-07-27 2023-08-29 国立大学法人弘前大学 Biomass gasifier, biomass gasification method and biomass gasification system
CN114100618B (en) * 2021-12-13 2023-08-11 东北电力大学 Iron-based porous carbon catalyst and preparation method and application thereof
CN116550391B (en) * 2023-04-19 2024-07-02 山东科技大学 Preparation method of pennisetum hydridum porous carbon-based catalyst for organic matter solid pyrolysis

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847087A (en) * 1981-09-14 1983-03-18 アトランテイツク・リツチフイ−ルド・カンパニ− Hydrocarbon conversion
JPH0824844B2 (en) * 1984-07-31 1996-03-13 株式会社日立製作所 Combustion catalyst stable at high temperature, preparation method thereof, and method of carrying out chemical reaction using the catalyst
JPH08501115A (en) * 1992-06-05 1996-02-06 バッテル・メモリアル・インスティチュート Method for catalytically converting organic materials to product gases
JP3818710B2 (en) * 1996-06-03 2006-09-06 出光興産株式会社 Alumina-supported ruthenium catalyst
JP4377700B2 (en) * 2004-01-05 2009-12-02 千代田化工建設株式会社 Synthesis gas production catalyst and synthesis gas production method using the same
KR100569120B1 (en) * 2004-08-05 2006-04-10 한국에너지기술연구원 Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof

Also Published As

Publication number Publication date
JP2008132458A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP5032101B2 (en) Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst
JP2007229548A (en) Reforming catalyst acted in biomass pyrolysis gasification process, its manufacturing method and modification process using the reforming catalyst, biomass pyrolytic gasifying device, and method for regenerating catalyst
Song et al. Recent development of biomass gasification for H2 rich gas production
Guan et al. Catalytic steam reforming of biomass tar: Prospects and challenges
JP5494135B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Tomishige et al. Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and fluidized bed reactor
Asadullah et al. Demonstration of real biomass gasification drastically promoted by effective catalyst
JP4897112B2 (en) Tar-containing gas reforming catalyst, method for producing tar-containing gas reforming catalyst, tar-containing gas reforming method using tar-containing gas reforming catalyst, and method for regenerating tar-containing gas reforming catalyst
KR101203229B1 (en) Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas
Dou et al. Poisoning effects of H2S and HCl on the naphthalene steam reforming and water-gas shift activities of Ni and Fe catalysts
Abatzoglou et al. Review of catalytic syngas production through steam or dry reforming and partial oxidation of studied liquid compounds
JP5659537B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
KR101274314B1 (en) Method for producing catalyst for reforming tar-containing gas, method for reforming tar and method for regenerating catalyst for reforming tar-containing gas
JP5659536B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5780271B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Ferella et al. Zirconia and alumina based catalysts for steam reforming of naphthalene
JP5659534B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5511169B2 (en) Method for reforming tar-containing gas
Xu et al. Non-natural catalysts for catalytic tar conversion in biomass gasification technology
JP6460879B2 (en) Regeneration method for tar-containing gas reforming catalyst
JP2015004021A (en) Thermal decomposition gasification furnace, catalytic modification method, energy supply system and electric heat supply system
JP5659532B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP2019162619A (en) Catalyst for modifying tar-containing gas, manufacturing method of catalyst for modifying tar-containing gas, and modification method of tar-containing gas using the catalyst for modifying tar-containing gas
JP5720107B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5659533B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R150 Certificate of patent or registration of utility model

Ref document number: 5032101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees