JP2009300262A - Displacement detector - Google Patents

Displacement detector Download PDF

Info

Publication number
JP2009300262A
JP2009300262A JP2008155255A JP2008155255A JP2009300262A JP 2009300262 A JP2009300262 A JP 2009300262A JP 2008155255 A JP2008155255 A JP 2008155255A JP 2008155255 A JP2008155255 A JP 2008155255A JP 2009300262 A JP2009300262 A JP 2009300262A
Authority
JP
Japan
Prior art keywords
magnetic field
axis
moving member
displacement
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008155255A
Other languages
Japanese (ja)
Inventor
Yukihiro Kato
幸裕 加藤
Toshiyuki Matsuo
敏之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2008155255A priority Critical patent/JP2009300262A/en
Publication of JP2009300262A publication Critical patent/JP2009300262A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a displacement detector capable of surely detecting displacement of a moving object in an inexpensive and compact structure. <P>SOLUTION: The displacement detector includes a moving member 1 capable of rotary motion and linear motion in a direction along a rotation axis and including a cylindrical or arcuate magnetic pole region 2 parallel-magnetized in one direction along a plane having the rotation axis 10 as a normal line and having the rotation axis 10 as the center, a magnetic field detecting means 3 provided oppositely to the magnetic pole region 2 and capable of detecting magnitudes of magnetic field components in three directions orthogonal to one another including an X-axis extending along a radial direction of the magnetic pole region 2, a Y-axis extending along a rotation direction of the moving member 1 and a Z-axis extending along the rotation axis 10, and a calculating means 4 for obtaining a rotation angle and the displacement of the linear motion of the moving member 1 based on detection results from the magnetic field detecting means 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、移動部材の回転角度及び回転軸に沿った直線移動の変位を検出する変位検出装置に関する。   The present invention relates to a displacement detection device that detects a rotation angle of a moving member and a displacement of linear movement along a rotation axis.

上記のように異なる2方向の変位を検出可能な変位検出装置は、例えば車両のシフトレバーの位置検出装置などに用いられる。車両のシフトレバーには、車両の進行方向に沿ったシフト方向と、このシフト方向に直交するセレクト方向の2方向に変位するものがある。そこで、例えば、上述の変位検出装置によりシフトレバーのセレクト方向の移動を回転角度として検出し、シフト方向の移動を回転軸に沿った直線移動の変位として検出することにより、シフトレバーの位置が検出される。従来、この種の変位検出装置としては、例えば、特許文献1に記載されたものが公知である。この変位検出装置は、回転軸の周囲に設けられた半円状の磁石と、回転軸の周囲に配置されたホール素子とを備える。ホール素子としては、磁石の回転軸に沿った方向の変位に応じた磁場強度を検出するよう検知面を回転軸に垂直に備えた一対のホール素子と、磁石の回転に応じた磁場強度を検出するよう検知面をX軸に垂直に備えた一対のホール素子とを備える。この変位検出装置において、半円径状の磁石の回転や回転軸に沿った直線移動に伴う磁場強度の変化に基づいて、磁石の回転方向及び回転軸に沿った方向の2方向位置が検出される。   A displacement detection device capable of detecting displacements in two different directions as described above is used, for example, in a position detection device for a shift lever of a vehicle. Some vehicle shift levers are displaced in two directions: a shift direction along the traveling direction of the vehicle and a select direction orthogonal to the shift direction. Therefore, for example, the position of the shift lever is detected by detecting the movement of the shift lever in the select direction as a rotation angle by the above-described displacement detection device and detecting the movement in the shift direction as a displacement of linear movement along the rotation axis. Is done. Conventionally, as this type of displacement detection device, for example, the one described in Patent Document 1 is known. This displacement detection device includes a semicircular magnet provided around the rotation shaft and a Hall element arranged around the rotation shaft. As a Hall element, a pair of Hall elements provided with a detection surface perpendicular to the rotation axis so as to detect the magnetic field intensity according to the displacement in the direction along the rotation axis of the magnet, and the magnetic field strength according to the rotation of the magnet are detected. And a pair of Hall elements having a detection surface perpendicular to the X axis. In this displacement detection device, based on the change of the magnetic field strength accompanying the rotation of the semicircular magnet and the linear movement along the rotation axis, the two-way position of the magnet rotation direction and the direction along the rotation axis is detected. The

特表2002−530666号公報(0041段落〜0046段落及び図5〜図7)JP-T-2002-530666 (paragraphs 0041 to 0046 and FIGS. 5 to 7)

しかしながら、上述の変位検出装置では、回転方向位置を検知するためのホール素子と、回転軸に沿った方向を検知するためのホール素子とを、方向及び配置場所を異ならせて配置する必要がある。このため、部品点数が増大しコストアップの要因となっていた。さらに、検出方向ごとにホール素子を配置するスペースを確保する必要があり、装置のコンパクト化を図ることが困難であった。   However, in the above-described displacement detection device, it is necessary to arrange the Hall element for detecting the position in the rotation direction and the Hall element for detecting the direction along the rotation axis in different directions and arrangement locations. . For this reason, the number of parts has increased, which has been a cause of cost increase. Furthermore, it is necessary to secure a space for arranging the Hall element for each detection direction, and it is difficult to make the apparatus compact.

本発明は、上述の問題に鑑みてなされたものであり、その目的は、低コストでコンパクトな構成をとりつつ、移動部材の変位を確実に検出可能な変位検出装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a displacement detection device that can reliably detect the displacement of a moving member while taking a compact configuration at a low cost.

本発明の第1特徴構成は、回転移動及び前記回転移動の回転軸に沿った方向の直線移動が可能であり、前記回転軸を法線とする平面に沿った一方向にパラレル着磁され前記回転軸を中心とする円筒状又は円弧状の磁極領域を備えた移動部材と、前記磁極領域に対向して設けられ、前記磁極領域の径方向に沿ったX軸、前記移動部材の回転方向に沿ったY軸、及び、前記回転軸に沿ったZ軸の互いに直行する3方向の磁場成分の大きさを検出可能な磁場検出手段と、前記磁場検出手段の検出結果に基づいて前記移動部材の回転角度及び前記直線移動の変位を求める演算手段とを備えた点にある。   The first characteristic configuration of the present invention is capable of rotational movement and linear movement in a direction along the rotational axis of the rotational movement, and is parallel magnetized in one direction along a plane having the rotational axis as a normal line. A moving member having a cylindrical or arc-shaped magnetic pole region with the rotation axis as the center, and an X-axis along the radial direction of the magnetic pole region provided in opposition to the magnetic pole region, in the rotational direction of the moving member A magnetic field detecting means capable of detecting magnitudes of magnetic field components in three directions perpendicular to each other along the Y axis along the Z axis along the rotation axis, and based on a detection result of the magnetic field detecting means, An arithmetic means for obtaining a rotation angle and a displacement of the linear movement is provided.

本構成のように、回転軸を法線とする平面に沿った一方向にパラレル着磁され回転軸を中心とする円筒状又は円弧状の磁極領域を設けると、磁極領域の周囲の磁場のXY平面に沿った成分の方向は、移動部材の回転方向位置に対応して変化し、一周で磁場のXY平面に沿った成分も一回転する。また、磁場のXZ平面に沿った方向の成分は、回転軸に沿った方向における磁場領域の中央部から変位するに従って、回転軸に沿う方向に変化する。このように、移動部材の回転方向の変位及び回転軸に沿った方向の変位の組み合わせに応じて、磁場の3次元方向が一義的に定まる。従って、3方向の磁場成分の大きさを検出することにより、移動部材の回転方向及び回転軸に沿った方向の2方向の変位を検出することができる。
上述のように、一義的に定まる磁場の3次元方向を測定するので、移動部材の2方向の変位を検出するために、従来のように複数の磁場検出手段を設ける必要がない。この結果、低コストでコンパクトな構成をとりつつ、移動体の変位を確実に検出可能な変位検出装置を得ることができる。
If a cylindrical or arc-shaped magnetic pole region centered around the rotation axis is provided in parallel in one direction along the plane having the rotation axis as a normal line as in this configuration, the XY of the magnetic field around the magnetic pole region is provided. The direction of the component along the plane changes corresponding to the rotational direction position of the moving member, and the component along the XY plane of the magnetic field rotates once in one turn. Moreover, the component of the direction along the XZ plane of the magnetic field changes in the direction along the rotation axis as it is displaced from the central portion of the magnetic field region in the direction along the rotation axis. Thus, the three-dimensional direction of the magnetic field is uniquely determined according to the combination of the displacement in the rotational direction of the moving member and the displacement in the direction along the rotational axis. Therefore, by detecting the magnitudes of the magnetic field components in the three directions, it is possible to detect the displacement in the two directions of the moving member along the rotation direction and the direction along the rotation axis.
As described above, since the three-dimensional direction of the magnetic field that is uniquely determined is measured, it is not necessary to provide a plurality of magnetic field detection units as in the prior art in order to detect displacement in two directions of the moving member. As a result, it is possible to obtain a displacement detection device that can reliably detect the displacement of the moving body while adopting a low-cost and compact configuration.

本発明の第2特徴構成は、前記演算手段が、前記X軸・前記Y軸・前記Z軸の原点を始点とする前記磁場の三次元空間における空間ベクトルを想定し、当該空間ベクトルをXY平面に投影した際の前記XY平面内における前記投影ベクトルの方向に基づいて前記回転角度を求めるとともに、前記空間ベクトルをXZ平面に投影した際の前記XZ平面内における前記投影ベクトルの方向に基づいて前記直線移動の変位を求める点にある。   According to a second characteristic configuration of the present invention, the calculation means assumes a space vector in a three-dimensional space of the magnetic field starting from the origin of the X axis, the Y axis, and the Z axis, and the space vector is expressed as an XY plane. The rotation angle is obtained based on the direction of the projection vector in the XY plane when projected onto the XZ plane, and based on the direction of the projection vector in the XZ plane when the space vector is projected onto the XZ plane. The point is to obtain the displacement of the linear movement.

上述のように、磁場のXY平面に沿った成分の方向は移動部材の回転方向位置に対応して変化し、磁場のXZ平面に沿った方向の成分は回転軸に沿った方向における位置に応じて変化する。従って、磁場のXY平面内における投影ベクトルの方向に基づいて回転角度を求めるとともに、磁場のXZ平面内における投影ベクトルの方向に基づいて回転軸に沿った方向の変位を求めることにより、2方向の変位を容易に求めることができる。   As described above, the direction of the component along the XY plane of the magnetic field changes corresponding to the rotational direction position of the moving member, and the direction component of the magnetic field along the XZ plane depends on the position in the direction along the rotational axis. Change. Accordingly, the rotation angle is determined based on the direction of the projection vector in the XY plane of the magnetic field, and the displacement in the direction along the rotation axis is determined based on the direction of the projection vector in the XZ plane of the magnetic field. The displacement can be easily obtained.

本発明に係る変位検出装置の実施形態について、図面に基づいて説明する。
この変位検出装置は、図1に示すように、移動部材1と、移動部材1の周囲に発生する磁場を検出する磁場検出手段としての磁場検出装置3と、磁場検出装置3の検出情報に基づいて磁場検出装置3に対する移動部材1の移動変位を求める演算手段としての演算部4とを備える。
DESCRIPTION OF EMBODIMENTS An embodiment of a displacement detection device according to the present invention will be described based on the drawings.
As shown in FIG. 1, the displacement detection device is based on a moving member 1, a magnetic field detection device 3 as a magnetic field detection unit that detects a magnetic field generated around the moving member 1, and detection information of the magnetic field detection device 3. And a computing unit 4 as computing means for obtaining the displacement of the moving member 1 relative to the magnetic field detecting device 3.

図1、図2及び図3に示すように、移動部材1は、回転軸10を中心とした回転変位と、回転軸10に沿った方向の直線変位の2方向の変位が可能である。図2に示すように、移動部材1には、磁場領域を形成するリング状の磁石2が当該移動部材1と一体移動可能に設けられている。この実施形態では、磁石2は、磁石2における磁場の方向が、回転軸10を法線とする平面、つまり、XY平面に沿った一方向となるようパラレルに着磁されている。   As shown in FIGS. 1, 2, and 3, the moving member 1 can be displaced in two directions: a rotational displacement about the rotation shaft 10 and a linear displacement along the rotation shaft 10. As shown in FIG. 2, the moving member 1 is provided with a ring-shaped magnet 2 that forms a magnetic field region so as to be able to move integrally with the moving member 1. In this embodiment, the magnet 2 is magnetized in parallel so that the direction of the magnetic field in the magnet 2 is a plane along the rotation axis 10 as a normal line, that is, one direction along the XY plane.

磁場検出装置3は、図1及び図4に示すように、磁石2(磁場領域)の径方向に沿ったX軸、移動部材1の回転方向に沿ったY軸、及び、回転軸10の軸方向に沿ったZ軸の互いに直行する3方向の磁場成分の大きさを検出可能に構成されている。
磁場検出装置3は、例えばホールICであり、具体的には、Melexis社のMLX90333等を用いることができる。
この磁場検出装置3は、磁性プレート8と磁場を検出する検出素子9とを有する。磁性プレート8は、円板状に形成されている。検出素子9(ホール素子)は、磁性プレート8の端部の直下に配置されている。検出素子9は、Y軸に沿って配置された一対の検出素子9a,9bと、Z軸に沿って配置された一対の検出素子9c,9dとの二対が設けられている。
As shown in FIGS. 1 and 4, the magnetic field detection device 3 includes an X axis along the radial direction of the magnet 2 (magnetic field region), a Y axis along the rotation direction of the moving member 1, and an axis of the rotation shaft 10. The magnitudes of magnetic field components in three directions perpendicular to each other on the Z axis along the direction can be detected.
The magnetic field detection device 3 is, for example, a Hall IC, and specifically, an MLX90333 manufactured by Melexis can be used.
The magnetic field detection device 3 includes a magnetic plate 8 and a detection element 9 that detects a magnetic field. The magnetic plate 8 is formed in a disc shape. The detection element 9 (Hall element) is disposed immediately below the end of the magnetic plate 8. The detection element 9 is provided with two pairs of a pair of detection elements 9a and 9b arranged along the Y axis and a pair of detection elements 9c and 9d arranged along the Z axis.

磁場検出装置3の検出原理について、図5に基づいて説明する。
X方向の磁場成分は、以下のように検出される。つまり、 図5(a)に示すように、X方向に外部磁場が印加されると、Z方向に沿って配置した一対の検出素子9c,9dにX方向に沿う磁場成分が発生する。このとき、検出素子9cと検出素子9dとでは、発生する磁場成分の方向が同じ方向となる。したがって、一対の検出素子9c,9dの出力電圧を加算することにより、外部磁場の大きさに比例した磁場成分を検出できる。
The detection principle of the magnetic field detection device 3 will be described with reference to FIG.
The magnetic field component in the X direction is detected as follows. That is, as shown in FIG. 5A, when an external magnetic field is applied in the X direction, a magnetic field component along the X direction is generated in the pair of detection elements 9c and 9d arranged along the Z direction. At this time, the direction of the generated magnetic field component is the same in the detection element 9c and the detection element 9d. Therefore, a magnetic field component proportional to the magnitude of the external magnetic field can be detected by adding the output voltages of the pair of detection elements 9c and 9d.

X方向の磁場成分を検出する際、Z方向の磁場成分については、以下の通り除去される。つまり、図5(b)に示すように、Z方向に磁場が印加されると、磁性プレート8により磁束が曲げられて、一対の検出素子9c,9dにZ方向に沿う磁場成分が発生する。このとき、検出素子9cと検出素子9dとでは、発生する磁場成分の方向が逆方向となる。従って、一対の検出素子9c,9dの出力電圧の和を算出することにより、Z方向の磁場成分を除去することができる。   When the magnetic field component in the X direction is detected, the magnetic field component in the Z direction is removed as follows. That is, as shown in FIG. 5B, when a magnetic field is applied in the Z direction, the magnetic flux is bent by the magnetic plate 8, and a magnetic field component along the Z direction is generated in the pair of detection elements 9c and 9d. At this time, in the detection element 9c and the detection element 9d, the direction of the generated magnetic field component is opposite. Accordingly, the magnetic field component in the Z direction can be removed by calculating the sum of the output voltages of the pair of detection elements 9c and 9d.

一方、Z方向の磁場成分は以下のように検出される。つまり、図5(b)に示すように、Z方向の磁場成分が印加されると、磁性プレート8により磁束が曲げられて、Z方向に沿って配置した一対の検出素子9c,9dには、磁性プレート8に垂直なX方向の磁場成分が発生する。このとき、X方向の磁場成分の大きさは、外部磁場の大きさに比例したものとなり、検出素子9cと検出素子9dとでは、発生する磁場成分の方向が逆方向となる。したがって、一対の検出素子9c,9dの出力電圧の差分を算出することにより、Z方向の外部磁場の大きさに比例した磁場成分を検出できる。   On the other hand, the magnetic field component in the Z direction is detected as follows. That is, as shown in FIG. 5B, when a magnetic field component in the Z direction is applied, the magnetic flux is bent by the magnetic plate 8, and the pair of detection elements 9c and 9d arranged along the Z direction includes A magnetic field component in the X direction perpendicular to the magnetic plate 8 is generated. At this time, the magnitude of the magnetic field component in the X direction is proportional to the magnitude of the external magnetic field, and the direction of the generated magnetic field component is opposite in the detection element 9c and the detection element 9d. Therefore, the magnetic field component proportional to the magnitude of the external magnetic field in the Z direction can be detected by calculating the difference between the output voltages of the pair of detection elements 9c and 9d.

Z方向の磁場成分を検出する際、X方向の磁場成分については、以下の通り除去される。つまり、上述のように、X方向に磁場が印加されると、一対の検出素子9c,9dにX方向に沿う磁場成分が発生する。このとき、検出素子9cと検出素子9dとでは、発生する磁場成分の方向が同方向となる。従って、一対の検出素子9c,9dの出力電圧の差を算出することにより、X方向の磁場成分を除去することができる。   When the magnetic field component in the Z direction is detected, the magnetic field component in the X direction is removed as follows. That is, as described above, when a magnetic field is applied in the X direction, a magnetic field component along the X direction is generated in the pair of detection elements 9c and 9d. At this time, the direction of the generated magnetic field component is the same in the detection element 9c and the detection element 9d. Therefore, the magnetic field component in the X direction can be removed by calculating the difference between the output voltages of the pair of detection elements 9c and 9d.

Y方向の磁場成分が印加されたときも、Z方向の磁場成分が印加されたときと同様に、磁性プレート8に垂直なX方向の磁場成分が発生する。したがって、磁場検出装置3は、Y方向に沿って配置した一対の検出素子9a,9bの出力電圧の差分を算出することにより、Y方向の磁場成分の大きさを検出できる。   When a magnetic field component in the Y direction is applied, a magnetic field component in the X direction perpendicular to the magnetic plate 8 is generated in the same manner as when the magnetic field component in the Z direction is applied. Therefore, the magnetic field detection device 3 can detect the magnitude of the magnetic field component in the Y direction by calculating the difference between the output voltages of the pair of detection elements 9a and 9b arranged along the Y direction.

次に、演算部4による演算について説明する。
演算部4は、磁場検出装置3が検出したX方向の磁場成分、Y方向の磁場成分、及びZ方向の磁場成分に基づいて、移動部材1の回転軸10を中心とした回転変位θ(図2を参照)と移動部材1の回転軸10に沿った直線変位Z(図3を参照)とを演算する。
Next, calculation by the calculation unit 4 will be described.
The calculation unit 4 rotates based on the rotational axis θ of the moving member 1 around the rotation axis 10 based on the magnetic field component in the X direction, the magnetic field component in the Y direction, and the magnetic field component in the Z direction detected by the magnetic field detection device 3 (see FIG. 2) and a linear displacement Z (see FIG. 3) along the rotation axis 10 of the moving member 1 are calculated.

本実施形態では、図6に示すように、X軸・Y軸・Z軸の原点を始点とする磁場の三次元空間における空間ベクトルVを想定する。そして、当該空間ベクトルVをXY平面に投影した際のXY平面内における投影ベクトルV’の方向(投射ベクトルV’のX軸とのなす角度α)と、空間ベクトルVをXZ平面に投影した際のXZ平面内における投影ベクトルV’’の方向(投射ベクトルV’’のX軸とのなす角度β)とに基づいて、移動部材1の変位を検出する。   In this embodiment, as shown in FIG. 6, a space vector V in a three-dimensional space of a magnetic field starting from the origin of the X axis, the Y axis, and the Z axis is assumed. When the space vector V is projected onto the XY plane, the direction of the projection vector V ′ in the XY plane (the angle α formed with the X axis of the projection vector V ′) and the space vector V are projected onto the XZ plane. The displacement of the moving member 1 is detected based on the direction of the projection vector V ″ in the XZ plane (the angle β formed with the X axis of the projection vector V ″).

図7に、種々の移動部材1のZ方向位置において、回転軸10を中心として移動部材1を回転させた場合のシミュレーション結果を示す。このシミュレーションにおいて、移動部材は、内周直径16mm、外周直径20mm、高さ(厚さ)10mmのリング状の磁石2で、回転軸10を法線とする平面に沿った一方向、つまり、XY平面に平行な平面における一方向にパラレル着磁されたものを前提とした。このシミュレーションにおいて、Z方向位置は、移動部材1の高さ方向(厚み方向)における中央部をZ=0とし、Z=−3.5mmからZ=3.5mmの種々のZ方向位置において、移動部材1の回転角度θと投射ベクトルV’のなす角度αとの相関関係を得た。図中の曲線は、移動部材1のZ方向位置をZ=−3.5mmからZ=3.5mmの範囲で変動させた場合の移動部材1の回転角度θと投射ベクトルV’のなす角度αとの相関関係の変動範囲を示す。図7から明らかなように、移動部材のZ方向位置に拘わらず、移動部材1の回転角度θと投射ベクトルV’のなす角度αとの相関関係が略一致した。   FIG. 7 shows simulation results when the moving member 1 is rotated around the rotation axis 10 at various Z-direction positions of the moving member 1. In this simulation, the moving member is a ring-shaped magnet 2 having an inner diameter of 16 mm, an outer diameter of 20 mm, and a height (thickness) of 10 mm, and is in one direction along the plane having the rotation axis 10 as a normal line, that is, XY. It was assumed that the magnet was parallel magnetized in one direction on a plane parallel to the plane. In this simulation, the Z-direction position is determined by moving the central portion in the height direction (thickness direction) of the moving member 1 at Z = 0 and moving at various Z-direction positions from Z = −3.5 mm to Z = 3.5 mm A correlation between the rotation angle θ of the member 1 and the angle α formed by the projection vector V ′ was obtained. The curve in the figure shows the angle α formed by the rotation angle θ of the moving member 1 and the projection vector V ′ when the position of the moving member 1 in the Z direction is changed in the range of Z = −3.5 mm to Z = 3.5 mm. Shows the range of fluctuation of correlation. As is apparent from FIG. 7, the correlation between the rotation angle θ of the moving member 1 and the angle α formed by the projection vector V ′ is substantially the same regardless of the position of the moving member in the Z direction.

図8に、種々の回転角度θにおいて、移動部材1を回転軸10の軸心に沿って移動させた場合のシミュレーション結果を示す。このシミュレーションにおいても上述と同一のリング状の磁石2を前提とした。また、このシミュレーションにおいて移動部材1の回転角度θをθ=−50degからθ=+50degの範囲で変動させた場合の移動部材1のZ方向位置と投射ベクトルV’’のX軸とのなす角度βとの相関関係を求めた。図中の曲線は、移動部材1の回転角度θをθ=−50degからθ=+50degの範囲で変動させた場合の移動部材1のZ方向位置となす角度βとの相関関係の変動範囲を示す。図8から明らかなように、回転角度θに拘わらず、移動部材1のZ方向位置となす角度βとの相関関係が、略一致した。   FIG. 8 shows simulation results when the moving member 1 is moved along the axis of the rotating shaft 10 at various rotational angles θ. In this simulation, the same ring-shaped magnet 2 as described above was assumed. Further, in this simulation, the angle β formed by the Z-direction position of the moving member 1 and the X axis of the projection vector V ″ when the rotation angle θ of the moving member 1 is varied in the range of θ = −50 deg to θ = + 50 deg. The correlation with was obtained. The curve in the figure shows the fluctuation range of the correlation with the angle β that is the Z-direction position of the moving member 1 when the rotation angle θ of the moving member 1 is varied in the range of θ = −50 deg to θ = + 50 deg. . As is clear from FIG. 8, the correlation with the angle β formed with the position of the moving member 1 in the Z direction is substantially the same regardless of the rotation angle θ.

上述のように、移動部材1の回転角度θと角度αとの相関関係、及び、移動部材1のZ方向位置と角度βとの相関関係は、夫々に独立して精度よく得ることができる。従って、演算部4は、角度αに基づいて移動体の回転角度を算出し、角度βに基づいて直線移動の変位を算出することができる。具体的には、演算部4は、X方向の磁場成分Bx及び、Y方向の磁場成分Byに基づいて、以下の式により角度αを算出する。
[式1]
α=arctan(By/Bx)
また、さらに、X方向の磁場成分Bx、Z方向の磁場成分Bzに基づいて、以下の式により角度βを算出する。
[式2]
β=arctan(Bz/Bx)
As described above, the correlation between the rotation angle θ and the angle α of the moving member 1 and the correlation between the Z-direction position of the moving member 1 and the angle β can be obtained independently and accurately. Therefore, the calculation unit 4 can calculate the rotation angle of the moving body based on the angle α, and can calculate the displacement of the linear movement based on the angle β. Specifically, the calculation unit 4 calculates the angle α by the following formula based on the magnetic field component Bx in the X direction and the magnetic field component By in the Y direction.
[Formula 1]
α = arctan (By / Bx)
Further, based on the magnetic field component Bx in the X direction and the magnetic field component Bz in the Z direction, the angle β is calculated by the following formula.
[Formula 2]
β = arctan (Bz / Bx)

そして、算出された角度αに基づいて、移動部材4の回転角度θ(図2を参照)を検出する。また、角度βに基づいて、移動部材4の回転軸10に沿った移動変位Z(図3を参照)を検出する。これにより、移動部材2の2方向の変位が検出される。   Based on the calculated angle α, the rotation angle θ of the moving member 4 (see FIG. 2) is detected. Further, based on the angle β, the movement displacement Z (see FIG. 3) of the moving member 4 along the rotation axis 10 is detected. Thereby, the displacement of the moving member 2 in two directions is detected.

上述のように、一義的に定まる磁場の3次元方向を測定するので、移動部材1の2方向の変位を検出するために、従来のように複数の磁場検出装置3を設ける必要がない。このため、低コストでコンパクトな構成をとりつつ、移動部材の変位を確実に検出可能な変位検出装置を得ることができる。   As described above, since the three-dimensional direction of the magnetic field that is uniquely determined is measured, it is not necessary to provide a plurality of magnetic field detection devices 3 as in the prior art in order to detect the displacement of the moving member 1 in two directions. For this reason, the displacement detection apparatus which can detect the displacement of a moving member reliably can be obtained, taking a low-cost and compact structure.

なお、図7及び図8に示す相関関係では、上述のように良好な相関関係が得られるものの相関関係が直線関係とはならない。この原因としては、BxとBy、或いは、BxとBzの強度比が1:1ではなく、Bxの強度がBy及びBzと比較して大きいことが挙げられる。そこで、演算部4は、補正後の強度比が1:1に近づくように、By及びBzに強度比に応じた係数kを乗じる補正を行ってもよい。   In the correlation shown in FIGS. 7 and 8, although a good correlation is obtained as described above, the correlation is not a linear relationship. This is because the intensity ratio of Bx and By or Bx and Bz is not 1: 1, and the intensity of Bx is larger than By and Bz. Therefore, the calculation unit 4 may perform correction by multiplying By and Bz by a coefficient k corresponding to the intensity ratio so that the corrected intensity ratio approaches 1: 1.

この場合、演算部4は以下の式に基づいてα及びβを算出する。
[式3]
α=arctan(kBy/Bx)
[式4]
β=arctan(kBz/Bx)
In this case, the calculation unit 4 calculates α and β based on the following equations.
[Formula 3]
α = arctan (kBy / Bx)
[Formula 4]
β = arctan (kBz / Bx)

図9にk=2.2とした場合の移動部材1の回転角度θと角度αとの相関関係を示す。図7と同様に、移動部材1のZ方向位置をZ=−3.5mmからZ=3.5mmの範囲で変動させた結果を示す。図9から明らかなように、このような補正を行うことにより、相関関係を示す線の直線性が向上した。また、図10にk=2.5とした場合の移動部材のZ方向位置と角度βとの相関関係を示す。図8と同様に、移動部材1の回転角度θをθ=−50degからθ=+50degの範囲で変動させた場合の結果を示す。図10から明らかなように、このような補正を行うことにより、相関関係を示す線の直線性が向上した。上述のように、回転角度及びZ方向位置のいずれの場合においても、上述の補正により、相関関係を示す線の直線性が向上した。従って、上述の補正により、移動部材の変位検出の精度がより向上する。   FIG. 9 shows the correlation between the rotation angle θ and the angle α of the moving member 1 when k = 2.2. Similarly to FIG. 7, the result of changing the position of the moving member 1 in the Z direction in the range of Z = −3.5 mm to Z = 3.5 mm is shown. As is apparent from FIG. 9, by performing such correction, the linearity of the line indicating the correlation is improved. FIG. 10 shows the correlation between the position of the moving member in the Z direction and the angle β when k = 2.5. Similarly to FIG. 8, the result when the rotation angle θ of the moving member 1 is varied in the range of θ = −50 deg to θ = + 50 deg is shown. As is apparent from FIG. 10, by performing such correction, the linearity of the line indicating the correlation is improved. As described above, in any case of the rotation angle and the position in the Z direction, the linearity of the line indicating the correlation is improved by the above correction. Therefore, the above-described correction further improves the accuracy of detecting the displacement of the moving member.

上述の変位検出装置は、特に限定はされないが、例えば、車両のシフトレバーの車両進行方向に沿ったシフト方向変位と、シフト方向に直交するセレクト方向変位とを検出するレバー位置検出装置に適用することができる。   The above-described displacement detection device is not particularly limited. For example, the displacement detection device is applied to a lever position detection device that detects a shift direction displacement of the shift lever of the vehicle along the vehicle traveling direction and a select direction displacement orthogonal to the shift direction. be able to.

[別実施形態]
(1)上述の実施形態において、磁場領域を形成する磁石2としてとしてリング状の磁石2を用いる場合を例に説明したが、これに限られるものではない。例えば、図11に示すようにハーフリング形状の磁石2など、円弧形状の磁石2を用いてもよい。
[Another embodiment]
(1) In the above-described embodiment, the case where the ring-shaped magnet 2 is used as the magnet 2 forming the magnetic field region has been described as an example. However, the present invention is not limited to this. For example, an arc-shaped magnet 2 such as a half-ring shaped magnet 2 as shown in FIG. 11 may be used.

(2)上述の実施形態では、検出素子9a,9bがY軸の方向に沿うとともに、検出素子9c,9dがZ軸の方向に沿うように磁場検出装置3を配置する例を説明したがこれに限られるものではない。例えば、検出素子9a,9bをX方向に沿わせるとともに、検出素子9c,9dをY方向に沿わせるなど、上述以外の配置であってもよい。 (2) In the above-described embodiment, the example in which the magnetic field detection device 3 is arranged so that the detection elements 9a and 9b are along the Y-axis direction and the detection elements 9c and 9d are along the Z-axis direction has been described. It is not limited to. For example, arrangements other than those described above may be employed such that the detection elements 9a and 9b are along the X direction and the detection elements 9c and 9d are along the Y direction.

本発明に係る変位検出装置を示す斜視図The perspective view which shows the displacement detection apparatus which concerns on this invention 本発明に係る変位検出装置を示す断面図Sectional drawing which shows the displacement detection apparatus which concerns on this invention 本発明に係る変位検出装置を示す側面図The side view which shows the displacement detection apparatus which concerns on this invention 磁場検出装置の一例を示す図The figure which shows an example of a magnetic field detection apparatus 各方向の磁場成分を検出する原理を示す図Diagram showing the principle of detecting magnetic field components in each direction 演算手段による演算の一例を示す図The figure which shows an example of the calculation by a calculating means 移動部材を回転変位させた場合のシミュレーション結果を示す図The figure which shows the simulation result at the time of rotationally displacing a moving member 移動部材を直線変位させた場合のシミュレーション結果を示す図The figure which shows the simulation result at the time of moving a moving member linearly 磁場強度の補正を行った場合の移動部材を回転変位させたシミュレーション結果を示す図The figure which shows the simulation result which rotationally displaced the moving member at the time of correcting magnetic field intensity 磁場強度の補正を行った場合の移動部材を直線変位させたシミュレーション結果を示す図The figure which shows the simulation result which carried out the linear displacement of the moving member at the time of correcting magnetic field intensity 本発明に係る変位検出装置の別実施形態を示す図The figure which shows another embodiment of the displacement detection apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 移動部材
2 磁石
3 磁場検出装置
4 演算部
V 空間ベクトル
V’ 投影ベクトル
V’’ 投影ベクトル
DESCRIPTION OF SYMBOLS 1 Moving member 2 Magnet 3 Magnetic field detection apparatus 4 Operation part V Space vector V 'Projection vector V''Projection vector

Claims (2)

回転移動及び前記回転移動の回転軸に沿った方向の直線移動が可能であり、前記回転軸を法線とする平面に沿った一方向にパラレル着磁され前記回転軸を中心とする円筒状又は円弧状の磁極領域を備えた移動部材と、
前記磁極領域に対向して設けられ、前記磁極領域の径方向に沿ったX軸、前記移動部材の回転方向に沿ったY軸、及び、前記回転軸に沿ったZ軸の互いに直行する3方向の磁場成分の大きさを検出可能な磁場検出手段と、
前記磁場検出手段の検出結果に基づいて前記移動部材の回転角度及び前記直線移動の変位を求める演算手段とを備えた変位検出装置。
A rotational movement and a linear movement in the direction along the rotational axis of the rotational movement are possible, and the magnet is parallel magnetized in one direction along a plane with the rotational axis as a normal line, and is cylindrical or centered on the rotational axis. A moving member having an arc-shaped magnetic pole region;
Three directions orthogonal to the magnetic pole region, the X axis along the radial direction of the magnetic pole region, the Y axis along the rotational direction of the moving member, and the Z axis along the rotational axis. Magnetic field detection means capable of detecting the magnitude of the magnetic field component of
A displacement detection apparatus comprising: a calculation means for obtaining a rotation angle of the moving member and a displacement of the linear movement based on a detection result of the magnetic field detection means.
前記演算手段が、前記X軸・前記Y軸・前記Z軸の原点を始点とする前記磁場の三次元空間における空間ベクトルを想定し、当該空間ベクトルをXY平面に投影した際の前記XY平面内における投影ベクトルの方向に基づいて前記回転角度を求めるとともに、前記空間ベクトルをXZ平面に投影した際の前記XZ平面内における前記投影ベクトルの方向に基づいて前記直線移動の変位を求める請求項1に記載の変位検出装置。   Assuming a space vector in a three-dimensional space of the magnetic field starting from the origin of the X-axis, the Y-axis, and the Z-axis, the calculation means assumes a space vector in the XY plane when projected on the XY plane. The rotation angle is obtained based on the direction of the projection vector at, and the displacement of the linear movement is obtained based on the direction of the projection vector in the XZ plane when the space vector is projected onto the XZ plane. The displacement detection device described.
JP2008155255A 2008-06-13 2008-06-13 Displacement detector Withdrawn JP2009300262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008155255A JP2009300262A (en) 2008-06-13 2008-06-13 Displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155255A JP2009300262A (en) 2008-06-13 2008-06-13 Displacement detector

Publications (1)

Publication Number Publication Date
JP2009300262A true JP2009300262A (en) 2009-12-24

Family

ID=41547320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155255A Withdrawn JP2009300262A (en) 2008-06-13 2008-06-13 Displacement detector

Country Status (1)

Country Link
JP (1) JP2009300262A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209195A (en) * 2010-03-30 2011-10-20 Hitachi Cable Ltd Index sensor
JP2012037243A (en) * 2010-08-03 2012-02-23 Aisin Seiki Co Ltd Rotation detection device
JP2013507636A (en) * 2009-10-14 2013-03-04 エレクトリクフィル オートモーティヴ Magnetic sensor for determining target position and orientation
CN107076825A (en) * 2014-10-20 2017-08-18 斯沃奇集团研究和开发有限公司 For determining that clock and watch set the position sensor and method of the position of arbor
WO2019230491A1 (en) * 2018-05-29 2019-12-05 日本精機株式会社 Position sensor, and method for detecting position
US11656098B2 (en) * 2020-03-06 2023-05-23 Melexis Technologies Sa Device, system and method for determining a position of a magnet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507636A (en) * 2009-10-14 2013-03-04 エレクトリクフィル オートモーティヴ Magnetic sensor for determining target position and orientation
JP2011209195A (en) * 2010-03-30 2011-10-20 Hitachi Cable Ltd Index sensor
JP2012037243A (en) * 2010-08-03 2012-02-23 Aisin Seiki Co Ltd Rotation detection device
CN107076825A (en) * 2014-10-20 2017-08-18 斯沃奇集团研究和开发有限公司 For determining that clock and watch set the position sensor and method of the position of arbor
JP2017531800A (en) * 2014-10-20 2017-10-26 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Position sensor and method for determining the position of a timer setting stem
CN107076825B (en) * 2014-10-20 2020-09-18 斯沃奇集团研究和开发有限公司 Position sensor and method for determining the position of a timepiece setting stem
WO2019230491A1 (en) * 2018-05-29 2019-12-05 日本精機株式会社 Position sensor, and method for detecting position
US11656098B2 (en) * 2020-03-06 2023-05-23 Melexis Technologies Sa Device, system and method for determining a position of a magnet

Similar Documents

Publication Publication Date Title
US7495432B2 (en) Angle detecting apparatus
JP5079816B2 (en) Preferably a magnetic position sensor having a magnet shape that varies pseudo-sinusoidally.
US9719771B2 (en) Rotation angle sensor for absolute rotation angle determination even upon multiple revolutions
KR101410196B1 (en) Bidirectional magnetic position sensor having field rotation
JP6061317B2 (en) Displacement sensor that measures the position in a non-contact manner by a plurality of magnetic field sensors arranged in series
JP6359079B2 (en) Hall sensor insensitive to external magnetic field
JP2002506530A (en) Angle sensor and method for angle measurement
JP2009300262A (en) Displacement detector
JP2007286059A (en) Method and device for measuring rotation angle position of headlight by several magnetic field determining means
US20150211890A1 (en) Sensor Arrangement for Detecting Angles of Rotation on a Rotated Component
JP4941707B2 (en) Angle detector
JP2006220529A (en) Detection device for absolute angle of rotation and torque
JP2007093418A (en) Rotation angle detection device
JP2006119082A (en) Steering angle detecting device
JP2003502681A (en) Angle sensor offset compensation method
WO2004081490A1 (en) Rotation angle-detecting device
JP2009139252A (en) Position sensor
US6577121B1 (en) Magnetoresistive sensor for measuring relative displacement of construction parts
CN107229020B (en) Magnetic sensor
US20140103914A1 (en) Displacement detection apparatus
JP2009109274A (en) Rotation angle detection device
JP2010038765A (en) Rotation detector
JP6455314B2 (en) Rotation detector
JP5128403B2 (en) 4-axis magnetic sensor
JP2010261738A (en) Angle detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110523

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20120216

Free format text: JAPANESE INTERMEDIATE CODE: A761