JP5607108B2 - Temperature control apparatus and temperature control method - Google Patents

Temperature control apparatus and temperature control method Download PDF

Info

Publication number
JP5607108B2
JP5607108B2 JP2012120262A JP2012120262A JP5607108B2 JP 5607108 B2 JP5607108 B2 JP 5607108B2 JP 2012120262 A JP2012120262 A JP 2012120262A JP 2012120262 A JP2012120262 A JP 2012120262A JP 5607108 B2 JP5607108 B2 JP 5607108B2
Authority
JP
Japan
Prior art keywords
temperature
temperature control
control
control device
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012120262A
Other languages
Japanese (ja)
Other versions
JP2012181870A (en
Inventor
賢一 板東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2012120262A priority Critical patent/JP5607108B2/en
Publication of JP2012181870A publication Critical patent/JP2012181870A/en
Application granted granted Critical
Publication of JP5607108B2 publication Critical patent/JP5607108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Drying Of Semiconductors (AREA)
  • Control Of Temperature (AREA)

Description

本発明は、温度制御装置および温度制御方法に係り、より具体的には、半導体ウェハ用の温度制御装置および温度制御方法に関する。   The present invention relates to a temperature control device and a temperature control method, and more specifically to a temperature control device and a temperature control method for a semiconductor wafer.

近年、半導体デバイスに対する高性能化および低価格化の要求に伴って、半導体の製造プロセスでは、微細化、歩留まり向上、高スループット化、および多品種少量生産が求められている。これら要求の達成には、回路の線幅に対する高い精度が必要とされ、線幅の精度は、熱処理工程におけるチャンバ内のウェハ温度に依存している。このため、半導体の製造プロセスにおいては、熱処理の際のウェハ温度を所定の値に保つことが重要な課題になっている。例えば、フォトリソグラフィでは、ウェハを加熱するためのホットプレートや、冷却するためのクーリングプレートの温度調節により、ウェハの温度が制御される。   In recent years, along with demands for higher performance and lower prices for semiconductor devices, semiconductor manufacturing processes are required to be miniaturized, yield improved, high throughput, and high-mix low-volume production. Achieving these requirements requires high accuracy with respect to the line width of the circuit, and the accuracy of the line width depends on the wafer temperature in the chamber during the heat treatment process. For this reason, in the semiconductor manufacturing process, maintaining the wafer temperature at the time of heat treatment at a predetermined value is an important issue. For example, in photolithography, the temperature of a wafer is controlled by adjusting the temperature of a hot plate for heating the wafer and a cooling plate for cooling.

特に、フォトリソグラフィにおいて、150nm以下の線幅の形成に使用される化学増幅型のレジスト剤は、温度変化の影響を受け易く、このレジスト剤を用いた場合の線幅は、露光後のPEB(Post Exposure Bake)処理の加熱温度に大きく依存する。この化学増幅型のレジスト剤を用いた場合には、ウェハの面内温度分布の均一性は、PEB処理の定常状態において±0.1℃以内と非常に高い精度が要求される。このような要求を満足するためには、温度センサについても同程度の測定精度が確保される必要がある。   In particular, in photolithography, a chemically amplified resist agent used for forming a line width of 150 nm or less is easily affected by temperature change. When this resist agent is used, the line width is the PEB after exposure ( It greatly depends on the heating temperature of the Post Exposure Bake process. When this chemically amplified resist agent is used, the uniformity of the in-plane temperature distribution of the wafer is required to have a very high accuracy of within ± 0.1 ° C. in the steady state of PEB processing. In order to satisfy such requirements, it is necessary to ensure the same measurement accuracy for the temperature sensor.

ところで、フォトリソグラフィでは、例えば図16に示すように、ホットプレート1上にウェハ50が載置され、ホットプレート1の内部に設けられたヒータ3によって、ウェハ50が加熱される。その際、ホットプレート1を構成するプレート本体4との接触によってウェハ50の裏面が汚染されるのを防止するため、ウェハ50は、プレート本体4上に設けられた支持ピン5を介してホットプレート1上に載置される。そして、プレート本体4の表面からの支持ピン5の高さ寸法は、ホットプレート1の温度調節に対するウェハ50の温度昇降の応答性を高めるために、約0.1mmと非常に小さな値に設定されている。   Incidentally, in photolithography, for example, as shown in FIG. 16, the wafer 50 is placed on the hot plate 1, and the wafer 50 is heated by the heater 3 provided inside the hot plate 1. At that time, in order to prevent the back surface of the wafer 50 from being contaminated by contact with the plate body 4 constituting the hot plate 1, the wafer 50 is connected to the hot plate via the support pins 5 provided on the plate body 4. 1 is mounted. The height dimension of the support pins 5 from the surface of the plate body 4 is set to a very small value of about 0.1 mm in order to increase the responsiveness of the temperature increase / decrease of the wafer 50 to the temperature adjustment of the hot plate 1. ing.

このような状態でホットプレート1上に載置されたウェハ50の面内温度分布の均一性は、プレート本体4の複数箇所に埋め込まれた温度センサ90の測定値を用いて、各ヒータ3の多変数制御により調整される(例えば、特許文献2)。この場合には、制御対象であるウェハ50の実際の温度が未知であるため、ウェハ50の温度制御を精度良く実施することが困難となっている。
そこで、ウェハ50の実際の温度を得るために、チャンバ内のウェハ50に接触させることでウェハ50の温度を直接測定する温度センサが開発されている(例えば、特許文献1,3〜6)。
また、温度センサをウェハに接触させてウェハの実際の温度を測定し、この測定値を用いてウェハの温度を制御する温度制御装置が望まれている。
The uniformity of the in-plane temperature distribution of the wafer 50 placed on the hot plate 1 in such a state is determined by using the measured values of the temperature sensors 90 embedded in a plurality of locations of the plate body 4. It adjusts by multivariable control (for example, patent document 2). In this case, since the actual temperature of the wafer 50 to be controlled is unknown, it is difficult to accurately control the temperature of the wafer 50.
Therefore, in order to obtain the actual temperature of the wafer 50, a temperature sensor that directly measures the temperature of the wafer 50 by contacting the wafer 50 in the chamber has been developed (for example, Patent Documents 1 to 3-6).
There is also a demand for a temperature control device that measures the actual temperature of a wafer by bringing a temperature sensor into contact with the wafer and controls the temperature of the wafer using the measured value.

特開2003−100605号公報JP 2003-100605 A 特開2001−230199号公報JP 2001-230199 A 特開平7−221154号公報Japanese Patent Laid-Open No. 7-221154 特開平4−148545号公報JP-A-4-148545 特開平4−51538号公報Japanese Patent Laid-Open No. 4-51538 実開昭62−47124号公報Japanese Utility Model Publication No. 62-47124

しかしながら、特許文献1に記載の温度センサは、加熱プレート上の球状のスペーサに直接設けられており、加熱プレートの熱がスペーサを介して温度センサに伝わってしまう。このため、温度センサが、加熱プレートの熱を受けて温度を測定してしまい、ウェハ温度の測定精度が十分に確保されないという問題がある。   However, the temperature sensor described in Patent Document 1 is directly provided on a spherical spacer on the heating plate, and the heat of the heating plate is transmitted to the temperature sensor via the spacer. For this reason, there is a problem that the temperature sensor receives the heat of the heating plate and measures the temperature, and the measurement accuracy of the wafer temperature is not sufficiently ensured.

特許文献3に記載の温度センサは、石英ガラスで形成される支持ピンによって熱電対を支持し、この支持ピンの先端に熱電対と接合するアルミナ製のキャップを備えた構成となっている。しかし、支持ピンを構成する石英ガラスの熱伝導率は1.4W/mk程度と高く、かつ支持ピンの直径は2.5〜3.5mmと大きいため、ウェハから多量の熱が支持ピンに流れ込んでしまう。このため、ウェハ温度の測定精度が十分に確保されないという問題がある。実際、特許文献3には、この温度センサの測定誤差が数℃程度であることが記載されている。
また、キャップのウェハとの接触面の直径が4mmと大きいため、ウェハからキャップを介して放出される熱量が大きく、ウェハの面内温度の均一性に影響を与えてしまうという問題もある。
The temperature sensor described in Patent Document 3 has a configuration in which a thermocouple is supported by a support pin formed of quartz glass, and an alumina cap that is joined to the thermocouple at the tip of the support pin. However, the thermal conductivity of quartz glass constituting the support pins is as high as about 1.4 W / mk, and the diameter of the support pins is as large as 2.5 to 3.5 mm, so that a large amount of heat flows from the wafer into the support pins. It will end up. For this reason, there is a problem that the measurement accuracy of the wafer temperature is not sufficiently ensured. In fact, Patent Document 3 describes that the measurement error of this temperature sensor is about several degrees Celsius.
Further, since the diameter of the contact surface of the cap with the wafer is as large as 4 mm, there is a problem that the amount of heat released from the wafer through the cap is large, and the uniformity of the in-plane temperature of the wafer is affected.

特許文献4に記載の温度センサは、熱電対を覆う棒状の被覆部材の外径が0.5〜0.8mm程度と大きいため、載置時のウェハおよびプレート間の隙間が0.1mm程度に設定されている場合には、この隙間内に温度センサを配置することができないという問題がある。また、たとえ温度センサを配置しても、ウェハと接触する部分である被覆部材の先端部が、幅0.5mm程度の平坦面でウェハとの接触面積が大きいため、ウェハから放出される熱量が大きく、ウェハの面内温度の均一性に影響を与えてしまう。   In the temperature sensor described in Patent Document 4, since the outer diameter of the rod-shaped covering member that covers the thermocouple is as large as about 0.5 to 0.8 mm, the gap between the wafer and the plate when mounted is about 0.1 mm. If it is set, there is a problem that the temperature sensor cannot be arranged in the gap. Moreover, even if a temperature sensor is arranged, the tip of the covering member, which is a part in contact with the wafer, has a flat surface with a width of about 0.5 mm and a large contact area with the wafer. It greatly affects the uniformity of the in-plane temperature of the wafer.

特許文献5に記載の温度センサは、金属薄膜を支持する支持用ピンが金属薄膜に対して非常に大きいため、支持用ピンへの放熱量が大きくなってしまう。このため、ウェハ温度の測定精度を十分確保することができないという問題がある。
また、支持用ピンへの放熱量が大きいため、ウェハの面内温度の均一性に影響を与えてしまうという問題もある。
In the temperature sensor described in Patent Document 5, since the support pins that support the metal thin film are very large with respect to the metal thin film, the amount of heat radiation to the support pins is increased. For this reason, there exists a problem that the measurement precision of wafer temperature cannot fully be ensured.
In addition, since the amount of heat radiation to the support pins is large, there is a problem that the uniformity of the in-plane temperature of the wafer is affected.

特許文献6に記載の温度センサは、ヒータに固定されたばねに、ウェハに接触する円板が取り付けられ、この円板に熱電対が取り付けられる構成になっている。このような構成では、ヒータの熱がばねおよび円板を介して熱電対に伝わってしまい、熱電対が、ヒータの熱を受けて温度を測定してしまう。このため、ウェハ温度の測定精度が十分に確保されないという問題がある。
また、ウェハと接触する円板の接触面積が大きく、ウェハから円板およびばねに対して放出される熱量が大きいため、ウェハの面内温度の均一性に影響を与えてしまうという問題もある。
The temperature sensor described in Patent Document 6 has a configuration in which a disk that contacts a wafer is attached to a spring fixed to a heater, and a thermocouple is attached to the disk. In such a configuration, the heat of the heater is transferred to the thermocouple via the spring and the disk, and the thermocouple receives the heat of the heater and measures the temperature. For this reason, there is a problem that the measurement accuracy of the wafer temperature is not sufficiently ensured.
In addition, since the contact area of the disk in contact with the wafer is large and the amount of heat released from the wafer to the disk and the spring is large, there is a problem that the uniformity of the in-plane temperature of the wafer is affected.

そして、温度センサをウェハに接触させてウェハの温度を測定する場合には、特許文献2のように温度センサがプレート本体内に埋め込まれている場合と異なり、温度センサがチャンバ内の気体に直接触れることになる。このため、ウェハを載置する前にホットプレート上に発生する自然対流の影響を受けて、温度センサの測定値が大きく変動し、これに伴ってホットプレートに対する制御指令も変動してしまう。この場合には、制御指令に従ってホットプレートの温度も大きく変動することになるため、その後の温度制御をスムーズに行うことが困難になるという問題がある。   When the temperature sensor is brought into contact with the wafer to measure the temperature of the wafer, unlike the case where the temperature sensor is embedded in the plate body as in Patent Document 2, the temperature sensor is directly applied to the gas in the chamber. Will touch. For this reason, the measurement value of the temperature sensor largely fluctuates due to the influence of natural convection generated on the hot plate before placing the wafer, and the control command for the hot plate also fluctuates accordingly. In this case, since the temperature of the hot plate varies greatly according to the control command, there is a problem that it is difficult to perform subsequent temperature control smoothly.

本発明の目的は、自然対流の影響を回避することができ、安定した制御指令変動および整定時間で温度制御対象物の温度を制御できる温度制御装置および温度制御方法を提供することにある。   An object of the present invention is to provide a temperature control device and a temperature control method capable of avoiding the influence of natural convection and controlling the temperature of a temperature control object with stable control command fluctuation and settling time.

本発明の請求項1に係る温度制御装置は、温度制御対象物の温度を制御する温度制御装置であって、載置された前記温度制御対象物の温度を調節する温調装置と、前記温調装置上に載置された前記温度制御対象物と接触して温度を測定する温度センサと、前記温調装置による加熱量または冷却量を制御するコントローラとを備え、前記コントローラは、前記温調装置上の前記温度制御対象物の載置状態を判定する載置状態判定手段と、前記載置状態判定手段の判定結果に応じて、前記温度制御対象物の目標温度、および前記目標温度と前記温度制御対象物の温度との温度偏差に対する制御ゲインを切り換える切換手段と、前記温度偏差および前記制御ゲインを用いて前記温調装置の制御指令を生成する制御指令生成手段とを備え、前記切換手段は、前記温調装置上に前記温度制御対象物が載置されていると判定された場合、前記目標温度を第2の目標温度に、前記制御ゲインを第2の制御ゲインにそれぞれ切り換え、前記温調装置上に前記温度制御対象物が載置されていないと判定された場合、前記目標温度を前記第2の目標温度よりも低い第1の目標温度に、前記制御ゲインを前記第2の制御ゲインよりも小さい第1の制御ゲインにそれぞれ切り換えることを特徴とする。 A temperature control device according to claim 1 of the present invention is a temperature control device that controls the temperature of a temperature control object, and a temperature control device that adjusts the temperature of the mounted temperature control object, and the temperature control device. A temperature sensor that measures the temperature in contact with the temperature control object placed on the adjustment device, and a controller that controls the amount of heating or cooling by the temperature adjustment device, the controller comprising the temperature adjustment A mounting state determination unit that determines a mounting state of the temperature control object on the apparatus , and a target temperature of the temperature control object, a target temperature, and the target temperature according to a determination result of the mounting state determination unit comprising a switching means for switching the control gain with respect to the temperature difference between the temperature of the object of temperature control, and a control command generation means for generating a control command of the temperature control apparatus using the temperature difference and the control gain, the switching換手Switching the target temperature to the second target temperature and switching the control gain to the second control gain when it is determined that the temperature control object is placed on the temperature control device, If it is determined that the temperature control object is not placed on the temperature control device, the target temperature is set to a first target temperature lower than the second target temperature, and the control gain is set to the second target temperature. Switching to a first control gain smaller than the control gain, respectively .

本発明の請求項2に係る温度制御装置は、温度制御対象物の温度を制御する温度制御装置であって、載置された前記温度制御対象物の温度を調節する温調装置と、前記温調装置上に載置された前記温度制御対象物と接触して温度を測定する第1の温度センサと、前記温調装置の温度を測定する第2の温度センサと、前記温調装置による加熱量または冷却量を制御するコントローラとを備え、前記コントローラは、前記温調装置上の前記温度制御対象物の載置状態を判定する載置状態判定手段と、前記載置状態判定手段の判定結果に応じて、前記温調装置の制御指令の生成に用いる温度測定値を前記第1の温度センサの測定値および前記第2の温度センサの測定値間で切り換える切換手段と、前記温度制御対象物の目標温度と前記温度測定値との温度偏差を用いて前記温調装置の制御指令を生成する制御指令生成手段とを備え、前記切換手段は、前記温調装置上に前記温度制御対象物が載置されていると判定された場合、前記温度測定値を前記第1の温度センサの測定値に切り換え、前記温調装置上に前記温度制御対象物が載置されていないと判定された場合、前記温度測定値を前記第2の温度センサの測定値に切り換えることを特徴とする。 A temperature control device according to a second aspect of the present invention is a temperature control device that controls the temperature of a temperature control object, a temperature control device that adjusts the temperature of the temperature control object that is mounted, and the temperature control device. A first temperature sensor that measures the temperature in contact with the temperature control object placed on the adjustment device, a second temperature sensor that measures the temperature of the temperature adjustment device, and heating by the temperature adjustment device A controller for controlling the amount or the cooling amount, wherein the controller determines a mounting state of the temperature control object on the temperature control device, and a determination result of the mounting state determination unit And a switching means for switching a temperature measurement value used for generating a control command of the temperature control device between the measurement value of the first temperature sensor and the measurement value of the second temperature sensor, and the temperature control object Target temperature and the measured temperature value Using a temperature difference and a control command generation means for generating a control command of the temperature control device, the switching means, when the object of temperature control on the temperature control device is determined to be placed When the temperature measurement value is switched to the measurement value of the first temperature sensor and it is determined that the temperature control object is not placed on the temperature control device, the temperature measurement value is changed to the second temperature sensor. It is characterized by switching to the measured value of the temperature sensor .

本発明の請求項3に係る温度制御装置は、温度制御対象物の温度を制御する温度制御装置であって、載置された前記温度制御対象物の温度を調節する温調装置と、前記温調装置上に載置された前記温度制御対象物と接触して温度を測定する第1の温度センサと、前記温調装置の温度を測定する第2の温度センサと、前記温調装置による加熱量または冷却量を制御するコントローラとを備え、前記コントローラは、前記温調装置上の前記温度制御対象物の載置状態を判定する載置状態判定手段と、前記載置状態判定手段の判定結果に応じて、前記温調装置の制御指令の生成に用いる温度測定値を前記第1の温度センサの測定値および前記第2の温度センサの測定値間で切り換え、また、前記温度制御対象物の目標温度、および前記目標温度と前記温度測定値との温度偏差に対する制御ゲインを切り換える切換手段と、前記温度偏差および前記制御ゲインを用いて前記温調装置の制御指令を生成する制御指令生成手段とを備え、前記切換手段は、前記温調装置上に前記温度制御対象物が載置されていると判定された場合、前記温度測定値を前記第1の温度センサの測定値に、前記目標温度を第2の目標温度に、前記制御ゲインを第2の制御ゲインにそれぞれ切り換え、前記温調装置上に前記温度制御対象物が載置されていないと判定された場合、前記温度測定値を前記第2の温度センサの測定値に、前記目標温度を前記第2の目標温度よりも低い第1の目標温度に、前記制御ゲインを前記第2の制御ゲインよりも小さい第1の制御ゲインにそれぞれ切り換えることを特徴とする。 A temperature control device according to a third aspect of the present invention is a temperature control device that controls the temperature of a temperature control object, a temperature control device that adjusts the temperature of the mounted temperature control object, and the temperature control device. A first temperature sensor that measures the temperature in contact with the temperature control object placed on the adjustment device, a second temperature sensor that measures the temperature of the temperature adjustment device, and heating by the temperature adjustment device A controller for controlling the amount or the cooling amount, wherein the controller determines a mounting state of the temperature control object on the temperature control device, and a determination result of the mounting state determination unit In response, the temperature measurement value used to generate the control command of the temperature control device is switched between the measurement value of the first temperature sensor and the measurement value of the second temperature sensor, and the temperature control object Target temperature, and the target temperature and previous Comprising a switching means for switching the control gain with respect to the temperature difference between the temperature measured value, and a control command generation means for generating a control command of the temperature control apparatus using the temperature difference and the control gain, said switching means, said When it is determined that the temperature control object is placed on a temperature control device, the temperature measurement value is the measurement value of the first temperature sensor, the target temperature is the second target temperature, When the control gain is switched to the second control gain and it is determined that the temperature control object is not placed on the temperature control device, the temperature measurement value is changed to the measurement value of the second temperature sensor. The target temperature is switched to a first target temperature lower than the second target temperature, and the control gain is switched to a first control gain smaller than the second control gain .

本発明の請求項4に係る温度制御方法は、載置された温度制御対象物の温度を調節する温調装置と、前記温調装置上に載置された前記温度制御対象物と接触して温度を測定する温度センサとを用いた前記温度制御対象物の温度制御方法であって、前記温度センサの測定値を取得するステップと、前記温調装置上の前記温度制御対象物の載置状態を判定するステップと、前記温度制御対象物の載置状態の判定結果に応じて、前記温度制御対象物の目標温度、および前記目標温度と前記温度制御対象物の温度との温度偏差に対する制御ゲインを切り換えるステップと、前記温度偏差および前記制御ゲインを用いて前記温調装置の制御指令を生成するステップとを備え、前記温調装置上に前記温度制御対象物が載置されていると判定された場合、前記目標温度を第2の目標温度に、前記制御ゲインを第2の制御ゲインにそれぞれ切り換え、前記温調装置上に前記温度制御対象物が載置されていないと判定された場合、前記目標温度を前記第2の目標温度よりも低い第1の目標温度に、前記制御ゲインを前記第2の制御ゲインよりも小さい第1の制御ゲインにそれぞれ切り換えることを特徴とする。 According to a fourth aspect of the present invention, there is provided a temperature control method comprising: a temperature control device that adjusts a temperature of a placed temperature control object; and the temperature control object that is placed on the temperature control device. A temperature control method for the temperature control object using a temperature sensor for measuring temperature, the step of obtaining a measurement value of the temperature sensor, and a mounting state of the temperature control object on the temperature control device And a control gain for a target temperature of the temperature control object and a temperature deviation between the target temperature and the temperature of the temperature control object according to a determination result of the mounting state of the temperature control object. And a step of generating a control command for the temperature control device using the temperature deviation and the control gain, and it is determined that the temperature control object is placed on the temperature control device. Before When the target temperature is switched to the second target temperature and the control gain is switched to the second control gain, and it is determined that the temperature control object is not placed on the temperature control device, the target temperature is set to The control gain is switched to a first control gain lower than the second control gain, respectively, to a first target temperature lower than the second target temperature .

本発明の請求項5に係る温度制御方法は、載置された温度制御対象物の温度を調節する温調装置と、前記温調装置上に載置された前記温度制御対象物と接触して温度を測定する第1の温度センサと、前記温調装置の温度を測定する第2の温度センサとを用いた前記温度制御対象物の温度制御方法であって、前記第1の温度センサおよび前記第2の温度センサの測定値を取得するステップと、前記温調装置上の前記温度制御対象物の載置状態を判定するステップと、前記温度制御対象物の載置状態の判定結果に応じて、前記温調装置の制御指令の生成に用いる温度測定値を前記第1の温度センサの測定値および前記第2の温度センサの測定値間で切り換えるステップと、前記温度制御対象物の目標温度と前記温度測定値との温度偏差を用いて前記温調装置の制御指令を生成するステップとを備え、前記温調装置上に前記温度制御対象物が載置されていると判定された場合、前記温度測定値を前記第1の温度センサの測定値に切り換え、前記温調装置上に前記温度制御対象物が載置されていないと判定された場合、前記温度測定値を前記第2の温度センサの測定値に切り換えることを特徴とする。 According to a fifth aspect of the present invention, there is provided a temperature control method comprising: a temperature control device that adjusts a temperature of a mounted temperature control object; and the temperature control object that is mounted on the temperature control device. A temperature control method for the temperature control object using a first temperature sensor for measuring a temperature and a second temperature sensor for measuring the temperature of the temperature control device, wherein the first temperature sensor and the temperature sensor According to the step of obtaining the measurement value of the second temperature sensor, the step of determining the mounting state of the temperature control object on the temperature control device, and the determination result of the mounting state of the temperature control object Switching the temperature measurement value used for generating the control command of the temperature control device between the measurement value of the first temperature sensor and the measurement value of the second temperature sensor; and the target temperature of the temperature control object Previously using temperature deviation from the temperature measurement And a step of generating a control command of the temperature control device, wherein when the temperature control object is determined to have been placed, measuring the temperature measurement of the first temperature sensor on the temperature control device When the temperature control object is determined not to be placed on the temperature control device, the temperature measurement value is switched to the measurement value of the second temperature sensor .

本発明の請求項6に係る温度制御方法は、載置された温度制御対象物の温度を調節する温調装置と、前記温調装置上に載置された前記温度制御対象物と接触して温度を測定する第1の温度センサと、前記温調装置の温度を測定する第2の温度センサとを用いた前記温度制御対象物の温度制御方法であって、前記第1の温度センサおよび前記第2の温度センサの測定値を取得するステップと、前記温調装置上の前記温度制御対象物の載置状態を判定するステップと、前記温度制御対象物の載置状態の判定結果に応じて、前記温調装置の制御指令の生成に用いる温度測定値を前記第1の温度センサの測定値および前記第2の温度センサの測定値間で切り換え、また、前記温度制御対象物の目標温度、および前記目標温度と前記温度測定値との温度偏差に対する制御ゲインを切り換えるステップと、前記温度偏差および前記制御ゲインを用いて前記温調装置の制御指令を生成するステップとを備え、前記温調装置上に前記温度制御対象物が載置されていると判定された場合、前記温度測定値を前記第1の温度センサの測定値に、前記目標温度を第2の目標温度に、前記制御ゲインを第2の制御ゲインにそれぞれ切り換え、前記温調装置上に前記温度制御対象物が載置されていないと判定された場合、前記温度測定値を前記第2の温度センサの測定値に、前記目標温度を前記第2の目標温度よりも低い第1の目標温度に、前記制御ゲインを前記第2の制御ゲインよりも小さい第1の制御ゲインにそれぞれ切り換えることを特徴とする。 A temperature control method according to claim 6 of the present invention is in contact with a temperature control device that adjusts the temperature of a mounted temperature control object, and the temperature control object mounted on the temperature control device. A temperature control method for the temperature control object using a first temperature sensor for measuring a temperature and a second temperature sensor for measuring the temperature of the temperature control device, wherein the first temperature sensor and the temperature sensor According to the step of obtaining the measurement value of the second temperature sensor, the step of determining the mounting state of the temperature control object on the temperature control device, and the determination result of the mounting state of the temperature control object The temperature measurement value used for generating the control command of the temperature control device is switched between the measurement value of the first temperature sensor and the measurement value of the second temperature sensor, and the target temperature of the temperature control object, And the temperature of the target temperature and the temperature measurement value A step of switching the control gain for the difference, the a step of generating a control command of the temperature control device with a temperature deviation and the control gain, the object of temperature control is placed on the temperature control device If it is determined that the temperature is measured, the temperature measurement value is switched to the measurement value of the first temperature sensor, the target temperature is switched to the second target temperature, and the control gain is switched to the second control gain. When it is determined that the temperature control object is not placed on the apparatus, the temperature measurement value is set to the measurement value of the second temperature sensor, and the target temperature is set to be lower than the second target temperature. The control gain is switched to a first control gain smaller than the second control gain at a target temperature of 1, respectively .

請求項1の温度制御装置に係る発明によれば、温度制御対象物の載置状態の判定結果に応じて、制御指令の生成に用いる制御ゲインおよび目標温度を切り換えるため、温度制御対象物が未載置の場合には、自然対流の影響を考慮して設定されている値を用いることができる。これにより、温度制御対象物が未載置の状態で、温度センサの測定値が自然対流の影響を受けて変動および低下するような場合であっても、温調装置に対する制御指令の変動を防ぎ、かつ、温度制御対象物の載置後に温調装置を適切な温度に維持することができる。これより、温度制御対象物の載置後の整定時間を安定させることができる。   According to the invention relating to the temperature control device of claim 1, since the control gain and the target temperature used for generating the control command are switched according to the determination result of the mounting state of the temperature control object, the temperature control object is not In the case of mounting, a value set in consideration of the influence of natural convection can be used. This prevents fluctuations in the control command for the temperature control device even when the temperature control object is not placed and the measured value of the temperature sensor fluctuates and falls under the influence of natural convection. And after a temperature control target object is mounted, a temperature control apparatus can be maintained at appropriate temperature. Thus, the settling time after placing the temperature control object can be stabilized.

請求項2の温度制御装置に係る発明によれば、温度制御対象物の載置状態の判定結果に応じて、制御指令の生成に用いる温度測定値を第1の温度センサの測定値および前記第2の温度センサの測定値間で切り換えるため、温度制御対象物が未載置の場合には、温度測定値が変動しづらい方の測定値を制御指令の生成に用いる温度測定値として用いることができる。これにより、温度制御対象物の温度を調節する温調装置への制御指令の変動を防ぐことができ、温度制御対象物の載置後の整定時間を安定させることができる。   According to the invention relating to the temperature control device of claim 2, the temperature measurement value used for generation of the control command is determined based on the measurement result of the first temperature sensor and the In order to switch between the measured values of the two temperature sensors, when the temperature control object is not placed, the measured value that is difficult to change is used as the measured temperature value used for generating the control command. it can. Thereby, the fluctuation | variation of the control command to the temperature control apparatus which adjusts the temperature of a temperature control target object can be prevented, and the settling time after mounting of a temperature control target object can be stabilized.

請求項3の温度制御装置に係る発明によれば、温度制御対象物の載置状態の判定結果に応じて、制御指令の生成に用いる温度測定値を第1の温度センサの測定値および前記第2の温度センサの測定値間で切り換え、また、前記制御指令の生成に用いる制御ゲインおよび目標温度を切り換える。このため、温度制御対象物が未載置の場合には、温度測定値が変動しづらい方の測定値を制御指令の生成に用いる温度測定値として用いることができるとともに、制御指令の変動を抑制する制御ゲインを用いることができる。これにより、温度制御対象物の温度を調節する温調装置への制御指令の変動を効果的に防ぐことができ、温度制御対象物の載置後の整定時間を安定させることができる。   According to the invention relating to the temperature control apparatus of claim 3, the temperature measurement value used for generation of the control command is determined based on the measurement result of the first temperature sensor and the It switches between the measured values of the two temperature sensors, and switches the control gain and target temperature used to generate the control command. For this reason, when the temperature control object is not placed, the measured value that is difficult to change the temperature measurement value can be used as the temperature measurement value used for generating the control command, and the control command fluctuation can be suppressed. A control gain can be used. Thereby, the fluctuation | variation of the control command to the temperature control apparatus which adjusts the temperature of a temperature control target object can be prevented effectively, and the settling time after mounting of a temperature control target object can be stabilized.

請求項4ないし請求項6のいずれかに記載の温度制御方法に係る発明によれば、それぞれ請求項1、請求項2、および請求項3の温度制御装置に係る発明と同様の効果を奏する温度制御方法が得られる。   According to the invention related to the temperature control method according to any one of claims 4 to 6, the temperatures having the same effects as those of the invention related to the temperature control device according to claim 1, claim 2, and claim 3, respectively. A control method is obtained.

本発明の第1実施形態に係る温度制御装置の全体構成を示す模式図。The schematic diagram which shows the whole structure of the temperature control apparatus which concerns on 1st Embodiment of this invention. 前記第1実施形態に係るホットプレートの断面図。Sectional drawing of the hotplate which concerns on the said 1st Embodiment. 前記第1実施形態に係るホットプレート上にウェハが載置されている状態を拡大して示す断面図。Sectional drawing which expands and shows the state by which the wafer is mounted on the hot plate which concerns on the said 1st Embodiment. 前記第1実施形態に係る温度センサを示す斜視図。The perspective view which shows the temperature sensor which concerns on the said 1st Embodiment. 前記第1実施形態に係る温度センサの感温部を示す平面図。The top view which shows the temperature sensing part of the temperature sensor which concerns on the said 1st Embodiment. 前記第1実施形態に係る温度センサを図5のVI−VI線で断面して示す図。The figure which shows the temperature sensor which concerns on the said 1st Embodiment in the cross section by the VI-VI line of FIG. 前記第1実施形態に係る温度センサの製造方法を示す図。The figure which shows the manufacturing method of the temperature sensor which concerns on the said 1st Embodiment. 前記第1実施形態に係るコントローラの制御ブロック図。The control block diagram of the controller which concerns on the said 1st Embodiment. 前記第1実施形態の制御フローを示すフローチャート。The flowchart which shows the control flow of the said 1st Embodiment. 本発明の第2実施形態に係る温度センサを断面して示す図。The figure which shows the temperature sensor which concerns on 2nd Embodiment of this invention in cross section. 本発明の第3実施形態に係る温度センサを断面して示す図。The figure which shows the temperature sensor which concerns on 3rd Embodiment of this invention in cross section. 本発明の第4実施形態に係るホットプレートの断面図。Sectional drawing of the hotplate which concerns on 4th Embodiment of this invention. 前記第4実施形態に係るコントローラの制御ブロック図。The control block diagram of the controller which concerns on the said 4th Embodiment. 前記第4実施形態の制御フローを示すフローチャート。The flowchart which shows the control flow of the said 4th Embodiment. 本発明の第5実施形態に係るコントローラの制御ブロック図。The control block diagram of the controller which concerns on 5th Embodiment of this invention. 従来のホットプレートの断面図。Sectional drawing of the conventional hot plate.

以下に本発明の各実施形態を、図面に基づいて説明する。なお、後述する第2実施形態以降において、次説する第1実施形態と同一の構成部分には同じ符合を付すとともに、その説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the second and later embodiments to be described later, the same components as those in the first embodiment to be described below are denoted by the same reference numerals and the description thereof is omitted.

〔第1実施形態〕
〔1−1〕全体構成
本発明の第1実施形態に係る温度制御装置100の全体構成を示す図1において、温度制御装置100は、ホットプレート1(温調装置)、温度センサ10、ストロークセンサ20、およびコントローラ30を備えて構成される。
ホットプレート1は、加熱によりウェハ(被測定物、温度制御対象物)50の温度を調節する装置であり、加熱量を制御可能に構成されている。図示しない搬送用ロボットにより搬送されてきたウェハ50は、ホットプレート1を貫通した状態で昇降可能に設けられているリフトピン60の上に一旦載せられ、リフトピン60の下降により、ホットプレート1上に載置される。
[First Embodiment]
[1-1] Overall Configuration In FIG. 1 illustrating the overall configuration of the temperature control device 100 according to the first embodiment of the present invention, the temperature control device 100 includes a hot plate 1 (temperature control device), a temperature sensor 10, and a stroke sensor. 20 and a controller 30.
The hot plate 1 is a device that adjusts the temperature of the wafer (object to be measured, temperature control object) 50 by heating, and is configured to be able to control the amount of heating. A wafer 50 transferred by a transfer robot (not shown) is temporarily placed on lift pins 60 provided so as to be able to move up and down while penetrating the hot plate 1. Placed.

ホットプレート1の表面には温度センサ10が取り付けられており、リフトピン60の下降に伴い、下がってきたウェハ50の裏面に接触する。温度センサ10は、ウェハ50との接触により、ウェハ50の温度を測定する。なお、温度センサ10は、ホットプレート1の表面上に複数設けられているが、見易くするために、図1にはそのうちの1つのみが示されている。一方、リフトピン60の近傍にはストロークセンサ20が配置されており、リフトピン60の昇降方向のストロークを測定する。   A temperature sensor 10 is attached to the surface of the hot plate 1 and comes into contact with the back surface of the wafer 50 that has been lowered as the lift pins 60 are lowered. The temperature sensor 10 measures the temperature of the wafer 50 through contact with the wafer 50. Although a plurality of temperature sensors 10 are provided on the surface of the hot plate 1, only one of them is shown in FIG. 1 for easy viewing. On the other hand, the stroke sensor 20 is disposed in the vicinity of the lift pin 60 and measures the stroke of the lift pin 60 in the up-and-down direction.

温度センサ10およびストロークセンサ20の測定値はコントローラ30に向けて出力され、これらの測定値に基づいて、コントローラ30は、ウェハ50の温度を制御するための制御指令を生成する。そして、ホットプレート1は、コントローラ30からの制御指令に基づき、ウェハ50に対する加熱量を調節する。   Measurement values of the temperature sensor 10 and the stroke sensor 20 are output to the controller 30, and the controller 30 generates a control command for controlling the temperature of the wafer 50 based on these measurement values. The hot plate 1 adjusts the amount of heating for the wafer 50 based on a control command from the controller 30.

〔1−2〕ホットプレートの構成
図2において、ホットプレート1は、ケース2、ヒータ3、プレート本体4、支持ピン5、および温度センサ10を備えて構成される。
[1-2] Configuration of Hot Plate In FIG. 2, the hot plate 1 includes a case 2, a heater 3, a plate body 4, support pins 5, and a temperature sensor 10.

平面円形状のケース2全体に設けられた凹状部分には、帯形で平面円弧状に分割された複数のヒータ3が同心円状に配置され、ヒータ3を覆ってプレート本体4がケース2に固定されている。これらヒータ3およびプレート本体4によってホットプレート1の加熱部4Aが構成され、プレート本体4を介したヒータ3の放熱により、ウェハ50を加熱する。
図3に示すように、プレート本体4の表面には、すなわちプレート本体4のウェハ50を載置する側の面には、支持ピン5を取り付けるための支持ピン取付穴6および温度センサ10を取り付けるためのセンサ取付穴7が、それぞれ適宜な位置に複数形成されている。
A plurality of heaters 3 that are strip-shaped and divided into planar arcs are concentrically arranged in a concave portion provided on the entire planar circular case 2, and the plate body 4 is fixed to the case 2 so as to cover the heater 3. Has been. The heater 3 and the plate body 4 constitute a heating unit 4A of the hot plate 1, and the wafer 50 is heated by heat radiation of the heater 3 via the plate body 4.
As shown in FIG. 3, a support pin mounting hole 6 and a temperature sensor 10 for mounting the support pins 5 are mounted on the surface of the plate body 4, that is, the surface of the plate body 4 on the side where the wafer 50 is placed. A plurality of sensor mounting holes 7 are formed at appropriate positions.

図3において、支持ピン5は、支持ピン取付穴6に取り付けられた状態でのプレート本体4の表面からの高さ寸法H1が約0.1mmであり、この支持ピン5の上にウェハ50が載置される。つまり、支持ピン5は、プレート本体4との間に0.1mm程度の隙間を保ってウェハ50を支持しており、これによってウェハ50の裏面の汚染を防止するとともに、ウェハ50の温度分布の均一化にも貢献する。この高さ寸法H1は、一般に0.05〜0.15mmに設定される。   In FIG. 3, the support pin 5 has a height dimension H <b> 1 from the surface of the plate body 4 in the state of being attached to the support pin attachment hole 6 of about 0.1 mm, and the wafer 50 is placed on the support pin 5. Placed. That is, the support pins 5 support the wafer 50 with a gap of about 0.1 mm between it and the plate body 4, thereby preventing contamination of the back surface of the wafer 50 and the temperature distribution of the wafer 50. Contributes to uniformity. This height dimension H1 is generally set to 0.05 to 0.15 mm.

温度センサ10は、具体的な構造については後で説明するが、センサ取付穴7に取り付けられ、ウェハ50が未載置の状態で、プレート本体4の表面からの高さ寸法H2が約0.15mmに設定されている。すなわち、プレート本体4の表面からの温度センサ10の高さ寸法H2は、プレート本体4の表面からの支持ピン5の高さ寸法H1よりも高く設定されている。このため、ホットプレート1上にウェハ50を載置した際に、温度センサ10がウェハ50の裏面に確実に接触してウェハ50の温度を測定することができる。なお、センサ取付穴7の径が大きいと、特に過渡状態でのウェハ50の面内温度分布の均一性に影響を与えてしまうため、センサ取付穴7の直径はできる限り小さいほうが良く、例えば、本実施形態では1mm程度としている。   Although the specific structure of the temperature sensor 10 will be described later, the temperature sensor 10 is attached to the sensor attachment hole 7 and the height dimension H2 from the surface of the plate body 4 is about 0. It is set to 15 mm. That is, the height dimension H <b> 2 of the temperature sensor 10 from the surface of the plate body 4 is set higher than the height dimension H <b> 1 of the support pin 5 from the surface of the plate body 4. For this reason, when the wafer 50 is placed on the hot plate 1, the temperature sensor 10 can reliably contact the back surface of the wafer 50 and measure the temperature of the wafer 50. Note that if the diameter of the sensor mounting hole 7 is large, the uniformity of the in-plane temperature distribution of the wafer 50 particularly in a transient state is affected. Therefore, the diameter of the sensor mounting hole 7 should be as small as possible. In this embodiment, it is about 1 mm.

このような構成のホットプレート1は、ヒータ3に流れる電流値をそれぞれ独立して制御することで、ホットプレート1上に載置されているウェハ50の温度を制御することができる。また、ウェハ50の裏面に接触する温度センサ10の測定により、実処理中のウェハ50の温度をリアルタイムでその場(In-Situ)計測できる。従って、温度センサ10の測定値を用いてヒータ3に流す電流を制御することで、実処理中のウェハ50の温度を高い精度で目標温度に保つことができる。   The hot plate 1 having such a configuration can control the temperature of the wafer 50 placed on the hot plate 1 by independently controlling the current value flowing through the heater 3. Further, the temperature of the wafer 50 during actual processing can be measured in real time (in-situ) by measuring the temperature sensor 10 that contacts the back surface of the wafer 50. Therefore, by controlling the current flowing through the heater 3 using the measurement value of the temperature sensor 10, the temperature of the wafer 50 during actual processing can be maintained at the target temperature with high accuracy.

〔1−3〕温度センサの構成
図4に示すように、温度センサ10は、温度を測定するための感温部11、感温部11を支持する支持部12、および支持部12を介して感温部11を付勢するベローズ13(付勢部材)を備えて構成される。すなわち、温度センサ10は、感温部11、支持部12、およびベローズ13の3層構造となっている。
[1-3] Configuration of Temperature Sensor As shown in FIG. 4, the temperature sensor 10 includes a temperature sensing unit 11 for measuring temperature, a support unit 12 that supports the temperature sensing unit 11, and a support unit 12. A bellows 13 (biasing member) for urging the temperature sensing unit 11 is provided. That is, the temperature sensor 10 has a three-layer structure including a temperature sensing part 11, a support part 12, and a bellows 13.

感温部11は、図5および図6に示すように、表面積が1mm以下の平面状の白金測温抵抗体であり、層状の表面部111およびパターン形成部112を備えて構成される。
このうち、表面部111は、シリコン基板がダイカットされたもので、ウェハ50に接触する研磨されたウェハ接触面(接触面)111Aを有している。ここで、温度センサ10の測定精度は、感温部11の表面部111およびウェハ50の裏面間の接触熱抵抗に依存する。この接触熱抵抗は、ウェハ50の自重が非常に軽く、また、ウェハ50および表面部111の表面硬度が非常に硬いため、表面部111の表面粗さに依存し、ウェハ50との接触圧力には依存しない。従って、温度センサ10の測定精度はウェハ接触面111Aの表面粗さに依存することになるため、ウェハ接触面111Aの表面は十分に研磨される必要がある。一方、ウェハ50との接触圧力の制御は不要であり、表面部111がウェハ50に接触してさえいればよい。
As shown in FIGS. 5 and 6, the temperature sensing unit 11 is a planar platinum resistance thermometer having a surface area of 1 mm 2 or less, and includes a layered surface portion 111 and a pattern forming portion 112.
Of these, the surface portion 111 is obtained by die-cutting a silicon substrate, and has a polished wafer contact surface (contact surface) 111 </ b> A that contacts the wafer 50. Here, the measurement accuracy of the temperature sensor 10 depends on the contact thermal resistance between the front surface portion 111 of the temperature sensitive portion 11 and the back surface of the wafer 50. The contact thermal resistance depends on the surface roughness of the surface portion 111 and depends on the contact pressure with the wafer 50 because the weight of the wafer 50 is very light and the surface hardness of the wafer 50 and the surface portion 111 is very hard. Is not dependent. Therefore, since the measurement accuracy of the temperature sensor 10 depends on the surface roughness of the wafer contact surface 111A, the surface of the wafer contact surface 111A needs to be sufficiently polished. On the other hand, the control of the contact pressure with the wafer 50 is unnecessary, and it is only necessary that the surface portion 111 is in contact with the wafer 50.

パターン形成部112は、電気絶縁膜112Aおよび電気絶縁膜112A内に形成された白金パターン112Bを備えている。なお、図5は、感温部11を示す平面図であるが、白金パターン112Bについては、見易くするために実線で示してある。電気絶縁膜112Aは、五酸化タンタル(TaO)で成膜され、接着剤としての機能を兼ねている。そして、パターン形成部112の表面部111とは反対側の面には、4隅に穴112Cが設けられ、この穴112Cによって露出した白金部分に絶縁被膜されたワイヤ(導線)14がボンディングされている。 The pattern forming unit 112 includes an electric insulating film 112A and a platinum pattern 112B formed in the electric insulating film 112A. FIG. 5 is a plan view showing the temperature sensing unit 11, but the platinum pattern 112B is shown by a solid line for easy viewing. The electric insulating film 112A is formed of tantalum pentoxide (Ta 2 O 5 ) and also functions as an adhesive. Then, holes 112C are provided at the four corners on the surface opposite to the surface portion 111 of the pattern forming portion 112, and a wire (conductive wire) 14 with an insulating coating is bonded to the platinum portion exposed through the holes 112C. Yes.

このような構成の感温部11では、表面部111を構成するシリコンの熱伝導率が168W/mKと高く、ウェハ50の熱が表面部111内を伝わり易いため、ウェハ50の熱がパターン形成部112に効率良く伝達される。なお、感温部11にボンディングされている非常に小さな直径のワイヤ14からの伝熱は、感温部11からの伝熱に比べ十分に小さいため、ワイヤ14からの伝熱は温度センサ10の測定精度に影響を与えるほどのものではなく、無視することができる。   In the temperature sensing portion 11 having such a configuration, the heat conductivity of silicon constituting the surface portion 111 is as high as 168 W / mK, and the heat of the wafer 50 is easily transmitted through the surface portion 111, so that the heat of the wafer 50 forms a pattern. It is efficiently transmitted to the unit 112. The heat transfer from the wire 14 having a very small diameter bonded to the temperature sensing unit 11 is sufficiently smaller than the heat transfer from the temperature sensing unit 11. It does not affect measurement accuracy and can be ignored.

支持部12は、感温部11およびベローズ13間に設けられて感温部11を支持する部分であり、補強部121および断熱部122を備えて構成される。
このうち、補強部121は、感温部11の強度を補強するための薄膜で、熱伝導率の小さい二酸化珪素(SiO)を用いて形成されている。そして、補強部121の4隅には、感温部11のパターン形成部112に設けられた穴112Cに対応する位置に、パターン形成部112から断熱部122に向かって貫通する貫通孔121Aが形成されている。
The support part 12 is a part that is provided between the temperature sensing part 11 and the bellows 13 and supports the temperature sensing part 11, and includes a reinforcing part 121 and a heat insulating part 122.
Among these, the reinforcement part 121 is a thin film for reinforcing the strength of the temperature-sensitive part 11, and is formed using silicon dioxide (SiO 2 ) having a low thermal conductivity. At the four corners of the reinforcing part 121, through holes 121A that penetrate from the pattern forming part 112 toward the heat insulating part 122 are formed at positions corresponding to the holes 112C provided in the pattern forming part 112 of the temperature sensing part 11. Has been.

断熱部122は、断熱層を形成する部分であり、熱伝導率の小さい樹脂を用いて角筒状に形成されている。断熱部122の4隅には、内側に向けて厚肉とされた厚肉部122Aが形成され、補強部121の貫通孔121Aに対応する位置には、補強部121からベローズ13に向かって貫通する貫通孔122Bが形成されている。そして、この断熱部122および補強部121によって、感温部11に対応した部分の一部に空間Sが形成され、当該空間S内の空気によって、感温部11の下側に空気層が形成される。   The heat insulation part 122 is a part which forms a heat insulation layer, and is formed in the square cylinder shape using resin with small heat conductivity. At the four corners of the heat insulating portion 122, thick portions 122A that are thicker toward the inside are formed, and the reinforcing portions 121 are penetrated from the reinforcing portion 121 toward the bellows 13 at positions corresponding to the through holes 121A. A through-hole 122B is formed. The heat insulating part 122 and the reinforcing part 121 form a space S in a part corresponding to the temperature sensitive part 11, and an air layer is formed below the temperature sensitive part 11 by the air in the space S. Is done.

このような構成の支持部12は、前述のように、主に熱伝導率の小さい樹脂で形成されており、補強部121および断熱部122で形成される空間S内の空気とともに、支持部12の熱伝導率の低下に貢献する。その結果、空間S内の空気を含む支持部12の熱伝導率が、空気の熱伝導率に近付き、断熱層を形成する。このため、感温部11およびベローズ13間が良好に断熱されるようになる。   As described above, the support portion 12 having such a configuration is mainly formed of a resin having a low thermal conductivity, and together with the air in the space S formed by the reinforcing portion 121 and the heat insulating portion 122, the support portion 12. This contributes to a decrease in thermal conductivity. As a result, the thermal conductivity of the support part 12 including the air in the space S approaches the thermal conductivity of the air and forms a heat insulating layer. For this reason, between the temperature sensing part 11 and the bellows 13 comes to be thermally insulated favorably.

また、これら感温部11および支持部12において、感温部11の穴112Cと、支持部12の貫通孔121Aおよび貫通孔122Bとはそれぞれ一直線上に設けられ、ワイヤ挿通穴15を構成する。そして、感温部11においてパターン形成部112の白金パターン112Bにボンディングされたワイヤ14は、このワイヤ挿通穴15の中を通って、ベローズ13側に引き出されている。このように、ワイヤ挿通穴15を構成する穴112C、貫通孔121A、および貫通孔122Bを、感温部11および支持部12の4隅に形成することで、感温部11におけるワイヤ14の集中およびこれに伴う熱の集中を防いでいる。   Further, in the temperature sensing part 11 and the support part 12, the hole 112 </ b> C of the temperature sensing part 11 and the through hole 121 </ b> A and the through hole 122 </ b> B of the support part 12 are respectively provided in a straight line, and constitute the wire insertion hole 15. The wire 14 bonded to the platinum pattern 112B of the pattern forming unit 112 in the temperature sensing unit 11 passes through the wire insertion hole 15 and is drawn out to the bellows 13 side. As described above, the holes 112C, the through holes 121A, and the through holes 122B that form the wire insertion holes 15 are formed at the four corners of the temperature sensing unit 11 and the support unit 12, thereby concentrating the wires 14 in the temperature sensing unit 11. And the concentration of heat accompanying this is prevented.

ベローズ13は、金属製のマイクロベローズであり、伸縮方向の一端側には支持部12が取り付けられ、他端側はセンサ取付穴7の底面に固定されている。具体的に、ベローズ13の伸縮方向の一端側には上面部131が設けられ、上面部131にはベローズ13の内外を貫通する貫通孔132が形成されている。支持部12は、貫通孔132を覆って上面部131に取り付けられており、感温部11からワイヤ挿通穴15を通ってベローズ13側に引き出されたワイヤ14は、貫通孔132およびベローズ13の内部を通って外部に導かれている。   The bellows 13 is a metal micro bellows, and the support portion 12 is attached to one end side in the expansion / contraction direction, and the other end side is fixed to the bottom surface of the sensor attachment hole 7. Specifically, an upper surface portion 131 is provided on one end side in the expansion / contraction direction of the bellows 13, and a through hole 132 that penetrates the inside and outside of the bellows 13 is formed in the upper surface portion 131. The support portion 12 covers the through hole 132 and is attached to the upper surface portion 131, and the wire 14 drawn from the temperature sensing portion 11 through the wire insertion hole 15 to the bellows 13 side passes through the through hole 132 and the bellows 13. It is guided to the outside through the inside.

なお、ベローズ13のばね定数は、ホットプレート1上にウェハ50を載置した際に、ホットプレート1表面からのウェハ接触面111Aの高さが、ウェハ50の自重に応じて0.05〜0.15mmになるように設定されている。
また、前述のように、温度センサ10の測定精度は感温部11のウェハ接触面111Aの表面粗さにのみ依存するため、感温部11がウェハ50に接触してさえいれば、測定温度は圧力には依存しない。このため、感温部11のウェハ接触面111Aに作用する押圧力を制御する必要はなく、このための押圧力制御機構を設ける必要はない。
The spring constant of the bellows 13 is such that when the wafer 50 is placed on the hot plate 1, the height of the wafer contact surface 111 A from the surface of the hot plate 1 is 0.05 to 0 depending on the weight of the wafer 50. It is set to be 15 mm.
Further, as described above, since the measurement accuracy of the temperature sensor 10 depends only on the surface roughness of the wafer contact surface 111A of the temperature sensing unit 11, the measurement temperature is only required if the temperature sensing unit 11 is in contact with the wafer 50. Is independent of pressure. For this reason, it is not necessary to control the pressing force acting on the wafer contact surface 111A of the temperature sensing unit 11, and it is not necessary to provide a pressing force control mechanism for this purpose.

次に、温度センサ10の製造方法について、その中でも特に感温部11および支持部12の製造方法について説明する。
温度センサ10は、その大きさが前述のようにマイクロオーダーと非常に小さいため、MEMS(Micro Electro Mechanical Systems)技術を利用して製造される。
Next, the manufacturing method of the temperature sensor 10 will be described, particularly the manufacturing method of the temperature sensing part 11 and the support part 12 among them.
Since the size of the temperature sensor 10 is as small as the micro order as described above, the temperature sensor 10 is manufactured using MEMS (Micro Electro Mechanical Systems) technology.

先ず、図7(A)に示すように、シリコン基板70の表面を研磨して200μm厚とした後、シリコン基板70の研磨面に、五酸化タンタルで厚さ500nmの電気絶縁膜112Aを形成する。
次に、図7(B)に示すように、電気絶縁膜112Aの上に、スパッタリングおよびエッチングを施して450nm厚の白金パターン112Bを形成し、図7(C)に示すように、さらにこの上に五酸化タンタルで厚さ150nmの電気絶縁膜112Aを成膜する。この時点で、電気絶縁膜112Aおよび白金パターン112Bによりパターン形成部112が形成される。また、ここまでの工程で、感温部11に相当する部分が形成される。
First, as shown in FIG. 7A, after the surface of the silicon substrate 70 is polished to a thickness of 200 μm, an electric insulating film 112A having a thickness of 500 nm is formed of tantalum pentoxide on the polished surface of the silicon substrate 70. .
Next, as shown in FIG. 7B, sputtering and etching are performed on the electrical insulating film 112A to form a platinum pattern 112B having a thickness of 450 nm. Further, as shown in FIG. Then, an electric insulating film 112A having a thickness of 150 nm is formed from tantalum pentoxide. At this point, the pattern forming portion 112 is formed by the electrical insulating film 112A and the platinum pattern 112B. Moreover, the part corresponded to the temperature sensing part 11 is formed in the process so far.

その後、図7(D)に示すように、電気絶縁膜112Aの上に10μm厚の二酸化珪素膜を成膜して補強部121を形成するとともに、ドライエッチングを施して、パターン形成部112および補強部121の4隅に、穴112Cおよび貫通孔121Aをそれぞれ形成する。
次に、図7(E)に示すように、補強部121の上に樹脂のレジスト剤により数10μm〜数100μmの厚膜を形成した後、エッチングを施して、厚肉部122Aを含む断熱部122の角筒部分と、補強部121の貫通孔121Aに連通する貫通孔122Bとを形成する。これにより断熱部122が形成され、既に形成されている補強部121と合わせて、空間Sを有する支持部12が形成される。また、パターン形成部112の穴112C、補強部121の貫通孔121A、および断熱部122の貫通孔122Bによって、ワイヤ挿通穴15が設けられる。この時点で、シリコン基板70は、ダイシングによりハーフカットされる。
Thereafter, as shown in FIG. 7D, a 10 μm-thick silicon dioxide film is formed on the electrical insulating film 112A to form the reinforcing portion 121, and dry etching is performed to form the pattern forming portion 112 and the reinforcing portion. At the four corners of the part 121, holes 112C and through holes 121A are formed, respectively.
Next, as shown in FIG. 7 (E), after forming a thick film of several tens of μm to several hundreds of μm with a resin resist agent on the reinforcing part 121, the insulating part including the thick part 122A is etched. A rectangular tube portion 122 and a through hole 122B communicating with the through hole 121A of the reinforcing portion 121 are formed. Thereby, the heat insulation part 122 is formed, and the support part 12 which has the space S is formed together with the already formed reinforcing part 121. Further, the wire insertion hole 15 is provided by the hole 112 </ b> C of the pattern forming part 112, the through hole 121 </ b> A of the reinforcing part 121, and the through hole 122 </ b> B of the heat insulating part 122. At this point, the silicon substrate 70 is half cut by dicing.

その後、図7(F)に示すように、シリコン基板70の表面を研磨して10μm以下の厚さとし、この研磨によってシリコン基板70のダイシングを完了させる。このダイシングの完了により、シリコン基板70が表面部111となり、これにより感温部11の形成工程が終了する。そして、図6に示すように、ワイヤ挿通穴15にワイヤ14を挿通して白金パターン112Bにボンディングし、最後に、支持部12を感温部11ごとベローズ13に取り付けて、温度センサ10の製造が完了する。   Thereafter, as shown in FIG. 7F, the surface of the silicon substrate 70 is polished to a thickness of 10 μm or less, and the dicing of the silicon substrate 70 is completed by this polishing. Upon completion of this dicing, the silicon substrate 70 becomes the surface portion 111, thereby completing the process of forming the temperature sensitive portion 11. Then, as shown in FIG. 6, the wire 14 is inserted into the wire insertion hole 15 and bonded to the platinum pattern 112 </ b> B. Finally, the support portion 12 is attached to the bellows 13 together with the temperature sensing portion 11 to manufacture the temperature sensor 10. Is completed.

以上のような構成の温度センサ10は、感温部11が白金測温抵抗体として形成されているため、定電流の印加やブリッジ回路によって電気抵抗を測定し、電気抵抗と温度との関係を用いることで、温度を測定することができる。   In the temperature sensor 10 configured as described above, since the temperature sensing part 11 is formed as a platinum resistance thermometer, the electrical resistance is measured by applying a constant current or a bridge circuit, and the relationship between the electrical resistance and temperature is measured. By using it, the temperature can be measured.

温度センサ10によれば、被測定物の接触面とは反対側から感温部11を支持する支持部12が、感温部11に対応した部分の一部に空間を有しているため、当該空間内の空気が、支持部12に空気層を形成する。このため、支持部12の熱伝導率を低くすることができ、空気に近い熱伝導率を有する断熱層として支持部12を機能させることができる。従って、被測定物の熱が支持部12に流れ出ることを防ぐことができ、これによって十分な測定精度を確保できる。   According to the temperature sensor 10, since the support part 12 that supports the temperature sensing part 11 from the side opposite to the contact surface of the object to be measured has a space in a part corresponding to the temperature sensing part 11, The air in the space forms an air layer on the support portion 12. For this reason, the heat conductivity of the support part 12 can be made low, and the support part 12 can be functioned as a heat insulation layer which has a heat conductivity close to air. Therefore, it is possible to prevent the heat of the object to be measured from flowing out to the support portion 12, thereby ensuring sufficient measurement accuracy.

また、支持部12が熱伝導率の低い樹脂またはガラスで形成されているため、支持部12の熱伝導率をさらに低下させることができる。これにより、支持部12の熱伝導率を空気の熱伝導率に近付けることができ、断熱層としての機能をより効果的に発揮することができる。従って、被測定物の温度に対する測定精度を、一段と高められる。   Moreover, since the support part 12 is formed with resin or glass with low heat conductivity, the heat conductivity of the support part 12 can further be reduced. Thereby, the heat conductivity of the support part 12 can be brought close to the heat conductivity of air, and the function as a heat insulation layer can be exhibited more effectively. Therefore, the measurement accuracy with respect to the temperature of the object to be measured can be further improved.

また、感温部11を被測定物側に付勢する付勢部材を備えているため、付勢部材の弾性力により、被測定物の自重に反して感温部11を被測定物側に付勢することができる。従って、反り返りの程度が被測定物ごとに異なる場合であっても、感温部11を被測定物に追従させて、被測定物に確実に接触させることができる。   Moreover, since the urging member for urging the temperature sensing part 11 toward the object to be measured is provided, the temperature sensing part 11 is moved toward the object to be measured against the weight of the object to be measured by the elastic force of the urging member. Can be energized. Therefore, even if the degree of warping differs for each object to be measured, the temperature sensing part 11 can be made to follow the object to be measured and reliably contact the object to be measured.

また、支持部12が感温部11および付勢部材間に設けられているため、支持部12が、感温部11および付勢部材間を断熱する断熱層として機能する。このため、付勢部材の熱が感温部11に伝わるのが防止され、感温部11での温度測定に影響を与えるのを防ぐことができる。これにより、付勢部材の熱が感温部11に伝わるのを防ぐことができ、測定精度を一層高めることができる。   Moreover, since the support part 12 is provided between the temperature sensing part 11 and the urging member, the support part 12 functions as a heat insulating layer that insulates between the temperature sensing part 11 and the urging member. For this reason, it is possible to prevent the heat of the urging member from being transmitted to the temperature sensing unit 11 and to prevent the temperature measurement in the temperature sensing unit 11 from being affected. Thereby, it is possible to prevent the heat of the urging member from being transmitted to the temperature sensing unit 11, and the measurement accuracy can be further enhanced.

また、付勢部材がベローズ13であるため、付勢部材の構造を簡単にすることができる。このため、簡単な構成で感温部11を被測定物に確実に接触させることができる。   Moreover, since the urging member is the bellows 13, the structure of the urging member can be simplified. For this reason, the temperature sensing part 11 can be reliably brought into contact with the object to be measured with a simple configuration.

また、導線が、感温部11に対して接触面とは反対側で接続されているため、ウェハとの接触の際に、導線がウェハと接触することがない。このため、導線がウェハと接触して測定温度に誤差が生じるのを防ぐことができる。   Moreover, since the conducting wire is connected to the temperature sensing portion 11 on the side opposite to the contact surface, the conducting wire does not come into contact with the wafer when contacting the wafer. For this reason, it can prevent that a conducting wire contacts with a wafer and an error arises in measurement temperature.

また、被測定物の接触面とは反対側から感温部11を支持する支持部12と、感温部11を付勢する付勢部材の端面部とにより、感温部11に対応した部分の一部に空間が形成されるため、当該空間内の空気が支持部12に空気層を形成することになる。これにより、支持部12の熱伝導率を低下させ、空気に近い熱伝導率を有する断熱層として機能させることができる。従って、被測定物の熱が支持部12に流れ出ることを防ぐとともに、付勢部材側からの熱が感温部11に伝わるのを防止することができ、これにより十分な測定精度を確保できる。   Further, a portion corresponding to the temperature sensing portion 11 by the support portion 12 that supports the temperature sensing portion 11 from the side opposite to the contact surface of the object to be measured and the end face portion of the biasing member that biases the temperature sensing portion 11. Since a space is formed in a part of the air, air in the space forms an air layer on the support portion 12. Thereby, the heat conductivity of the support part 12 can be reduced and it can be made to function as a heat insulation layer which has a heat conductivity close to air. Therefore, it is possible to prevent the heat of the object to be measured from flowing out to the support part 12 and to prevent the heat from the biasing member side from being transmitted to the temperature sensing part 11, thereby ensuring sufficient measurement accuracy.

また、被測定物を載置するためのプレート本体4に、前述した本発明の温度センサ10が設けられているため、被測定物の温度調節中も被測定物の温度をリアルタイムで測定することができる。従って、この温度センサ10の測定値を用いることで温調装置の制御が正確にでき、これにより被測定物の温度調節を高い精度で行うことができる。   Further, since the above-described temperature sensor 10 of the present invention is provided on the plate body 4 for placing the object to be measured, the temperature of the object to be measured can be measured in real time even during temperature adjustment of the object to be measured. Can do. Therefore, by using the measured value of the temperature sensor 10, the temperature controller can be accurately controlled, and the temperature of the object to be measured can be adjusted with high accuracy.

〔1−4〕コントローラの制御構造
次に、図8を参照して、コントローラ30による温度制御の制御構造について説明する。
図8において、コントローラ30は、ウェハ50の温度を制御する制御手段として構成され、コントローラ30の入力側には、温度センサ10およびストロークセンサ20が電気的に接続されている。
[1-4] Control Structure of Controller Next, a control structure of temperature control by the controller 30 will be described with reference to FIG.
In FIG. 8, the controller 30 is configured as control means for controlling the temperature of the wafer 50, and the temperature sensor 10 and the stroke sensor 20 are electrically connected to the input side of the controller 30.

一方、コントローラ30の出力側には、ホットプレート1内に設けられたヒータ3が電気的に接続されている。コントローラ30は、このヒータ3に流れる電流値をそれぞれ独立に制御することで、ヒータ3による加熱量を制御し、これによりウェハ50の温度を制御することができる。   On the other hand, the heater 3 provided in the hot plate 1 is electrically connected to the output side of the controller 30. The controller 30 controls the amount of heating by the heater 3 by independently controlling the value of the current flowing through the heater 3, thereby controlling the temperature of the wafer 50.

そして、コントローラ30は、載置状態判定手段31、目標温度記憶手段32、制御ゲイン記憶手段33、切換手段34、および制御指令生成手段35を備えて構成される。
載置状態判定手段31は、ストロークセンサ20の測定値に基づいて、ホットプレート1上のウェハ50の載置状態を判定する。すなわち、ストロークセンサ20の測定値から求まるリフトピン60の上端の位置が、ホットプレート1の支持ピン5の上端位置よりも下側にあれば、ウェハ50が載置されていると判定し、そうでない場合には、未載置状態にあると判定する。
The controller 30 includes a mounting state determination unit 31, a target temperature storage unit 32, a control gain storage unit 33, a switching unit 34, and a control command generation unit 35.
The mounting state determination unit 31 determines the mounting state of the wafer 50 on the hot plate 1 based on the measurement value of the stroke sensor 20. That is, if the position of the upper end of the lift pin 60 obtained from the measurement value of the stroke sensor 20 is below the upper end position of the support pin 5 of the hot plate 1, it is determined that the wafer 50 is placed; In the case, it is determined that the device is not placed.

目標温度記憶手段32は、制御指令の生成に用いる目標温度Tとして、複数の値を記憶している。すなわち、目標温度記憶手段32は、自然対流への対応に用いられる第1の目標温度T1と、ウェハ50の載置中に用いられる第2の目標温度T2とを記憶している。
第1の目標温度T1は、自然対流用の影響を回避するために設定され、ウェハ50が未載置の場合に用いられる。第1の目標温度T1の値は、ウェハ50の載置中に用いられる第2の目標温度T2の値よりも低く、温度センサ10の自然対流による測定温度の低下の影響を補償する値に設定されている。本補償がない場合には、ウェハ50が未載置のときに目標温度Tは第2の目標温度T2に設定されたまま、温度センサ10の測定温度が自然対流の影響により低下することから、ホットプレート1はヒータ3による加熱量を増加させるように制御される。この場合、プレート本体4の温度が目標温度Tよりもかなり高くなり、ウェハ50の載置後にウェハ50の温度がオーバーシュートしてしまう。一方、第2の目標温度T2は、実処理中のウェハ50の目標温度であり、ウェハ50の載置中に用いられる。
The target temperature storage means 32 stores a plurality of values as the target temperature T used for generating the control command. That is, the target temperature storage means 32 stores the first target temperature T1 used for dealing with natural convection and the second target temperature T2 used during the mounting of the wafer 50.
The first target temperature T1 is set to avoid the effect of natural convection, and is used when the wafer 50 is not placed. The value of the first target temperature T1 is set to a value that is lower than the value of the second target temperature T2 used during the mounting of the wafer 50 and compensates for the influence of the decrease in the measured temperature due to natural convection of the temperature sensor 10. Has been. In the absence of this compensation, the target temperature T remains set at the second target temperature T2 when the wafer 50 is not placed, and the measured temperature of the temperature sensor 10 decreases due to the effect of natural convection. The hot plate 1 is controlled to increase the amount of heating by the heater 3. In this case, the temperature of the plate body 4 becomes considerably higher than the target temperature T, and the temperature of the wafer 50 overshoots after the wafer 50 is placed. On the other hand, the second target temperature T2 is a target temperature of the wafer 50 being actually processed, and is used during the mounting of the wafer 50.

制御ゲイン記憶手段33は、制御指令の生成に用いる制御ゲインGとして、複数の値を記憶している。すなわち、制御ゲイン記憶手段33は、自然対流への対応に用いられる第1の制御ゲインG1と、ウェハ50の載置中に用いられる第2の制御ゲインG2および第3の制御ゲインG3とを記憶している。
第1の制御ゲインG1は、自然対流用の影響を回避するために設定され、ウェハ50が未載置の場合に用いられる。第1の制御ゲインG1の値は、ウェハ50の実処理中に用いられる第2、第3の制御ゲインG2,G3の値よりも小さく、温度センサ10の自然対流による測定温度の変動の影響を受けづらい値に設定されている。第2、第3の制御ゲインG2,G3は、ウェハ50の載置中に用いられ、第2の制御ゲインG2の方が第3の制御ゲインG3よりも大きな値に設定されている。
The control gain storage means 33 stores a plurality of values as the control gain G used for generating the control command. That is, the control gain storage means 33 stores the first control gain G1 used for dealing with natural convection, and the second control gain G2 and the third control gain G3 used during the mounting of the wafer 50. doing.
The first control gain G1 is set to avoid the effect of natural convection, and is used when the wafer 50 is not placed. The value of the first control gain G1 is smaller than the values of the second and third control gains G2 and G3 used during the actual processing of the wafer 50, and the influence of the variation in the measured temperature due to the natural convection of the temperature sensor 10 is affected. It is set to an unacceptable value. The second and third control gains G2 and G3 are used during the placement of the wafer 50, and the second control gain G2 is set to a larger value than the third control gain G3.

切換手段34は、先ず、載置状態判定手段31におけるウェハ50の載置状態の判定結果に応じて、制御ゲイン記憶手段33の記憶値から制御ゲインG1その他のうちのいずれかを選択するとともに、目標温度記憶手段32の記憶値から第1、第2の目標温度T1,T2のうちのいずれかを選択し、制御指令の生成に用いる制御ゲインGおよび目標温度Tとして切り換える。さらに、切換手段34は、ウェハ50が載置されていると判定された場合には、温度センサ10の測定値と制御指令の生成に用いる目標温度Tとの温度偏差eの値に応じて、制御ゲイン記憶手段33の記憶値から制御ゲインG2,G3のうちのいずれかを選択し、制御指令の生成に用いる制御ゲインGとして切り換える。   The switching unit 34 first selects one of the control gain G1 and others from the stored value of the control gain storage unit 33 according to the determination result of the mounting state of the wafer 50 in the mounting state determination unit 31. One of the first and second target temperatures T1 and T2 is selected from the stored value of the target temperature storage means 32, and is switched as the control gain G and the target temperature T used for generating the control command. Further, when it is determined that the wafer 50 is placed, the switching unit 34, depending on the value of the temperature deviation e between the measured value of the temperature sensor 10 and the target temperature T used for generating the control command, One of the control gains G2 and G3 is selected from the stored value of the control gain storage means 33, and is switched as the control gain G used for generating the control command.

制御指令生成手段35は、ヒータ3の制御指令を生成し、ホットプレート1に出力する。具体的に、制御指令生成手段35は、温度センサ10の測定値と制御指令の生成に用いる目標温度Tとの温度偏差eの値を用いて、PID(Proportional Integral Differential)制御を行う。ここでは、載置状態判定手段31の判定結果に応じて、切換手段34により選択および切り換えがなされた値が、制御指令の生成に用いる制御ゲインGとして用いられる。すなわち、制御指令生成手段35では、制御指令の生成に用いる制御ゲインGおよび目標温度Tが、状況に応じて切り換えられるゲインスケジュールド制御が実施される。   The control command generation unit 35 generates a control command for the heater 3 and outputs it to the hot plate 1. Specifically, the control command generation means 35 performs PID (Proportional Integral Differential) control using the value of the temperature deviation e between the measured value of the temperature sensor 10 and the target temperature T used for generation of the control command. Here, the value selected and switched by the switching unit 34 according to the determination result of the mounting state determination unit 31 is used as the control gain G used for generating the control command. That is, the control command generation means 35 performs gain scheduled control in which the control gain G and the target temperature T used for generating the control command are switched according to the situation.

〔1−5〕コントローラの作用
次に、図9に示されるフローチャートに基づき、コントローラ30の作用について説明する。
先ず、コントローラ30は、温度センサ10およびストロークセンサ20の測定値を読み込む(ステップS1)。
[1-5] Action of Controller Next, the action of the controller 30 will be described based on the flowchart shown in FIG.
First, the controller 30 reads the measured values of the temperature sensor 10 and the stroke sensor 20 (step S1).

次に、載置状態判定手段31は、ストロークセンサ20の測定値に基づいて、ホットプレート1上にウェハ50が載置されているか否かを判定する(ステップS2)。
ホットプレート1上にウェハ50が載置されていないと判定された場合に、切換手段34は、自然対流への対応に用いられる第1の制御ゲインG1および第1の目標温度T1を選択し、制御指令の生成に用いる制御ゲインGおよび目標温度Tとして切り換える(ステップS3)。そして、切換手段34は、温度センサ10の測定値と制御指令の生成に用いる目標温度Tとの温度偏差eを算出する(ステップS4)。
Next, the mounting state determination unit 31 determines whether or not the wafer 50 is mounted on the hot plate 1 based on the measurement value of the stroke sensor 20 (step S2).
When it is determined that the wafer 50 is not placed on the hot plate 1, the switching unit 34 selects the first control gain G 1 and the first target temperature T 1 that are used for dealing with natural convection, The control gain G and the target temperature T used to generate the control command are switched (step S3). Then, the switching unit 34 calculates a temperature deviation e between the measured value of the temperature sensor 10 and the target temperature T used for generating the control command (step S4).

一方、ホットプレート1上にウェハ50が載置されていると判定された場合に、切換手段34は、ウェハ50の目標温度である第2の目標温度T2を選択し、制御指令の生成に用いる目標温度Tとして切り換える(ステップS5)。その後、切換手段34は、温度センサ10の測定値と制御指令の生成に用いる目標温度Tとの温度偏差eを算出し(ステップS6)、この温度偏差eの絶対値が所定値より大きいか否か、つまり目標温度Tから温度センサ10の測定値を引いた値の絶対値が所定値より大きいか否かの判定を行う(ステップS7)。そして、切換手段34は、温度偏差eの絶対値が所定値より小さい場合には、制御指令の生成に用いる制御ゲインGとして第2の制御ゲインG2に切り換え(ステップS8)、大きい場合には、第3の制御ゲインG3に切り換える(ステップS9)。   On the other hand, when it is determined that the wafer 50 is placed on the hot plate 1, the switching unit 34 selects the second target temperature T <b> 2 that is the target temperature of the wafer 50 and uses it for generating a control command. The target temperature T is switched (step S5). Thereafter, the switching means 34 calculates a temperature deviation e between the measured value of the temperature sensor 10 and the target temperature T used for generating the control command (step S6), and whether or not the absolute value of the temperature deviation e is greater than a predetermined value. That is, it is determined whether or not the absolute value of the value obtained by subtracting the measured value of the temperature sensor 10 from the target temperature T is larger than a predetermined value (step S7). Then, the switching means 34 switches to the second control gain G2 as the control gain G used for generating the control command when the absolute value of the temperature deviation e is smaller than the predetermined value (step S8). Switching to the third control gain G3 (step S9).

そして、制御指令生成手段35は、切換手段34により切り換えがなされた制御ゲインGと、温度偏差eの値とを用いたPID制御により、ホットプレート1に対する制御指令を生成し、ホットプレート1に出力する(ステップS10)。   The control command generation unit 35 generates a control command for the hot plate 1 by PID control using the control gain G switched by the switching unit 34 and the value of the temperature deviation e, and outputs the control command to the hot plate 1. (Step S10).

〔第2実施形態〕
次に、図10に基づき、本発明の第2実施形態について説明する。
前述の第1実施形態では、温度センサ10の支持部12は、ベローズ13の上面部131に直接取り付けられていた。
これに対し、第2実施形態では、支持部12は、アダプタ16を介してベローズ13の上面部131に取り付けられている点が相違する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described based on FIG.
In the first embodiment described above, the support portion 12 of the temperature sensor 10 is directly attached to the upper surface portion 131 of the bellows 13.
On the other hand, in the second embodiment, the support portion 12 is different in that it is attached to the upper surface portion 131 of the bellows 13 via the adapter 16.

具体的に、本実施形態の温度センサ10は、図10に示すように、感温部11、支持部12、ベローズ13、およびアダプタ16を備えて構成される。このうちのベローズ13およびアダプタ16により本実施形態の付勢部材が構成され、ベローズ13の上面部131およびアダプタ16により付勢部材の端面部が構成される。   Specifically, as shown in FIG. 10, the temperature sensor 10 of the present embodiment includes a temperature sensing unit 11, a support unit 12, a bellows 13, and an adapter 16. The urging member of the present embodiment is configured by the bellows 13 and the adapter 16, and the end surface portion of the urging member is configured by the upper surface portion 131 of the bellows 13 and the adapter 16.

アダプタ16はセラミックス製であり、ベローズ13の上面部131に取り付けられている。アダプタ16の中央近傍には、図示しない空気孔が形成され、アダプタ16における支持部12の貫通孔122Bに対応する位置には、孔161が形成されている。すなわち、感温部11の穴112C、支持部12の各貫通孔121A,122B、およびアダプタ16の孔161は、それぞれ略一直線上に設けられている。そして、感温部11から各貫通孔121A,122Bを通ってベローズ13側に引き出されたワイヤ14は、孔161およびベローズ13の内部を通って外部に導かれている。   The adapter 16 is made of ceramics and is attached to the upper surface portion 131 of the bellows 13. An air hole (not shown) is formed near the center of the adapter 16, and a hole 161 is formed at a position corresponding to the through hole 122 </ b> B of the support portion 12 in the adapter 16. That is, the hole 112 </ b> C of the temperature sensing part 11, the through holes 121 </ b> A and 122 </ b> B of the support part 12, and the hole 161 of the adapter 16 are provided substantially in a straight line. The wire 14 drawn from the temperature sensing portion 11 through the through holes 121A and 122B to the bellows 13 side is guided to the outside through the inside of the hole 161 and the bellows 13.

このような構成の温度センサ10では、支持部12およびアダプタ16によって、感温部11に対応した部分の一部に空間Sが形成される。
なお、温度変化に伴って空間S内の空気が膨張した場合には、アダプタ16に形成された空気孔を介して空間S内から空気が放出され、収縮した場合には、空気孔を介して空間S内に空気が導入される。
In the temperature sensor 10 having such a configuration, the support portion 12 and the adapter 16 form a space S in a part of the portion corresponding to the temperature sensing portion 11.
In addition, when the air in the space S expands with the temperature change, the air is released from the space S through the air holes formed in the adapter 16, and when the air contracts, the air passes through the air holes. Air is introduced into the space S.

〔第3実施形態〕
次に、図11に基づき、本発明の第3実施形態について説明する。
前述の第1および第2実施形態では、温度センサ10において、感温部11の穴112C、支持部12の各貫通孔121A,122B、およびアダプタ16の孔161は、それぞれ略一直線上に設けられ、感温部11の白金パターン112Bにボンディングされたワイヤ14は、各貫通孔121A,122Bおよび孔161を通って、ベローズ13側に引き出されていた。
これに対し、第3実施形態では、感温部11の白金パターン112Bからベローズ13に向けて貫通電極17が形成されるとともに、この貫通電極17がアダプタ電極162によりベローズ13の中央側に向けて延設されている点が相違する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described based on FIG.
In the first and second embodiments described above, in the temperature sensor 10, the hole 112 </ b> C of the temperature sensing unit 11, the through holes 121 </ b> A and 122 </ b> B of the support unit 12, and the hole 161 of the adapter 16 are provided substantially in a straight line. The wire 14 bonded to the platinum pattern 112B of the temperature sensing part 11 was drawn out to the bellows 13 side through each of the through holes 121A and 122B and the hole 161.
In contrast, in the third embodiment, the through electrode 17 is formed from the platinum pattern 112 </ b> B of the temperature sensing unit 11 toward the bellows 13, and the through electrode 17 is directed toward the center of the bellows 13 by the adapter electrode 162. The difference is that it is extended.

具体的に、本実施形態の温度センサ10において、貫通電極17は、図11に示すように、感温部11の白金パターン112Bから支持部12の各貫通孔121A,122Bを通り、アダプタ16に向けて形成されている。アダプタ16には孔161が形成され、孔161内にアダプタ電極162が設けられている。貫通電極17は、アダプタ電極162によってアダプタ16の面内方向に沿って延設され、アダプタ16の中央寄りの位置でベローズ13側に露出している。アダプタ電極162のベローズ13側の露出部分には、ワイヤ14がボンディングされ、ワイヤ14は、ベローズ13の内部を通って外部に導かれている。なお、貫通電極17、アダプタ電極162、およびワイヤ14により、本実施形態の導線が構成される。   Specifically, in the temperature sensor 10 of the present embodiment, as shown in FIG. 11, the through electrode 17 passes from the platinum pattern 112 </ b> B of the temperature sensing unit 11 through the through holes 121 </ b> A and 122 </ b> B of the support unit 12 to the adapter 16. It is formed towards. A hole 161 is formed in the adapter 16, and an adapter electrode 162 is provided in the hole 161. The through electrode 17 extends along the in-plane direction of the adapter 16 by the adapter electrode 162 and is exposed to the bellows 13 side at a position near the center of the adapter 16. A wire 14 is bonded to the exposed portion of the adapter electrode 162 on the bellows 13 side, and the wire 14 is guided to the outside through the inside of the bellows 13. The through electrode 17, the adapter electrode 162, and the wire 14 constitute the conducting wire of this embodiment.

このような構成の温度センサ10においても、第2実施形態と同様に、支持部12およびアダプタ16によって仕切られた空間Sが形成され、感温部11およびベローズ13間が良好に断熱されるようになる。
また、温度センサ10において、貫通電極17は、支持部12の4隅の位置から、アダプタ電極162によってアダプタ16の中央寄りの位置まで延設されてベローズ13側に露出しているため、アダプタ電極162の露出部分に接続されたワイヤ14が、ベローズ13の内壁と干渉するのを防止できる。
Also in the temperature sensor 10 having such a configuration, a space S partitioned by the support portion 12 and the adapter 16 is formed as in the second embodiment so that the space between the temperature sensing portion 11 and the bellows 13 is well insulated. become.
In the temperature sensor 10, the through electrode 17 extends from the four corner positions of the support portion 12 to a position near the center of the adapter 16 by the adapter electrode 162 and is exposed to the bellows 13 side. It is possible to prevent the wire 14 connected to the exposed portion 162 from interfering with the inner wall of the bellows 13.

〔第4実施形態〕
次に、図12〜図14に基づき、本発明の第4実施形態について説明する。
前述の第1実施形態では、載置状態判定手段31の判定結果に応じて、切換手段34は、制御指令の生成に用いる制御ゲインGおよび目標温度Tを切り換えていた。
[Fourth Embodiment]
Next, based on FIGS. 12-14, 4th Embodiment of this invention is described.
In the first embodiment described above, the switching unit 34 switches the control gain G and the target temperature T used for generating the control command in accordance with the determination result of the mounting state determination unit 31.

これに対し、第4実施形態では、ホットプレート1内に第2の温度センサ40が設けられ、切換判定手段が、制御指令の生成に用いる温度測定値を、プレート本体4の表面に設けられた第1の温度センサ10の測定値およびホットプレート1内に設けられた第2の温度センサ40の測定値間で切り換える点が異なる。なお、第1の温度センサ10は、第1実施形態においてプレート本体4に取り付けられた温度センサと同じものである。   On the other hand, in the fourth embodiment, the second temperature sensor 40 is provided in the hot plate 1, and the switching determination means is provided with the temperature measurement value used for generating the control command on the surface of the plate body 4. The difference is that the measurement value of the first temperature sensor 10 and the measurement value of the second temperature sensor 40 provided in the hot plate 1 are switched. The first temperature sensor 10 is the same as the temperature sensor attached to the plate body 4 in the first embodiment.

第2の温度センサ40は、図12に示すように、ホットプレート1のプレート本体4内に埋め込まれている。このため、第2の温度センサ40は、チャンバ内の気体に直接触れることがなく、ウェハ50が未載置の状態であっても、プレート上に発生する自然対流の影響を受けることがない。従って、第2の温度センサ40は、ウェハ50の温度ではなくプレート本体4の温度ではあるが、安定した測定信号を出力することになる。   As shown in FIG. 12, the second temperature sensor 40 is embedded in the plate body 4 of the hot plate 1. For this reason, the second temperature sensor 40 does not directly contact the gas in the chamber, and is not affected by natural convection generated on the plate even when the wafer 50 is not placed. Accordingly, the second temperature sensor 40 outputs a stable measurement signal although it is not the temperature of the wafer 50 but the temperature of the plate body 4.

コントローラ30は、図13に示すように、第1実施形態の場合の制御構造と比べた場合に、一部手段における入出力信号の構成が異なった制御構造となっている。これは、主に切換手段34の機能が異なること、およびプレート本体4の表面に設けられた第1の温度センサ10とは別に第2の温度センサ40がホットプレート1内に設けられたことによるものであり、これに伴って、コントローラ30の入力側には、第2の温度センサ40が電気的に接続されている。なお、本実施形態では、制御を簡素化するために、制御ゲイン記憶手段33に制御ゲインG4が1つだけ記憶され、制御指令生成手段35が、該制御ゲインG4を制御指令の生成に用いる制御ゲインGとして、制御ゲイン記憶手段33から直接取得するように構成されている。   As shown in FIG. 13, the controller 30 has a control structure in which the configuration of input / output signals in some means is different from the control structure in the first embodiment. This is mainly because the function of the switching means 34 is different, and the second temperature sensor 40 is provided in the hot plate 1 separately from the first temperature sensor 10 provided on the surface of the plate body 4. Along with this, the second temperature sensor 40 is electrically connected to the input side of the controller 30. In this embodiment, in order to simplify the control, only one control gain G4 is stored in the control gain storage unit 33, and the control command generation unit 35 uses the control gain G4 to generate the control command. The gain G is obtained directly from the control gain storage means 33.

このようなコントローラ30の制御構造において、切換手段34は、載置状態判定手段31の判定結果に応じて、温度センサ10,40のうちのいずれかを選択し、その測定値を、制御指令の生成に用いる温度測定値として切り換える。すなわち、切換手段34は、温度センサ10,40のうちのいずれか選択された方の測定値を用いて、温度偏差eの値を算出する。   In such a control structure of the controller 30, the switching unit 34 selects one of the temperature sensors 10 and 40 according to the determination result of the mounting state determination unit 31, and the measured value is used as a control command. Switch as temperature measurement value used for generation. That is, the switching means 34 calculates the value of the temperature deviation e using the measured value of whichever of the temperature sensors 10 and 40 is selected.

次に、図14に示されるフローチャートに基づき、本実施形態のコントローラ30の作用について説明する。
先ず、コントローラ30が、第1の温度センサ10、ストロークセンサ20、および第2の温度センサ40の測定値を読み込んだ後(ステップS11)、載置状態判定手段31は、ストロークセンサ20の測定値に基づいて、ホットプレート1上にウェハ50が載置されているか否かを判定する(ステップS12)。
Next, the operation of the controller 30 of this embodiment will be described based on the flowchart shown in FIG.
First, after the controller 30 reads the measured values of the first temperature sensor 10, the stroke sensor 20, and the second temperature sensor 40 (step S <b> 11), the mounting state determination unit 31 measures the measured values of the stroke sensor 20. Based on the above, it is determined whether or not the wafer 50 is placed on the hot plate 1 (step S12).

載置状態判定手段31により、ホットプレート1上にウェハ50が載置されていないと判定された場合に、切換手段34は、制御指令の生成に用いる温度測定値を、第2の温度センサ40の測定値に切り換える。つまり、切換手段34は、第2の温度センサ40の測定値を用いて、温度偏差eの値を算出する(ステップS13)。
一方、ホットプレート1上にウェハ50が載置されていると判定された場合に、切換手段34は、制御指令の生成に用いる温度測定値を第1の温度センサ10の測定値に切り換え、この値を用いて温度偏差eの値を算出する(ステップS14)。
When the mounting state determination unit 31 determines that the wafer 50 is not mounted on the hot plate 1, the switching unit 34 uses the temperature measurement value used for generating the control command as the second temperature sensor 40. Switch to the measured value. That is, the switching means 34 calculates the value of the temperature deviation e using the measured value of the second temperature sensor 40 (step S13).
On the other hand, when it is determined that the wafer 50 is placed on the hot plate 1, the switching unit 34 switches the temperature measurement value used for generating the control command to the measurement value of the first temperature sensor 10. The value of the temperature deviation e is calculated using the value (step S14).

そして、制御指令生成手段35は、制御ゲイン記憶手段33に記憶されている制御ゲインG4を、制御指令の生成に用いる制御ゲインGとして制御ゲイン記憶手段33から取得し、温度偏差eの値を用いたPID制御により、ホットプレート1に対する制御指令の生成および出力を行う(ステップS15)。   Then, the control command generation unit 35 acquires the control gain G4 stored in the control gain storage unit 33 from the control gain storage unit 33 as the control gain G used for generation of the control command, and uses the value of the temperature deviation e. According to the PID control, the control command for the hot plate 1 is generated and output (step S15).

〔第5実施形態〕
次に、図15に基づき、本発明の第5実施形態について説明する。
前述の第1実施形態では、リフトピン60のストローク量を測定するストロークセンサ20が設けられ、載置状態判定手段31が、ストロークセンサ20の測定値に基づいてウェハ50の載置状態を判定していた。すなわち、ストロークセンサ20の測定値に基づいてウェハ50の載置状態が判定され、この判定結果に基づき、制御指令の生成に用いる制御ゲインGが切り換えられていた。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIG.
In the first embodiment described above, the stroke sensor 20 that measures the stroke amount of the lift pins 60 is provided, and the mounting state determination unit 31 determines the mounting state of the wafer 50 based on the measurement value of the stroke sensor 20. It was. That is, the mounting state of the wafer 50 is determined based on the measurement value of the stroke sensor 20, and the control gain G used for generating the control command is switched based on the determination result.

これに対し、第5実施形態では、図13に示すように、載置状態判定手段31が、温度センサ10の測定値と前回の目標温度Tとの偏差の値に基づいてウェハ50の載置状態を判定する点が異なる。つまり、この偏差の値に基づいてウェハ50の載置状態が判定され、この判定結果に基づき、制御指令の生成に用いる制御ゲインGおよび目標温度Tが切り換えられる。従って、ストロークセンサ20は設けられておらず、コントローラ30の入力側への電気的な接続もされていない。   On the other hand, in the fifth embodiment, as shown in FIG. 13, the placement state determination unit 31 places the wafer 50 on the basis of the deviation value between the measured value of the temperature sensor 10 and the previous target temperature T. The point of judging the state is different. That is, the mounting state of the wafer 50 is determined based on the deviation value, and the control gain G and the target temperature T used for generating the control command are switched based on the determination result. Therefore, the stroke sensor 20 is not provided, and the controller 30 is not electrically connected to the input side.

具体的に、載置状態判定手段31は、ウェハ50を載置したときに顕著に見受けられる、温度センサ10の測定値と前回の目標温度Tとの偏差の値の変化、すなわち、加熱前で温度の低いウェハ50との接触による温度センサ10の測定値の低下を監視することで、ウェハ50の載置状態を判定する。   Specifically, the mounting state determination unit 31 changes the value of the deviation between the measured value of the temperature sensor 10 and the previous target temperature T, which is noticeable when the wafer 50 is mounted, that is, before heating. The mounting state of the wafer 50 is determined by monitoring a decrease in the measured value of the temperature sensor 10 due to contact with the wafer 50 having a low temperature.

なお、このような制御構造におけるコントローラ30の作用は、ウェハ50の載置状態の判定が、ストロークセンサ20の測定値に基づいてではなく、温度センサ10の測定値と前回の目標温度Tとの偏差の値に基づいて行われる点が第1実施形態の場合と較べて異なるが、それ以降は同じであるため、ここでの説明を省略する。   The operation of the controller 30 in such a control structure is that the determination of the mounting state of the wafer 50 is based on the measured value of the temperature sensor 10 and the previous target temperature T, not based on the measured value of the stroke sensor 20. Although the point which is performed based on the value of the deviation is different from the case of the first embodiment, since it is the same after that, description thereof is omitted here.

〔実施形態の変形〕
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
前記各実施形態では、支持部12およびベローズ13やアダプタ16は別部材で形成されていたがこれに限られず、例えば、発泡樹脂等により、1つの材料で一体形成されていてもよい。
[Modification of Embodiment]
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
In each said embodiment, although the support part 12, the bellows 13, and the adapter 16 were formed with another member, it is not restricted to this, For example, you may integrally form with one material with foamed resin etc.

前記各実施形態では、支持部12は主にポリイミド樹脂やエポキシ樹脂で形成されていたがこれに限られず、同等以下の熱伝導率を有するものであれば、例えば、ピーク材やテフロン(登録商標)等の他の材料であってもよい。
また、樹脂に限られず、ガラスにより形成されものであってもよい。この場合には、例えば、支持部12の断熱部122を貫通孔122Bの周辺部分のみ残した複数の柱状とすることで、支持部12の熱伝導を小さくし、支持部12を樹脂で形成した場合の熱伝導と同等にすることができる。
In each of the above embodiments, the support portion 12 is mainly formed of a polyimide resin or an epoxy resin. However, the support portion 12 is not limited to this, and any material having a thermal conductivity equal to or lower than that can be used. Other materials may be used.
Moreover, it is not restricted to resin, You may form with glass. In this case, for example, by making the heat insulating portion 122 of the support portion 12 into a plurality of pillars leaving only the peripheral portion of the through hole 122B, the heat conduction of the support portion 12 is reduced, and the support portion 12 is formed of resin. It can be equivalent to the heat conduction in the case.

前記各実施形態では、支持部12の補強部121および断熱部122は、異なった材料で形成されていたがこれに限られず、1つの材料で形成されていてもよい。また、表面部111およびパターン形成部112の強度が高ければ、補強部121は必ずしも必要ではない。要は、支持部12が空間Sを有しており、熱伝導率の低い材料で形成されていれば、本発明の支持部を構成するものである。   In each said embodiment, although the reinforcement part 121 and the heat insulation part 122 of the support part 12 were formed with a different material, it is not restricted to this, You may form with one material. If the strength of the surface portion 111 and the pattern forming portion 112 is high, the reinforcing portion 121 is not always necessary. In short, if the support part 12 has the space S and is formed of a material having low thermal conductivity, the support part of the present invention is configured.

前記第2および第3実施形態では、支持部12は、アダプタ16を介してベローズ13の上面部131に取り付けられ、支持部12およびアダプタ16により空間Sが形成されていたがこれに限られず、例えば、貫通孔132を形成せずにベローズ13の伸縮方向の端部を上面部で塞いだ形状とし、このような上面部および支持部12によって空間Sを形成するようにしてもよい。   In the second and third embodiments, the support portion 12 is attached to the upper surface portion 131 of the bellows 13 via the adapter 16, and the space S is formed by the support portion 12 and the adapter 16, but is not limited thereto. For example, the end portion in the expansion / contraction direction of the bellows 13 may be closed with the upper surface portion without forming the through hole 132, and the space S may be formed by the upper surface portion and the support portion 12.

前記各実施形態では、温度センサ10が支持ピン5とは別にホットプレート1に取り付けられていたがこれに限られず、例えば支持ピン5の内部に温度センサ10を設けたり、支持ピン5を設けずに、支持ピン5の機能を温度センサ10に兼用させたりしてもよい。   In each of the embodiments described above, the temperature sensor 10 is attached to the hot plate 1 separately from the support pin 5, but the present invention is not limited thereto. For example, the temperature sensor 10 is not provided inside the support pin 5 or the support pin 5 is not provided. In addition, the function of the support pin 5 may be shared by the temperature sensor 10.

前記第1および第4実施形態では、ストロークセンサ20の測定値に基づいて、また、前記第5実施形態では、温度センサ10の測定値と前回の目標温度Tとの偏差の値に基づいてウェハ50の載置状態が判定されていたが、これに限られない、要は、ウェハ50の載置状態が判定できればよく、例えば、ストロークセンサ20のかわりリフトピン60の下方にスイッチを設け、リフトピン60の下端がこのスイッチに接触したのを検出することで、ウェハ50の載置状態を判定するようにしてもよい。   In the first and fourth embodiments, the wafer is based on the measurement value of the stroke sensor 20, and in the fifth embodiment, the wafer is based on the deviation value between the measurement value of the temperature sensor 10 and the previous target temperature T. However, the present invention is not limited to this. In short, it is only necessary to be able to determine the mounting state of the wafer 50. For example, a switch is provided below the lift pin 60 in place of the stroke sensor 20, and the lift pin 60 is provided. It is also possible to determine the mounting state of the wafer 50 by detecting that the lower end of the wafer contacts the switch.

前記第4実施形態では、制御ゲイン記憶手段33に制御ゲインG4が1つ記憶され、制御指令生成手段35が、当該制御ゲインG4を制御指令の生成に用いる制御ゲインGとして、制御ゲイン記憶手段33から取得するように構成されていたがこれに限られず、第1実施形態のように、制御ゲイン記憶手段33に制御ゲインG2,G3を記憶させておき、切換手段34がいずれかの値を選択して、制御指令の生成に用いる制御ゲインGとして切り換えるようにしてもよい。なお、この場合には、自然対流への対応に用いられる第1の制御ゲインG1を特に設定しておく必要はなく、例えば、制御ゲインG3を用いれば足りる。   In the fourth embodiment, one control gain G4 is stored in the control gain storage unit 33, and the control command generation unit 35 uses the control gain G4 as a control gain G used for generation of the control command. However, the present invention is not limited to this, and as in the first embodiment, the control gain storage means 33 stores the control gains G2 and G3, and the switching means 34 selects one of the values. Then, the control gain G used for generation of the control command may be switched. In this case, it is not necessary to set the first control gain G1 used for dealing with natural convection in particular. For example, it is sufficient to use the control gain G3.

前記各実施形態では、ヒータ3およびプレート本体4によってホットプレート1の加熱部4Aが構成されていたがこれに限られず、例えば、プレート本体4を用いずにヒータ3のみで加熱部4Aを構成し、ウェハ50をヒータ3により直接加熱するようにしてもよい。
前記各実施形態では、ホットプレート1に温度センサ10が取り付けられていたがこれに限られず、例えばフォトリソグラフィで用いられるクーリングプレートや、エッチング工程で用いられるサセプタなど、他の温調用のプレートに用いられてもよい。
その他、本発明の具体的な構造および形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
In each of the above embodiments, the heater 3 and the plate body 4 constitute the heating unit 4A of the hot plate 1. However, the present invention is not limited to this. For example, the heater 3 alone is configured without using the plate body 4 alone. The wafer 50 may be directly heated by the heater 3.
In each of the embodiments described above, the temperature sensor 10 is attached to the hot plate 1, but the present invention is not limited thereto. For example, the temperature sensor 10 is used for other temperature control plates such as a cooling plate used in photolithography and a susceptor used in an etching process. May be.
In addition, the specific structure and shape of the present invention may be other structures and the like as long as the object of the present invention can be achieved.

本発明は、半導体の製造プロセスで用いられるホットプレートやクーリングプレート等の温調装置に利用することができるとともに、このような温調装置を用いてウェハの温度を制御する、半導体のあらゆる製造プロセスに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a temperature control device such as a hot plate or a cooling plate used in a semiconductor manufacturing process, and any semiconductor manufacturing process for controlling the temperature of a wafer using such a temperature control device. Can be used.

1…ホットプレート(温調装置)、10…温度センサ、第1の温度センサ、11…感温部、12…支持部、13…ベローズ(付勢部材)、14…ワイヤ(導線)、30…コントローラ、31…載置状態判定手段、34…切換手段、35…制御指令生成手段、40…第2の温度センサ、50…ウェハ(被測定物、温度制御対象物)、100…温度制御装置、111A…ウェハ接触面(接触面)、G…制御ゲイン、S…空間、T…目標温度。   DESCRIPTION OF SYMBOLS 1 ... Hot plate (temperature control apparatus), 10 ... Temperature sensor, 1st temperature sensor, 11 ... Temperature sensing part, 12 ... Support part, 13 ... Bellows (biasing member), 14 ... Wire (conductor), 30 ... Controller ... 31 ... Mounting state determining means, 34 ... Switching means, 35 ... Control command generating means, 40 ... Second temperature sensor, 50 ... Wafer (measurement object, temperature control object), 100 ... Temperature control device, 111A ... wafer contact surface (contact surface), G ... control gain, S ... space, T ... target temperature.

Claims (4)

温度制御対象物の温度を制御する温度制御装置であって、
載置された前記温度制御対象物の温度を調節する温調装置と、
前記温調装置上に載置された前記温度制御対象物と接触して温度を測定する温度センサと、
前記温調装置による加熱量または冷却量を制御するコントローラとを備え、
前記コントローラは、
前記温調装置上の前記温度制御対象物の載置状態を判定する載置状態判定手段と、
前記載置状態判定手段の判定結果に応じて、前記温度制御対象物の目標温度、および前記目標温度と前記温度制御対象物の温度との温度偏差に対する制御ゲインを切り換える切換手段と、
前記温度偏差および前記制御ゲインを用いて前記温調装置の制御指令を生成する制御指令生成手段とを備え、
前記切換手段は、
前記温調装置上に前記温度制御対象物が載置されていると判定された場合、前記目標温度を第2の目標温度に切り換えるとともに前記温度偏差の絶対値が所定値以下の場合は前記制御ゲインを第2の制御ゲインに、前記温度偏差の絶対値が所定値より大きい場合は前記制御ゲインを第3の制御ゲインにそれぞれ切り換え、
前記温調装置上に前記温度制御対象物が載置されていないと判定された場合、前記目標温度を前記第2の目標温度よりも低い第1の目標温度に、前記制御ゲインを前記第2の制御ゲインよりも小さい第1の制御ゲインにそれぞれ切り換える
ことを特徴とする温度制御装置。
A temperature control device for controlling the temperature of a temperature control object,
A temperature control device for adjusting the temperature of the temperature control object placed thereon;
A temperature sensor for measuring the temperature in contact with the temperature control object placed on the temperature control device;
A controller for controlling the amount of heating or cooling by the temperature control device,
The controller is
A mounting state determination means for determining a mounting state of the temperature control object on the temperature control device;
Switching means for switching a control gain for a target temperature of the temperature control object and a temperature deviation between the target temperature and the temperature of the temperature control object according to a determination result of the placement state determination means;
Control command generating means for generating a control command for the temperature control device using the temperature deviation and the control gain,
The switching means is
When it is determined that the temperature control object is placed on the temperature control device, the target temperature is switched to the second target temperature, and when the absolute value of the temperature deviation is equal to or less than a predetermined value, The control gain is switched to the second control gain, and when the absolute value of the temperature deviation is larger than the predetermined value, the control gain is switched to the third control gain .
When it is determined that the temperature control object is not placed on the temperature control device, the target temperature is set to a first target temperature lower than the second target temperature, and the control gain is set to the second target temperature. A temperature control device that switches to a first control gain that is smaller than the control gain.
温度制御対象物の温度を制御する温度制御装置であって、
載置された前記温度制御対象物の温度を調節する温調装置と、
前記温調装置上に載置された前記温度制御対象物と接触して温度を測定する第1の温度センサと、
前記温調装置の温度を測定する第2の温度センサと、
前記温調装置による加熱量または冷却量を制御するコントローラとを備え、
前記コントローラは、
前記温調装置上の前記温度制御対象物の載置状態を判定する載置状態判定手段と、
前記載置状態判定手段の判定結果に応じて、前記温調装置の制御指令の生成に用いる温度測定値を前記第1の温度センサの測定値および前記第2の温度センサの測定値間で切り換える切換手段と、
前記温度制御対象物の目標温度と前記温度測定値との温度偏差を用いて前記温調装置の制御指令を生成する制御指令生成手段とを備え、
前記切換手段は、前記温調装置上に前記温度制御対象物が載置されていると判定された場合、前記温度測定値を前記第1の温度センサの測定値に切り換え、前記温調装置上に前記温度制御対象物が載置されていないと判定された場合、前記温度測定値を前記第2の温度センサの測定値に切り換える
ことを特徴とする温度制御装置。
A temperature control device for controlling the temperature of a temperature control object,
A temperature control device for adjusting the temperature of the temperature control object placed thereon;
A first temperature sensor for measuring the temperature in contact with the temperature control object placed on the temperature control device;
A second temperature sensor for measuring the temperature of the temperature control device;
A controller for controlling the amount of heating or cooling by the temperature control device,
The controller is
A mounting state determination means for determining a mounting state of the temperature control object on the temperature control device;
The temperature measurement value used for generating the control command of the temperature control device is switched between the measurement value of the first temperature sensor and the measurement value of the second temperature sensor according to the determination result of the mounting state determination means. Switching means;
Control command generating means for generating a control command for the temperature control device using a temperature deviation between a target temperature of the temperature control object and the temperature measurement value;
The switching means switches the temperature measurement value to the measurement value of the first temperature sensor when it is determined that the temperature control object is placed on the temperature control device, and the temperature control device When the temperature control object is determined not to be placed on the temperature control value, the temperature measurement value is switched to the measurement value of the second temperature sensor.
載置された温度制御対象物の温度を調節する温調装置と、前記温調装置上に載置された前記温度制御対象物と接触して温度を測定する温度センサとを用いた前記温度制御対象物の温度制御方法であって、
前記温度センサの測定値を取得するステップと、
前記温調装置上の前記温度制御対象物の載置状態を判定するステップと、
前記温度制御対象物の載置状態の判定結果に応じて、前記温度制御対象物の目標温度、および前記目標温度と前記温度制御対象物の温度との温度偏差に対する制御ゲインを切り換えるステップと、
前記温度偏差および前記制御ゲインを用いて前記温調装置の制御指令を生成するステップとを備え、
前記温調装置上に前記温度制御対象物が載置されていると判定された場合、前記目標温度を第2の目標温度に切り換えるとともに前記温度偏差の絶対値が所定値以下の場合は前記制御ゲインを第2の制御ゲインに、前記温度偏差の絶対値が所定値より大きい場合は前記制御ゲインを第3の制御ゲインにそれぞれ切り換え、
前記温調装置上に前記温度制御対象物が載置されていないと判定された場合、前記目標温度を前記第2の目標温度よりも低い第1の目標温度に、前記制御ゲインを前記第2の制御ゲインよりも小さい第1の制御ゲインにそれぞれ切り換える
ことを特徴とする温度制御方法。
The temperature control using a temperature control device that adjusts the temperature of the temperature control object placed and a temperature sensor that measures the temperature in contact with the temperature control object placed on the temperature control device. A temperature control method for an object,
Obtaining a measurement value of the temperature sensor;
Determining a placement state of the temperature control object on the temperature control device;
Switching a control gain for a target temperature of the temperature control object and a temperature deviation between the target temperature and the temperature of the temperature control object according to a determination result of the mounting state of the temperature control object;
Generating a control command for the temperature control device using the temperature deviation and the control gain,
When it is determined that the temperature control object is placed on the temperature control device, the target temperature is switched to the second target temperature, and when the absolute value of the temperature deviation is equal to or less than a predetermined value, The control gain is switched to the second control gain, and when the absolute value of the temperature deviation is larger than the predetermined value, the control gain is switched to the third control gain .
When it is determined that the temperature control object is not placed on the temperature control device, the target temperature is set to a first target temperature lower than the second target temperature, and the control gain is set to the second target temperature. A temperature control method characterized by switching to a first control gain smaller than the control gain.
載置された温度制御対象物の温度を調節する温調装置と、前記温調装置上に載置された前記温度制御対象物と接触して温度を測定する第1の温度センサと、前記温調装置の温度を測定する第2の温度センサとを用いた前記温度制御対象物の温度制御方法であって、
前記第1の温度センサおよび前記第2の温度センサの測定値を取得するステップと、
前記温調装置上の前記温度制御対象物の載置状態を判定するステップと、
前記温度制御対象物の載置状態の判定結果に応じて、前記温調装置の制御指令の生成に用いる温度測定値を前記第1の温度センサの測定値および前記第2の温度センサの測定値間で切り換えるステップと、
前記温度制御対象物の目標温度と前記温度測定値との温度偏差を用いて前記温調装置の制御指令を生成するステップとを備え、
前記温調装置上に前記温度制御対象物が載置されていると判定された場合、前記温度測定値を前記第1の温度センサの測定値に切り換え、前記温調装置上に前記温度制御対象物が載置されていないと判定された場合、前記温度測定値を前記第2の温度センサの測定値に切り換える
ことを特徴とする温度制御方法。
A temperature control device that adjusts the temperature of the temperature control object placed thereon, a first temperature sensor that measures the temperature in contact with the temperature control object placed on the temperature control device, and the temperature A temperature control method for the temperature control object using a second temperature sensor for measuring the temperature of the adjusting device,
Obtaining measured values of the first temperature sensor and the second temperature sensor;
Determining a placement state of the temperature control object on the temperature control device;
According to the determination result of the placement state of the temperature control object, the temperature measurement value used for generating the control command of the temperature control device is the measurement value of the first temperature sensor and the measurement value of the second temperature sensor. Switching between
Generating a control command for the temperature control device using a temperature deviation between a target temperature of the temperature control object and the temperature measurement value,
When it is determined that the temperature control object is placed on the temperature control device, the temperature measurement value is switched to the measurement value of the first temperature sensor, and the temperature control object is displayed on the temperature control device. When it is determined that an object is not placed, the temperature measurement value is switched to the measurement value of the second temperature sensor.
JP2012120262A 2006-07-06 2012-05-25 Temperature control apparatus and temperature control method Expired - Fee Related JP5607108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120262A JP5607108B2 (en) 2006-07-06 2012-05-25 Temperature control apparatus and temperature control method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006187246 2006-07-06
JP2006187246 2006-07-06
JP2006187247 2006-07-06
JP2006187247 2006-07-06
JP2012120262A JP5607108B2 (en) 2006-07-06 2012-05-25 Temperature control apparatus and temperature control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007172964A Division JP5027573B2 (en) 2006-07-06 2007-06-29 Temperature sensor and temperature controller

Publications (2)

Publication Number Publication Date
JP2012181870A JP2012181870A (en) 2012-09-20
JP5607108B2 true JP5607108B2 (en) 2014-10-15

Family

ID=47012951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120262A Expired - Fee Related JP5607108B2 (en) 2006-07-06 2012-05-25 Temperature control apparatus and temperature control method

Country Status (1)

Country Link
JP (1) JP5607108B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247124U (en) * 1985-09-10 1987-03-23
JP2860144B2 (en) * 1990-06-19 1999-02-24 東京エレクトロン株式会社 Plate temperature measuring device
JP2780866B2 (en) * 1990-10-11 1998-07-30 大日本スクリーン製造 株式会社 Light irradiation heating substrate temperature measurement device
JPH07221154A (en) * 1994-02-07 1995-08-18 Hitachi Ltd Temperature detector and semiconductor manufacturing device
JP2001230199A (en) * 1999-07-28 2001-08-24 Komatsu Ltd Temperature controller for semiconductor substrate and heat exchange plate
JP2003100605A (en) * 2001-09-25 2003-04-04 Dainippon Screen Mfg Co Ltd Heat treatment device for substrate

Also Published As

Publication number Publication date
JP2012181870A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5027573B2 (en) Temperature sensor and temperature controller
JP5509361B2 (en) Electrostatic chuck support assembly
JP2008128838A (en) Probe device
JP4903029B2 (en) Pirani vacuum gauge and pressure measuring method
JP4859107B2 (en) Thermal flow meter
JP3878321B2 (en) Substrate wafer processing equipment
CN110873730A (en) Measuring device for determining the thermal conductivity of a fluid
JP4994058B2 (en) Pressure measuring device and pressure measuring method
KR101078187B1 (en) Micro Gas Sensor And Method of manufacturing the same
JP2010278142A (en) Thermal type element and method of manufacturing the same
JP5607108B2 (en) Temperature control apparatus and temperature control method
JP4404297B2 (en) Flow sensor
JP4798961B2 (en) HEATER DEVICE AND GAS SENSOR DEVICE USING THE SAME
JP5769043B2 (en) Electrical device, integrated device, electronic circuit and temperature calibration device
JP5266452B2 (en) Temperature characteristic measuring device
JPH0854268A (en) Mass flow rate sensor
JPH11148849A (en) Fluid detecting sensor
JPH1026594A (en) Thermal analysis element and its manufacture
JP2003121459A (en) Electric characteristic measuring device and measuring method
JP2010236983A (en) Sensor assembly, and instrument for measuring physical property value of fluid
JP2007155502A (en) Detector
JP7156013B2 (en) gas sensor
JPH07234238A (en) Acceleration sensor
JP4437336B2 (en) Capacitive vacuum sensor
Tian et al. Demonstration of a micro-hotplate chip with a good temperature uniformity

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140827

R150 Certificate of patent or registration of utility model

Ref document number: 5607108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees