JP5606550B2 - Magnetic field sensor device for stroke detection in movable components - Google Patents

Magnetic field sensor device for stroke detection in movable components Download PDF

Info

Publication number
JP5606550B2
JP5606550B2 JP2012543543A JP2012543543A JP5606550B2 JP 5606550 B2 JP5606550 B2 JP 5606550B2 JP 2012543543 A JP2012543543 A JP 2012543543A JP 2012543543 A JP2012543543 A JP 2012543543A JP 5606550 B2 JP5606550 B2 JP 5606550B2
Authority
JP
Japan
Prior art keywords
magnetic field
sensor device
component
field sensor
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012543543A
Other languages
Japanese (ja)
Other versions
JP2013515234A (en
JP2013515234A5 (en
Inventor
ヴェルシュ ヴォルフガング
クラインクネヒト ミヒャエル
キンメレ マティアス
ヴァルター クラウス
キスナー ユルゲン
ズィーデントプフ イェアク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2013515234A publication Critical patent/JP2013515234A/en
Publication of JP2013515234A5 publication Critical patent/JP2013515234A5/ja
Application granted granted Critical
Publication of JP5606550B2 publication Critical patent/JP5606550B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2291Linear or rotary variable differential transformers (LVDTs/RVDTs) having a single primary coil and two secondary coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Description

本発明は請求項1の上位概念部に記載した、磁界の空間的な成分が、検出したいストロークに亘って変化し、かつこの変化に応じて検出可能である、回転式及び/又は線形に運動する構成部材のストローク検出のための磁界センサ装置に関する。   The present invention provides a rotary and / or linear motion in which the spatial component of the magnetic field changes over the stroke to be detected and can be detected according to this change. The present invention relates to a magnetic field sensor device for detecting a stroke of a constituent member.

一般に、例えば自動車におけるモータの制御のために、又は伝動装置制御部若しくはドライビングダイナミクス制御部においても使用される回転数・位置センサにおいて、回動又は位置変化が、回動又は位置変化に応じた磁界の変化により検出されるということが公知である。この構成において、使用法及び使用領域に応じて、ホールセンサ、AMRセンサ、GMRセンサ、TMRセンサ又は概してXMRセンサであってよい、一般に自体公知の磁石センサが使用される。   In general, for example, in a rotational speed / position sensor used for controlling a motor in an automobile or in a transmission control unit or a driving dynamics control unit, the rotation or position change is a magnetic field corresponding to the rotation or position change. It is known that it is detected by a change in. In this configuration, generally known magnet sensors, which may be Hall sensors, AMR sensors, GMR sensors, TMR sensors or generally XMR sensors, are used, depending on the usage and field of use.

例えば欧州特許第00997706号明細書において、磁性体と磁化方向に関して磁界に敏感なセンサとの間の連続的な位置の検出のために、磁性体は検出したいストロークの延在方向において、運動方向に対して変化する角度を成して分配された磁束線をストロークの長さに亘って有するように形成されている。したがって、磁性体に対してセンサが設けられている位置は、各磁界方向に基づいて決定することができる。   For example, in EP 0 997 706, for the detection of a continuous position between a magnetic body and a sensor sensitive to a magnetic field with respect to the magnetization direction, the magnetic body moves in the direction of motion in the direction of the extension of the stroke to be detected. It is formed to have flux lines distributed at varying angles with respect to the length of the stroke. Therefore, the position where the sensor is provided with respect to the magnetic body can be determined based on each magnetic field direction.

さらにドイツ連邦共和国特許第19937206号明細書において、磁界に敏感なセンサに対して相対的に可動な棒磁石が、棒磁石に沿って種々異なって配向されているN極及びS極を有する複数の個別の磁石を有していることが公知になっている。   Further, in German Patent DE 199 37 206, a bar magnet that is relatively movable with respect to a magnetic field sensitive sensor has a plurality of N and S poles that are oriented differently along the bar magnet. It has become known to have separate magnets.

上記センサ装置はこれまで、比較的長い測定ストローク検出のために使用されてきた。この構成においては、センサが測定ストロークに沿って連続しているセンサエレメントでもって測定ストロークよりも長くなっているか、又は測定ストロークがセンサに対して比較的長くなっている。上記両構成においては、例えばブレーキペダル又はガスペダルにおけるペダルストローク発信器といった、自動車における統合の場合によくあるように、狭い構成スペースへの取付けに際し多くの問題が頻繁に発生する。   The sensor device has heretofore been used for detecting relatively long measurement strokes. In this configuration, the sensor is longer than the measuring stroke with a sensor element that is continuous along the measuring stroke, or the measuring stroke is relatively long with respect to the sensor. In both of the above configurations, many problems frequently occur when installed in a narrow configuration space, as is often the case with integration in automobiles, for example, pedal stroke transmitters in brake pedals or gas pedals.

発明の開示
したがって、種々異なる操作装置におけるストローク検出のために、発信ユニットの空間的に最適化された統合を可能にすることが本発明の目的となり得る。したがって本発明は、運動する構成部材におけるストローク検出のための磁界センサ装置から出発する。この磁界センサ装置において、運動する構成部材における磁性構成部材又は磁石システムの磁界の空間的な成分の方向は、検出しようとするストロークに亘って磁性構成部材において変化し、これによりセンサに対する相対的な位置が適切に検出可能である。本発明において、実質的に線形運動又は回転運動する構成部材に、少なくとも1つの磁石又は磁性構成部材が設けられている。この磁石又は磁性構成部材の外周面に対して、所定の間隔を置いて相対するように、磁界に敏感な少なくとも1つの定置型のセンサが対応配置されている。磁性構成部材の磁界は、運動する構成部材の運動方向に対する軸線方向の配向と半径方向の配向との間において規定の角度を成して方向付けられている。この構成において、検出可能な磁界方向の角度範囲は、ストローク検出の過程においては最大200°であってよい。
DISCLOSURE OF THE INVENTION Accordingly, it may be an object of the present invention to allow a spatially optimized integration of transmission units for stroke detection in different operating devices. The invention therefore starts from a magnetic field sensor device for stroke detection in a moving component. In this magnetic field sensor device, the direction of the spatial component of the magnetic component of the magnetic component or magnet system in the moving component changes in the magnetic component over the stroke to be detected, thereby relative to the sensor. The position can be detected appropriately. In the present invention, at least one magnet or magnetic component is provided on a substantially linear or rotational component. At least one stationary sensor sensitive to a magnetic field is arranged correspondingly so as to be opposed to the outer peripheral surface of the magnet or the magnetic component member at a predetermined interval. The magnetic field of the magnetic component is directed at a defined angle between an axial orientation and a radial orientation relative to the direction of motion of the moving component. In this configuration, the detectable angle range of the magnetic field direction may be a maximum of 200 ° during the stroke detection process.

例えば自動車におけるペダルストローク検出の際に、本発明に係る磁界センサ装置を使用する場合、磁化された構成部材が、例えば車両ブレーキシステムにおける操作エレメントに組み付けられていてよい。この操作エレメントは少なくとも、検出したい線形の方向に対して付加的な他の軸線において、大抵回転運動又は他の自由度において運動する。したがって本発明は自動車における狭い組込み状況にも適している一方で、また、車両ブレーキシステム以外の多様な変形例においても使用可能である。   For example, when the magnetic field sensor device according to the present invention is used for detecting a pedal stroke in an automobile, a magnetized component member may be assembled to an operation element in a vehicle brake system, for example. The operating element moves at least in other axes in addition to the linear direction to be detected, usually in rotational motion or other degrees of freedom. Thus, the present invention is suitable for narrow installation situations in automobiles, but can also be used in various modifications other than vehicle brake systems.

有利には、磁界の空間的な成分を測定するために、磁界センサとして、XMR効果を使用したセンサ又はホールセンサが使用される。これらのセンサは夫々、線形の運動又は他の自由度における運動の過程において変化する磁界の方向を検出する。   Advantageously, a sensor using the XMR effect or a Hall sensor is used as the magnetic field sensor in order to measure the spatial component of the magnetic field. Each of these sensors detects the direction of the magnetic field changing in the course of movement in linear motion or other degrees of freedom.

本発明に係る磁界センサ装置において、回転運動する構成部材の線形の運動方向に対する角度は、好適な構成において有利には45°の範囲にある。したがって磁気回路は、運動方向の軸線に対して種々異なっているが、運動方向の軸線に対して垂直ではない少なくとも1つの磁化方向を有する。このいわゆる磁界の斜め方向によりセンサに、磁束線の検出可能な方向の相違に関して比較的広幅な測定範囲を有する磁界が発生する。少なくとも2つの磁石を使用する場合、これらの磁石の磁界方向は、やはり互いに異なっていてもよい。   In the magnetic field sensor device according to the invention, the angle of the rotationally moving component with respect to the linear direction of movement is advantageously in the range of 45 ° in the preferred configuration. The magnetic circuit thus has at least one magnetization direction that is different from the axis of movement but not perpendicular to the axis of movement. This so-called oblique direction of the magnetic field generates a magnetic field having a relatively wide measurement range with respect to the difference in the direction in which the magnetic flux lines can be detected. If at least two magnets are used, the magnetic field directions of these magnets may again be different from each other.

運動する構成部材が環状磁石を有していると、磁気回路は回転対称的に構成されていて、ひいては運動方向の軸線を中心に回動可能であるが、走査するセンサにおける磁界方向の変化が回動時にもたらされることはない。   When the moving component has an annular magnet, the magnetic circuit is configured to be rotationally symmetric and thus can rotate about the axis of movement, but the change in the magnetic field direction in the scanning sensor is It is not brought about at the time of rotation.

したがって本発明に係る磁界センサのための磁気回路は、有利には線形の運動方向の軸線を中心に回転運動する少なくとも1つの磁石から成っていてもよい。この磁気回路は、測定しようとする線形のストロークに亘って持続的にかつ単調に連続的に磁界方向を変更する。したがって特に測定ストロークが長い場合には、磁石システムは測定ストロークより短くてよい。   The magnetic circuit for the magnetic field sensor according to the invention may therefore advantageously consist of at least one magnet that rotates about a linear axis of movement. This magnetic circuit changes the magnetic field direction continuously and monotonously over the linear stroke to be measured. Thus, especially when the measuring stroke is long, the magnet system may be shorter than the measuring stroke.

本発明によって比較的短い磁界センサが、同様に比較的短い磁石システムによって実現可能である。しかし、狭い構成スペースを備えた変化例に対しては、比較的長い測定ストローク(磁界センサ及び磁石システムは測定ストロークよりも短い)が達成可能である。この構成にもかかわらず上記磁気回路は、磁界配向の最大限に検出可能な変化を測定ストロークに亘って形成する。   According to the invention, a relatively short magnetic field sensor can be realized with a relatively short magnet system as well. However, for variations with a narrow configuration space, a relatively long measurement stroke (the magnetic field sensor and magnet system are shorter than the measurement stroke) can be achieved. Despite this configuration, the magnetic circuit produces a maximally detectable change in magnetic field orientation over the measurement stroke.

本発明は磁石、磁化方向(個々又は組合せ)の数に関して柔軟な磁石システムによって実現可能であり、種々異なる構成スペースにおける使用、種々異なる変化例における使用、そして種々異なる測定ストロークを備えた使用を可能にする。   The present invention can be realized by a flexible magnet system with respect to the number of magnets, magnetization directions (individually or in combination), and can be used in different configuration spaces, in different variations and with different measuring strokes To.

2つの個別磁石及び磁界方向を走査する1つのセンサの、いわゆる斜め磁化を概略的に示す図である。It is a figure which shows roughly what is called diagonal magnetization of one sensor which scans two separate magnets and a magnetic field direction. 個別磁石及び磁界方向を走査するセンサの、いわゆる斜め磁化を概略的に示す図である。It is a figure which shows roughly what is called diagonal magnetization of the sensor which scans an individual magnet and a magnetic field direction. 本発明に係る磁界センサ装置を備えた自動車において、ペダルストロークを測定するための装置の実施の形態を示す図である。It is a figure which shows embodiment of the apparatus for measuring a pedal stroke in the motor vehicle provided with the magnetic field sensor apparatus which concerns on this invention. 図3に示した磁界センサ装置の環状磁石を詳細に示す図である。It is a figure which shows the annular magnet of the magnetic field sensor apparatus shown in FIG. 3 in detail.

以下に、本発明の実施の形態を図面に基づき詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

発明の実施の形態
本発明を説明するために図1に概略的に示す磁気回路は、2つの個別の磁石1,2を備えている。これらの個別の磁石1,2の、本発明において優勢方向に傾いて延在している磁束線3,4を概略的に示す。これらの磁束線3又は4(図示の実施の形態においては磁束線3)は、磁界に敏感なセンサ5と交差し、各磁束線3又は4の方向は、センサ5が磁気回路の線形のストローク区間6において、どの相対的な位置にまさに位置するかに基づく。交差する磁束線3又は4の方向にまさに基づく出力信号を有するセンサ5、例えばXMRセンサ又はホールセンサを使用すると、上記原則的な装置によって、磁石1,2を備えた磁気回路とセンサ5との間の相対的な位置決定が可能になる。
DETAILED DESCRIPTION OF THE INVENTION The magnetic circuit schematically shown in FIG. 1 for explaining the invention comprises two individual magnets 1 and 2. These discrete magnets 1,2, the magnetic flux lines 3,4 extending inclined dominant direction in the present invention is shown schematically. These magnetic flux lines 3 or 4 (in the illustrated embodiment, magnetic flux lines 3) intersect a magnetic field sensitive sensor 5, and the direction of each magnetic flux line 3 or 4 is such that the sensor 5 is a linear stroke of the magnetic circuit. Based on which relative position in section 6 is exactly located. When a sensor 5 having an output signal just based on the direction of the intersecting magnetic flux lines 3 or 4 is used, such as an XMR sensor or a Hall sensor, the sensor circuit 5 can be connected to the magnetic circuit comprising the magnets 1 and 2 by the above-described principle device. It is possible to determine the relative position between the two.

図2に、優勢方向に斜め磁化された個別磁石7を備えた、上記位置決定を可能にする別の実施の形態を示す。個別磁石7の磁束線8は図1と同じにように、交差する磁束線8の方向に基づいて、磁石7とセンサ5との間の相対的な位置の決定を可能にする。 FIG. 2 shows another embodiment that enables the position determination, with individual magnets 7 obliquely magnetized in the dominant direction. The magnetic flux lines 8 of the individual magnets 7 make it possible to determine the relative position between the magnets 7 and the sensor 5 based on the direction of the intersecting magnetic flux lines 8 as in FIG.

図3に、例えば車両ブレーキシステムにおけるペダルストローク検出のための、本発明に係る磁界センサ装置の実施の形態を示す。この磁界センサ装置において、図示した上記センサ5に対応する磁界に敏感なセンサが、センサケーシング10内に収容されている。この実施の形態において、磁気回路は、回動軸線13において回動可能にかつ回動軸線13の長手方向に沿って線形に運動可能である2つの環状磁石11,12を有している。   FIG. 3 shows an embodiment of a magnetic field sensor device according to the present invention for detecting a pedal stroke in a vehicle brake system, for example. In this magnetic field sensor device, a sensor sensitive to a magnetic field corresponding to the illustrated sensor 5 is accommodated in a sensor casing 10. In this embodiment, the magnetic circuit has two annular magnets 11 and 12 that are rotatable about the rotation axis 13 and linearly movable along the longitudinal direction of the rotation axis 13.

図4に環状磁石11(又は12に対応)の詳細な実施の形態を示す。この環状磁石は、この実施の形態において、優勢方向14に、図3に示した回動軸線13に対して、例えば斜め45°に磁化されている。 FIG. 4 shows a detailed embodiment of the annular magnet 11 (or corresponding to 12). The annular magnet, in this embodiment, the dominant direction 14, are magnetized with respect to the rotation axis 13 shown in FIG. 3, for example at an angle 45 °.

Claims (7)

運動する構成部材における磁石系の磁界の空間的な成分が、該成分の方向において、検出しようとするストローク(6)に亘って変化し、これにより定置型のセンサ(5)に対する前記運動する構成部材の位置に応じて検出可能である、運動する構成部材におけるストローク検出のための磁界センサ装置において、
線形にかつ他の自由度において運動可能な構成部材に、前記磁石系の構成部材として少なくとも1つの磁石(3,4;7;11,12;14)又は他の磁性構成部材が設けられており、前記磁石又は磁性構成部材の外周に対し所定の間隔を置いて相対して、磁界方向を検出する少なくとも1つの定置型のセンサ(5)が対応配置されており、前記磁石(3,4;7;11,12;14)の優勢な界方向が、前記運動する構成部材のストローク(6)に対して、0°<θ<90°の間において所定の角度(θ)を成して配向されていることを特徴とする、磁界センサ装置。
The spatial component of the magnetic field of the magnet system in the moving component changes over the stroke (6) to be detected in the direction of the component, whereby the moving configuration with respect to the stationary sensor (5) In a magnetic field sensor device for detecting a stroke in a moving component, which can be detected according to the position of the member,
At least one magnet (3,4; 7; 11,12; 14) or other magnetic component is provided as a component of the magnet system on a component that can move linearly and in other degrees of freedom. At least one stationary sensor (5) for detecting the direction of the magnetic field is disposed correspondingly to the outer circumference of the magnet or the magnetic component member at a predetermined interval, and the magnet (3, 4; 7; 11,12; 14) is predominant magnetic Sakaikata direction of relative stroke (6) of the components of the exercise, 0 ° <theta at an angle (theta) between the <90 ° Magnetic field sensor device characterized by being oriented.
前記他の自由度は、前記運動可能な構成部材の回動軸線(13)を中心とした回動運動を含むことを特徴とする、請求項1記載の磁界センサ装置。   The magnetic field sensor device according to claim 1, wherein the other degree of freedom includes a rotational movement around a rotational axis (13) of the movable component. 前記磁石(3,4;7;11,12;14)の優勢な界方向の所定の角度は、45°であることを特徴とする、請求項1又は2記載の磁界センサ装置。 It said magnet predominant magnetic Sakaikata predetermined angle of direction of (3,4; 7; 11, 12 14) is characterized by a 45 °, the magnetic field sensor device according to claim 1 or 2, wherein. 前記少なくとも1つの磁界センサは、前記磁界の空間的な成分を測定するために、XMR効果の評価部を備えたセンサ(5)又はホールセンサであることを特徴とする、請求項1から3までのいずれか一項記載の磁界センサ装置。   4. The method according to claim 1, wherein the at least one magnetic field sensor is a sensor (5) or a Hall sensor with an XMR effect evaluation unit for measuring a spatial component of the magnetic field. The magnetic field sensor device according to any one of the above. 前記磁界センサ装置の磁化に関しても種々異なって配向されている複数の個別の磁石が、前記運動する構成部材の周面に配置されていることを特徴とする、請求項1から4までのいずれか一項記載の磁界センサ装置。   A plurality of individual magnets that are oriented differently with respect to the magnetization of the magnetic field sensor device are arranged on the peripheral surface of the moving component member. The magnetic field sensor device according to one item. 前記運動する構成部材に少なくとも1つの環状磁石(11,12)が配置されており、該環状磁石(11,12)は、該環状磁石の周面の延在方向に磁界方向を有しており、該優勢な磁界方向は、前記運動する構成部材のストローク(6)に対して、0°<θ<90°の間において所定の角度(θ)を成して配向されていることを特徴とする、請求項1から5までのいずれか一項記載の磁界センサ装置。 At least one annular magnet (11, 12) is arranged on the moving component, and the annular magnet (11, 12) has a magnetic field direction in the extending direction of the peripheral surface of the annular magnet. The dominant magnetic field direction is oriented at a predetermined angle (θ) between 0 ° <θ <90 ° with respect to the stroke (6) of the moving component. The magnetic field sensor device according to any one of claims 1 to 5. 前記磁界センサ装置を自動車においてペダルストロークの検出時に使用することを特徴とする、請求項1から6までのいずれか一項記載の磁界センサ装置の使用。   Use of the magnetic field sensor device according to any one of claims 1 to 6, characterized in that the magnetic field sensor device is used when detecting a pedal stroke in an automobile.
JP2012543543A 2009-12-21 2010-10-22 Magnetic field sensor device for stroke detection in movable components Expired - Fee Related JP5606550B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200910055104 DE102009055104A1 (en) 2009-12-21 2009-12-21 Magnetic field sensor arrangement for path detection on moving components
DE102009055104.2 2009-12-21
PCT/EP2010/065925 WO2011085833A2 (en) 2009-12-21 2010-10-22 Magnetic field sensor assembly for capturing travel on movable parts

Publications (3)

Publication Number Publication Date
JP2013515234A JP2013515234A (en) 2013-05-02
JP2013515234A5 JP2013515234A5 (en) 2014-05-01
JP5606550B2 true JP5606550B2 (en) 2014-10-15

Family

ID=44149001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012543543A Expired - Fee Related JP5606550B2 (en) 2009-12-21 2010-10-22 Magnetic field sensor device for stroke detection in movable components

Country Status (5)

Country Link
EP (1) EP2516967A2 (en)
JP (1) JP5606550B2 (en)
CN (2) CN105509775B (en)
DE (1) DE102009055104A1 (en)
WO (1) WO2011085833A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009055104A1 (en) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Magnetic field sensor arrangement for path detection on moving components
US9448087B2 (en) * 2011-10-10 2016-09-20 Methode Electronics, Inc. Contactless magnetic linear position sensor
DE102012214916A1 (en) 2012-08-22 2014-03-20 Robert Bosch Gmbh Sensor arrangement for detecting rotational angles on a rotating component
DE102012220139A1 (en) 2012-11-06 2014-05-08 Robert Bosch Gmbh Magnetic measuring arrangement and corresponding sensor arrangement for detecting the movement of a moving component
KR101801536B1 (en) 2013-05-13 2017-11-27 주식회사 만도 Installation structure for pedal stroke sensor
JP5946796B2 (en) * 2013-05-29 2016-07-06 ファナック株式会社 Rotation detector for detecting rotation of rotating machine, and system including rotation detector
CN104667427B (en) * 2013-11-29 2019-02-01 上海联影医疗科技有限公司 The leaf position monitoring device of multi-leaf optical grating, multi-leaf optical grating, radiotherapy apparatus
DE102014205566A1 (en) * 2014-03-26 2015-10-01 Robert Bosch Gmbh Sensor arrangement for path detection on a moving component
CN105526852B (en) * 2014-09-30 2019-07-12 泰科电子(上海)有限公司 Neutral gear is reversed gear position sensing sensor and system
CN105270559A (en) * 2014-10-22 2016-01-27 天津比沃科技有限公司 Detection mechanism of speed change mechanism of electric bicycle, and speed changing method of electric bicycle
DE102014116115A1 (en) 2014-11-05 2016-05-12 Pierburg Gmbh Magnet-based measuring system for detecting a movement and / or angular position of a component
DE102015205390A1 (en) 2015-03-25 2016-09-29 Robert Bosch Gmbh Sensor arrangement for speed detection of a rotating component
CN105852872B (en) * 2016-03-25 2019-09-20 京东方科技集团股份有限公司 A kind of sensor device and artificial limb system applied to joint
CN107966982B (en) * 2016-10-18 2021-02-09 苏州宝时得电动工具有限公司 Collision trigger device and lawn mower
DE102017222676A1 (en) * 2016-12-29 2018-07-05 Robert Bosch Gmbh displacement sensor
DE102017202365A1 (en) * 2017-02-15 2018-08-16 Robert Bosch Gmbh sensor device
DE102017206025A1 (en) * 2017-04-07 2018-10-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Magnetic arrangement for detecting relative movements or relative positions
EP3428582B1 (en) * 2017-07-11 2020-03-04 Sick Ag Sensor
DE102017222063A1 (en) * 2017-12-06 2019-06-06 Dr. Johannes Heidenhain Gmbh Inductive position measuring device
DE102018220639A1 (en) * 2018-11-29 2020-06-04 TE Connectivity Sensors Germany GmbH Device for measuring a position of an object that is linearly movable along a direction of movement, in particular a brake pedal sensor
DE102019112572A1 (en) * 2019-05-14 2020-11-19 HELLA GmbH & Co. KGaA Device and method for the contactless determination of a position of a pedal
CN111163372A (en) * 2019-12-28 2020-05-15 Oppo广东移动通信有限公司 Network device
CN113587793B (en) * 2020-04-30 2023-11-07 财团法人金属工业研究发展中心 Measuring system of fastener forming machine
CN112880539A (en) * 2021-01-19 2021-06-01 天津中科华誉科技有限公司 Non-contact position detection device
JP7444143B2 (en) * 2021-07-20 2024-03-06 Tdk株式会社 magnetic sensor device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258006A (en) * 1993-03-02 1994-09-16 Seiko Epson Corp Displacement sensor
AU4055299A (en) * 1998-06-22 2000-01-10 Koninklijke Philips Electronics N.V. Magnetic position detector
DE19849613A1 (en) * 1998-10-28 2000-05-04 Philips Corp Intellectual Pty Arrangement for measuring a relative linear position
DE19937206C2 (en) 1999-06-11 2003-05-08 Siemens Ag Position determination device and use of a position determination device and method for producing a scale for such a device
EP1074818A3 (en) * 1999-08-06 2001-10-31 Siemens Aktiengesellschaft Position sensor
JP2001280908A (en) * 2000-03-29 2001-10-10 Sony Precision Technology Inc Position detector
US6577123B2 (en) * 2001-06-04 2003-06-10 Delphi Technologies, Inc. Linear position sensor assembly
KR101173519B1 (en) * 2003-02-14 2012-08-14 베이 센서스 앤드 시스템즈 캄파니, 인코포레이티드 Position sensor utilizing a linear hall-effect sensor, having a magnet arrangement for an increased linearity
DE102004011809A1 (en) * 2004-03-11 2005-09-29 Robert Bosch Gmbh The magnetic sensor system
DE102004063539A1 (en) * 2004-03-11 2005-09-29 Robert Bosch Gmbh Magnet sensor for use in gradiometer has two magnetic field sensors on plate bridging V-shaped groove in permanent magnet, arranged so that offset of sensor output is minimized
DE102004057909A1 (en) * 2004-11-30 2006-06-01 Bourns, Inc., Riverside Linear position sensor
WO2006115129A1 (en) * 2005-04-19 2006-11-02 Matsushita Electric Industrial Co., Ltd. Position sensor, optical head device, head moving mechanism, information recording/reproducing device and position control system
JP4787601B2 (en) * 2005-11-08 2011-10-05 株式会社東海理化電機製作所 Position detection device
FR2894023B1 (en) * 2005-11-29 2008-02-22 Electricfil Automotive Soc Par MAGNETIC POSITION SENSOR FOR A MOBILE WITH A LIMITED LINEAR RACE
JP4831813B2 (en) * 2006-01-30 2011-12-07 株式会社村上開明堂 Position detecting device and mirror angle detecting device for automobile mirror
EP2137499B1 (en) * 2006-12-21 2017-03-15 Micro-Epsilon Messtechnik GmbH & Co. KG Method and sensor arrangement for determining the position and/or change of position of a measured object relative to a sensor
DE102009055104A1 (en) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Magnetic field sensor arrangement for path detection on moving components

Also Published As

Publication number Publication date
CN105509775A (en) 2016-04-20
CN102686980A (en) 2012-09-19
JP2013515234A (en) 2013-05-02
CN105509775B (en) 2018-06-12
WO2011085833A3 (en) 2011-09-15
WO2011085833A2 (en) 2011-07-21
EP2516967A2 (en) 2012-10-31
DE102009055104A1 (en) 2011-06-22
CN102686980B (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5606550B2 (en) Magnetic field sensor device for stroke detection in movable components
JP2013515234A5 (en)
KR101721087B1 (en) Multi-periodic absolute position sensor
KR101410196B1 (en) Bidirectional magnetic position sensor having field rotation
US6400142B1 (en) Steering wheel position sensor
JP6534682B2 (en) Sensor device for detecting the stroke of a moving component
US20100301845A1 (en) Absolute measurement steering angle sensor arrangement
CN107045071B (en) Sensor device and method for determining at least one rotation characteristic of a rotating element
JP2006170992A (en) Method of determining right or left position of vehicle wheel, and position determination device
US20150211890A1 (en) Sensor Arrangement for Detecting Angles of Rotation on a Rotated Component
JP2002522760A (en) Sensor device for detecting rotation angle and / or torque
US20090051352A1 (en) Steering angle sensor
US20170183034A1 (en) Sensing device, sensing system and steering system
CN109565215B (en) Method for mutual calibration of a magnetic sensor device and an actuator, and actuator apparatus comprising an actuator and a magnetic sensor device
JP2020501142A (en) Sensor system for determining at least one rotational characteristic of a member rotating about at least one axis of rotation
JP4386841B2 (en) Probe head for coordinate measuring machine
JP2010520458A (en) Linear position sensor
JP6449819B2 (en) Displacement detection device and continuously variable transmission
WO2006087627A1 (en) Monitoring device
KR20150097678A (en) Method for detecting a torque applied to a shaft
US8878530B2 (en) Measurement method and magnetic sensor for the contactless detection of movements
JP2009300262A (en) Displacement detector
JP2007518091A (en) Magnetoresistive speed sensor
US8032283B2 (en) Angle measuring apparatus for measuring an absolute angular position
US11578995B2 (en) Sensor arrangement for angle detection and manual transmission

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131225

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5606550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees