JP2010278142A - Thermal type element and method of manufacturing the same - Google Patents

Thermal type element and method of manufacturing the same Download PDF

Info

Publication number
JP2010278142A
JP2010278142A JP2009127915A JP2009127915A JP2010278142A JP 2010278142 A JP2010278142 A JP 2010278142A JP 2009127915 A JP2009127915 A JP 2009127915A JP 2009127915 A JP2009127915 A JP 2009127915A JP 2010278142 A JP2010278142 A JP 2010278142A
Authority
JP
Japan
Prior art keywords
decreasing
resistor
thermal
dimension increasing
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009127915A
Other languages
Japanese (ja)
Other versions
JP5240072B2 (en
Inventor
Kazuhisa Nagai
一寿 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009127915A priority Critical patent/JP5240072B2/en
Publication of JP2010278142A publication Critical patent/JP2010278142A/en
Application granted granted Critical
Publication of JP5240072B2 publication Critical patent/JP5240072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal type element that assure a fast thermal response of the function members and prevent deformation, by overcoming the problem that, in the thermal type element which integrates function members accompanied by heat operation function members such as a heating part and a heat sensitive part and the like are broken by expansion and contraction due to thermal expansion caused by rapid temperature change, and to provide a method of manufacturing the thermal type element. <P>SOLUTION: The thermal type element having a structure of forming a bridge of a thin layer on a cavity 30 provided in a substrate 20, includes: a function member whose size is changed with a temperature; and a size increase and decrease member 60 whose size is changed with a temperature so as to absorb the size change of the function member. The function member and the size increase and decrease member 60 are coupled and bridged on the cavity 30 provided in the substrate 20. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発熱又は感熱部材等を有する熱型素子及び熱型素子の製造方法に関する。   The present invention relates to a thermal element having a heat generating or heat sensitive member and a method for manufacturing the thermal element.

近年、発熱部となる抵抗体へ電力を供給してジュール発熱させる発熱素子(マイクロヒータともいう)の技術が開示されている(例えば、特許文献1)。例えば、特許文献1記載の雰囲気計は、Si基板の空洞上に架橋した微小な薄層をなす発熱部を、機能部材として集積している。上述したように、発熱素子の発熱部がSi基板と直接接していないことにより、発熱部からSi基板への熱の損失が小さくなり、しかも、上記のような熱型素子は、半導体微細加工技術を用いて微小な寸法に形成される。そのため、少ない電力で熱型素子を所定温度にすることができる。いわゆる、MEMS(Micro Electro Mechanical System)であって、従って発熱部の熱容量が小さく、電力を印加して数ミリ秒で所定温度に到達させることができる。   In recent years, a technology of a heating element (also referred to as a micro heater) that supplies Joule heat by supplying power to a resistor serving as a heat generating portion has been disclosed (for example, Patent Document 1). For example, the atmosphere meter described in Patent Document 1 integrates a heat generating portion forming a thin thin layer cross-linked on a cavity of a Si substrate as a functional member. As described above, since the heat generating portion of the heat generating element is not in direct contact with the Si substrate, the heat loss from the heat generating portion to the Si substrate is reduced. It is formed in a minute dimension using Therefore, the thermal element can be brought to a predetermined temperature with less power. This is a so-called MEMS (Micro Electro Mechanical System), and therefore, the heat capacity of the heat generating portion is small, and power can be applied to reach a predetermined temperature in a few milliseconds.

上記したような発熱部は迅速に低温状態から高温状態、あるいは高温状態から低温状態にさせることができる。そのため、発熱部の構成材料の熱膨張率が大きい場合は、高速に伸縮して変形し、空洞上の発熱部を支持する箇所への応力集中により発熱部が破壊されてしまうことがあった。   The heat generating portion as described above can be quickly changed from a low temperature state to a high temperature state, or from a high temperature state to a low temperature state. Therefore, when the coefficient of thermal expansion of the constituent material of the heat generating part is large, the heat generating part may be deformed by expanding and contracting at a high speed, and the heat generating part may be destroyed due to stress concentration on the portion supporting the heat generating part on the cavity.

また、発熱素子と同様に、Si基板の空洞上に架橋した微小な薄層をなす温度検出部を、機能部材として集積した感熱素子がある。感熱素子の場合も、迅速な熱応答を利用しているため、上述したような伸縮が生じて変形してしまうことがあった。   In addition, similar to the heat generating element, there is a heat sensitive element in which a temperature detection unit forming a thin thin layer cross-linked on the cavity of the Si substrate is integrated as a functional member. Also in the case of the thermosensitive element, since the rapid thermal response is used, the expansion and contraction as described above may occur and may be deformed.

ここで、熱膨張による変位に関して、一般に、自由に変形できる長さlの物体の熱膨張は下記式(1)で表される。   Here, regarding the displacement due to thermal expansion, the thermal expansion of an object having a length l that can be freely deformed is generally expressed by the following formula (1).

Lh=Ll(1+α(Th−Tl)) ・・・ 式(1)   Lh = Ll (1 + α (Th−Tl)) (1)

ここで、Lh:高温時の長さ、Ll:低温時の長さ、Th:高温時の温度、Tl:低温時の温度、α:膨張係数とする。また、上記式(1)を熱膨張による変位量Lh−Ll=Δlとして表すと下記式(2)となる。   Here, Lh: length at high temperature, Ll: length at low temperature, Th: temperature at high temperature, Tl: temperature at low temperature, and α: expansion coefficient. Further, when the above equation (1) is expressed as a displacement Lh−Ll = Δl due to thermal expansion, the following equation (2) is obtained.

Δl=α・Ll(Th−Tl) ・・・ 式(2)   Δl = α · Ll (Th−Tl) (2)

上記式(2)からも明らかなように、物性値のαがゼロの時以外は、温度差に応じた変位が生じるものである。   As apparent from the above formula (2), a displacement corresponding to the temperature difference occurs except when the physical property value α is zero.

上述したように、発熱素子の場合、図19に示すように発熱部が基板から分離している構造では、熱膨張により発熱部が凸状に変形し、発熱体を支持する部分への応力集中により発熱部が破壊してしまうという問題があった。   As described above, in the case of the heat generating element, in the structure in which the heat generating part is separated from the substrate as shown in FIG. 19, the heat generating part deforms into a convex shape due to thermal expansion, and stress concentration on the part that supports the heat generating element This causes a problem that the heat generating part is destroyed.

ここで、図19は、本発明に関連する熱型素子の概略構成例を示している。図19に示された熱型素子は、Pt、Au、NiCr等の正の熱膨張係数を有する材料により抵抗体10を形成し、その抵抗体10を基板20に設けた空洞30の上に架橋して、機能部材として用いている。その抵抗体10の両端は、それぞれ基板上の電極部40と接続される。このような抵抗体10において、基板上の部分は基板20に拘束されているため伸縮はできないが、空洞上の部分は基板20に拘束されないので伸縮が可能となる。したがって、温度状態により寸法が変化する抵抗体では、図19の(c)に示すように低温状態では抵抗体が平坦でも、高温状態では図19の(b)に示すように熱膨張により抵抗体10が中央方向へ伸長して大きなたわみが生じてしまっていた。   Here, FIG. 19 shows a schematic configuration example of a thermal element related to the present invention. In the thermal element shown in FIG. 19, the resistor 10 is formed of a material having a positive coefficient of thermal expansion such as Pt, Au, NiCr, and the resistor 10 is bridged on the cavity 30 provided in the substrate 20. And it is used as a functional member. Both ends of the resistor 10 are connected to the electrode portions 40 on the substrate, respectively. In such a resistor 10, the portion on the substrate cannot be expanded and contracted because it is constrained by the substrate 20, but the portion on the cavity is not constrained by the substrate 20 and can be expanded and contracted. Accordingly, in the resistor whose dimensions change depending on the temperature state, the resistor is flat in the low temperature state as shown in FIG. 19C, but in the high temperature state, the resistor is caused by thermal expansion as shown in FIG. 19B. 10 was extended in the center direction and a large deflection had occurred.

上記問題を解決するために、発熱抵抗及び感熱抵抗を支持膜と保護膜で挟み込むダイヤフラム構造を有する熱式センサにおいて、支持膜や保護膜の引張応力を基材に対して50MPa以上250MPa以下にすることにより、発熱部の変形を抑制する技術が開示されている(例えば、特許文献2)。   In order to solve the above problems, in a thermal sensor having a diaphragm structure in which a heating resistance and a thermal resistance are sandwiched between a support film and a protection film, the tensile stress of the support film or the protection film is set to 50 MPa or more and 250 MPa or less with respect to the base material. Thus, a technique for suppressing deformation of the heat generating portion is disclosed (for example, Patent Document 2).

さらに、上記問題を解決するための他の技術として、Si基板上に形成され、周辺部がSiO2であるフローティングメンブレンにおいて、メンブレン内部の応力を相殺するために、SiO2膜からなるメンブレン中央部分をSi24に置き換える技術も開示されている(例えば、特許文献3)。 Further, as another technique for solving the above problem, in the floating membrane formed on the Si substrate and having a peripheral portion made of SiO 2 , the membrane central portion made of the SiO 2 film is used to cancel the stress inside the membrane. also disclosed technology to replace the Si 2 N 4 (e.g., Patent Document 3).

また、応力を補償する技術として、応力補償用被膜の技術が開示されている(例えば、特許文献4)。具体的には、上記特許文献3記載の技術では、高温状態で基板上に被膜を形成する被膜プロセスによって形成された反り構造体の反りを補償するために、負の熱膨張係数を有する被膜を、使用温度より高い温度で、反り構造体の凹面上、すなわち上記被膜プロセスで形成された被膜上にさらに形成する。これにより、基板は比較的平坦な構造を有することができる。   Further, as a technique for compensating for stress, a technique for a stress compensation coating is disclosed (for example, Patent Document 4). Specifically, in the technique described in Patent Document 3, a film having a negative thermal expansion coefficient is used to compensate for the warp of the warped structure formed by a film process for forming a film on a substrate at a high temperature. Further, it is formed on the concave surface of the warped structure, that is, on the film formed by the above-described coating process at a temperature higher than the use temperature. Thereby, the substrate can have a relatively flat structure.

さらに、上記問題に関連する技術として、試料温度を変化させながらX線回折測定を実行する装置に組み込まれる試料保持装置の技術が開示されている(例えば、特許文献5)。具体的には、上記特許文献5記載の技術では、正の熱膨張係数を有する試料配置部の温度変化による上下方向の変位を、熱膨張係数の異なる第1支持部材と第2支持部材の変位で抑制している。   Furthermore, as a technique related to the above problem, a technique of a sample holding device incorporated in an apparatus that performs X-ray diffraction measurement while changing the sample temperature is disclosed (for example, Patent Document 5). Specifically, in the technique described in Patent Document 5, the displacement in the vertical direction due to the temperature change of the sample placement portion having a positive thermal expansion coefficient is the displacement of the first support member and the second support member having different thermal expansion coefficients. Is suppressed.

しかし、上記特許文献2及び特許文献3記載の技術では、応力は、作製時の温度、圧力、厚み等に依存しているため、調整が複雑であり、バラツキも大きくなってしまうという課題があった。そのため、上記特許文献2及び特許文献3記載の技術では、確実に応力バランスを一定にすることは困難であった。   However, in the techniques described in Patent Document 2 and Patent Document 3, since the stress depends on the temperature, pressure, thickness, and the like at the time of manufacture, there is a problem that adjustment is complicated and variation becomes large. It was. For this reason, it is difficult for the techniques described in Patent Document 2 and Patent Document 3 to make the stress balance constant.

特許文献4記載の技術では、基板面上に堆積する被膜は、反り状態の大きい端部ほど被膜の界面に働く応力が大きくなるので、膜はがれが発生してしまうという課題があった。通常は、応力の差を小さくして膜はがれを防止している。   In the technique described in Patent Document 4, the film deposited on the substrate surface has a problem that the film is peeled off because the stress acting on the interface of the film becomes larger at the end portion where the warpage is larger. Usually, the difference in stress is reduced to prevent film peeling.

特許文献5記載の技術は、上述したように正の熱膨張係数を有する試料配置部の温度変化による上下方向の変位を、熱膨張係数の異なる第1支持部材と第2支持部材の変位で抑制する技術である。つまり、特許文献5記載の技術は面方向の変位を抑制するものではなく、また、上記熱型素子とは異なり、試料配置部も基板に設けた空洞上に配置する構成のものでもない。さらに、試料配置部の変位の抑制に関して、時間要素は考慮されてないという課題があった。   As described above, the technique described in Patent Document 5 suppresses the vertical displacement due to the temperature change of the sample placement portion having a positive thermal expansion coefficient by the displacement of the first support member and the second support member having different thermal expansion coefficients. Technology. In other words, the technique described in Patent Document 5 does not suppress the displacement in the plane direction, and unlike the thermal element, the sample placement portion is not of a configuration in which the sample placement portion is placed in a cavity provided in the substrate. Furthermore, there has been a problem that the time element is not taken into consideration for the suppression of the displacement of the sample placement portion.

本発明はこのような実情を鑑みてなされたものであり、熱作用を伴う機能部材を集積した熱型素子において、急激な温度変化に伴って生じる熱膨張による伸縮で発熱部や感熱部等の機能部材が破壊される課題を解決し、機能部材の迅速な熱応答性を確保しつつ変形を防止する熱型素子及び熱型素子の製造方法を提供することを目的とする。   The present invention has been made in view of such a situation, and in a thermal element in which functional members having thermal action are integrated, a heat generating part, a heat sensitive part, and the like due to expansion and contraction due to thermal expansion caused by a rapid temperature change. It is an object of the present invention to provide a thermal element that solves the problem of breakage of a functional member, prevents deformation while ensuring rapid thermal response of the functional member, and a method for manufacturing the thermal element.

本発明の熱型素子は、基板に設けた空洞上に薄層を架橋する構造の熱型素子であって、温度によって寸法が変化する機能部材と、機能部材の寸法の変化を吸収するように、温度によって寸法が変化する寸法増減部材と、を備え、機能部材と寸法増減部材とは、基板に設けられた空洞上に連結架橋されることを特徴とする。   The thermal element of the present invention is a thermal element having a structure in which a thin layer is bridged on a cavity provided in a substrate, and a functional member whose dimensions change with temperature and a change in the dimensions of the functional member are absorbed. And a dimension increasing / decreasing member whose dimension changes with temperature, wherein the functional member and the dimension increasing / decreasing member are connected and bridged on a cavity provided in the substrate.

本発明の熱型素子の製造方法は、基板上に、温度によって寸法が変化する機能部材を形成する機能部材形成ステップと、基板上に、機能部材の寸法の変化を吸収するように温度によって寸法が変化する寸法増減部材を、機能部材と連結して形成する寸法増減部材形成ステップと、機能部材と寸法増減部材とが空洞上に連結架橋されるように、基板に空洞を形成する空洞形成ステップと、を備えることを特徴とする。   The method for manufacturing a thermal element according to the present invention includes a functional member forming step for forming a functional member whose dimensions change with temperature on a substrate, and a dimension according to temperature so as to absorb a change in the dimensions of the functional member on the substrate. The dimension increasing / decreasing member forming step is formed by connecting the dimension increasing / decreasing member changing with the functional member, and the cavity forming step for forming the cavity in the substrate so that the functional member and the dimension increasing / decreasing member are connected and bridged on the cavity. And.

本発明によれば、熱型素子の迅速な熱応答性を確保しつつ、機能部材の変形を防止することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to prevent a deformation | transformation of a functional member, ensuring the quick thermal responsiveness of a thermal-type element.

本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態1)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 1) 本実施形態に係る熱型素子の温度分布の例を示す図である。It is a figure which shows the example of the temperature distribution of the thermal type element which concerns on this embodiment. 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態2)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 2) 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態3)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 3) 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態4)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 4) 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態5)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 5) 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態6)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 6) 本実施形態に係る発熱素子に電力を印加した際の様子を示す模式図である。It is a schematic diagram which shows a mode when electric power is applied to the heat generating element which concerns on this embodiment. 本実施形態に係る熱型素子の寸法増減部材の構成例を示す図である。It is a figure which shows the structural example of the dimension increase / decrease member of the thermal type element which concerns on this embodiment. 本実施形態に係る熱型素子の機能部材の構成例を示す図である。It is a figure which shows the structural example of the functional member of the thermal type element which concerns on this embodiment. 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態7)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 7) 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態8)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 8) 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態9)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 9) 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態10)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 10) 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態10)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 10) 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態11)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. (Embodiment 11) 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態12)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. Embodiment 12 本実施形態に係る熱型素子の概略構成例を示す図である。(実施形態12)It is a figure which shows the schematic structural example of the thermal type element which concerns on this embodiment. Embodiment 12 本発明に関連する熱型素子の概略構成例を示す図である。It is a figure which shows the schematic structural example of the thermal type element relevant to this invention.

以下に本発明の実施形態の例について、図面を用いて詳細に説明する。   Hereinafter, examples of embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1の(a)は、本実施形態に係る熱型素子の概略構成例を示す。図1の(b)及び(c)は、図1の(a)のIa−Ibにおける断面図、図1の(d)は、機能部材の抵抗体と寸法増減部材との連結部の例を示している。図1の(b)は熱型素子が高温状態である例、図1の(c)は熱型素子が低温状態である例を示している。また、図中で示した矢印は、熱膨張による伸縮を表したものである。
(Embodiment 1)
FIG. 1A shows a schematic configuration example of the thermal element according to the present embodiment. 1B and 1C are cross-sectional views taken along the line Ia-Ib in FIG. 1A, and FIG. 1D is an example of a connecting portion between the resistor of the functional member and the dimension increasing / decreasing member. Show. FIG. 1B shows an example in which the thermal element is in a high temperature state, and FIG. 1C shows an example in which the thermal element is in a low temperature state. Moreover, the arrow shown in the figure represents expansion and contraction due to thermal expansion.

本実施形態に係る熱型素子は、基板20に設けた空洞30の上に架橋した機能部材となる抵抗体10を、寸法増減部材60で連結支持している。   In the thermal element according to the present embodiment, the resistor 10 serving as a functional member cross-linked on the cavity 30 provided in the substrate 20 is connected and supported by the dimension increasing / decreasing member 60.

はじめに、本実施形態に係る熱型素子の作製方法を説明する。   First, a method for manufacturing a thermal element according to this embodiment will be described.

まず、電極間の絶縁性を保つため、基板20の表面にSiO2、Ta25、Si34等の絶縁膜をスパッタ法などにより、例えば0.5μm成膜する。本実施形態では、基板としてSi基板を適用した例を示すが、これに限定されるものではない。その後、絶縁膜上に抵抗体10となる電気導電性の高いPt、Au、NiCr、W等の正の熱膨張係数を有する抵抗膜をスパッタ法などにより、例えば0.3μm成膜する。 First, in order to maintain insulation between the electrodes, an insulating film such as SiO 2 , Ta 2 O 5 , Si 3 N 4 or the like is formed on the surface of the substrate 20 by sputtering or the like, for example. In this embodiment, an example in which a Si substrate is applied as a substrate is shown, but the present invention is not limited to this. Thereafter, a resistive film having a positive thermal expansion coefficient, such as Pt, Au, NiCr, W, or the like having high electrical conductivity, which becomes the resistor 10, is formed on the insulating film by, for example, 0.3 μm by sputtering.

次に、抵抗膜を抵抗体の形状に加工するため、フォトレジストで幅4μm、長手方向170μm、短手方向2μmの折り返しパターンを形成し、それをマスクとして抵抗膜をエッチングする。その後、レジスト除去して所定形状の抵抗体を作製する。この際、最終的な空洞上の抵抗体の長さが154μmとなるように配置する。   Next, in order to process the resistive film into the shape of the resistor, a folded pattern having a width of 4 μm, a longitudinal direction of 170 μm, and a lateral direction of 2 μm is formed using a photoresist, and the resistive film is etched using the folded pattern as a mask. Thereafter, the resist is removed to produce a resistor having a predetermined shape. At this time, the resistors on the final cavity are arranged so that the length thereof is 154 μm.

寸法増減部材60を形成するため、抵抗体10の短手方向と重複する位置にフォトレジストで10μm×200μmの開口パターンを形成し、表面に負の熱膨張係数を有する材料、例えばZrW28(タングステン酸ジルコニウム)、HfW28(タングステン酸ハフニウム)、Li2O−Al23−nSiO2(ケイ酸リチウムアルミニウム)、Mn3CuN−Mn3GeN(マンガン窒化物)等をスパッタ法などにより、例えば0.3μm成膜し、レジスト除去により寸法増減部材60を作製する。寸法増減部材60の架橋長さLは、使用する材料や温度に応じて決定する。 In order to form the dimension increasing / decreasing member 60, an opening pattern of 10 μm × 200 μm is formed with a photoresist at a position overlapping with the short direction of the resistor 10, and a material having a negative thermal expansion coefficient on the surface, for example, ZrW 2 O 8 (Zirconium tungstate), HfW 2 O 8 (hafnium tungstate), Li 2 O—Al 2 O 3 —nSiO 2 (lithium aluminum silicate), Mn 3 CuN—Mn 3 GeN (manganese nitride), etc. For example, a 0.3 μm film is formed, and the dimension increasing / decreasing member 60 is manufactured by removing the resist. The bridging length L of the dimension increasing / decreasing member 60 is determined according to the material used and the temperature.

尚、絶縁性でない材料を使用し、抵抗体10と寸法増減部材60との絶縁性を保つ必要がある場合には、寸法増減部材60の形成前にSiO2、Ta25、Si34等の絶縁膜を形成しておく。 If it is necessary to use a non-insulating material and maintain the insulation between the resistor 10 and the dimension increasing / decreasing member 60, SiO 2 , Ta 2 O 5 , Si 3 N before the dimension increasing / decreasing member 60 is formed. An insulating film such as 4 is formed.

ここで、抵抗体10に使用する材料をPt(αは約9μ/℃)、寸法増減部材60に使用する材料をZrW28(αは約−9μ/℃)とする場合を例に挙げて、寸法増減部材60の架橋長さLを算出する。熱型素子を0℃から500℃で使用する場合、0℃と500℃の温度差で伸長するPtの大きさをΔlとして、上記式(2)にLl=154μmを代入してΔlを計算すると、約0.7μmとなる。このΔlと同じ収縮を生じさせるために必要なZrW28の架橋長さを上記式(2)から計算すると154μmが求まる。このように、寸法増減部材60に抵抗体10のαよりも大きいものを選定するとLは小さく、逆に小さいものを選定するとLを大きくできる。 Here, a case where the material used for the resistor 10 is Pt (α is about 9 μ / ° C.) and the material used for the dimension increasing / decreasing member 60 is ZrW 2 O 8 (α is about −9 μ / ° C.) is taken as an example. Thus, the cross-linking length L of the dimension increasing / decreasing member 60 is calculated. When the thermal element is used from 0 ° C. to 500 ° C., Δl is calculated by substituting Ll = 154 μm into the above equation (2), where Δl is the size of Pt that expands at a temperature difference between 0 ° C. and 500 ° C. About 0.7 μm. When the crosslinking length of ZrW 2 O 8 necessary for causing the same shrinkage as Δl is calculated from the above equation (2), 154 μm is obtained. Thus, L is small when the dimension increasing / decreasing member 60 is selected to be larger than α of the resistor 10, and conversely, L can be increased when a small one is selected.

次に、電極間の絶縁性を保つため、基板表面にSiO2、Ta25、Si34等の絶縁膜をスパッタ法などにより、例えば0.5μm成膜する。そして、抵抗体下のSi基板をエッチングして空洞30を形成するための304μm×304μmの窓及び電極部上の絶縁膜を除去するための開口パターンをフォトレジストで形成し、開口部から絶縁膜をエッチングする。その後レジストを除去する。 Next, in order to maintain the insulation between the electrodes, a SiO 2, Ta 2 O 5, Si 3 N 4 or the like of the insulating film by a sputtering method on the substrate surface, for example, 0.5μm deposited. Then, a 304 μm × 304 μm window for forming the cavity 30 by etching the Si substrate under the resistor and an opening pattern for removing the insulating film on the electrode part are formed with a photoresist, and the insulating film is formed from the opening part. Etch. Thereafter, the resist is removed.

続いて、空洞30を形成するために、KOH、TMAH(水酸化テトラメチルアンモニウム)等を用いてSi基板を異方性エッチングして、空洞上の長さが154μmの抵抗体10と空洞上の長さが154μmの寸法増減部材60で、両者が連結している部分が4μmの大きさの熱型素子を完成する。ここでの空洞30は、機能部材が配置された側の基板面から形成したものであるが、機能部材と基板とを空間により断熱するため、かつ機能部材の熱容量を小さくするために設けるものであればよいため、空洞は機能部材が配置されていない基板面から形成するものや溝、または貫通孔のような形状であってもよい。さらに、抵抗体10と寸法増減部材60との連結部分は、上記長さに限定されるものではなく、適宜変更することができる。   Subsequently, in order to form the cavity 30, the Si substrate is anisotropically etched using KOH, TMAH (tetramethylammonium hydroxide), etc., and the resistor 10 having a length of 154 μm on the cavity and the cavity 30 are formed. The dimension increasing / decreasing member 60 having a length of 154 μm, and the portion where the two are connected completes a thermal element having a size of 4 μm. The cavity 30 here is formed from the substrate surface on the side where the functional member is disposed, and is provided to insulate the functional member and the substrate from space and to reduce the heat capacity of the functional member. Since it suffices, the cavity may be formed from a substrate surface on which no functional member is arranged, a shape such as a groove, or a through hole. Furthermore, the connection part of the resistor 10 and the dimension increase / decrease member 60 is not limited to the said length, It can change suitably.

上述したように作製した熱型素子の機能部材の抵抗体を500℃に発熱させることによって、例えば、周囲雰囲気の気体へ伝熱させるために要した電力と、既知の周囲雰囲気の熱伝導率との関係から、周囲雰囲気の熱伝導率として高速に検出することができる。さらに、検出した熱伝導率と既知の周囲雰囲気の状態との関係により、周囲雰囲気の気体の状態を高速に検出することができる。   By heating the resistor of the functional member of the thermal type element manufactured as described above to 500 ° C., for example, the power required to transfer heat to the ambient atmosphere gas and the known thermal conductivity of the ambient atmosphere Therefore, the thermal conductivity of the surrounding atmosphere can be detected at high speed. Furthermore, the gas state of the surrounding atmosphere can be detected at high speed based on the relationship between the detected thermal conductivity and the known state of the surrounding atmosphere.

また、上記熱型素子は、気体の熱伝導率と周囲雰囲気の濃度との関係を利用し、例えば、周囲雰囲気の熱伝導率と空気中の水蒸気濃度との関係から湿度センサとして適用することができる。さらに、周囲雰囲気の熱伝導率と水蒸気と水素との濃度の関係により、燃料電池の水素濃度センサとしても適用することができる。   The thermal element utilizes the relationship between the thermal conductivity of the gas and the concentration of the ambient atmosphere. For example, it can be applied as a humidity sensor from the relationship between the thermal conductivity of the ambient atmosphere and the water vapor concentration in the air. it can. Furthermore, it can be applied as a hydrogen concentration sensor of a fuel cell due to the relationship between the thermal conductivity of the ambient atmosphere and the concentration of water vapor and hydrogen.

また、発熱部材に触媒や金属酸化物半導体などのガス感応材料を被覆し、発熱部材によってガス感応材料を活性化させることで、ガスセンサに適用することもできる。さらに、周囲雰囲気の気体に伝熱させるために要した電力と既知の周囲雰囲気の圧力との関係により圧力センサとして適用することもできる。また、既知の周囲雰囲気の流速との関係によりフローセンサとして適用することもできる。   Moreover, it can also apply to a gas sensor by coat | covering gas sensitive materials, such as a catalyst and a metal oxide semiconductor, and activating a gas sensitive material with a heat generating member. Furthermore, it can also be applied as a pressure sensor according to the relationship between the electric power required to transfer heat to the gas in the ambient atmosphere and the pressure in the known ambient atmosphere. Moreover, it can also be applied as a flow sensor according to the relationship with the flow velocity of a known ambient atmosphere.

一方、この機能部材の抵抗体10が雰囲気の温度に応じた抵抗値となることによって、既知の温度と測定した抵抗値との関係から、周囲雰囲気の気体の温度を高速に検出し、さらにその温度と既知の周囲雰囲気の状態の関係により、周囲雰囲気の気体の状態を高速に検出することができる。例えば、周囲雰囲気の発熱部から伝熱する温度と、その温度と既知の流速との関係から、フローセンサとして適用することができる。また、密閉雰囲気の発熱部から伝熱する温度と、その温度と既知の加速度との関係から、加速度センサとして適用することができる。さらに、周囲雰囲気からの光吸収に伴う温度変化と、その温度と既知の赤外線との関係から、赤外線センサとして適用することができる。尚、本実施形態に係る熱型素子が上記複数のセンサとして適用できることを説明したが、上記したセンサは例であり、これに限定されるものではない。   On the other hand, when the resistor 10 of this functional member has a resistance value corresponding to the temperature of the atmosphere, the temperature of the ambient atmosphere gas is detected at a high speed from the relationship between the known temperature and the measured resistance value, Depending on the relationship between the temperature and the state of the known ambient atmosphere, the state of the gas in the ambient atmosphere can be detected at high speed. For example, it can be applied as a flow sensor from the temperature transferred from the heat generating part of the ambient atmosphere and the relationship between the temperature and the known flow velocity. Moreover, it can apply as an acceleration sensor from the relationship between the temperature which transfers heat from the heat generating part in a sealed atmosphere, and the temperature and a known acceleration. Furthermore, it can be applied as an infrared sensor from the temperature change accompanying light absorption from the ambient atmosphere and the relationship between the temperature and known infrared rays. In addition, although it demonstrated that the thermal type element which concerns on this embodiment was applicable as said some sensor, the above-mentioned sensor is an example and is not limited to this.

次に、本実施形態に係る熱型素子における温度変化に伴う伸縮の吸収について説明する。   Next, absorption of expansion and contraction accompanying temperature change in the thermal element according to the present embodiment will be described.

図1に示すように、本実施形態に係る熱型素子の抵抗体10は、一端が基板20上の電極部40に接続されており、電極部40との接続部から空洞30上に延びて折り返し部で折り返えすように形成されている。抵抗体10は、負の熱膨張係数を有する寸法増減部材60と上記折り返し部分で連結している。ここで、空洞30上の抵抗体10や寸法増減部材60は基板20に拘束されることなく伸縮できるため、温度状態に応じて、それぞれ伸縮する。そのため、正の熱膨張係数を有する抵抗体10は、図1の(b)に示すように、高温状態で抵抗体10の抵抗パターン先端側へΔl伸長し、負の熱膨張係数を有する寸法増減部材60は基板側にΔl変位する。したがって、抵抗体10の伸長を寸法増減部材60により吸収し、熱型素子が高温状態であっても、図1の(c)に示す低温状態と同様にたわみのない形状を保持している。   As shown in FIG. 1, the resistor 10 of the thermal element according to the present embodiment has one end connected to the electrode part 40 on the substrate 20 and extends from the connection part with the electrode part 40 onto the cavity 30. It is formed so as to be folded at the folded portion. The resistor 10 is connected to the dimension increasing / decreasing member 60 having a negative thermal expansion coefficient at the folded portion. Here, since the resistor 10 and the dimension increasing / decreasing member 60 on the cavity 30 can be expanded and contracted without being constrained by the substrate 20, they expand and contract in accordance with the temperature state. Therefore, as shown in FIG. 1B, the resistor 10 having a positive thermal expansion coefficient expands by Δl toward the resistance pattern front end side of the resistor 10 at a high temperature, and has a dimensional increase / decrease having a negative thermal expansion coefficient. The member 60 is displaced by Δl toward the substrate side. Therefore, the extension of the resistor 10 is absorbed by the dimension increasing / decreasing member 60, and even when the thermal element is in a high temperature state, the shape without deflection is maintained as in the low temperature state shown in FIG.

次に、抵抗体10と寸法増減部材60との連結について説明する。   Next, the connection between the resistor 10 and the dimension increasing / decreasing member 60 will be described.

図1の(d)は、抵抗体10と寸法増減部材60との連結部を示している。尚、抵抗体10の抵抗パターン上に積層した寸法増減部材60は図示していない。抵抗体10の各部をパターン長手方向のR1、R2、短手方向のR3とし、低温から高温時の各部の伸長を、それぞれΔl1、Δl2、Δl3とする。ここではパターン短手方向は長手方向と比べて十分小さいので、Δl3は無視できる。Δl1とΔl2は大きさと方向が同じで並行であるため、抵抗体全体の伸長はΔl1と同じ大きさと向きの変位ベクトルd10で表せる。同様に、寸法増減部材60の長手方向の収縮は、Δl4の変位ベクトルd11で表せる。ベクトルd10及びベクトルd11を一致させることで、熱膨張による抵抗体10の伸縮を吸収する。   (D) of FIG. 1 has shown the connection part of the resistor 10 and the dimension increase / decrease member 60. FIG. The dimension increasing / decreasing member 60 laminated on the resistance pattern of the resistor 10 is not shown. Each part of the resistor 10 is defined as R1 and R2 in the longitudinal direction of the pattern and R3 in the lateral direction, and the elongation of each part from the low temperature to the high temperature is denoted as Δl1, Δl2, and Δl3, respectively. Here, since the pattern lateral direction is sufficiently smaller than the longitudinal direction, Δl3 can be ignored. Since Δl1 and Δl2 have the same size and direction and are parallel, the expansion of the entire resistor can be expressed by a displacement vector d10 having the same size and direction as Δl1. Similarly, the contraction in the longitudinal direction of the dimension increasing / decreasing member 60 can be expressed by a displacement vector d11 of Δ14. By matching the vector d10 and the vector d11, the expansion and contraction of the resistor 10 due to thermal expansion is absorbed.

図1に示す熱型素子のように、抵抗体10の伸縮方向と対向するように寸法増減部材60を連結して、抵抗体10の変位ベクトルと寸法増減部材60の変位ベクトルを一致させた場合、最小限の寸法増減部材60で抵抗体10の伸縮を吸収できる配置となる。   When the dimension increasing / decreasing member 60 is connected so as to face the expansion / contraction direction of the resistor 10 as in the thermal element shown in FIG. 1, and the displacement vector of the resistor 10 and the displacement vector of the dimension increasing / decreasing member 60 are matched. The arrangement is such that the expansion and contraction of the resistor 10 can be absorbed by the minimum dimension increasing / decreasing member 60.

次に、抵抗体10と寸法増減部材60との熱伝導度について説明する。   Next, the thermal conductivity between the resistor 10 and the dimension increasing / decreasing member 60 will be described.

図2は、抵抗体10の熱伝導度よりも寸法増減部材60の熱伝導度が小さい場合における、温度上昇時の図1の(a)のIa−Ib方向の温度分布の様子を示したものである。抵抗体10の伸縮を吸収する寸法増減部材60の架橋長さを決定する条件の1つは温度であり、使用する材料によって使用温度範囲での抵抗体10の変位量と一致させるように所定の架橋長さが決まる。この架橋長さは、抵抗体と寸法増減部材が一様で全く同じ温度変化する条件のものである。寸法増減部材に用いる材料の熱膨張係数の絶対値は、抵抗体となる材料のものと比べて小さい場合が多いが、熱伝導度についても導電性の抵抗体の材料より、寸法増減部材の材料の方が小さい場合が多い。この材料の熱伝導度の違いにより、温度状態が変化する時、空洞上に架橋した抵抗体と寸法増減部材とで温度差が生じる。   FIG. 2 shows the temperature distribution in the Ia-Ib direction of FIG. 1A when the temperature rises when the thermal conductivity of the dimension increasing / decreasing member 60 is smaller than the thermal conductivity of the resistor 10. It is. One of the conditions for determining the cross-linking length of the dimension increasing / decreasing member 60 that absorbs the expansion and contraction of the resistor 10 is the temperature, and a predetermined amount so as to match the amount of displacement of the resistor 10 in the operating temperature range depending on the material used. Crosslink length is determined. This cross-linking length is a condition in which the resistor and the dimension increasing / decreasing member are uniform and have the same temperature change. Although the absolute value of the coefficient of thermal expansion of the material used for the dimension increasing / decreasing member is often smaller than that of the material used as the resistor, the material of the dimension increasing / decreasing member also has a higher thermal conductivity than the material of the conductive resistor. Is often smaller. Due to the difference in thermal conductivity of this material, when the temperature state changes, a temperature difference is generated between the resistor bridged on the cavity and the dimension increasing / decreasing member.

図2に示す例では、抵抗体の熱伝導度は、寸法増減部材の熱伝導度より大きいため、基板への伝熱は抵抗体側の方が大きく、抵抗体側の温度がより高くなる。この状態では抵抗体の伸長の方が大きく、抵抗体の伸長と寸法増減部材の収縮がアンバランスになる。そのため、このような場合においても抵抗体の伸長を吸収するためは、寸法増減部材側の変位が大きくなるように、寸法増減部材の架橋長さを熱伝導度に応じて所定値よりも長くするとよい。   In the example shown in FIG. 2, since the thermal conductivity of the resistor is larger than the thermal conductivity of the dimension increasing / decreasing member, the heat transfer to the substrate is larger on the resistor side and the temperature on the resistor side is higher. In this state, the extension of the resistor is larger, and the extension of the resistor and the shrinkage of the dimension increasing / decreasing member are unbalanced. Therefore, even in such a case, in order to absorb the elongation of the resistor, the cross-linking length of the dimension increasing / decreasing member is made longer than a predetermined value according to the thermal conductivity so that the displacement on the dimension increasing / decreasing member side is increased. Good.

本実施形態により、機能部材の伸縮量を吸収する手段を設けることで、温度変化に対しても変形し難く、安定した特性を得ることが可能となる。また、機能部材の熱応答速度と同期させて、確実な伸縮量の吸収を行うことにより、熱容量の付加を最小限にして、迅速な熱応答を行うことが可能となる。   According to the present embodiment, by providing a means for absorbing the amount of expansion and contraction of the functional member, it is difficult to be deformed even with respect to a temperature change, and stable characteristics can be obtained. In addition, by performing reliable absorption of the expansion and contraction in synchronization with the thermal response speed of the functional member, it is possible to perform a quick thermal response with minimal addition of heat capacity.

(実施形態2)
図3は、本実施形態に係る熱型素子の概略構成例を示す。上記実施形態1の熱型素子の構成と異なる点は、抵抗体10と寸法増減部材60との連結部である。本実施形態では、正の熱膨張係数を有する抵抗体10と負の熱膨張係数を有する寸法増減部材60を積層して異なる平面間で連結支持する例を説明する。図3の(a)は、抵抗体10の下面と寸法増減部材60の上面を連結したものである。他方、図3の(b)は、抵抗体10の上面と寸法増減部材60の下面を連結したものである。図中に示した矢印は、熱膨張による伸縮を表している。
(Embodiment 2)
FIG. 3 shows a schematic configuration example of the thermal element according to the present embodiment. The difference from the configuration of the thermal element of the first embodiment is a connecting portion between the resistor 10 and the dimension increasing / decreasing member 60. In this embodiment, an example will be described in which the resistor 10 having a positive thermal expansion coefficient and the dimension increasing / decreasing member 60 having a negative thermal expansion coefficient are stacked and connected and supported between different planes. FIG. 3A is a diagram in which the lower surface of the resistor 10 and the upper surface of the dimension increasing / decreasing member 60 are connected. On the other hand, (b) of FIG. 3 connects the upper surface of the resistor 10 and the lower surface of the dimension increasing / decreasing member 60. The arrows shown in the figure represent expansion and contraction due to thermal expansion.

抵抗体10と寸法増減部材60を積層して連結したどちらも場合も、高温状態において抵抗体10は基板側から張出した抵抗体10の先端側に伸長し、寸法増減部材60は基板側へ収縮するので、抵抗体10の伸縮を寸法増減部材60により吸収することができる。また、このように抵抗体10と寸法増減部材60の接合面積を増やすことによって、連結部の強度を得ることができる。   In both cases in which the resistor 10 and the dimension increasing / decreasing member 60 are stacked and connected, the resistor 10 extends to the distal end side of the resistor 10 protruding from the substrate side in a high temperature state, and the dimension increasing / decreasing member 60 contracts to the substrate side. Therefore, the expansion and contraction of the resistor 10 can be absorbed by the dimension increasing / decreasing member 60. Moreover, the strength of the connecting portion can be obtained by increasing the joint area between the resistor 10 and the dimension increasing / decreasing member 60 in this manner.

本実施形態により、機能部材と機能部材の伸縮量を吸収する手段との連結部の強度を向上させることが可能となり、より安定した特性を得ることが可能となる。   According to the present embodiment, it is possible to improve the strength of the connecting portion between the functional member and the means for absorbing the amount of expansion and contraction of the functional member, and it is possible to obtain more stable characteristics.

(実施形態3)
図4は、本実施形態に係る熱型素子の概略構成例を示す。本実施形態が上記実施形態1と異なる点は、接続部材70を介して、基板20に設けた空洞上に架橋した機能部材である正の熱膨張係数を有する抵抗体と、負の熱膨張係数を有する寸法増減部材60と、を連結する点である。図中に示した矢印は、熱膨張による伸縮を表している。図4の(a)は、抵抗体10と寸法増減部材60との厚さ方向の間に接続部材70を配置する例を示している。他方、図4の(b)は、抵抗体10と寸法増減部材60との平面方向の間に接続部材70を配置する例を示している。
(Embodiment 3)
FIG. 4 shows a schematic configuration example of the thermal element according to the present embodiment. This embodiment is different from the first embodiment in that a resistor having a positive thermal expansion coefficient which is a functional member bridged on a cavity provided in the substrate 20 via a connecting member 70, and a negative thermal expansion coefficient. It is a point which connects the dimension increasing / decreasing member 60 which has these. The arrows shown in the figure represent expansion and contraction due to thermal expansion. 4A shows an example in which the connection member 70 is arranged between the resistor 10 and the dimension increasing / decreasing member 60 in the thickness direction. On the other hand, FIG. 4B shows an example in which the connecting member 70 is arranged between the resistor 10 and the dimension increasing / decreasing member 60 in the plane direction.

本実施形態は、正の熱膨張係数を有する抵抗体10と負の熱膨張係数を有する寸法増減部材60の間を絶縁する必要がある場合や連結部の接合力を上げる場合に好適である。正の熱膨張係数を有する導電性の抵抗体10と負の熱膨張係数を有し熱伝導度が大きい導電性の寸法増減部材60で構成する熱型素子では、熱伝導度が小さい絶縁性の寸法増減部材60で構成する場合よりも、寸法増減部材60から基板20への伝熱を大きくできるため、抵抗体側と寸法増減部材側との温度差を小さくできる。そのため、温度分布で生じる抵抗体側と寸法増減部材側と伸縮のアンバランスを一致させるような考慮が必要ない。   This embodiment is suitable when it is necessary to insulate between the resistor 10 having a positive thermal expansion coefficient and the dimension increasing / decreasing member 60 having a negative thermal expansion coefficient, or when increasing the joining force of the connecting portion. In the thermal type element composed of the conductive resistor 10 having a positive thermal expansion coefficient and the conductive dimension increasing / decreasing member 60 having a negative thermal expansion coefficient and a large thermal conductivity, an insulating material having a small thermal conductivity is used. Since the heat transfer from the dimension increasing / decreasing member 60 to the substrate 20 can be increased as compared with the case of the dimension increasing / decreasing member 60, the temperature difference between the resistor side and the dimension increasing / decreasing member side can be reduced. Therefore, it is not necessary to consider that the unbalance of expansion and contraction between the resistor side and the dimension increasing / decreasing member side generated in the temperature distribution is the same.

抵抗体10に連結する接続部材70の伸縮は、抵抗体10の伸縮とあわせて、温度によって寸法が変化するひとつの部材として扱うことにより、接続部材70の伸縮を寸法増減部材60により吸収するので、接続部材70には正、負またはゼロの何れの熱膨張係数を有するものでも用いることができる。そのため、抵抗体10と寸法増減部材60とを強く接合するような材料を選択することができる。   Since the expansion and contraction of the connecting member 70 connected to the resistor 10 is treated as one member whose size changes depending on the temperature together with the expansion and contraction of the resistor 10, the expansion and contraction of the connecting member 70 is absorbed by the dimension increasing / decreasing member 60. The connecting member 70 may have any positive, negative, or zero thermal expansion coefficient. Therefore, a material that strongly bonds the resistor 10 and the dimension increasing / decreasing member 60 can be selected.

本実施形態により、このように熱伝導度の値が近く、温度分布が小さくなるような材料を適用した接続部材を介して、機能部材と寸法増減部材とを連結支持することにより、安定した熱型素子を得ることが可能となる。また、寸法増減部材と機能部材とを連結させるにあたり、寸法増減部材の材質の接合力が小さい場合、製造工程や伸縮によって、特に寸法増減部材や機能部材の微細化が増す場合は連結部が断絶しやすくなる問題があった。しかし、接続部材として、寸法増減部材と抵抗体とに接合力を有する材料を選択することや、接合面積を増やすことによって、構造強度を得ることが可能となる。   According to the present embodiment, by connecting and supporting the functional member and the dimension increasing / decreasing member via the connecting member to which the material having such a close thermal conductivity value and a small temperature distribution is applied, stable heat can be obtained. A mold element can be obtained. In addition, when connecting the dimension increasing / decreasing member and the functional member, if the joining force of the material of the dimension increasing / decreasing member is small, the connection part is disconnected especially when the size increasing / decreasing member or the functional member becomes finer due to the manufacturing process or expansion / contraction. There was a problem that made it easier to do. However, it is possible to obtain structural strength by selecting a material having a bonding force for the dimension increasing / decreasing member and the resistor as the connecting member, or by increasing the bonding area.

さらに、機能部材と寸法増減部材とを接部材を介して連結することにより、さらに多種の材料の組み合わせが可能となり、多種多様な熱型素子を実現することが可能である。そして、接続部材を介して連結するので、機能部材と寸法増減部材とを強固に支持することが可能となり、温度変化に対しても変形し難く、安定した特性を得ることが可能となる。   Further, by connecting the functional member and the dimension increasing / decreasing member via the contact member, it is possible to combine various materials and realize various thermal elements. And since it connects via a connection member, it becomes possible to support a functional member and a dimension increase / decrease member firmly, it becomes difficult to deform | transform with respect to a temperature change, and it becomes possible to acquire the stable characteristic.

(実施形態4)
図5は、本実施形態に係る熱型素子の概略構成例を示す図である。本実施形態が、上記実施形態1と異なる点は、抵抗体及び電極部40を複数備えている点である。図5の(a)は、本実施形態に係る熱型素子の概略構成例を示す平面図である。図5の(b)は、図5の(a)のVa−Vbの断面図である。図5の(c)は、抵抗体と寸法増減部材60との連結部の例を示している。尚、図5の(c)では、抵抗体の抵抗パターン上に積層した寸法増減部材60は図示していない。また、図中の矢印は、熱膨張による伸縮を表している。
(Embodiment 4)
FIG. 5 is a diagram illustrating a schematic configuration example of the thermal element according to the present embodiment. The present embodiment is different from the first embodiment in that a plurality of resistors and electrode portions 40 are provided. FIG. 5A is a plan view showing a schematic configuration example of the thermal element according to the present embodiment. FIG. 5B is a cross-sectional view taken along the line Va-Vb in FIG. FIG. 5C shows an example of a connecting portion between the resistor and the dimension increasing / decreasing member 60. In FIG. 5C, the dimension increasing / decreasing member 60 laminated on the resistance pattern of the resistor is not shown. Moreover, the arrow in a figure represents the expansion-contraction by thermal expansion.

図5に示すように、本実施形態に係る熱型素子は、絶縁基板21に設けた空洞上に架橋した機能部材となる抵抗体11が、抵抗体の伸縮方向に対向する位置で寸法増減部材60と連結配置され、その寸法増減部材60が他の抵抗体12、13とも連結して支持する構成である。   As shown in FIG. 5, the thermal element according to the present embodiment has a dimension increasing / decreasing member at a position where the resistor 11 serving as a functional member bridged on the cavity provided in the insulating substrate 21 faces the expansion / contraction direction of the resistor. The dimension increasing / decreasing member 60 is connected to and supported by the other resistors 12 and 13.

本実施形態に係る熱型素子における温度変化に伴う伸縮の吸収について説明する。   The absorption of expansion and contraction accompanying the temperature change in the thermal element according to the present embodiment will be described.

本実施形態では、絶縁基板21に設けた空洞上に架橋した正の熱膨張係数を有する抵抗体11〜13は、空洞上の部分で伸縮が可能となるため、高温状態では折り返し部のある先端側へ伸長する。また、抵抗体11〜13を連結する負の熱膨張係数を有する寸法増減部材60は、パターン長手方向に収縮する。ここで、抵抗パターン短手方向の伸長は長手方向と比べて十分小さいため、無視できる。   In the present embodiment, the resistors 11 to 13 having a positive coefficient of thermal expansion bridged on the cavity provided in the insulating substrate 21 can be expanded and contracted at a portion on the cavity. Extend to the side. Moreover, the dimension increasing / decreasing member 60 having a negative thermal expansion coefficient connecting the resistors 11 to 13 contracts in the pattern longitudinal direction. Here, since the elongation in the short direction of the resistance pattern is sufficiently smaller than that in the longitudinal direction, it can be ignored.

低温状態から高温状態にした時の抵抗体11〜13の伸長をそれぞれ変位ベクトルd10、d20、d30とする。他方、寸法増減部材60の抵抗体11に対向した収縮をd11、抵抗体12に対向した収縮をd21、抵抗体13に対向した収縮をd31として、対向する抵抗体と寸法増減部材のベクトルを一致させて、抵抗体の伸縮を吸収する。空洞上の抵抗体間を連結する寸法増減部材60は、一端を絶縁基板21に支持する場合に比べて温度分布が小さくなるため、全体の伸縮を増すことができる。   The expansion of the resistors 11 to 13 when changing from the low temperature state to the high temperature state is referred to as displacement vectors d10, d20, and d30, respectively. On the other hand, the contraction of the dimension increasing / decreasing member 60 facing the resistor 11 is d11, the contraction facing the resistor 12 is d21, and the contraction facing the resistor 13 is d31. To absorb the expansion and contraction of the resistor. The size increasing / decreasing member 60 that connects the resistors in the cavity has a smaller temperature distribution than the case where one end is supported by the insulating substrate 21, so that the entire expansion and contraction can be increased.

本実施形態により、機能部材を連結支持する部分に、機能部材とは極性の異なる熱膨張係数を有する寸法増減部材を用い、機能部材の熱膨張を吸収することにより、安定した熱型素子を実現することが可能となる。また、機能部材の伸縮方向と対向して寸法増減部材を連結配置して、熱容量の付加を最小限にすることにより、迅速な熱応答を行うことが可能となる。   According to the present embodiment, a stable thermal element is realized by absorbing the thermal expansion of the functional member by using a dimension increasing / decreasing member having a thermal expansion coefficient having a polarity different from that of the functional member in a portion for connecting and supporting the functional member. It becomes possible to do. In addition, it is possible to perform a quick thermal response by connecting and disposing the dimension increasing / decreasing members facing the expansion / contraction direction of the functional member to minimize the addition of heat capacity.

(実施形態5)
図6は、本実施形態に係る熱型素子の概略構成例を示す図である。図6に示すように、本実施形態が上記実施形態4と異なる点は、空洞30の上に赤外線吸収部を備えている点である。図6の(a)は、本実施形態に係る熱型素子の概略構成例を示す平面図である。図6の(b)は、図6の(a)のVIa−VIbの断面図である。赤外線吸収部は、赤外線を吸収して温度が変化するため、その温度変化を熱電対により検出することができる。
(Embodiment 5)
FIG. 6 is a diagram illustrating a schematic configuration example of the thermal element according to the present embodiment. As shown in FIG. 6, the present embodiment is different from the fourth embodiment in that an infrared absorption unit is provided on the cavity 30. FIG. 6A is a plan view illustrating a schematic configuration example of the thermal element according to the present embodiment. FIG. 6B is a cross-sectional view taken along the line VIa-VIb of FIG. Since the infrared absorption section absorbs infrared rays and changes its temperature, the temperature change can be detected by a thermocouple.

空洞上に架橋した熱電対91はアルメルの薄膜からなる熱電対パターン911とクロメルの薄膜からなる熱電対パターン912を有しており、熱電対パターン911と熱電対パターン912が接合された個所における熱起電力を、熱電対に接続する基板上に設置した電極部間の電圧として検出する。熱電対パターン911と熱電対パターン912が接合された個所と、赤外線吸収部80とは寸法増減部材60を介して連結されており、この赤外線吸収部80における温度は寸法増減部材60を仲介して伝熱させる。   The thermocouple 91 cross-linked on the cavity has a thermocouple pattern 911 made of an alumel thin film and a thermocouple pattern 912 made of a chromel thin film, and heat at a location where the thermocouple pattern 911 and the thermocouple pattern 912 are joined. The electromotive force is detected as a voltage between the electrode portions installed on the substrate connected to the thermocouple. The portion where the thermocouple pattern 911 and the thermocouple pattern 912 are joined to each other and the infrared absorbing portion 80 are connected via a dimension increasing / decreasing member 60, and the temperature in the infrared absorbing portion 80 is mediated by the dimension increasing / decreasing member 60. Heat transfer.

尚、赤外線吸収部80は白金黒等の薄膜を表面に積層させることにより、対峙する物体から放射される熱を吸収する。また、発熱素子として、抵抗体のジュール発熱機構に代わり、ペルチェ素子を構成することも可能である。   The infrared absorption unit 80 absorbs heat radiated from a facing object by laminating a thin film such as platinum black on the surface. Further, instead of the Joule heating mechanism of the resistor, a Peltier element can be configured as the heating element.

すなわち、図6において、赤外線吸収部80をAl電極、熱電対パターン911をN型半導体パターン、熱電対パターン912をP型半導体パターンに置き換える。基板の空洞上に架橋した、ポリシリコンに不純物を拡散した薄膜であって、空洞上で少なくとも一対のN型半導体とP型半導体パターンをAl電極によって接合し、P型半導体パターンの端部の電極からN型半導体パターンの端部の電極へ電流を印加することによって、Al電極部が加熱される。他方、逆方向の電流を印加すれば、Al電極部が冷却され、このように電流の向きや電流値の調節によって任意の温度に制御することができる。これにより、空洞上のAl電極部を周囲雰囲気の気体を凝集するまで冷却することによって凝集温度を検出し、雰囲気の露点温度を検出する露点温度センサとして用いることができる。   That is, in FIG. 6, the infrared absorbing portion 80 is replaced with an Al electrode, the thermocouple pattern 911 is replaced with an N-type semiconductor pattern, and the thermocouple pattern 912 is replaced with a P-type semiconductor pattern. A thin film formed by diffusing impurities in polysilicon, bridged on a cavity of a substrate, wherein at least a pair of an N-type semiconductor and a P-type semiconductor pattern are joined by an Al electrode on the cavity, and an electrode at an end of the P-type semiconductor pattern Is applied to the electrode at the end of the N-type semiconductor pattern to heat the Al electrode portion. On the other hand, if a current in the reverse direction is applied, the Al electrode portion is cooled, and thus can be controlled to an arbitrary temperature by adjusting the direction of the current and the current value. Thereby, the aggregation temperature is detected by cooling the Al electrode part on the cavity until the gas in the surrounding atmosphere is aggregated, and the dew point temperature sensor can be used to detect the dew point temperature of the atmosphere.

本実施形態により、さらに多種のセンサとして熱型素子を適用することが可能となる。   According to the present embodiment, it is possible to apply a thermal element as various types of sensors.

(実施形態6)
図7は、本実施形態に係る熱型素子の概略構成例を示す図である。図7の(a)は、本実施形態に係る熱型素子の概略構成例を示す平面図であり、図7の(b)は、図7の(a)のVIIa−VIIbの断面図である。図中の矢印は、熱膨張による伸縮を表している。
(Embodiment 6)
FIG. 7 is a diagram illustrating a schematic configuration example of the thermal element according to the present embodiment. FIG. 7A is a plan view showing a schematic configuration example of the thermal element according to the present embodiment, and FIG. 7B is a cross-sectional view of VIIa-VIIb in FIG. . The arrows in the figure represent expansion and contraction due to thermal expansion.

本実施形態に係る熱型素子では、基板20に設けた空洞上に架橋した機能部材となる抵抗体10を、伸縮方向に対向した位置で複数の寸法増減部材60で連結支持している。本実施形態に係る熱型素子の抵抗体10は、抵抗値を大きくして感度を向上させるために、抵抗パターンを複数折り返すもので、抵抗パターンの各折り返し部を寸法増減部材60により連結支持されている。   In the thermal element according to the present embodiment, the resistor 10 serving as a functional member bridged on the cavity provided in the substrate 20 is connected and supported by a plurality of dimension increasing / decreasing members 60 at positions facing the expansion / contraction direction. The resistor 10 of the thermal element according to the present embodiment is configured to fold back a plurality of resistance patterns in order to increase the resistance value and improve sensitivity, and each folded portion of the resistance pattern is connected and supported by a dimension increasing / decreasing member 60. ing.

本実施形態に係る熱型素子における温度変化に伴う伸縮の吸収について説明する。   The absorption of expansion and contraction accompanying the temperature change in the thermal element according to the present embodiment will be described.

基板20に設けた空洞上に架橋した正の熱膨張係数を有する抵抗体10は、低温状態から高温状態になると抵抗パターン長手方向に伸長する。ここで、抵抗パターン短手方向の伸長は長手方向と比べて十分小さいため、無視できる。他方、抵抗体10を連結支持する負の熱膨張係数を有する寸法増減部材60は、高温状態になるとパターン長手方向に収縮する。それぞれの連結部において、抵抗パターンと寸法増減部材の変位を一致させることで、抵抗体の伸縮を吸収することができる。   The resistor 10 having a positive thermal expansion coefficient bridged on a cavity provided in the substrate 20 extends in the longitudinal direction of the resistance pattern when the resistor 10 is changed from a low temperature state to a high temperature state. Here, since the elongation in the short direction of the resistance pattern is sufficiently smaller than that in the longitudinal direction, it can be ignored. On the other hand, the dimension increasing / decreasing member 60 having a negative coefficient of thermal expansion for connecting and supporting the resistor 10 contracts in the pattern longitudinal direction when it reaches a high temperature. In each connecting portion, the expansion and contraction of the resistor can be absorbed by matching the displacement of the resistance pattern and the dimension increasing / decreasing member.

次に、本実施形態に係る発熱素子の抵抗体10に電力を印加する際の様子について説明する。   Next, a state when power is applied to the resistor 10 of the heating element according to the present embodiment will be described.

図8は、本実施形態に係る発熱素子の抵抗体10に電力を印加して発熱させた際の様子を示す模式図である。図8の(a)は、図7の(a)のVIIc−VIId方向における温度分布の時間変化の例を示す。図8の(b)は、図7の(a)のD点における発熱温度の時間変化の例示す。そして、図8の(c)は、図7のD点における変位の時間変化の例を示している。   FIG. 8 is a schematic diagram showing a state in which power is applied to the resistor 10 of the heating element according to the present embodiment to generate heat. (A) of FIG. 8 shows an example of the time change of the temperature distribution in the VIIc-VIId direction of (a) of FIG. FIG. 8B shows an example of the temporal change in the heat generation temperature at point D in FIG. FIG. 8C shows an example of the change over time of the displacement at point D in FIG.

本実施形態に係る発熱素子の抵抗体10を発熱させた際の温度分布は、図8の(a)に示すように、隣接する抵抗パターンからの熱が重畳され、A点が存在する中心部の抵抗パターンにおける温度が最も高く、そこからC点が存在する最外の抵抗パターンに向かうほど温度は低下する。温度分布により抵抗体10の伸縮量はパターンごとに変わるため、抵抗パターンと寸法増減部材60の変位を一致させることが必要となる。   As shown in FIG. 8A, the temperature distribution when the resistor 10 of the heat generating element according to the present embodiment generates heat is such that the heat from the adjacent resistance pattern is superimposed and the center where the point A exists is present. The temperature in the resistance pattern is the highest, and the temperature decreases from the resistance pattern toward the outermost resistance pattern where the point C exists. Since the expansion / contraction amount of the resistor 10 varies from pattern to pattern depending on the temperature distribution, it is necessary to match the displacement of the resistance pattern and the dimension increasing / decreasing member 60.

ここで、本実施形態では、抵抗体10のそれぞれのパターン折り返し部分を寸法増減部材60により連結配置しているため、図9及び図10に示すように、寸法増減部材60の架橋長さL又は抵抗パターン長さRを変更することにより、より簡便に抵抗パターンの伸縮を吸収することができる。   Here, in this embodiment, since each pattern folding | turning part of the resistor 10 is connectedly arranged by the dimension increase / decrease member 60, as shown to FIG.9 and FIG.10, as shown in FIG. By changing the resistance pattern length R, the expansion and contraction of the resistance pattern can be absorbed more easily.

図9では、温度分布を利用し、高温状態で伸縮の大きい中心部の抵抗体パターンに比べて伸縮の小さい抵抗パターンの周辺部における寸法増減部材の架橋長さL1を、中心部の寸法増減部材の架橋長さL2よりも短くして、それぞれの連結部での伸縮を一致させる例を示している。また、図10では、高温となる抵抗体の中心部に比べて低温となる抵抗パターンの長さR1を、中心部の抵抗パターンの長さR2よりも長くして、それぞれの連結部での伸縮を一致させる例を示している。   In FIG. 9, the cross-linking length L1 of the dimension increasing / decreasing member in the peripheral part of the resistance pattern with a small expansion / contraction compared with the resistor pattern of the central part with a large expansion / contraction in the high temperature state is shown by using the temperature distribution. In this example, the length of the cross-link is made shorter than the cross-linking length L2, and the expansion and contraction at each connecting portion is matched. Further, in FIG. 10, the length R1 of the resistance pattern that is low in temperature compared to the central portion of the resistor that is high in temperature is set to be longer than the length R2 of the resistance pattern in the center, and the expansion and contraction at each connecting portion is performed. Shows an example of matching.

また、本実施形態の抵抗体10のように、抵抗パターンを複数折り返し、抵抗パターンの各折り返し部を寸法増減部材60により連結支持する構成では、抵抗パターンの両端が寸法増減部材60により支持される形となり、抵抗パターンの伸縮量が分散される。そのため、1つの寸法増減部材60により吸収させる抵抗体10の伸縮量が少なくなるので、伸縮の吸収が容易となる。   Further, in the configuration in which a plurality of resistance patterns are folded and each folded portion of the resistance pattern is connected and supported by the dimension increasing / decreasing member 60 as in the resistor 10 of the present embodiment, both ends of the resistance pattern are supported by the dimension increasing / decreasing member 60. It becomes a shape, and the expansion and contraction amount of the resistance pattern is dispersed. Therefore, since the amount of expansion / contraction of the resistor 10 absorbed by one dimension increasing / decreasing member 60 is reduced, the absorption of expansion / contraction is facilitated.

ここで、図8の(b)に示すように、発熱温度が平衡するまでには時間が必要である。発熱開始の時間をt0、D点における温度をT0とし、発熱温度が平衡する時間をt3、その時の温度をT3とすると、温度はT0からT3まで時々刻々変化する。そのため、抵抗体10を熱伝導度の小さい空間で断熱される空洞上の寸法増減部材60と連結し、抵抗体10からの伝熱により、寸法増減部材60でも抵抗体10と同様の温度変化を生じさせることができる。図9に示すように寸法増減部材60の架橋長さを各部で変更して、抵抗体10からの伝熱を増やし、温度分布を変えることで、図8の(c)に示すような抵抗体10と寸法増減部材60の変位の関係にすることができる。   Here, as shown in FIG. 8B, time is required until the exothermic temperature is balanced. When the heat generation start time is t0, the temperature at point D is T0, the heat generation temperature equilibration time is t3, and the temperature at that time is T3, the temperature changes from T0 to T3 every moment. Therefore, the resistor 10 is connected to the dimension increasing / decreasing member 60 on the cavity that is thermally insulated in the space with small thermal conductivity, and the size increasing / decreasing member 60 causes the same temperature change as the resistor 10 due to heat transfer from the resistor 10. Can be generated. As shown in FIG. 9, by changing the bridge length of the dimension increasing / decreasing member 60 at each part to increase the heat transfer from the resistor 10 and changing the temperature distribution, the resistor as shown in FIG. 10 and the displacement of the dimension increasing / decreasing member 60.

つまり、時間t1における抵抗体10の伸長量と寸法増減部材60の収縮量の絶対値や、時間t2、t3における抵抗体10の伸長量と寸法増減部材60の収縮量の絶対値を合わせ、抵抗体10と同期して変位する寸法増減部材60とすることにより、抵抗体10の伸縮を吸収することができる。   That is, the absolute value of the amount of expansion of the resistor 10 and the amount of contraction of the dimension increasing / decreasing member 60 at time t1, and the amount of expansion of the resistor 10 and the absolute value of the amount of contraction of the size increasing / decreasing member 60 at times t2 and t3 are combined. By using the dimension increasing / decreasing member 60 that is displaced in synchronization with the body 10, the expansion and contraction of the resistor 10 can be absorbed.

例えば、抵抗体10の材料がPtであり、厚さ0.3μm、パターン長100μm、パターン幅4μmのサイズであって、電流を5ミリ秒印加してジュール発熱させることにより、100Hzの周期の間欠条件で、抵抗体を0℃から500℃の間の周期発熱をさせると、パターン長手方向の伸縮が100Hzの周期で約0.5μm発生するとする。このような、伸縮が繰り返されると、抵抗体10の抵抗値等の物性値が変化し、所定の発熱温度が維持できなくなり、検出素子の特性が変化し、10000時間を越えると脆性疲労が拡大し亀裂に到ることもある。しかし、抵抗パターンを連結支持する部分に、負の熱膨張係数を有する寸法増減部材60を用い、伸縮を吸収することにより、亀裂を防止できる。   For example, the material of the resistor 10 is Pt, the thickness is 0.3 μm, the pattern length is 100 μm, and the pattern width is 4 μm. By intermittently applying Joule heat by applying a current for 5 milliseconds, a period of 100 Hz is intermittent. If the resistor is periodically heated between 0 ° C. and 500 ° C. under the conditions, it is assumed that expansion and contraction in the pattern longitudinal direction occurs about 0.5 μm at a cycle of 100 Hz. When such expansion and contraction is repeated, the physical property value such as the resistance value of the resistor 10 changes, the predetermined heat generation temperature cannot be maintained, the characteristics of the detection element change, and brittle fatigue expands after 10,000 hours. However, it can lead to cracks. However, cracks can be prevented by using the dimension increasing / decreasing member 60 having a negative coefficient of thermal expansion at the portion for connecting and supporting the resistance pattern and absorbing the expansion and contraction.

本実施形態により、複数の寸法増減部材で機能部材を連結することにより、機能部材を面形状で強固に支持することが可能となり、安定性を向上させることが可能となる。さらに、機能部材の温度分布に応じて、寸法増減部材の架橋長さや機能部材の長さを変更し、機能部材の伸縮を寸法増減部材で吸収することにより、安定した熱型素子を得ることが可能となる。   According to the present embodiment, by connecting the functional members with a plurality of dimension increasing / decreasing members, the functional members can be firmly supported by the surface shape, and the stability can be improved. Furthermore, by changing the cross-linking length of the dimension increasing / decreasing member and the length of the functional member according to the temperature distribution of the functional member, and absorbing the expansion / contraction of the functional member by the dimension increasing / decreasing member, a stable thermal element can be obtained. It becomes possible.

(実施形態7)
図11は、本実施形態に係る熱型素子の概略構成例を示す。図11の(a)は、本実施形態に係る熱型素子の概略構成例を示す平面図であり、図11の(b)は、図11の(a)のXIa−XIbの断面図である。図中の矢印は、熱膨張による伸縮を表している。図11に示すように、本実施形態の熱型素子は、基板20に設けた空洞上に架橋した機能部材となる抵抗体14と抵抗体15とを、伸縮方向に対向する位置で複数の寸法増減部材で連結支持するものである。
(Embodiment 7)
FIG. 11 shows a schematic configuration example of the thermal element according to the present embodiment. 11A is a plan view illustrating a schematic configuration example of the thermal element according to the present embodiment, and FIG. 11B is a cross-sectional view taken along line XIa-XIb in FIG. . The arrows in the figure represent expansion and contraction due to thermal expansion. As shown in FIG. 11, the thermal element of the present embodiment has a plurality of dimensions in a position where the resistor 14 and the resistor 15 that are cross-linked on the cavity provided in the substrate 20 are opposed to each other in the expansion / contraction direction. It is connected and supported by an increase / decrease member.

本実施形態に係る熱型素子における温度変化に伴う伸縮の吸収について説明する。   The absorption of expansion and contraction accompanying the temperature change in the thermal element according to the present embodiment will be described.

基板20に設けた空洞上に架橋した正の熱膨張係数を有する抵抗体14、15は、基板上の部分では伸縮はできないが、空洞上の部分では基板20に拘束されないので伸縮が可能となるため、高温状態では折り返し部のある先端側へ伸長する。また、抵抗体14と抵抗体15との間で連結支持する負の熱膨張係数を有する寸法増減部材61、62は、パターン長手方向に収縮する。ここで、抵抗パターン短手方向の伸長は長手方向と比べて十分小さいため、無視できる。   Resistors 14 and 15 having a positive thermal expansion coefficient bridged on a cavity provided in the substrate 20 cannot expand and contract in a portion on the substrate, but can be expanded and contracted because they are not restrained by the substrate 20 in a portion on the cavity. For this reason, in a high temperature state, it extends to the tip side with the folded portion. Further, the dimension increasing / decreasing members 61 and 62 having a negative thermal expansion coefficient connected and supported between the resistor 14 and the resistor 15 contract in the pattern longitudinal direction. Here, since the elongation in the short direction of the resistance pattern is sufficiently smaller than that in the longitudinal direction, it can be ignored.

低温状態から高温状態に遷移した際の抵抗体14、抵抗体15の伸長をそれぞれΔl14、Δl15、また寸法増減部材61の抵抗体14に接した側の収縮をΔl614、抵抗体15に接した側の収縮をΔl615、同様に寸法増減部材62の抵抗体14に接した側の収縮をΔl624、抵抗体15に接した側の収縮をΔl625とする。抵抗体と寸法増減部材とがそれぞれ連結した部分の伸長と収縮、すなわちΔl14とΔl624、Δl15とΔl625を一致させることにより、抵抗パターンの伸長を吸収することができる。   When the transition from the low temperature state to the high temperature state occurs, the expansion of the resistor 14 and the resistor 15 is Δl14 and Δl15, respectively, and the contraction of the dimension increasing / decreasing member 61 on the side in contact with the resistor 14 is Δl614 and the side in contact with the resistor 15 , The shrinkage of the dimension increasing / decreasing member 62 on the side in contact with the resistor 14 is Δl624, and the contraction on the side in contact with the resistor 15 is Δl625. The expansion and contraction of the portion where the resistor and the dimension increasing / decreasing member are connected, that is, Δl14 and Δl624, Δl15 and Δl625 can be matched to absorb the elongation of the resistance pattern.

本実施形態により、機能部材を連結支持する部分に、機能部材とは極性の異なる熱膨張係数を有する寸法増減部材を用い、機能部材の熱膨張を吸収することにより、安定した熱型素子を実現することが可能となる。また、機能部材を複数の寸法増減部材で連結支持することにより、面形状の支持となり強度に優れ、安定した熱型素子とすることが可能となる。さらに、機能部材の伸縮方向と対向して寸法増減部材を連結配置して、熱容量の付加を最小限にすることにより、迅速な熱応答を行うことが可能となる。尚、本実施形態に係る熱型素子では、機能部材を複数の寸法増減部材で連結支持するため、面で幅広く支持でき、機能部材のねじれや振動に耐性を向上させることが可能となる。   According to the present embodiment, a stable thermal element is realized by absorbing the thermal expansion of the functional member by using a dimension increasing / decreasing member having a thermal expansion coefficient having a polarity different from that of the functional member in a portion for connecting and supporting the functional member. It becomes possible to do. Further, by connecting and supporting the functional member with a plurality of dimension increasing / decreasing members, it is possible to provide a surface-shaped support, excellent strength, and a stable thermal element. Furthermore, it is possible to perform a quick thermal response by connecting and disposing the dimension increasing / decreasing members opposite to the expansion / contraction direction of the functional member to minimize the addition of heat capacity. In the thermal element according to the present embodiment, since the functional member is connected and supported by a plurality of dimension increasing / decreasing members, the functional member can be widely supported on the surface, and resistance to torsion and vibration of the functional member can be improved.

(実施形態8)
図12は、本実施形態に係る熱型素子の概略構成例を示す。図12の(a)は、本実施形態に係る熱型素子の概略構成例を示す平面図であり、図12の(b)は、図12の(a)のXIIa−XIIbの断面図である。図12の(c)は、本実施形態に係る熱型素子の抵抗体10と寸法増減部材60との連結部例を示したものである。尚、図12の(c)では、抵抗パターン上に積層した寸法増減部材60は図示していない。図中の矢印は、熱膨張による伸縮を表している。図12では、熱型素子が基板20に設けた空洞上に架橋した機能部材となる抵抗体10を、複数の寸法増減部材60で連結配置する構成である例を示している。
(Embodiment 8)
FIG. 12 shows a schematic configuration example of the thermal element according to the present embodiment. 12A is a plan view illustrating a schematic configuration example of the thermal element according to the present embodiment, and FIG. 12B is a cross-sectional view taken along line XIIa-XIIb in FIG. . FIG. 12C shows an example of a connecting portion between the resistor 10 of the thermal element and the dimension increasing / decreasing member 60 according to this embodiment. In FIG. 12C, the dimension increasing / decreasing member 60 laminated on the resistance pattern is not shown. The arrows in the figure represent expansion and contraction due to thermal expansion. FIG. 12 shows an example in which the resistor 10 serving as a functional member bridged on a cavity provided in the substrate 20 is connected by a plurality of dimension increasing / decreasing members 60.

本実施形態に係る熱型素子における温度変化に伴う伸縮の吸収について説明する。   The absorption of expansion and contraction accompanying the temperature change in the thermal element according to the present embodiment will be described.

基板20に設けた空洞上に架橋した正の熱膨張係数を有する抵抗体10は、空洞上での伸び縮みが可能となるため、高温状態では折り返し部のある先端側へ伸長し、その抵抗体の伸長はd10のベクトルで表せる。ここで、抵抗パターン短手方向の伸長は長手方向と比べて十分小さいため、無視できる。   Since the resistor 10 having a positive coefficient of thermal expansion bridged on the cavity provided in the substrate 20 can expand and contract on the cavity, the resistor 10 extends to the tip side with the folded portion in a high temperature state. Can be expressed by a vector of d10. Here, since the elongation in the short direction of the resistance pattern is sufficiently smaller than that in the longitudinal direction, it can be ignored.

他方、本実施形態における抵抗体10を連結支持する負の熱膨張係数を有する寸法増減部材60は、抵抗体10に対向する向きではなく、2つの寸法増減部材60の角度が角度θになるような角度で設けられている。また、抵抗体10と連結されていない端は、基板20と接続されている。尚、本実施形態では寸法増減部材60を2つ備える例を挙げて説明するが、これに限定されるものではない。   On the other hand, the dimension increasing / decreasing member 60 having a negative thermal expansion coefficient for connecting and supporting the resistor 10 in the present embodiment is not in a direction facing the resistor 10, so that the angle of the two dimension increasing / decreasing members 60 is an angle θ. It is provided at an angle. The end not connected to the resistor 10 is connected to the substrate 20. In the present embodiment, an example in which two dimension increasing / decreasing members 60 are provided will be described. However, the present invention is not limited to this.

上記した寸法増減部材の一方の収縮をΔl61、もう一方をΔl62とすると、寸法増減部材による収縮は各収縮を合成したd11のベクトルで表せ、抵抗体10と寸法増減部材60の伸長と収縮のベクトルを一致させることで、抵抗体の伸縮を吸収することができる。   Assuming that one shrinkage of the dimension increasing / decreasing member is Δl61 and the other is Δl62, the contraction by the dimension increasing / decreasing member can be expressed by a vector d11 obtained by synthesizing each contraction. By matching, the expansion and contraction of the resistor can be absorbed.

寸法増減部材60がなす角度である角度θと架橋長さを変更して、寸法増減部材60の変位ベクトルを抵抗体10の変位ベクトルに対応させることで、伸縮の吸収範囲が広がり、抵抗体10の伸縮方向に対向する位置で寸法増減部材の架橋長さが十分に得られない場合にも適用することができる。また熱膨張係数や長さが厳密でなくても対応することができる。   By changing the angle θ which is an angle formed by the dimension increasing / decreasing member 60 and the bridge length, and by causing the displacement vector of the dimension increasing / decreasing member 60 to correspond to the displacement vector of the resistor 10, the expansion / contraction absorption range is expanded. The present invention can also be applied to the case where the cross-linking length of the dimension increasing / decreasing member is not sufficiently obtained at the position facing the expansion / contraction direction. Moreover, even if the thermal expansion coefficient or length is not strict, it can be handled.

本実施形態により、機能部材を連結支持する部分に、機能部材とは極性の異なる熱膨張係数を有する寸法増減部材を用い、機能部材の熱膨張を吸収することにより、安定した熱型素子を実現することが可能となる。また、機能部材を複数の寸法増減部材で連結支持することにより、面方向の支持強度が優れ、安定した熱型素子とすることが可能となる。さらに、機能部材を連結支持する寸法増減部材がなす角度と架橋長さを変更することで、伸縮の吸収範囲が広がり、機能部材の伸縮方向に対向する位置で寸法増減部材の架橋長さが十分に得られない場合にも適用することが可能となる。また、熱膨張係数や長さが厳密でない場合にも対応することが可能となる。   According to the present embodiment, a stable thermal element is realized by absorbing the thermal expansion of the functional member by using a dimension increasing / decreasing member having a thermal expansion coefficient having a polarity different from that of the functional member in a portion for connecting and supporting the functional member. It becomes possible to do. Further, by connecting and supporting the functional member with a plurality of dimension increasing / decreasing members, it is possible to obtain a stable thermal element with excellent support strength in the surface direction. Furthermore, by changing the angle formed by the dimension increasing / decreasing member for connecting and supporting the functional member and the cross-linking length, the absorption range of expansion / contraction is expanded, and the cross-linking length of the dimension increasing / decreasing member is sufficient at a position facing the expansion / contraction direction of the functional member. It is possible to apply even when it is not obtained. It is also possible to cope with cases where the thermal expansion coefficient and length are not strict.

(実施形態9)
図13は、本実施形態に係る熱型素子の概略構成例を示す。図13の(a)は、本実施形態に係る熱型素子の概略構成例を示す平面図であり、図13の(b)は、図13の(a)のXIIa−XIIbの断面図である。図13の(c)は、本実施形態に係る熱型素子の抵抗体と寸法増減部材との連結部の一部の例を示している。尚、図13の(c)では、抵抗パターン上に積層した寸法増減部材は図示していない。図中の矢印は、熱膨張による伸縮を表している。図13では、基板20に設けた空洞上に架橋した機能部材となる抵抗体16、17、18、19が、抵抗体の伸縮方向に対向しない角度で、複数の寸法増減部材により連結配置され、その寸法増減部材が他の抵抗体にも連結配置する例を示している。
(Embodiment 9)
FIG. 13 shows a schematic configuration example of the thermal element according to the present embodiment. 13A is a plan view showing a schematic configuration example of the thermal element according to the present embodiment, and FIG. 13B is a cross-sectional view taken along line XIIa-XIIb in FIG. . FIG. 13C shows an example of a part of the connecting portion between the resistor of the thermal element according to the present embodiment and the dimension increasing / decreasing member. In FIG. 13C, the dimension increasing / decreasing member laminated on the resistance pattern is not shown. The arrows in the figure represent expansion and contraction due to thermal expansion. In FIG. 13, resistors 16, 17, 18, and 19 that are functional members cross-linked on the cavity provided in the substrate 20 are connected and arranged by a plurality of dimension increasing / decreasing members at an angle that does not oppose the expansion / contraction direction of the resistor, The example in which the dimension increasing / decreasing member is also connected to another resistor is shown.

本実施形態に係る熱型素子における温度変化に伴う伸縮の吸収について説明する。   The absorption of expansion and contraction accompanying the temperature change in the thermal element according to the present embodiment will be described.

基板20に設けた空洞上に架橋した正の熱膨張係数を有する抵抗体16、17、18、19の高温状態での伸長を、それぞれΔl16、Δl17、Δl18、Δl19とし、また高温状態での負の熱膨張係数を有する寸法増減部材63の収縮は、抵抗体16と接する側をΔl636、抵抗体17と接する側の収縮をΔl637とする。同様に寸法増減部材64の収縮もそれぞれΔl647、Δl648、寸法増減部材65の収縮もΔl658、Δl659、寸法増減部材66の収縮もΔl669、Δl666とする。抵抗体16では、抵抗体16に連結した寸法増減部材の収縮Δl636、Δl666を合成したベクトルd11と、抵抗体16の伸長ベクトルd10を一致させ、抵抗体16の伸縮を吸収する。同様に、各抵抗体での伸長のベクトルd20、d30、d40と収縮のベクトルd21、d31、d41をそれぞれ一致させることで、各抵抗体の伸縮を吸収することができる。   Elongation in the high temperature state of the resistors 16, 17, 18, 19 having a positive thermal expansion coefficient bridged on the cavity provided in the substrate 20 is Δl16, Δl17, Δl18, Δl19, respectively, and negative in the high temperature state. The shrinkage of the dimension increasing / decreasing member 63 having the thermal expansion coefficient is Δl636 on the side in contact with the resistor 16 and Δl637 on the side in contact with the resistor 17. Similarly, the contraction of the dimension increasing / decreasing member 64 is also Δl647 and Δl648, the contraction of the dimension increasing / decreasing member 65 is Δl658, Δl659, and the contraction of the dimension increasing / decreasing member 66 is also Δl669, Δl666. In the resistor 16, the vector d11 obtained by synthesizing the shrinkage Δl636 and Δl666 of the dimension increasing / decreasing member connected to the resistor 16 and the extension vector d10 of the resistor 16 are matched to absorb the expansion and contraction of the resistor 16. Similarly, the expansion and contraction of each resistor can be absorbed by matching the expansion vectors d20, d30, and d40 of each resistor with the contraction vectors d21, d31, and d41.

空洞上で抵抗体を複数の寸法増減部材により連結配置する形状では、容易に上記実施形態5と同様に空洞上に赤外線吸収部80を配置し、抵抗体を熱電対と置き換えて赤外線センサとすることもできる。   In the shape in which the resistor is connected and arranged by a plurality of dimension increasing / decreasing members on the cavity, the infrared absorber 80 is easily arranged on the cavity as in the fifth embodiment, and the resistor is replaced with a thermocouple to form an infrared sensor. You can also.

本実施形態により、機能部材を複数の寸法増減部材で連結支持するため、面で幅広く支持でき、抵抗体のねじれや振動に強い熱型素子を実現することが可能となる。   According to this embodiment, since the functional member is connected and supported by a plurality of dimension increasing / decreasing members, it is possible to support a wide range of surfaces and realize a thermal element that is resistant to torsion and vibration of the resistor.

(実施形態10)
図14は、本実施形態に係る熱型素子の概略構成例を示す。図14の(a)は、本実施形態に係る熱型素子の概略構成例を示す平面図であり、図14の(b)は、図14の(a)のXIVa−XIVbの断面図である。図14の(c)は、本実施形態に係る熱型素子の抵抗体10と寸法増減部材との連結部の一部の例を示している。尚、図14の(c)では、抵抗パターン上に積層した寸法増減部材は図示していない。図中の矢印は、熱膨張による伸縮を表している。図14では、基板20に設けた空洞上に架橋した機能部材となる抵抗体10が、抵抗体10の伸縮方向に対向しない角度で、複数の寸法増減部材と連結配置された例を示している。
(Embodiment 10)
FIG. 14 shows a schematic configuration example of the thermal element according to the present embodiment. FIG. 14A is a plan view showing a schematic configuration example of the thermal element according to the present embodiment, and FIG. 14B is a cross-sectional view taken along line XIVa-XIVb in FIG. . FIG. 14C shows an example of a part of the connecting portion between the resistor 10 of the thermal element and the dimension increasing / decreasing member according to the present embodiment. In FIG. 14C, the dimension increasing / decreasing member laminated on the resistance pattern is not shown. The arrows in the figure represent expansion and contraction due to thermal expansion. FIG. 14 shows an example in which a resistor 10 that is a functional member bridged on a cavity provided in the substrate 20 is connected to a plurality of dimension increasing / decreasing members at an angle that does not oppose the expansion / contraction direction of the resistor 10. .

本実施形態に係る熱型素子における温度変化に伴う伸縮の吸収について説明する。   The absorption of expansion and contraction accompanying the temperature change in the thermal element according to the present embodiment will be described.

空洞上に架橋した正の熱膨張係数を有する抵抗体10の基板上にある電極部側から張出した抵抗パターン部分をそれぞれR1、R2とし、高温状態におけるそれぞれのパターンの伸長をΔl1、Δl2とする。また、R1、R2を結ぶ抵抗パターン部分をR3とし、R1側とR2側への伸長をそれぞれΔl31、Δl32とする。また、負の熱膨張係数を有する寸法増減部材67、68の収縮をΔl67、Δl68で表す。寸法増減部材は抵抗パターンR1とR3の接点、および抵抗パターンR2とR3の接点にそれぞれ連結して配置してある。図14の(c)に示すように、抵抗パターンと寸法増減部材の連結部では、例えば、抵抗パターンR2の伸長Δl2とR3の伸長Δl32を合成したベクトルd10と、寸法増減部材68のベクトルd11が一致するように配置することで、抵抗パターンの伸長を吸収することができる。   The resistance pattern portions projecting from the electrode portion side on the substrate of the resistor 10 having a positive thermal expansion coefficient bridged on the cavity are respectively R1 and R2, and the extension of the respective patterns in the high temperature state is Δl1 and Δl2. . Further, a resistance pattern portion connecting R1 and R2 is R3, and elongations toward the R1 side and the R2 side are Δl31 and Δl32, respectively. Further, the shrinkage of the size increasing / decreasing members 67 and 68 having a negative coefficient of thermal expansion is represented by Δl67 and Δl68. The size increasing / decreasing members are connected to the contact points of the resistance patterns R1 and R3 and the contact points of the resistance patterns R2 and R3, respectively. As shown in FIG. 14C, at the connecting portion between the resistance pattern and the dimension increasing / decreasing member, for example, a vector d10 obtained by combining the extension Δl2 of the resistance pattern R2 and the extension Δl32 of R3 and the vector d11 of the dimension increasing / decreasing member 68 By arranging so as to match, the extension of the resistance pattern can be absorbed.

ここで、本実施形態における抵抗体では、高温状態において抵抗パターンR1及びR2に抵抗パターンR3のパターン長手方向の力も働くため、抵抗パターンR3の伸縮が大きくなる場合は、基板からのパターン張出部が変形する。そのため、図15に示すように抵抗パターンR1、R2の中間にさらに寸法増減部材を連結支持して伸長を分散して吸収することにより、変形を緩和することもできる。   Here, in the resistor according to the present embodiment, since the force in the pattern longitudinal direction of the resistor pattern R3 also acts on the resistor patterns R1 and R2 in a high temperature state, when the expansion and contraction of the resistor pattern R3 increases, the pattern protruding portion from the substrate Is deformed. Therefore, as shown in FIG. 15, the deformation can be alleviated by connecting and supporting a dimension increasing / decreasing member between the resistance patterns R <b> 1 and R <b> 2 to disperse and absorb the extension.

本実施形態により、機能部材を複数の寸法増減部材で連結支持するため、面で幅広く支持でき強度に優れる熱型素子を実現することが可能となる。   According to this embodiment, since the functional member is connected and supported by a plurality of dimension increasing / decreasing members, it is possible to realize a thermal element that can be widely supported on the surface and has excellent strength.

(実施形態11)
図16は、本実施形態に係る熱型素子の概略構成例を示す。図中の矢印は、熱膨張による伸縮を表している。図16では、基板20に設けた空洞上に架橋した機能部材となる抵抗体10が、抵抗体10の伸縮方向に対向しない角度で、複数の寸法増減部材と連結支持された例を示している。
(Embodiment 11)
FIG. 16 shows a schematic configuration example of the thermal element according to the present embodiment. The arrows in the figure represent expansion and contraction due to thermal expansion. FIG. 16 shows an example in which a resistor 10 that is a functional member bridged on a cavity provided in the substrate 20 is connected to and supported by a plurality of dimension increasing / decreasing members at an angle that does not oppose the expansion / contraction direction of the resistor 10. .

本実施形態に係る熱型素子における温度変化に伴う伸縮の吸収について説明する。   The absorption of expansion and contraction accompanying the temperature change in the thermal element according to the present embodiment will be described.

基板20に設けた空洞上に架橋した正の熱膨張係数を有する円形状の抵抗体10は、空洞上での伸び縮みが可能となり、高温状態では基板上の電極部40から張出した先端側へ伸長する。負の熱膨張係数を有する寸法増減部材60は、抵抗体10の伸縮方向に対向しない角度で複数の箇所で連結し、抵抗体10に連結しない側の端は基板に接続している。抵抗体10の伸縮方向に対向しない角度で複数の箇所で連結した寸法増減部材60は、抵抗体10の伸長をそれぞれ吸収し、全体の伸縮を分散して吸収する。本実施形態では、温度分布に応じて伸縮の大きい先端側に向かうほど、寸法増減部材の架橋長さをL1、L2、L3と順次長くして伸縮を吸収している例を示す。   The circular resistor 10 having a positive thermal expansion coefficient cross-linked on the cavity provided in the substrate 20 can be expanded and contracted on the cavity, and in a high temperature state, to the tip side protruding from the electrode portion 40 on the substrate. Elongate. The dimension increasing / decreasing member 60 having a negative coefficient of thermal expansion is connected at a plurality of locations at angles not facing the expansion / contraction direction of the resistor 10, and the end not connected to the resistor 10 is connected to the substrate. The dimension increasing / decreasing members 60 connected at a plurality of locations at angles not facing the expansion / contraction direction of the resistor 10 absorb the expansion of the resistor 10 and disperse and absorb the entire expansion / contraction. In the present embodiment, an example is shown in which the cross-linking length of the dimension increasing / decreasing member is sequentially increased as L1, L2, and L3 to absorb the expansion and contraction toward the distal end side where the expansion and contraction increases according to the temperature distribution.

本実施形態により、機能部材を複数の寸法増減部材で連結支持するため、面での支持となり温度変化に対しても変形しにくくし、強度を向上させることが可能となる。また、機能部材を連結支持する部分に、機能部材とは極性の異なる熱膨張係数を有する寸法増減部材を用い、機能部材の熱膨張を吸収することにより、安定した熱型素子を実現することが可能となる。   According to the present embodiment, since the functional member is connected and supported by a plurality of dimension increasing / decreasing members, the functional member is supported on the surface, and is not easily deformed even with respect to a temperature change, and the strength can be improved. In addition, it is possible to realize a stable thermal element by absorbing a thermal expansion of the functional member by using a dimension increasing / decreasing member having a coefficient of thermal expansion different from that of the functional member in a portion for connecting and supporting the functional member. It becomes possible.

尚、上記各実施形態を組み合わせることもかのうである。例えば、寸法増減部材の配置として、抵抗体の伸縮方向に対向する配置と抵抗体の伸縮方向に対向しない角度の配置とを組み合わせ、抵抗体と複数の寸法増減部材とを連結支持して、熱容量の付加をできるだけ小さくし、支持強度に優れた熱型素子とすることも可能である。   It is also possible to combine the above embodiments. For example, as the arrangement of the dimension increasing / decreasing member, a combination of an arrangement facing the expansion / contraction direction of the resistor and an arrangement at an angle not opposing the expansion / contraction direction of the resistor, and connecting and supporting the resistor and the plurality of dimension increasing / decreasing members, the heat capacity It is also possible to make the thermal element excellent in supporting strength by minimizing the addition of.

(実施形態12)
図17は、本実施形態に係る熱型素子の概略構成例を示す。図17の(a)は、本実施形態に係る熱型素子の概略構成例を示す平面図であり、図17の(b)は、図17の(a)のXVIIa−XVIIbの断面図である。図中の矢印は、熱膨張による伸縮を表している。図17では、基板20に設けた空洞上に架橋した抵抗体10が絶縁膜50で覆われ複数の材料層で構成される機能部材に、その伸縮方向に対向して寸法増減部材60を連結配置する例を示す。
Embodiment 12
FIG. 17 shows a schematic configuration example of the thermal element according to the present embodiment. FIG. 17A is a plan view showing a schematic configuration example of the thermal element according to the present embodiment, and FIG. 17B is a cross-sectional view taken along line XVIIa-XVIIb in FIG. . The arrows in the figure represent expansion and contraction due to thermal expansion. In FIG. 17, a dimension increasing / decreasing member 60 is connected to a functional member composed of a plurality of material layers, in which a resistor 10 bridged on a cavity provided in a substrate 20 is covered with an insulating film 50, facing the expansion / contraction direction. An example is shown.

本実施形態に係る熱型素子における温度変化に伴う伸縮の吸収について説明する。   The absorption of expansion and contraction accompanying the temperature change in the thermal element according to the present embodiment will be described.

基板20に設けた空洞上に架橋した正の熱膨張係数を有する抵抗体10と、その抵抗体10を絶縁膜50により挟んだ構造の機能部材は、空洞上で伸縮が可能となるため、高温状態では抵抗体10の折り返し部のある発熱または感熱部材の先端側へΔl伸長する。負の熱膨張係数を有する寸法増減部材60は、基板側へ収縮するため、抵抗体10と寸法増減部材60とを連結配置した部分の収縮を伸長と一致させることで、複数の材料層で構成される機能部材の伸縮を吸収することができる。   Since the resistor 10 having a positive thermal expansion coefficient bridged on the cavity provided in the substrate 20 and the functional member having the resistor 10 sandwiched between the insulating films 50 can be expanded and contracted on the cavity, In the state, Δl extends toward the tip of the heat generating or heat sensitive member having the folded portion of the resistor 10. Since the dimension increasing / decreasing member 60 having a negative coefficient of thermal expansion contracts to the substrate side, the contraction of the portion where the resistor 10 and the dimension increasing / decreasing member 60 are connected is made to coincide with the extension, thereby being constituted by a plurality of material layers. The expansion and contraction of the functional member to be performed can be absorbed.

また、図18に示すように、寸法増減部材60を絶縁膜50に連結して支持しても、機能部材の伸縮を吸収することができる。   In addition, as shown in FIG. 18, even if the dimension increasing / decreasing member 60 is connected to and supported by the insulating film 50, the expansion and contraction of the functional member can be absorbed.

ここで、機能部材が単一の材料層からなる場合、材料の熱膨張係数に応じて、材料層の伸縮が生じ、材料の熱膨張係数に対応させた連結支持をすることが必要である。他方、機能部材が複数の材料層で構成されている場合には、単一の材料層からなる場合と異なり、各材料層の温度に応じた性質の違いにより、伸縮だけではなく、反り曲がりやねじれを生じてしまう。また、単一の材料層では成膜時の成膜速度や温度などの作製条件や膜厚により残留応力を低減させる工夫が必要であり、成膜条件あるいは形状に制限があった。他方、複数の材料層では、材料の熱膨張係数が大きく異ならないことや、成膜時の成膜速度や温度などの作製条件や膜厚を調節し残留応力の微妙なバランスを保つようにさせる工夫がさらに必要であり、材料の種類や成膜条件あるいは形状に制限があった。本実施形態では、機能部材を寸法増減部材で連結支持するので、機能部材を複数の材料層で構成する場合であっても、温度変化により発生する構成材料やその作製条件等による反りやねじれなどの変形も防止できる。   Here, when the functional member is composed of a single material layer, the material layer expands and contracts in accordance with the thermal expansion coefficient of the material, and it is necessary to provide connection support corresponding to the thermal expansion coefficient of the material. On the other hand, when the functional member is composed of a plurality of material layers, unlike the case of a single material layer, due to the difference in properties depending on the temperature of each material layer, not only expansion and contraction but also warping and bending. Twist will occur. In addition, in a single material layer, it is necessary to devise a technique for reducing the residual stress depending on manufacturing conditions such as film forming speed and temperature and film thickness at the time of film formation, and there are limitations on film forming conditions or shapes. On the other hand, with multiple material layers, the thermal expansion coefficient of the material does not differ greatly, and the production conditions such as film formation speed and temperature during film formation and the film thickness are adjusted to maintain a delicate balance of residual stress. Further ingenuity is required, and there are limitations on the types of materials, film forming conditions, and shapes. In the present embodiment, since the functional member is connected and supported by the dimension increasing / decreasing member, even when the functional member is constituted by a plurality of material layers, warping or twisting due to a constituent material generated due to temperature change or its manufacturing conditions, etc. Can also be prevented.

本実施形態により、機能部材を連結支持する部分に機能部材とは極性の異なる熱膨張係数を有する寸法増減部材を用い、機能部材の熱膨張を吸収することにより、安定した熱型素子が可能となる。また、より多種の材料の組み合わせ、および制御範囲の広い生産条件が適用でき、多種多様な熱型素子を実現することが可能となる。   According to the present embodiment, by using a dimension increasing / decreasing member having a coefficient of thermal expansion different from that of the functional member in a portion for connecting and supporting the functional member, and absorbing the thermal expansion of the functional member, a stable thermal element can be realized. Become. In addition, more various combinations of materials and production conditions with a wider control range can be applied, and a wide variety of thermal elements can be realized.

以上好適な実施の形態に基づき具体的に説明したが、本発明は上述した熱型素子及び熱型素子の製造方法に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であるということは言うまでもない。   Although specifically described based on the preferred embodiments, the present invention is not limited to the above-described thermal element and the method for manufacturing the thermal element, and various modifications can be made without departing from the scope of the invention. Needless to say.

本発明に係る熱型素子は、発熱素子や感熱素子として利用することができる。発熱素子としては、例えば、ガスセンサの触媒や金属酸化物半導体を高速で加熱するために用いられるマイクロヒータに適用することができる。また、微小量の化学合成を行うためのコンビナトリアルマイクロデバイスのマイクロヒータ、バイオ、医療分野におけるマイクロチップとして、DNA等に熱サイクルを与えるPCR操作のために組み込まれたマイクロヒータ、タンパク質と反応させるマイクロリアクターに組み込まれたマイクロヒータとしても適用することができる。また、ジュール発熱による以外の発熱機構としては、発熱部の温度制御を行うマイクロペルチェ機構を集積し、発熱したり冷却させたりすることにより、露点センサとして応用することもできる。   The thermal element according to the present invention can be used as a heating element or a thermal element. As a heat generating element, it can apply to the micro heater used, for example, in order to heat the catalyst of a gas sensor, or a metal oxide semiconductor at high speed. In addition, combinatorial microdevice microheaters for chemical synthesis of minute quantities, microchips in bio and medical fields, microheaters incorporated for PCR operations that give thermal cycles to DNA, etc. The present invention can also be applied as a micro heater incorporated in a reactor. Further, as a heat generation mechanism other than the Joule heat generation, a micro Peltier mechanism for controlling the temperature of the heat generating portion is integrated, and can be applied as a dew point sensor by generating heat or cooling.

他方、感熱素子としては、例えば、雰囲気の温度センサ、流体の流速と熱伝導との関係を利用したサーマルフローセンサ、気体密度と熱伝導との関係を利用した気体圧力センサ、雰囲気が受ける加速度による熱移動を利用した加速度センサ、気体の熱伝導率を利用したガスセンサ等に適用することができる。また、光吸収にともなう温度上昇を直接検出する熱電対型素子(サーモパイル)、電気分極の変化として検出する焦電型素子、素子の温度上昇を抵抗変化として検出するボロメータ等の赤外線センサにも適用することができる。さらに、ガスや液体の成分分析装置においては、これらの発熱素子や感熱素子を複合して用いることができる。   On the other hand, as a thermal element, for example, a temperature sensor of the atmosphere, a thermal flow sensor using the relationship between the fluid flow velocity and the heat conduction, a gas pressure sensor using the relationship between the gas density and the heat conduction, and the acceleration received by the atmosphere The present invention can be applied to an acceleration sensor using heat transfer, a gas sensor using the thermal conductivity of gas, and the like. Also applicable to infrared sensors such as thermocouples (thermopiles) that directly detect temperature rises due to light absorption, pyroelectric elements that detect changes in electrical polarization, and bolometers that detect temperature rises as resistance changes can do. Furthermore, in a gas or liquid component analyzer, these heat generating elements and heat sensitive elements can be used in combination.

10 抵抗体
20 基板
21 絶縁基板
30 空洞
40 電極部
50 絶縁膜
60 寸法増減部材
70 接続部材
80 赤外線吸収部
91 熱電対
92 熱電対
93 熱電対
911 熱電対パターン
912 熱電対パターン
DESCRIPTION OF SYMBOLS 10 Resistor 20 Board | substrate 21 Insulation board | substrate 30 Cavity 40 Electrode part 50 Insulating film 60 Size increase / decrease member 70 Connection member 80 Infrared absorption part 91 Thermocouple 92 Thermocouple 93 Thermocouple 911 Thermocouple pattern 912 Thermocouple pattern

特許第2889909号公報Japanese Patent No. 2889909 特許第4127697号公報Japanese Patent No. 4127697 特開平08−264844号公報Japanese Patent Laid-Open No. 08-264844 特開2006−281766号公報JP 2006-281766 A 特許第3717342号公報Japanese Patent No. 3717342

Claims (14)

基板に設けた空洞上に薄層を架橋する構造の熱型素子であって、
温度によって寸法が変化する機能部材と、
前記機能部材の寸法の変化を吸収するように、温度によって寸法が変化する寸法増減部材と、を備え、
前記機能部材と前記寸法増減部材とは、前記基板に設けられた空洞上に連結架橋されることを特徴とする熱型素子。
A thermal element having a structure in which a thin layer is bridged on a cavity provided in a substrate,
Functional members whose dimensions change with temperature,
A dimension increasing / decreasing member whose dimension changes with temperature so as to absorb the change in dimension of the functional member,
The thermal element, wherein the functional member and the dimension increasing / decreasing member are connected and bridged on a cavity provided in the substrate.
少なくとも1つ以上の前記寸法増減部材は、前記機能部材の伸縮方向に対向するように前記機能部材と連結されていることを特徴とする請求項1記載の熱型素子。   2. The thermal element according to claim 1, wherein at least one of the dimension increasing / decreasing members is connected to the functional member so as to face the expansion / contraction direction of the functional member. 少なくとも1つ以上の前記寸法増減部材は、前記機能部材の伸縮方向に対向する以外の角度で前記機能部材と連結されていることを特徴とする請求項1又は2に記載の熱型素子。   3. The thermal element according to claim 1, wherein at least one of the dimension increasing / decreasing members is connected to the functional member at an angle other than facing the expansion / contraction direction of the functional member. 前記寸法増減部材は、前記機能部材の温度分布に基づいて寸法と連結位置とが決定されることを特徴とする請求項1から3の何れか1項に記載の熱型素子。   4. The thermal element according to claim 1, wherein the dimension increasing / decreasing member has a dimension and a connecting position determined based on a temperature distribution of the functional member. 5. 接続部材をさらに備え、
前記機能部材と寸法増減部材とは、前記接続部材を介して前記基板に設けられた空洞上に連結架橋されることを特徴とする請求項1から4の何れか1項に記載の熱型素子。
A connecting member;
5. The thermal element according to claim 1, wherein the functional member and the dimension increasing / decreasing member are connected and bridged on a cavity provided in the substrate via the connection member. 6. .
前記機能部材は、正の熱膨張係数を有し、
前記寸法増減部材は、負の熱膨張係数を有することを特徴とする請求項1から5の何れか1項に記載の熱型素子。
The functional member has a positive coefficient of thermal expansion;
6. The thermal element according to claim 1, wherein the dimension increasing / decreasing member has a negative coefficient of thermal expansion.
前記機能部材は、少なくとも1つの以上の材料層からなることを特徴とする請求項1から6の何れか1項に記載の熱型素子。   The thermal element according to any one of claims 1 to 6, wherein the functional member includes at least one material layer. 前記機能部材は、少なくとも発熱手段及び冷却手段の何れかを有することを特徴とする請求項1から7の何れか1項に記載の熱型素子。   The thermal element according to any one of claims 1 to 7, wherein the functional member includes at least one of a heat generating unit and a cooling unit. 前記機能部材は、熱を検出する熱検出手段を有することを特徴とする請求項1から8の何れか1項に記載の熱型素子。   The thermal element according to any one of claims 1 to 8, wherein the functional member includes heat detection means for detecting heat. 基板上に、温度によって寸法が変化する機能部材を形成する機能部材形成ステップと、
前記基板上に、前記機能部材の寸法の変化を吸収するように温度によって寸法が変化する寸法増減部材を、前記機能部材と連結して形成する寸法増減部材形成ステップと、
前記機能部材と前記寸法増減部材とが空洞上に連結架橋されるように、前記基板に空洞を形成する空洞形成ステップと、を備えることを特徴とする熱型素子の製造方法。
A functional member forming step for forming a functional member whose dimensions change with temperature on the substrate;
On the substrate, a dimension increasing / decreasing member forming step of forming a dimension increasing / decreasing member whose dimension varies with temperature so as to absorb a change in the dimension of the functional member, connected to the functional member,
And a cavity forming step for forming a cavity in the substrate so that the functional member and the dimension increasing / decreasing member are connected and bridged on the cavity.
前記寸法増減部材形成ステップは、少なくとも1つ以上の前記寸法増減部材を前記機能部材の伸縮方向に対向するように形成することを特徴とする請求項10記載の熱型素子の製造方法。   11. The method of manufacturing a thermal element according to claim 10, wherein in the dimension increasing / decreasing member forming step, at least one or more dimension increasing / decreasing members are formed so as to face each other in the expansion / contraction direction of the functional member. 前記寸法増減部材形成ステップは、少なくとも1つ以上の前記寸法増減部材を前記機能部材の伸縮方向に対向する以外の角度で形成することを特徴とする請求項10又は11記載の熱型素子の製造方法。   The manufacturing of the thermal element according to claim 10 or 11, wherein the dimension increasing / decreasing member forming step forms at least one or more dimension increasing / decreasing members at an angle other than facing the expansion / contraction direction of the functional member. Method. 前記寸法増減部材形成ステップは、前記機能部材の温度分布に基づいて、前記寸法増減部材の寸法及び前記機能部材との連結位置を決定することを特徴とする請求項10から12の何れか1項に記載の熱型素子の製造方法。   13. The dimension increasing / decreasing member forming step determines a dimension of the dimension increasing / decreasing member and a connection position with the functional member based on a temperature distribution of the functional member. The manufacturing method of the thermal type element as described in any one of. 接続部材を形成する接続部材形成ステップをさらに備え、
前記接続部材は、前記機能部材と前記寸法増減部材とを連結することを特徴とする請求項10から13の何れか1項に記載の熱型素子の製造方法。
A connection member forming step of forming a connection member;
The method for manufacturing a thermal element according to claim 10, wherein the connecting member connects the functional member and the dimension increasing / decreasing member.
JP2009127915A 2009-05-27 2009-05-27 Thermal element and method for manufacturing thermal element Expired - Fee Related JP5240072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127915A JP5240072B2 (en) 2009-05-27 2009-05-27 Thermal element and method for manufacturing thermal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127915A JP5240072B2 (en) 2009-05-27 2009-05-27 Thermal element and method for manufacturing thermal element

Publications (2)

Publication Number Publication Date
JP2010278142A true JP2010278142A (en) 2010-12-09
JP5240072B2 JP5240072B2 (en) 2013-07-17

Family

ID=43424853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127915A Expired - Fee Related JP5240072B2 (en) 2009-05-27 2009-05-27 Thermal element and method for manufacturing thermal element

Country Status (1)

Country Link
JP (1) JP5240072B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289049A1 (en) * 2008-05-23 2009-11-26 Samsung Electronics Co., Ltd. Micro-heaters and methods of manufacturing the same
JP2013003020A (en) * 2011-06-17 2013-01-07 Tdk Corp Micro heater element
US8357879B2 (en) 2007-11-30 2013-01-22 Samsung Electronics Co., Ltd. Micro-heaters, micro-heater arrays, methods for manufacturing the same and electronic devices using the same
US8369696B2 (en) 2008-06-10 2013-02-05 Samsung Electronics Co., Ltd. Micro-heaters, methods for manufacturing the same, and methods for forming patterns using the micro-heaters
US8409934B2 (en) 2007-07-16 2013-04-02 Samsung Electronics Co., Ltd. Methods for forming materials using micro-heaters and electronic devices including such materials
JP2013210310A (en) * 2012-03-30 2013-10-10 Panasonic Corp Infrared radiation element and manufacturing method thereof
JP7446187B2 (en) 2020-09-07 2024-03-08 ローム株式会社 Heating device and power storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122160A (en) * 1994-10-24 1996-05-17 Ricoh Seiki Co Ltd Heat-dependence detection device
JP2001066182A (en) * 1999-08-26 2001-03-16 Alps Electric Co Ltd Infrared sensor and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122160A (en) * 1994-10-24 1996-05-17 Ricoh Seiki Co Ltd Heat-dependence detection device
JP2001066182A (en) * 1999-08-26 2001-03-16 Alps Electric Co Ltd Infrared sensor and its manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409934B2 (en) 2007-07-16 2013-04-02 Samsung Electronics Co., Ltd. Methods for forming materials using micro-heaters and electronic devices including such materials
US8673693B2 (en) 2007-07-16 2014-03-18 Samsung Electronics Co., Ltd. Methods for forming materials using micro-heaters and electronic devices including such materials
US8357879B2 (en) 2007-11-30 2013-01-22 Samsung Electronics Co., Ltd. Micro-heaters, micro-heater arrays, methods for manufacturing the same and electronic devices using the same
US20090289049A1 (en) * 2008-05-23 2009-11-26 Samsung Electronics Co., Ltd. Micro-heaters and methods of manufacturing the same
US8415593B2 (en) * 2008-05-23 2013-04-09 Samsung Electronics Co., Ltd. Micro-heaters and methods of manufacturing the same
US8369696B2 (en) 2008-06-10 2013-02-05 Samsung Electronics Co., Ltd. Micro-heaters, methods for manufacturing the same, and methods for forming patterns using the micro-heaters
JP2013003020A (en) * 2011-06-17 2013-01-07 Tdk Corp Micro heater element
JP2013210310A (en) * 2012-03-30 2013-10-10 Panasonic Corp Infrared radiation element and manufacturing method thereof
JP7446187B2 (en) 2020-09-07 2024-03-08 ローム株式会社 Heating device and power storage device

Also Published As

Publication number Publication date
JP5240072B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5240072B2 (en) Thermal element and method for manufacturing thermal element
JP5027573B2 (en) Temperature sensor and temperature controller
Chang et al. Multilayer microheater based on glass substrate using MEMS technology
JP4307738B2 (en) Pressure sensor
JP2006258520A (en) Probe for electronic clinical thermometer
JP2007132762A (en) Structure of gas sensor
JP4801396B2 (en) Gas sensor and gas sensor manufacturing method
Xu et al. Micromachined thermal shear-stress sensor for underwater applications
US5623147A (en) Radiation-sensitive detector
US7426857B2 (en) Flow detector element of thermosensible flow sensor
JP2001349759A (en) Thermal flow sensor
JP2009058389A (en) Gas detection element
JP4798961B2 (en) HEATER DEVICE AND GAS SENSOR DEVICE USING THE SAME
JP5079723B2 (en) Humidity sensor
JP4891582B2 (en) Semiconductor thin film gas sensor
CN106064805A (en) The thermostatically controlled hot type of a kind of band drives MEMS
NL2003838C2 (en) Thermogravimetric device.
JP5459925B2 (en) MEMS structure for gas sensor
WO2016027568A1 (en) Sensor device
JP6797852B2 (en) Gas sensor
JP3601993B2 (en) Thermal sensor and method of manufacturing the same
Roy et al. Design considerations of CMOS micro-heaters to directly synthesize carbon nanotubes for gas sensing applications
WO2016132935A1 (en) Contact combustion-type gas sensor
CN114217089B (en) MEMS omnibearing fluid vector flow velocity sensor
US8076245B2 (en) MOS low power sensor with sacrificial membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5240072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees