JP5604282B2 - Spiral cylinder - Google Patents

Spiral cylinder Download PDF

Info

Publication number
JP5604282B2
JP5604282B2 JP2010279036A JP2010279036A JP5604282B2 JP 5604282 B2 JP5604282 B2 JP 5604282B2 JP 2010279036 A JP2010279036 A JP 2010279036A JP 2010279036 A JP2010279036 A JP 2010279036A JP 5604282 B2 JP5604282 B2 JP 5604282B2
Authority
JP
Japan
Prior art keywords
cylinder
partition plate
supply pipe
air
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010279036A
Other languages
Japanese (ja)
Other versions
JP2012125692A (en
Inventor
一水 立川
勝美 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2010279036A priority Critical patent/JP5604282B2/en
Priority to PCT/JP2011/078357 priority patent/WO2012081481A1/en
Publication of JP2012125692A publication Critical patent/JP2012125692A/en
Application granted granted Critical
Publication of JP5604282B2 publication Critical patent/JP5604282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2311Mounting the bubbling devices or the diffusers
    • B01F23/23113Mounting the bubbling devices or the diffusers characterised by the disposition of the bubbling elements in particular configurations, patterns or arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2311Mounting the bubbling devices or the diffusers
    • B01F23/23115Mounting the bubbling devices or the diffusers characterised by the way in which the bubbling devices are mounted within the receptacle
    • B01F23/231153Mounting the bubbling devices or the diffusers characterised by the way in which the bubbling devices are mounted within the receptacle the bubbling devices being suspended on a supporting construction, i.e. not on a floating construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2334Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer
    • B01F23/23341Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer with tubes surrounding the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2335Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the direction of introduction of the gas relative to the stirrer
    • B01F23/23354Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the direction of introduction of the gas relative to the stirrer the gas being driven away from the rotating stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2336Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer
    • B01F23/23362Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer the gas being introduced under the stirrer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

本発明は、下水や産業排水等の有機性排水を、活性汚泥法等により好気的に浄化処理するに際し、曝気槽に収容された被処理水中に空気を微細気泡の状態に発泡させて供給するために使用する散気筒に関する。   In the present invention, when organic wastewater such as sewage and industrial wastewater is aerobically purified by an activated sludge method or the like, air is supplied in the form of fine bubbles in water to be treated contained in an aeration tank. It is related with the scattering cylinder used to do.

下水や産業排水等の有機性排水を、活性汚泥法等により好気的に浄化処理するに際しては、それら被処理水を収容する曝気槽内に、散気筒(ディフューザー)が設置される。一般に、散気筒は、セラミックス等の多孔質材料からなり、一端部が閉塞され、他端部が開口した円筒状のものである。散気筒は、その開口した側の端部がヘッダ管に接続され、ヘッダ管を通じて内部に空気が供給される。散気筒の内部に供給された空気は、多孔質である散気筒の周壁の気孔を通過して発泡し、ミリサイズの微細気泡となって、被処理水中に放出される。   When organic wastewater such as sewage or industrial wastewater is aerobically purified by the activated sludge method or the like, a diffusion cylinder (diffuser) is installed in an aeration tank that accommodates the water to be treated. Generally, the scattering cylinder is made of a porous material such as ceramics, and has a cylindrical shape in which one end is closed and the other end is opened. The end of the open cylinder is connected to the header pipe, and air is supplied to the inside through the header pipe. The air supplied to the inside of the dust cylinder passes through the pores in the peripheral wall of the dust cylinder, which is porous, foams, becomes millimeter-sized fine bubbles, and is discharged into the water to be treated.

ところで、従来の散気筒は、例えば特許文献1に示すように、その軸方向が水平方向となるような横置き状態で設置されるため、ある程度広い設置スペースが必要となるという問題がある。例えば、曝気槽内にドラフトチューブを設置し、そのドラフトチューブ内に散気筒を設置する場合には、ドラフトチューブの内径が散気筒の全長より大きくなければならない。   By the way, as shown in, for example, Patent Document 1, a conventional spread cylinder is installed in a horizontally placed state in which the axial direction thereof is a horizontal direction, and thus there is a problem that a certain amount of installation space is required. For example, when a draft tube is installed in an aeration tank and a diffuser cylinder is installed in the draft tube, the inside diameter of the draft tube must be larger than the total length of the diffuser cylinder.

このような設置スペースの問題を解決する手段として、散気筒を、その軸方向が上下方向となるような縦置き状態で設置することが考えられる。しかしながら、散気筒を縦置き状態で設置すると、散気筒の上部から下部に向かって、周囲の水圧が高くなって行く。このため、散気筒の上部と下部とで周囲の水圧に差が生じることになり、この水圧差に起因して新たな問題が生じる。   As a means for solving such a problem of installation space, it is conceivable to install the scattering cylinder in a vertically placed state in which the axial direction thereof is the vertical direction. However, when the dust cylinders are installed in a vertically placed state, the surrounding water pressure increases from the top to the bottom of the dust cylinder. For this reason, a difference occurs in the surrounding water pressure between the upper part and the lower part of the scattering cylinder, and a new problem arises due to this water pressure difference.

すなわち、従来の散気筒は、その内部が単一の空間(空気室)となっており、散気筒内に空気が供給された時の当該空間内の圧力は、空間全体でほぼ均一であるため、周囲の水圧が高い散気筒の下部では、周囲の水圧が低い散気筒の上部に比べて、微細気泡が放出されにくい。このため、散気筒の上部では多くの微細気泡が放出される一方、下部ではほとんど微細気泡が放出されないという状態となって、散気筒全体を有効に利用できず、高い発泡効率が得られない。   That is, the conventional dust cylinder has a single space (air chamber) inside, and the pressure in the space when air is supplied into the dust cylinder is substantially uniform throughout the space. In the lower part of the dust cylinder where the surrounding water pressure is high, fine bubbles are less likely to be released than in the upper part of the dust cylinder where the surrounding water pressure is low. For this reason, many fine bubbles are emitted in the upper part of the scattering cylinder, but almost no minute bubbles are emitted in the lower part, and the entire scattering cylinder cannot be used effectively, and high foaming efficiency cannot be obtained.

実開平3−19600号公報Japanese Utility Model Publication No. 3-19600

本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、横置き型の散気筒では設置できないような狭いスペースにも設置することができるとともに、微細気泡を散気筒全体から均等に放出させることが可能な散気筒を提供することにある。   The present invention has been made in view of such a conventional situation, and the object of the present invention is that it can be installed in a narrow space that cannot be installed in a horizontal type cylindrical cylinder, It is an object of the present invention to provide a dust cylinder that can discharge the dust uniformly from the whole dust cylinder.

上記目的を達成するため、本発明によれば、以下の散気筒が提供される。   In order to achieve the above object, according to the present invention, the following dust cylinder is provided.

[1] その軸方向が上下方向となる散気筒であって、多孔質材料からなる筒状の散気部材と、当該散気部材の上端部及び上側開口部を気密的に塞ぐ上側仕切板と、前記散気部材の下端部及び下側開口部を気密的に塞ぐ下側仕切板とで区画された空気室を有する複数の散気筒分割体、並びに、前記各散気筒分割体の前記上側仕切板と前記下側仕切板との内の少なくとも一方を貫通して、前記複数の散気筒分割体を上下方向で連結する空気供給管を備え、当該空気供給管の前記各空気室内に位置する部分に、前記空気供給管内から前記空気室内に通じるオリフィスが、前記各空気室に対してそれぞれ少なくとも1つ設けられており、より下方に位置する空気室に通じるオリフィスほどその径が大きくなる散気筒(第一の散気筒)。 [1] A diffused cylinder whose axial direction is the vertical direction, a cylindrical diffuser member made of a porous material, and an upper partition plate that hermetically closes an upper end portion and an upper opening of the diffuser member A plurality of diffused cylinder partitions having an air chamber partitioned by a lower partition plate that hermetically closes a lower end portion and a lower opening of the diffuser member, and the upper partition of each of the diffused cylinder partitions A portion provided in each air chamber of the air supply pipe, including an air supply pipe that penetrates at least one of the plate and the lower partition plate and connects the plurality of divided cylinder divided bodies in the vertical direction. In addition, at least one orifice that communicates from the air supply pipe to the air chamber is provided for each air chamber, and the larger the diameter of the orifice that communicates with the air chamber located at a lower position ( The first cylinder).

[2] 前記空気供給管により上下方向で連結された前記複数の散気筒分割体の内の何れか2つ以上が密接して配置されており、より上方に位置する散気筒分割体の前記下側仕切板と、その下方に密接する散気筒分割体の前記上側仕切板とが、共通の単一な仕切板となっている[1]に記載の散気筒。 [2] Any two or more of the plurality of divided cylinder divisions connected in the vertical direction by the air supply pipe are closely arranged, and the lower part of the divided cylinder division located above the lower division division body The split cylinder according to [1], wherein the side partition plate and the upper partition plate of the split cylinder division body in close contact with the side partition plate are a common single partition plate.

[3] 前記空気供給管が、元々その軸方向に沿って径の異なる複数のオリフィスが設けられたものであり、前記複数のオリフィスの内、前記各空気室内に位置し、かつ、所望の径を有するオリフィス以外のオリフィスが閉塞された状態で使用されている[1]又は[2]に記載の散気筒。 [3] The air supply pipe is originally provided with a plurality of orifices having different diameters along the axial direction thereof, and is located in each air chamber among the plurality of orifices and has a desired diameter. The blow cylinder according to [1] or [2], which is used in a state in which an orifice other than the orifice having a closed position is used.

[4] 前記多孔質材料がセラミックスである[1]〜[3]の何れかに記載の散気筒。 [4] The dust cylinder according to any one of [1] to [3], wherein the porous material is ceramics.

[5] その軸方向が上下方向となる散気筒であって、外側筒状体と、その内側に所定の間隔を置いて配置された多孔質材料からなる内側筒状体と、前記外側筒状体の上端部、前記内側筒状体の上端部及び前記外側筒状体の上端部と前記内側筒状体の上端部との間に形成される上側開口部を気密的に塞ぐリング状の上側仕切板と、前記外側筒状体の下端部、前記内側筒状体の下端部及び前記外側筒状体の下端部と前記内側筒状体の下端部との間に形成される下側開口部を気密的に塞ぐリング状の下側仕切板とで区画された空気室を有する複数の散気筒分割体、並びに、前記各散気筒分割体の前記上側仕切板と前記下側仕切板との内の少なくとも一方を貫通して、前記複数の散気筒分割体を上下方向で連結する空気供給管を備え、当該空気供給管の前記各空気室内に位置する部分に、前記空気供給管内から前記空気室内に通じるオリフィスが、前記各空気室に対してそれぞれ少なくとも1つ設けられており、より下方に位置する空気室に通じるオリフィスほどその径が大きくなる散気筒(第二の散気筒)。 [5] A cylindrical cylinder whose axial direction is the vertical direction, an outer cylindrical body, an inner cylindrical body made of a porous material disposed at a predetermined interval inside the outer cylindrical body, and the outer cylindrical body A ring-shaped upper side that hermetically closes an upper opening formed between the upper end of the body, the upper end of the inner cylindrical body, and the upper end of the outer cylindrical body and the upper end of the inner cylindrical body A lower opening formed between the partition plate, the lower end of the outer cylindrical body, the lower end of the inner cylindrical body, and the lower end of the outer cylindrical body and the lower end of the inner cylindrical body A plurality of split cylinder divided bodies having an air chamber partitioned by a ring-shaped lower partition plate that hermetically seals the inner partition, and the upper partition plate and the lower partition plate of each of the split cylinder divided bodies An air supply pipe that penetrates at least one of the cylinders and connects the plurality of split cylinder divided bodies in the vertical direction, and the air supply At least one orifice that communicates from the air supply pipe to the air chamber is provided in each of the air chambers, and the orifice communicates with the air chamber located below. A large-diameter cylinder (second cylinder).

[6] 前記空気供給管により上下方向で連結された前記複数の散気筒分割体の内の何れか2つ以上が密接して配置されており、より上方に位置する散気筒分割体の前記下側仕切板と、その下方に密接する散気筒分割体の前記上側仕切板とが、共通の単一な仕切板となっている[5]に記載の散気筒。 [6] Any two or more of the plurality of divided cylinder divisions connected in the vertical direction by the air supply pipe are closely arranged, and the lower part of the divided cylinder division located above The split cylinder according to [5], wherein the side partition plate and the upper partition plate of the split cylinder division body in close contact with the side partition plate are a common single partition plate.

[7] 前記空気供給管が、元々その軸方向に沿って径の異なる複数のオリフィスが設けられたものであり、前記複数のオリフィスの内、前記各空気室内に位置し、かつ、所望の径を有するオリフィス以外のオリフィスが閉塞された状態で使用されている[5]又は[6]に記載の散気筒。 [7] The air supply pipe is originally provided with a plurality of orifices having different diameters along the axial direction thereof, is located in each air chamber among the plurality of orifices, and has a desired diameter. The powder cylinder according to [5] or [6], which is used in a state where an orifice other than an orifice having a closed position is used.

[8] 前記多孔質材料がセラミックスである[5]〜[7]の何れかに記載の散気筒。 [8] The dust cylinder according to any one of [5] to [7], wherein the porous material is ceramics.

なお、本発明において、「その軸方向」とは、散気筒の内部空間(中空部)が伸びる方向であり、また、それが「上下方向となる」とは、散気筒の軸方向を上下方向にして設置することが可能であることを意味する。また、本発明において、「上方」、「下方」、「上端」、「下端」、「上側」、「下側」とは、本発明の散気筒を、その軸方向が上下方向となるように設置した状態における方向や位置(部位)を示すものである。   In the present invention, “the axial direction” is a direction in which the internal space (hollow part) of the dust cylinder extends, and “being in the vertical direction” means that the axial direction of the dust cylinder is the vertical direction. Means that it can be installed. Further, in the present invention, “upper”, “lower”, “upper end”, “lower end”, “upper side”, and “lower side” are the cylinders of the present invention so that the axial direction thereof is the vertical direction. It shows the direction and position (part) in the installed state.

更に、本発明において、「多孔質材料」には、シート状部材に微細孔が形成されたものも含まれ、その微細孔を通じて空気を吐出させることができるものであれば、材質は限定されない。例えば、セラミックス、合成樹脂の他、微細孔が形成された布等からなるものでもよい。ここで、「微細孔」とは、その断面の面積と等しい面積を持つ真円の径が50〜500μm程度となる孔や、幅が50〜500μm程度で、長さが0.5〜2.0mm程度のスリットを指す。また、本発明において、「多孔質材料からなる」には、全体が多孔質材料から形成されている場合だけでなく、その一部分が多孔質材料から形成されている場合も含まれる。   Furthermore, in the present invention, the “porous material” includes those in which fine holes are formed in the sheet-like member, and the material is not limited as long as air can be discharged through the fine holes. For example, in addition to ceramics and synthetic resin, it may be made of a cloth in which fine holes are formed. Here, the term “micropore” refers to a hole whose diameter of a perfect circle having an area equal to the area of its cross section is about 50 to 500 μm, a width of about 50 to 500 μm, and a length of 0.5 to 2. It refers to a slit of about 0 mm. In the present invention, “made of a porous material” includes not only the case where the whole is formed of a porous material but also the case where a part thereof is formed of a porous material.

更にまた、本発明における「筒状」は、断面が環状であることを意味し、断面が環状であれば、その内周や外周の形状は限定されない。例えば、断面の内周や外周の形状が円形や楕円形であってもよいし、長細長方形や三角形等の多角形であってもよい。   Furthermore, the “cylindrical shape” in the present invention means that the cross section is annular, and the shape of the inner periphery and outer periphery is not limited as long as the cross section is annular. For example, the shape of the inner periphery or outer periphery of the cross section may be a circle or an ellipse, or may be a polygon such as a long rectangle or a triangle.

本発明の散気筒は、その軸方向が上下方向となる縦置き型の散気筒であるので、従来の横置き型の散気筒では設置できないような狭いスペースにも設置することができ、設置スペースの制約が緩和される。また、本発明の散気筒は、その軸方向において互いに分離された複数の空気室を有するとともに、空気供給管と各空気室とを連通するオリフィスの径が、より下方に位置する空気室に通じるオリフィスほど大きくなるように調節されているため、より下方に位置する空気室ほど、その内部の圧力が高くなる。このため、周囲の水圧が高い散気筒の下部においても、周囲の水圧が低い散気筒の上部と同程度の量の微細気泡を放出させることができる。そして、その結果、微細気泡を散気筒全体から均等に放出させることが可能となって、散気筒全体を有効に利用でき、高い発泡効率が得られる。   Since the cylindrical cylinder according to the present invention is a vertical type cylindrical cylinder whose axial direction is the vertical direction, it can be installed in a narrow space that cannot be installed in a conventional horizontal type cylindrical cylinder. The restrictions are relaxed. Further, the spread cylinder of the present invention has a plurality of air chambers separated from each other in the axial direction, and the diameter of the orifice communicating the air supply pipe and each air chamber leads to the air chamber located further below. Since the orifice is adjusted so as to become larger, the air chamber located at a lower position has a higher internal pressure. For this reason, even in the lower part of the surrounding cylinder where the water pressure is high, it is possible to discharge the fine bubbles of the same amount as the upper part of the surrounding cylinder where the surrounding water pressure is low. As a result, the fine bubbles can be evenly discharged from the entire scattering cylinder, the entire scattering cylinder can be used effectively, and high foaming efficiency can be obtained.

本発明の第一の散気筒の実施形態の一例を示す説明図である。It is explanatory drawing which shows an example of embodiment of the 1st dust cylinder of this invention. 本発明の第一の散気筒に使用される仕切板の一例を示す斜視図である。It is a perspective view which shows an example of the partition plate used for the 1st dust cylinder of this invention. 本発明の第一の散気筒の実施形態の他の一例を示す説明図である。It is explanatory drawing which shows another example of embodiment of the 1st dust cylinder of this invention. 本発明の第一の散気筒の実施形態の更に他の一例を示す説明図である。It is explanatory drawing which shows another example of embodiment of the 1st dust cylinder of this invention. 本発明の第一の散気筒に使用される空気供給管の一例を示す説明図である。It is explanatory drawing which shows an example of the air supply pipe | tube used for the 1st dust cylinder of this invention. 本発明の第一の散気筒を、曝気槽内に設置したドラフトチューブ内に設置する際の設置例を示す説明図である。It is explanatory drawing which shows the example of installation at the time of installing the 1st diffuser cylinder of this invention in the draft tube installed in the aeration tank. 本発明の第二の散気筒の実施形態の一例を示す説明図である。It is explanatory drawing which shows an example of embodiment of the 2nd dispersion cylinder of this invention. 本発明の第二の散気筒に使用される仕切板の一例を示す斜視図である。It is a perspective view which shows an example of the partition plate used for the 2nd dust cylinder of this invention. 本発明の第二の散気筒において、外側筒状体と内側筒状体との間を所定間隔に保持する方法の一例を示す説明図である。It is explanatory drawing which shows an example of the method of hold | maintaining the space | interval between an outer side cylindrical body and an inner side cylindrical body in the 2nd dispersion cylinder of this invention. 本発明の第二の散気筒において、内側筒状体の径をテーパ状に変化させて、散気面となる内側筒状体の内周面を傾斜させるようにした例を示す説明図である。FIG. 6 is an explanatory diagram showing an example in which the inner cylindrical surface that becomes the air diffusion surface is inclined by changing the diameter of the inner cylindrical member in a tapered shape in the second diffusion cylinder of the present invention. . 本発明の第二の散気筒を、曝気槽内に設置したドラフトチューブ内に設置する際の設置例を示す説明図である。It is explanatory drawing which shows the example of installation at the time of installing the 2nd diffuser cylinder of this invention in the draft tube installed in the aeration tank.

以下、本発明を具体的な実施形態に基づき説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。   Hereinafter, the present invention will be described based on specific embodiments, but the present invention should not be construed as being limited thereto, and based on the knowledge of those skilled in the art without departing from the scope of the present invention. Various changes, modifications, and improvements can be added.

図1は、本発明の第一の散気筒の実施形態の一例を示す説明図である。なお、図1においては、散気筒1の内部構造をわかりやすくするため、散気部材4等の一部の部材は断面で描いている。   FIG. 1 is an explanatory diagram showing an example of an embodiment of a first dust cylinder of the present invention. In FIG. 1, in order to make the internal structure of the diffusion cylinder 1 easier to understand, some members such as the aeration member 4 are drawn in cross section.

図1に示すように、本発明の第一の散気筒1は、その軸方向が上下方向となる縦置き型の散気筒であり、その構成要素として、複数の散気筒分割体2(2A〜2E)と、空気供給管3とを備える。   As shown in FIG. 1, a first split cylinder 1 of the present invention is a vertically placed type split cylinder whose axial direction is the vertical direction, and includes a plurality of split cylinder divisions 2 (2 </ b> A to 2 </ b> A) as its constituent elements. 2E) and an air supply pipe 3.

散気筒分割体2(2A〜2E)は、多孔質材料からなる筒状の散気部材4(4A〜4E)と、それら散気部材4A〜4Eの上端部及び上側開口部を気密的に塞ぐ仕切板(上側仕切板)と、散気部材4A〜4Eの下端部及び下側開口部を気密的に塞ぐ仕切板(下側仕切板)とで区画された空気室6(6A〜6E)を有する。なお、図1の例では、複数の散気筒分割体2A〜2Eが密接して配置されており、より上方に位置する散気筒分割体の下側仕切板と、その下方に密接する散気筒分割体の上側仕切板とが、共通の単一な仕切板となっている。具体的には、散気筒分割体2Aの下側仕切板と、散気筒分割体2Bの上側仕切板とが、共通の単一な仕切板5Bとなっている。同様に、散気筒分割体2Bの下側仕切板と、散気筒分割体2Cの上側仕切板とが、共通の単一な仕切板5Cになっており、散気筒分割体2Cの下側仕切板と、散気筒分割体2Dの上側仕切板とが、共通の単一な仕切板5Dになっており、散気筒分割体2Dの下側仕切板と、散気筒分割体2Eの上側仕切板とが、共通の単一な仕切板5Eになっている。   The diffused cylinder divided body 2 (2A to 2E) hermetically closes the cylindrical diffuser member 4 (4A to 4E) made of a porous material, and the upper end and the upper opening of the diffuser members 4A to 4E. An air chamber 6 (6A to 6E) partitioned by a partition plate (upper partition plate) and a partition plate (lower partition plate) that hermetically closes the lower ends and lower openings of the air diffusion members 4A to 4E. Have. In the example of FIG. 1, a plurality of split cylinder divisions 2 </ b> A to 2 </ b> E are arranged in close contact with each other. The upper partition plate of the body is a common single partition plate. Specifically, the lower partition plate of the split cylinder divided body 2A and the upper partition plate of the split cylinder divided body 2B constitute a common single partition plate 5B. Similarly, the lower partition plate of the split cylinder partition 2B and the upper partition plate of the split cylinder partition 2C form a common single partition plate 5C, and the lower partition plate of the split cylinder partition 2C. And the upper partition plate of the split cylinder partition 2D are a common single partition plate 5D, and the lower partition plate of the split cylinder partition 2D and the upper partition plate of the split cylinder partition 2E are , A common single partition plate 5E.

散気部材4(4A〜4E)を構成する多孔質材料としては、従来の散気筒に使用されていた材料、例えば、セラミックス、多孔質の樹脂等を用いることができ、特に強度や化学的安定性等の観点からセラミックスが好適に用いられる。散気部材4の気孔率は特に制限されない。散気部材4の気孔径についても特に制限はないが、被処理水中に溶存しやすいサイズの微小気泡を発泡させる観点から、50〜500μm程度の気孔径とすることが好ましい。なお、散気部材4を構成する多孔質材料は、全ての散気部材4で同一であってもよいし、水深などを考慮して各散気部材4ごとに異なる性状(材質や気孔率)の多孔質材料を使用してもよい。   As a porous material constituting the diffuser member 4 (4A to 4E), a material used in a conventional diffuser cylinder, for example, ceramics, porous resin, etc. can be used, and in particular, strength and chemical stability. Ceramics are preferably used from the viewpoint of properties and the like. The porosity of the air diffusing member 4 is not particularly limited. Although there is no restriction | limiting in particular also about the pore diameter of the diffuser member 4, From a viewpoint of making the microbubble of the size which is easy to dissolve in to-be-processed water, it is preferable to set it as a pore diameter of about 50-500 micrometers. In addition, the porous material which comprises the air diffusing member 4 may be the same for all the air diffusing members 4, or different properties (materials and porosity) for each air diffusing member 4 in consideration of water depth and the like. The porous material may be used.

本実施形態において仕切板5(5A〜5F)には、図2に示すように、その中央部付近に、空気供給管を貫通させるための孔部7を有し、この孔部7に筒状のソケット8が一体的に接合されたものを用いているが、このようなソケット8を持たない板状の仕切板であってもよい。仕切板5の材質としては、強度や加工性等の観点から、ステンレス鋼(例えばSUS304)等を好適に用いることができる。仕切板5(5A〜5E)と散気部材4との間には、散気筒1使用時の空気漏れを防ぐため、クロロプレンゴムや発泡ポリウレタン等からなるパッキン10を配設して気密性を高めることが好ましい。   In the present embodiment, as shown in FIG. 2, the partition plate 5 (5A to 5F) has a hole 7 for penetrating the air supply pipe in the vicinity of the center, and the hole 7 has a cylindrical shape. However, a plate-like partition plate having no such socket 8 may be used. As a material of the partition plate 5, stainless steel (for example, SUS304) or the like can be suitably used from the viewpoint of strength, workability, and the like. Between the partition plate 5 (5A to 5E) and the air diffuser 4, a packing 10 made of chloroprene rubber, foamed polyurethane or the like is disposed to improve airtightness in order to prevent air leakage when the diffuser cylinder 1 is used. It is preferable.

空気供給管3は、各散気筒分割体2A〜2Eの上側仕切板と下側仕切板との内の少なくとも一方を貫通して、複数の散気筒分割体2A〜2Eを上下方向で連結する。この空気供給管3の各空気室6A〜6E内に位置する部分には、空気供給管3内から空気室6A〜6E内に通じるオリフィス9A〜9Eが、各空気室6A〜6Eに対してそれぞれ少なくとも1つ設けられており、より下方に位置する空気室6に通じるオリフィス9ほどその径が大きくなる。すなわち、本実施形態においては、オリフィス9A、オリフィス9B、オリフィス9C、オリフィス9D、オリフィス9Eの順で、その径が大きくなる。   The air supply pipe 3 penetrates at least one of the upper partition plate and the lower partition plate of each of the divided cylinder division bodies 2A to 2E, and connects the plurality of divided cylinder division bodies 2A to 2E in the vertical direction. In portions of the air supply pipe 3 located in the air chambers 6A to 6E, orifices 9A to 9E communicating from the air supply pipe 3 to the air chambers 6A to 6E are respectively provided to the air chambers 6A to 6E. At least one is provided, and the diameter of the orifice 9 leading to the air chamber 6 located below becomes larger. That is, in the present embodiment, the diameter increases in the order of the orifice 9A, the orifice 9B, the orifice 9C, the orifice 9D, and the orifice 9E.

空気供給管3は、その一端が閉塞されるとともに、他端が開口しており、その他端の開口より、空気供給管3内に空気が供給される。本実施形態では、空気供給管3の下端がプラグ11により閉塞され、上端の開口12から空気を供給するように構成されている。空気供給管3の材質としては、強度や加工性等の観点から、ステンレス鋼(例えばSUS304)等を好適に用いることができる。   The air supply pipe 3 is closed at one end and opened at the other end, and air is supplied into the air supply pipe 3 from the opening at the other end. In the present embodiment, the lower end of the air supply pipe 3 is closed by the plug 11 so that air is supplied from the opening 12 at the upper end. As a material of the air supply pipe 3, stainless steel (for example, SUS304) or the like can be suitably used from the viewpoint of strength, workability, and the like.

この散気筒1の使用時において、空気供給管5の上端の開口12から空気供給管3内に供給された空気は、まず、オリフィス9A〜9Eを通じて各空気室6A〜6Eに移動する。そして、各空気室6A〜6Eの内部の圧力の上昇によって、各空気室6A〜6Eが面している散気部材4A〜4Eの気孔を通過して発泡し、ミリサイズの微細気泡となって、被処理水中に放出される。   When the dust cylinder 1 is used, the air supplied from the opening 12 at the upper end of the air supply pipe 5 into the air supply pipe 3 first moves to the air chambers 6A to 6E through the orifices 9A to 9E. And by the rise in the pressure inside each air chamber 6A-6E, it foams through the pores of the air diffusers 4A-4E facing each air chamber 6A-6E, and becomes a micro-sized fine bubble. Released into the water to be treated.

先述のとおり、散気筒を、その軸方向が上下方向となるような縦置き状態で設置した場合、散気筒の上部から下部に向かって、周囲の水圧が高くなって行く。よって、散気筒内部の空間(空気室)の圧力が、空間全体でほぼ均一であると、周囲の水圧が高い散気筒の下部では、周囲の水圧が低い散気筒の上部に比べて、微細気泡が放出されにくくなる。   As described above, when the dust cylinder is installed in a vertically placed state in which the axial direction thereof is the vertical direction, the surrounding water pressure increases from the top to the bottom of the dust cylinder. Therefore, if the pressure in the space (air chamber) inside the diffusion cylinder is almost uniform throughout the space, fine bubbles are formed in the lower part of the diffusion cylinder where the surrounding water pressure is high compared to the upper part of the diffusion cylinder where the surrounding water pressure is low. Is less likely to be released.

そこで、本発明の散気筒1では、その軸方向(上下方向)において複数の空気室6A〜6Eを分離して形成するともに、より下方に位置する空気室6に通じるオリフィス9ほどその径が大きくなるようにした。なお、オリフィス9の具体的な径は、散気筒1を設置する水深における水圧、散気部材4を構成する多孔質材料の空気透過抵抗等を考慮して決定することができる。各空気室6A〜6Eに通じるオリフィス9A〜9Eの径をこのように調節すると、より下方に位置する空気室6ほど、その内部の圧力が高くなり、周囲の水圧が高く微細気泡が放出されにくい散気筒1の下部においても、周囲の水圧が低い散気筒1の上部と同程度の量の微細気泡を放出させることが可能となる。そして、その結果、散気筒1全体を微細気泡の発泡に有効に利用でき、高い発泡効率が得られる。   Therefore, in the cylindrical cylinder 1 of the present invention, the plurality of air chambers 6A to 6E are formed separately in the axial direction (vertical direction), and the diameter of the orifice 9 leading to the air chamber 6 located below is larger. It was made to become. The specific diameter of the orifice 9 can be determined in consideration of the water pressure at the water depth where the diffuser cylinder 1 is installed, the air permeation resistance of the porous material constituting the diffuser member 4 and the like. When the diameters of the orifices 9A to 9E communicating with the air chambers 6A to 6E are adjusted in this way, the air chamber 6 located at a lower position has a higher internal pressure, the surrounding water pressure is high, and fine bubbles are not easily released. Also in the lower part of the dust cylinder 1, it is possible to discharge the fine bubbles of the same amount as the upper part of the dust cylinder 1 having a low surrounding water pressure. As a result, the entire dust cylinder 1 can be effectively used for foaming fine bubbles, and high foaming efficiency can be obtained.

なお、図1に示す実施形態においては、散気筒1を構成するために5つの散気筒分割体2A〜2Eを用いているが、1つの散気筒を構成するために用いる散気筒分割体の数は、複数であること以外制限はなく、目的とする散気筒1の全長等に応じて、適宜その数を決定することができる。散気筒分割体の数を決定する1つの目安としては、散気筒分割体の1つ当たりの長さが100mm以下となるような数とすることが挙げられる。散気筒分割体1つ当たりの長さが100mmを超える場合には、1つの散気筒分割体の上方と下方とでも大きな水圧差が生じて、微細気泡の放出量に差が生じやすくなる。   In the embodiment shown in FIG. 1, five split cylinder divisions 2 </ b> A to 2 </ b> E are used to configure the split cylinder 1, but the number of split cylinder divisions used to configure one split cylinder is used. There is no restriction other than being plural, and the number can be determined as appropriate according to the overall length of the target scattering cylinder 1 or the like. One guideline for determining the number of split cylinder divisions is to set the number so that the length per one of the split cylinder divisions is 100 mm or less. When the length per one split cylinder division exceeds 100 mm, a large water pressure difference is generated between the upper and lower sides of one split cylinder division, and the amount of discharge of fine bubbles is likely to be different.

図3は、本発明の第一の散気筒の実施形態の他の一例を示す説明図である。この図3の示す実施形態を、前述の図1に示す実施形態との相違点を中心に説明すると、まず、この図3の散気筒1では、複数の散気筒分割体2(2F〜2H)が密接せず、間隔を置いて配置されている。なお、複数の散気筒分割体2を、このように間隔を置いて配置する場合は、より上方に位置する散気筒分割体の下側仕切板と、その下方に位置する散気筒分割体の上側仕切板とを、共通の単一な仕切板とすることはできず、それぞれ別個の仕切板とする必要がある。すなわち、図3の例においては、散気筒分割体2Fの下側仕切板5Hと、散気筒分割体2Gの上側仕切板5Iとは別体であり、同様に、散気筒分割体2Gの下側仕切板と、散気筒分割体2Hの上側仕切板5Jとは別体である。この図3の散気筒1には、3つの空気室6(6F〜6H)が設けられている。   FIG. 3 is an explanatory view showing another example of the embodiment of the first dust cylinder of the present invention. The embodiment shown in FIG. 3 will be described with a focus on the differences from the embodiment shown in FIG. 1 described above. First, in the dispersion cylinder 1 of FIG. 3, a plurality of dispersion cylinder division bodies 2 (2F to 2H) are provided. Are closely spaced and spaced apart. When the plurality of split cylinder divisions 2 are arranged at such intervals, the lower partition plate located above and the upper side of the split cylinder division located therebelow. The partition plate cannot be a common single partition plate, and needs to be separate partition plates. That is, in the example of FIG. 3, the lower partition plate 5H of the split cylinder divided body 2F and the upper partition plate 5I of the split cylinder divided body 2G are separate, and similarly, the lower partition plate 2G of the lower cylinder divided body 2G The partition plate and the upper partition plate 5J of the split cylinder divided body 2H are separate bodies. 3 is provided with three air chambers 6 (6F to 6H).

また、この図3の散気筒1では、各散気筒分割体2(2F〜2H)を構成する散気部材4(4F〜4H)の径や長さが同一ではなく、それらが異なるように構成されている。更に、この図3の散気筒1では、空気供給管3の径が一定ではなく、その長さ方向において、径が変化するように構成されている。更にまた、この図3の散気筒1では、空気供給管3が、最下方に位置する散気筒分割体2Hの下側仕切板5Lを貫通せず、その下端が、最下方の空気室6H内に存在する。空気供給管3には、空気室6(6F〜6H)に通じるオリフィス9(9F〜9H)が設けられており、この内、オリフィス9Hは空気供給管3の下端に設けられている。なお、最下方に位置する散気筒分割体2Hの下側仕切板5Lは、前記のとおり、空気供給管3によって貫通されないので、他の仕切板5G〜5Kのように、空気供給管3を貫通させるための孔部は形成されていない。   Further, in the diffuser cylinder 1 of FIG. 3, the diameters and lengths of the diffuser members 4 (4F to 4H) constituting the diffuser cylinder divided bodies 2 (2F to 2H) are not the same, and are configured to be different from each other. Has been. Further, the diffuser cylinder 1 of FIG. 3 is configured such that the diameter of the air supply pipe 3 is not constant but the diameter changes in the length direction. Furthermore, in the dust cylinder 1 of FIG. 3, the air supply pipe 3 does not penetrate the lower partition plate 5L located in the lowermost part of the dust cylinder division body 2H, and its lower end is located in the lowermost air chamber 6H. Exists. The air supply pipe 3 is provided with an orifice 9 (9F to 9H) communicating with the air chamber 6 (6F to 6H), and the orifice 9H is provided at the lower end of the air supply pipe 3. Since the lower partition plate 5L located at the lowermost position of the split cylinder divided body 2H is not penetrated by the air supply pipe 3 as described above, it penetrates the air supply pipe 3 like the other partition plates 5G to 5K. No hole is formed for this purpose.

図4は、本発明の第一の散気筒の実施形態の更に他の一例を示す説明図である。この図4の示す実施形態を、前述の図1に示す実施形態との相違点を中心に説明すると、まず、この図4の散気筒1では、複数の散気筒分割体2(2I〜2K)の内の一部の散気筒分割体2Iと2Jとが密接して配置され、残りの散気筒分割体2Kが間隔を置いて配置されている。このため、散気筒分割体2Iの下側仕切板と、その下方に密接する散気筒分割体2Jの上側仕切板とは、共通の単一な仕切板5Hとなっているが、散気筒分割体2Jの下側仕切板5Oと、その下方に位置する散気筒分割体2Kの上側仕切板5Pとは別体である。この図4の散気筒1には、3つの空気室6(6I〜6K)が設けられている。   FIG. 4 is an explanatory view showing still another example of the embodiment of the first dust cylinder of the present invention. The embodiment shown in FIG. 4 will be described mainly with respect to the difference from the embodiment shown in FIG. 1 described above. First, in the dispersion cylinder 1 of FIG. 4, a plurality of dispersion cylinder division bodies 2 (2I to 2K) are provided. Among these, some of the split cylinder divisions 2I and 2J are closely arranged, and the remaining split cylinder divisions 2K are arranged at intervals. For this reason, the lower partition plate of the split cylinder division 2I and the upper partition plate of the split cylinder division 2J in close contact with the lower partition plate 2I constitute a common single partition plate 5H. The lower partition plate 2O of 2J and the upper partition plate 5P of the split cylinder divided body 2K located therebelow are separate. 4 is provided with three air chambers 6 (6I to 6K).

本発明の第一の散気筒は、これら図3や図4に示す実施形態のような構成としても、図1に示す実施形態と同様の効果を得ることができる。なお、本発明の第一の散気筒においては、図5に示すように、空気供給管3が、元々その軸方向に沿って径の異なる複数のオリフィス9が設けられたものであり、それら複数のオリフィス9の内、前記各空気室6内に位置し、かつ、所望の径を有するオリフィス以外のオリフィス(図5中の黒塗りされたオリフィス)が閉塞された状態で使用されていることが好ましい。このように、予めその軸方向に沿って径の異なる複数のオリフィス9が設けられた空気供給管3を用意しておき、必要なオリフィスだけをそのまま残し、不要なオリフィスを閉塞するようにすることで、散気筒の製造効率を高めることができる。   The first split cylinder of the present invention can obtain the same effects as those of the embodiment shown in FIG. 1 even when the configuration of the embodiment shown in FIGS. 3 and 4 is used. In the first dust cylinder of the present invention, as shown in FIG. 5, the air supply pipe 3 is originally provided with a plurality of orifices 9 having different diameters along the axial direction. Among the orifices 9, the orifices other than those having the desired diameter (black orifices in FIG. 5) located in the air chambers 6 are used in a closed state. preferable. In this way, the air supply pipe 3 provided with a plurality of orifices 9 having different diameters along the axial direction is prepared in advance, and only the necessary orifices are left as they are, and unnecessary orifices are closed. Thus, the manufacturing efficiency of the scattering cylinder can be increased.

図6は、本発明の第一の散気筒1を、曝気槽内に設置したドラフトチューブ内に設置する際の設置例を示す説明図である。本発明の第一の散気筒を、ドラフトチューブ15内に複数個設置する場合には、各散気筒1の空気供給管の開口をヘッダ管16に接続し、ヘッダ管16を通じて、外部から空気供給管内へ空気を供給する。こうして、各散気筒1の空気供給管内へ供給された空気は、各散気筒1から微細気泡となってドラフトチューブ15内に放出され、放出された微細気泡を含む被処理水は、ドラフトチューブ15の上方に設置されたインペラ17の旋回によって下降流となり、ドラフトチューブ15の下方よりドラフトチューブ15外へ排出されて、曝気槽内を循環する。   FIG. 6 is an explanatory view showing an installation example when the first dust cylinder 1 of the present invention is installed in a draft tube installed in an aeration tank. When a plurality of the first dust cylinders of the present invention are installed in the draft tube 15, the opening of the air supply pipe of each dust cylinder 1 is connected to the header pipe 16, and air is supplied from the outside through the header pipe 16. Supply air into the tube. In this way, the air supplied into the air supply pipes of the individual scattering cylinders 1 is discharged into the draft tube 15 as fine bubbles from the individual scattering cylinders 1, and the treated water containing the discharged fine bubbles is discharged into the draft tube 15. The impeller 17 installed on the upper side of the upper part of the pipe is turned downward to be discharged downward from the draft tube 15 and circulates in the aeration tank.

なお、図6の例では、ヘッダ管16が散気筒1の上方に配置されているが、ヘッダ管16を、散気筒1の下方に配置するようにして、散気管1の下方から空気を供給してもよい。また、図6の例では、リング状のヘッダ管16を用いているが、ヘッダ管の形状は、散気筒1の配置や個数により適宜変化させることができる。また、散気筒1は、必要な散気量に応じて、本例のように複数個設置してもよいし、1個のみ設置してもよい。   In the example of FIG. 6, the header pipe 16 is arranged above the diffusion cylinder 1, but air is supplied from below the diffusion pipe 1 so that the header pipe 16 is arranged below the diffusion cylinder 1. May be. Further, in the example of FIG. 6, the ring-shaped header pipe 16 is used, but the shape of the header pipe can be appropriately changed depending on the arrangement and the number of the scattering cylinders 1. Also, a plurality of diffuser cylinders 1 may be installed as in this example, or only one may be installed according to the required amount of diffused air.

図7は、本発明の第二の散気筒の実施形態の一例を示す説明図である。なお、図7においては、散気筒21の内部構造をわかりやすくするため、外側筒状体24、内側筒状体25等の一部の部材は断面で描いている。   FIG. 7 is an explanatory view showing an example of an embodiment of the second dust cylinder of the present invention. In FIG. 7, some members such as the outer cylindrical body 24 and the inner cylindrical body 25 are drawn in cross section in order to make the internal structure of the scattering cylinder 21 easier to understand.

図7に示すように、本発明の第二の散気筒21は、その軸方向が上下方向となる縦置き型の散気筒であり、その構成要素として、複数の散気筒分割体22(22A〜22C)と、空気供給管3とを備える。   As shown in FIG. 7, the second blow cylinder 21 of the present invention is a vertical type blow cylinder whose axial direction is the vertical direction, and includes a plurality of blow cylinder divisions 22 (22A to 22A to 22B) as constituent elements thereof. 22C) and an air supply pipe 3.

散気筒分割体22(22A〜22C)は、外側筒状体24(24A〜24C)と、その内側に所定の間隔を置いて配置された多孔質材料からなる内側筒状体25(25A〜25C)と、外側筒状体24A〜24Cの上端部、内側筒状体25A〜25Cの上端部及び外側筒状体の上端部24A〜24Cと内側筒状体25A〜25Cの上端部との間に形成される上側開口部を気密的に塞ぐリング状の仕切板(上側仕切板)と、外側筒状体24A〜24Cの下端部、内側筒状体25A〜25Cの下端部及び外側筒状体24A〜24Cの下端部と内側筒状体25A〜25Cの下端部との間に形成される下側開口部を気密的に塞ぐリング状の仕切板(下側仕切板)とで区画された空気室27(27A〜27C)を有する。なお、図7の例では、複数の散気筒分割体22A〜22Cが密接して配置されており、より上方に位置する散気筒分割体の下側仕切板と、その下方に密接する散気筒分割体の上側仕切板とが、共通の単一な仕切板となっている。具体的には、散気筒分割体22Aの下側仕切板と、散気筒分割体22Bの上側仕切板とが、共通の単一な仕切板26Bとなっている。同様に、散気筒分割体22Bの下側仕切板と、散気筒分割体22Cの上側仕切板とが、共通の単一な仕切板26Cになっている。   The split cylinder divided body 22 (22A to 22C) includes an outer cylindrical body 24 (24A to 24C) and an inner cylindrical body 25 (25A to 25C) made of a porous material arranged at a predetermined interval on the inner side thereof. Between the upper ends of the outer cylindrical bodies 24A to 24C, the upper ends of the inner cylindrical bodies 25A to 25C, and the upper ends 24A to 24C of the outer cylindrical bodies and the upper ends of the inner cylindrical bodies 25A to 25C. A ring-shaped partition plate (upper partition plate) that hermetically closes the formed upper opening, the lower ends of the outer cylindrical bodies 24A to 24C, the lower ends of the inner cylindrical bodies 25A to 25C, and the outer cylindrical body 24A. Air chamber partitioned by a ring-shaped partition plate (lower partition plate) that hermetically closes the lower opening formed between the lower end of -24C and the lower ends of the inner cylindrical bodies 25A-25C 27 (27A-27C). In the example of FIG. 7, the plurality of split cylinder divisions 22A to 22C are arranged in close contact with each other, the lower partition plate of the split cylinder division located above and the split cylinder division close to the lower side. The upper partition plate of the body is a common single partition plate. Specifically, the lower partition plate of the split cylinder divided body 22A and the upper partition plate of the split cylinder divided body 22B constitute a common single partition plate 26B. Similarly, the lower partition plate of the split cylinder divided body 22B and the upper partition plate of the split cylinder divided body 22C constitute a common single partition plate 26C.

内側筒状体25(25A〜25C)を構成する多孔質材料としては、従来の散気筒に使用されていた材料、例えば、セラミックス、多孔質の樹脂等を用いることができ、特に強度や化学的安定性等の観点からセラミックスが好適に用いられる。内側筒状体25の気孔率は特に制限されない。内側筒状体25の気孔径についても特に制限はないが、被処理水中に溶存しやすいサイズの微小気泡を発泡させる観点から、50〜500μm程度の気孔径とすることが好ましい。   As the porous material constituting the inner cylindrical body 25 (25A to 25C), materials used in conventional powder cylinders, for example, ceramics, porous resins, and the like can be used. Ceramics are preferably used from the viewpoint of stability and the like. The porosity of the inner cylindrical body 25 is not particularly limited. Although there is no restriction | limiting in particular also about the pore diameter of the inner side cylindrical body 25, From a viewpoint of foaming the microbubble of the size which is easy to dissolve in to-be-processed water, it is preferable to set it as a pore diameter of about 50-500 micrometers.

外側筒状体24(24A〜24C)を構成する材料は、内側筒状体25と同様に多孔質材料であってもよいし、非多孔質材料であってもよい。内側筒状体25の内周面のみを微細気泡が放出される散気面としたい場合は、内側筒状体25のみを多孔質材料で構成し、内側筒状体25の内周面に加えて、外側筒状体24の外周面も散気面としたい場合は、内側筒状体25と外側筒状体24との両方を多孔質材料で構成する。外側筒状体24を多孔質材料で構成する場合の好適な気孔径や気孔率は、内側筒状体25の好適な気孔径や気孔率と同様である。   The material constituting the outer cylindrical body 24 (24A to 24C) may be a porous material as in the case of the inner cylindrical body 25, or may be a non-porous material. When only the inner peripheral surface of the inner cylindrical body 25 is desired to be a diffused surface from which fine bubbles are discharged, only the inner cylindrical body 25 is made of a porous material and added to the inner peripheral surface of the inner cylindrical body 25. When the outer peripheral surface of the outer cylindrical body 24 is also desired to be a diffused surface, both the inner cylindrical body 25 and the outer cylindrical body 24 are made of a porous material. The preferable pore diameter and porosity when the outer cylindrical body 24 is made of a porous material are the same as the preferable pore diameter and porosity of the inner cylindrical body 25.

本実施形態において仕切板26は、図8に示すように、空気供給管を貫通させるための孔部28を有するリング状の板状体である(ただし、図7の実施形態における最下方の仕切板26Dは、空気供給管が貫通しないため、孔部28を有していない。)。仕切板26(26A〜26D)の材質としては、強度や加工性等の観点から、ステンレス鋼(例えばSUS304)等を好適に用いることができる。仕切板26と外側筒状体24及び内側筒状体25との間には、散気筒21使用時の空気漏れを防ぐため、クロロプレンゴムや発泡ポリウレタン等からなるパッキンを配設して気密性を高めるようにしてもよい。   In this embodiment, as shown in FIG. 8, the partition plate 26 is a ring-shaped plate-like body having a hole 28 for penetrating the air supply pipe (however, the lowermost partition in the embodiment of FIG. 7). The plate 26D does not have the hole 28 because the air supply pipe does not pass through. As a material of the partition plate 26 (26A to 26D), stainless steel (for example, SUS304) or the like can be suitably used from the viewpoint of strength, workability, and the like. Between the partition plate 26 and the outer cylindrical body 24 and the inner cylindrical body 25, a packing made of chloroprene rubber, polyurethane foam, or the like is disposed to prevent air leakage when the dust cylinder 21 is used. You may make it raise.

外側筒状体24と内側筒状体25との間を所定間隔に保持する方法としては、例えば、図9に示すように、外側筒状体24の内周面と内側筒状体25の外周面との間に間隔保持用のスペーサ30を配してもよいし、同様のスペーサ機能を仕切板26に持たせるようにしてもよい。   For example, as shown in FIG. 9, an inner peripheral surface of the outer cylindrical body 24 and an outer periphery of the inner cylindrical body 25 are used as a method of maintaining a predetermined distance between the outer cylindrical body 24 and the inner cylindrical body 25. A spacer 30 for maintaining a gap may be disposed between the surface and the partition plate 26 may have a similar spacer function.

空気供給管23は、各散気筒分割体22A〜22Cの上側仕切板と下側仕切板との内の少なくとも一方を貫通して、複数の散気筒分割体22A〜22Cを上下方向で連結する。なお、図7の例では、2本の空気供給管23を使用しているが、空気供給管23の本数は特に限定されず、1本でも複数本でもよい。空気供給管23の各空気室27A〜27C内に位置する部分には、空気供給管23内から空気室27A〜27C内に通じるオリフィス29A〜29Cが、各空気室27A〜27Cに対してそれぞれ少なくとも1つ設けられており、より下方に位置する空気室27に通じるオリフィス29ほどその径が大きくなる。すなわち、本実施形態においては、オリフィス29A、オリフィス29B、オリフィス29Cの順で、その径が大きくなる。   The air supply pipe 23 penetrates at least one of the upper partition plate and the lower partition plate of each of the divided cylinder division bodies 22A to 22C and connects the plurality of divided cylinder division bodies 22A to 22C in the vertical direction. In the example of FIG. 7, two air supply pipes 23 are used, but the number of air supply pipes 23 is not particularly limited, and may be one or more. In portions of the air supply pipe 23 located in the air chambers 27A to 27C, orifices 29A to 29C leading from the air supply pipe 23 to the air chambers 27A to 27C are provided at least with respect to the air chambers 27A to 27C, respectively. One is provided, and the diameter of the orifice 29 leading to the air chamber 27 located below becomes larger. That is, in the present embodiment, the diameter increases in the order of the orifice 29A, the orifice 29B, and the orifice 29C.

空気供給管23は、その一端が閉塞されるとともに、他端が開口しており、その他端の開口より、空気供給管23内に空気が供給される。本実施形態では、空気供給管23の下端が最下方の仕切板26Dの表面に密接することにより閉塞され、上端の開口32から空気を供給するように構成されている。空気供給管23の材質としては、強度や加工性等の観点から、ステンレス鋼(例えばSUS304)等を好適に用いることができる。   The air supply pipe 23 is closed at one end and opened at the other end, and air is supplied into the air supply pipe 23 from the opening at the other end. In the present embodiment, the lower end of the air supply pipe 23 is closed by being in close contact with the surface of the lowermost partition plate 26D, and air is supplied from the opening 32 at the upper end. As a material of the air supply pipe 23, stainless steel (for example, SUS304) or the like can be suitably used from the viewpoint of strength, workability, and the like.

この散気筒21の使用時において、空気供給管5の上端の開口32から空気供給管23内に供給された空気は、まず、オリフィス29A〜29Cを通じて各空気室27A〜27Cに移動する。そして、各空気室27A〜27Cの内部の圧力の上昇によって、各空気室27A〜27Cが面している内側筒状体25A〜25Cの気孔(外側筒状体24A〜24Cも多孔質材料で構成した場合は、内側筒状体25A〜25Cの気孔及び外側筒状体24A〜24Cの気孔)を通過して発泡し、ミリサイズの微細気泡となって、被処理水中に放出される。   When the dust cylinder 21 is used, the air supplied from the opening 32 at the upper end of the air supply pipe 5 into the air supply pipe 23 first moves to the air chambers 27A to 27C through the orifices 29A to 29C. And by the rise of the pressure inside each air chamber 27A-27C, the air holes 27A-25C facing the air chambers 27A-27C (the outer cylindrical bodies 24A-24C are also made of a porous material). In this case, the foam passes through the pores of the inner cylindrical bodies 25A to 25C and the pores of the outer cylindrical bodies 24A to 24C), and becomes micro-sized fine bubbles that are discharged into the water to be treated.

先述のとおり、散気筒を、その軸方向が上下方向となるような縦置き状態で設置した場合、散気筒の上部から下部に向かって、周囲の水圧が高くなって行く。よって、散気筒内部の空間(空気室)の圧力が、空間全体でほぼ均一であると、周囲の水圧が高い散気筒の下部では、周囲の水圧が低い散気筒の上部に比べて、微細気泡が放出されにくくなる。   As described above, when the dust cylinder is installed in a vertically placed state in which the axial direction thereof is the vertical direction, the surrounding water pressure increases from the top to the bottom of the dust cylinder. Therefore, if the pressure in the space (air chamber) inside the diffusion cylinder is almost uniform throughout the space, fine bubbles are formed in the lower part of the diffusion cylinder where the surrounding water pressure is high compared to the upper part of the diffusion cylinder where the surrounding water pressure is low. Is less likely to be released.

そこで、本発明の散気筒21では、その軸方向(上下方向)において複数の空気室27A〜27Cを分離して形成するともに、より下方に位置する空気室27に通じるオリフィス29ほどその径が大きくなるようにした。なお、オリフィス29の具体的な径は、散気筒21を設置する水深における水圧、内側筒状体25等を構成する多孔質材料の空気透過抵抗等を考慮して決定することができる。各空気室27A〜27Cに通じるオリフィス29A〜29Cの径をこのように調節すると、より下方に位置する空気室27ほど、その内部の圧力が高くなり、周囲の水圧が高く微細気泡が放出されにくい散気筒21の下部においても、周囲の水圧が低い散気筒21の上部と同程度の量の微細気泡を放出させることが可能となる。そして、その結果、散気筒21全体を微細気泡の発泡に有効に利用でき、高い発泡効率が得られる。   Therefore, in the cylindrical cylinder 21 of the present invention, the plurality of air chambers 27A to 27C are formed separately in the axial direction (vertical direction), and the diameter of the orifice 29 leading to the air chamber 27 located below is larger. It was made to become. Note that the specific diameter of the orifice 29 can be determined in consideration of the water pressure at the water depth in which the diffusion cylinder 21 is installed, the air permeation resistance of the porous material constituting the inner cylindrical body 25 and the like. When the diameters of the orifices 29A to 29C communicating with the air chambers 27A to 27C are adjusted in this way, the air chamber 27 located at a lower position has a higher internal pressure, and the surrounding water pressure is high, so that fine bubbles are not easily released. Also in the lower part of the dust cylinder 21, it is possible to discharge the fine bubbles of the same amount as the upper part of the dust cylinder 21 where the surrounding water pressure is low. As a result, the entire scattering cylinder 21 can be effectively used for foaming of fine bubbles, and high foaming efficiency can be obtained.

なお、図7に示す実施形態においては、散気筒21を構成するために3つの散気筒分割体22A〜22Cを用いているが、1つの散気筒を構成するために用いる散気筒分割体の数は、複数であること以外制限はなく、目的とする散気筒21の全長等に応じて、適宜その数を決定することができる。散気筒分割体の数を決定する1つの目安としては、散気筒分割体の1つ当たりの長さが100mm以下となるような数とすることが挙げられる。散気筒分割体1つ当たりの長さが100mmを超える場合には、1つの散気筒分割体の上方と下方とでも大きな水圧差が生じて、微細気泡の放出量に差が生じやすくなる。   In the embodiment shown in FIG. 7, three split cylinder divisions 22 </ b> A to 22 </ b> C are used to configure the split cylinder 21, but the number of split cylinder divisions used to configure one split cylinder is used. There is no limit other than being plural, and the number can be appropriately determined according to the total length of the target dust cylinder 21 or the like. One guideline for determining the number of split cylinder divisions is to set the number so that the length per one of the split cylinder divisions is 100 mm or less. When the length per one split cylinder division exceeds 100 mm, a large water pressure difference is generated between the upper and lower sides of one split cylinder division, and the amount of discharge of fine bubbles is likely to be different.

また、本発明の第二の散気筒も、本発明の第一の散気筒と同様に、複数の散気筒分割体の内の一部の散気筒分割体又は全ての散気筒分割体が、密接せず、間隔を置いて配置されていたり、各散気筒分割体を構成する外側筒状体及び内側筒状体の径や長さが全ての散気筒分割体において同一ではなく、散気筒分割体毎に異なるように構成されていたり、空気供給管の径が一定ではなく、その長さ方向において、径が変化するように構成されていたりしてもよい。更に、図10に示すように、内側筒状体25の径をテーパ状に変化させて、散気面となる内側筒状体25の内周面を傾斜させるようにしてもよい。また、本発明の第二の散気筒においても、本発明の第一の散気筒と同様に、空気供給管が、元々その軸方向に沿って径の異なる複数のオリフィスが設けられたものであり、それら複数のオリフィスの内、各空気室内に位置し、かつ、所望の径を有するオリフィス以外のオリフィスが閉塞された状態で使用されていることが、散気筒の製造効率を高める観点から好ましい。   Further, in the second cylinder according to the present invention, as in the case of the first cylinder according to the present invention, some of the plurality of divided cylinder divisions or all of the divided cylinder divisions are closely connected. The outer cylinders and the inner cylinders constituting each of the cylinder divisions are not the same in diameter and length in all the cylinder divisions. The air supply pipes may be configured to be different from each other, or the diameter of the air supply pipe may not be constant, and the diameter may be changed in the length direction. Further, as shown in FIG. 10, the diameter of the inner cylindrical body 25 may be changed to a tapered shape so that the inner peripheral surface of the inner cylindrical body 25 serving as a diffuser surface is inclined. Also in the second cylinder of the present invention, similarly to the first cylinder of the present invention, the air supply pipe is originally provided with a plurality of orifices having different diameters along the axial direction. Of these plural orifices, it is preferable that the orifices other than those having a desired diameter are closed and used in a state in which they are closed, from the viewpoint of improving the production efficiency of the scattering cylinder.

図11は、本発明の第二の散気筒を、曝気槽内に設置したドラフトチューブ内に設置する際の設置例を示す説明図である。本発明の第二の散気筒21を、ドラフトチューブ15内に複数個設置する場合には、散気筒21の空気供給管の開口をヘッダ管16に接続し、ヘッダ管16を通じて、外部から空気供給管内へ空気を供給する。こうして、散気筒21の空気供給管内へ供給された空気は、散気筒21から微細気泡となってドラフトチューブ15内に放出され、放出された微細気泡を含む被処理水は、ドラフトチューブ15の上方に設置されたインペラ17の旋回によって下降流となり、ドラフトチューブ15の下方よりドラフトチューブ15外へ排出されて、曝気槽内を循環する。   FIG. 11 is an explanatory view showing an installation example when the second dust cylinder of the present invention is installed in a draft tube installed in an aeration tank. When a plurality of the second dust cylinders 21 of the present invention are installed in the draft tube 15, the opening of the air supply pipe of the dust cylinder 21 is connected to the header pipe 16, and air is supplied from the outside through the header pipe 16. Supply air into the tube. Thus, the air supplied into the air supply pipe of the scattering cylinder 21 is discharged as fine bubbles from the scattering cylinder 21 into the draft tube 15, and the treated water containing the discharged fine bubbles is disposed above the draft tube 15. The impeller 17 installed at the bottom of the pipe is turned downward and discharged from the lower side of the draft tube 15 to the outside of the draft tube 15 to circulate in the aeration tank.

なお、図11の例では、散気筒21の外周面(外側筒状体24の外側周面)がドラフトチューブ15の内周面と密接しており、散気筒21の内周面(内側筒状体25の内側周面)のみから微細気泡が放出されるようになっているが、散気筒21の外周面とドラフトチューブ15の内周面との間に間隔を設けて、散気筒21の外周面からも微細気泡が放出されるようにしてもよい。また、図11の例では、ドラフトチューブ15内に散気筒21を1個のみ設置しているが、散気筒21は、必要な散気量に応じて、このように1個のみ設置してもよいし、複数個設置してもよい。   In the example of FIG. 11, the outer peripheral surface of the dust cylinder 21 (outer peripheral surface of the outer cylindrical body 24) is in close contact with the inner peripheral surface of the draft tube 15, and the inner peripheral surface (inner cylindrical shape) of the dust cylinder 21. The fine bubbles are discharged only from the inner peripheral surface of the body 25, but the outer periphery of the dust cylinder 21 is provided with a space between the outer peripheral surface of the dust cylinder 21 and the inner peripheral surface of the draft tube 15. Fine bubbles may also be released from the surface. In the example of FIG. 11, only one diffuser cylinder 21 is installed in the draft tube 15, but even if only one diffuser cylinder 21 is installed in this way, depending on the required amount of diffused air. You may install more than one.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例)
図1に示す構造の散気筒を作製した。散気筒分割体2A〜2Eを構成する散気部材4A〜4Eには、それぞれセラミックスからなる円筒状の焼結体(長さ:100mm、外径75mm、内径45mm、平均気孔径200μm)を用いた。仕切板5A〜5Fには、SUS304製で、中央に孔部を有する円板(直径:85mm、厚さ:3mm)の当該孔部に、筒状のソケット8(長さ:43mm、外径38mm、内径34mm)が一体的に接合されたものを用いた。仕切板5A〜5Fと散気部材4A〜4Eとの間には、クロロプレンゴム製で、リング状のパッキン10(外径75mm、内径47mm、厚さ:3mm)を配設した。空気供給管3には、下端部をプラグ11で閉塞したSUS304製の円管(長さ:550mm、外径34mm、内径28mm)を用いた。空気供給管3には、空気供給管3内から各空気室6A〜6E内に通じるオリフィス9A〜9Eを、各空気室9A〜9Eに対し2つずつ設けた。
(Example)
A bulk cylinder having the structure shown in FIG. 1 was produced. Cylindrical sintered bodies (length: 100 mm, outer diameter 75 mm, inner diameter 45 mm, average pore diameter 200 μm) made of ceramics were used for the diffuser members 4A to 4E constituting the diffused cylinder divided bodies 2A to 2E, respectively. . The partition plates 5A to 5F are made of SUS304 and have a cylindrical socket 8 (length: 43 mm, outer diameter: 38 mm) in a hole of a disc (diameter: 85 mm, thickness: 3 mm) having a hole in the center. , Inner diameter 34 mm) were integrally joined. A ring-shaped packing 10 (outer diameter 75 mm, inner diameter 47 mm, thickness: 3 mm) made of chloroprene rubber was disposed between the partition plates 5A to 5F and the diffuser members 4A to 4E. As the air supply pipe 3, a circular pipe made of SUS304 (length: 550 mm, outer diameter 34 mm, inner diameter 28 mm) having a lower end closed with a plug 11 was used. The air supply pipe 3 is provided with two orifices 9A to 9E communicating with the air chambers 9A to 9E from the air supply pipe 3 to the air chambers 6A to 6E.

オリフィス9A〜9Eの径は、空気供給管3内に120L/minの風量で空気を供給した時に、より下方に位置する空気室ほど、その内部の圧力が高くなり、かつ、隣接する空気室間の前記圧力の差が約100mmAq(約981Pa)となるように調節した。具体的には、オリフィス9Aの径を2.4mm、オリフィス9Bの径を2.5mm、オリフィス9Cの径を2.7mm、オリフィス9Dの径を3.0mm、オリフィス9Eの径を3.5mmとすることで、前記のような圧力関係を実現できた。   The diameters of the orifices 9A to 9E are such that when air is supplied into the air supply pipe 3 at a flow rate of 120 L / min, the air chamber located at a lower position has a higher internal pressure, and between adjacent air chambers. The pressure difference was adjusted to about 100 mmAq (about 981 Pa). Specifically, the diameter of the orifice 9A is 2.4 mm, the diameter of the orifice 9B is 2.5 mm, the diameter of the orifice 9C is 2.7 mm, the diameter of the orifice 9D is 3.0 mm, and the diameter of the orifice 9E is 3.5 mm. By doing so, the pressure relationship as described above was realized.

この散気筒1を、その軸方向が上下方向となるような縦置き状態で曝気槽内に設置した。曝気槽を水で満たした後、空気供給管3の上端の開口12に接続したヘッダ管を通じて、空気供給管3内に120L/minの風量で空気を供給したところ、散気筒1の上部から下部に渡って、ほぼ均一に微細気泡が放出されることが確認された。   This dust cylinder 1 was installed in the aeration tank in a vertically placed state in which the axial direction thereof is the vertical direction. After the aeration tank is filled with water, air is supplied at a flow rate of 120 L / min into the air supply pipe 3 through the header pipe connected to the opening 12 at the upper end of the air supply pipe 3. It was confirmed that fine bubbles were released almost uniformly over the period.

(比較例)
散気筒として、一端部が閉塞され、他端部が開口した、セラミックスからなる円筒状の焼結体(長さ:500mm、外径75mm、内径45mm、平均気孔径200μm)を作製した。この散気筒を、その軸方向が上下方向となるような縦置き状態で曝気槽内に設置した。曝気槽を水で満たした後、散気筒の上端の開口に接続したヘッダ管を通じて、散気筒内に120L/minの風量で空気を供給したところ、散気筒の約上半分からは多くの微細気泡が放出されたが、散気筒の約下半分からはほとんど微細気泡が放出されなかった。
(Comparative example)
A cylindrical sintered body (length: 500 mm, outer diameter 75 mm, inner diameter 45 mm, average pore diameter 200 μm) made of ceramics with one end closed and the other end opened was prepared as a powder cylinder. This dust cylinder was installed in the aeration tank in a vertically placed state in which the axial direction was the vertical direction. After filling the aeration tank with water and supplying air at a flow rate of 120 L / min through the header pipe connected to the opening at the upper end of the dust cylinder, a large number of fine bubbles are generated from the upper half of the dust cylinder. Was released, but almost no fine bubbles were released from the lower half of the scattering cylinder.

本発明は、下水や産業排水等の有機性排水を、活性汚泥法等により好気的に浄化処理するに際し、曝気槽に収容された被処理水中に空気を微細気泡の状態に発泡させて供給するための散気筒として好適に使用することができる。   In the present invention, when organic wastewater such as sewage and industrial wastewater is aerobically purified by an activated sludge method or the like, air is supplied in the form of fine bubbles in water to be treated contained in an aeration tank. Therefore, it can be used suitably as a scattering cylinder.

1:散気筒
2(2A〜2K):散気筒分割体
3:空気供給管
4(4A〜4K):散気部材
5(5A〜5Q):仕切板
6(6A〜6K):空気室
7:孔部
8:ソケット
9(9A〜9K):オリフィス
10:パッキン
11:プラグ
12:開口
15:ドラフトチューブ
16:ヘッダ管
17:インペラ
21:散気筒
22(22A〜22C):散気筒分割体
23:空気供給管
24(24A〜24C):外側筒状体
25(25A〜25C):内側筒状体
26(26A〜26D):仕切板
27(27A〜27C):空気室
28:孔部
29(29A〜29C):オリフィス
30:スペーサ
1: Spread cylinder 2 (2A to 2K): Split cylinder divided body 3: Air supply pipe 4 (4A to 4K): Air diffuser member 5 (5A to 5Q): Partition plate 6 (6A to 6K): Air chamber 7: Hole 8: Socket 9 (9A to 9K): Orifice 10: Packing 11: Plug 12: Opening 15: Draft tube 16: Header pipe 17: Impeller 21: Spiral cylinder 22 (22A-22C): Spiral cylinder divided body 23: Air supply pipe 24 (24A-24C): Outer cylindrical body 25 (25A-25C): Inner cylindrical body 26 (26A-26D): Partition plate 27 (27A-27C): Air chamber 28: Hole 29 (29A) ~ 29C): Orifice 30: Spacer

Claims (8)

その軸方向が上下方向となる散気筒であって、
多孔質材料からなる筒状の散気部材と、当該散気部材の上端部及び上側開口部を気密的に塞ぐ上側仕切板と、前記散気部材の下端部及び下側開口部を気密的に塞ぐ下側仕切板とで区画された空気室を有する複数の散気筒分割体、並びに、
前記各散気筒分割体の前記上側仕切板と前記下側仕切板との内の少なくとも一方を貫通して、前記複数の散気筒分割体を上下方向で連結する空気供給管を備え、
当該空気供給管の前記各空気室内に位置する部分に、前記空気供給管内から前記空気室内に通じるオリフィスが、前記各空気室に対してそれぞれ少なくとも1つ設けられており、
より下方に位置する空気室に通じるオリフィスほどその径が大きくなる散気筒。
A cylindrical cylinder whose axial direction is the vertical direction,
A cylindrical air diffusion member made of a porous material, an upper partition plate that hermetically closes an upper end portion and an upper opening portion of the air diffusion member, and a lower end portion and a lower opening portion of the air diffusion member are airtight A plurality of split cylinder divisions having an air chamber partitioned by a lower partition plate to be closed, and
An air supply pipe that passes through at least one of the upper partition plate and the lower partition plate of each of the above-mentioned divided cylinder divisions and connects the plurality of divided cylinder divisions in the vertical direction;
At least one orifice that communicates from the air supply pipe to the air chamber is provided for each air chamber in a portion of the air supply pipe located in each air chamber,
A diffuse cylinder in which the diameter of the orifice increases as the orifice communicates with the air chamber located below.
前記空気供給管により上下方向で連結された前記複数の散気筒分割体の内の何れか2つ以上が密接して配置されており、より上方に位置する散気筒分割体の前記下側仕切板と、その下方に密接する散気筒分割体の前記上側仕切板とが、共通の単一な仕切板となっている請求項1に記載の散気筒。   Any two or more of the plurality of divided cylinder divisions connected in the vertical direction by the air supply pipe are closely arranged, and the lower partition plate of the divided cylinder division located above the lower division plate 2 and the above-mentioned upper partition plate of the split-cylinder divided body in close contact therewith is a common single partition plate. 前記空気供給管が、元々その軸方向に沿って径の異なる複数のオリフィスが設けられたものであり、前記複数のオリフィスの内、前記各空気室内に位置し、かつ、所望の径を有するオリフィス以外のオリフィスが閉塞された状態で使用されている請求項1又は2に記載の散気筒。   The air supply pipe is originally provided with a plurality of orifices having different diameters along the axial direction, and the orifice is located in each air chamber among the plurality of orifices and has a desired diameter. The dust cylinder according to claim 1 or 2, wherein the other cylinder is used in a state in which an orifice other than the above is closed. 前記多孔質材料がセラミックスである請求項1〜3の何れか一項に記載の散気筒。   The dust cylinder according to any one of claims 1 to 3, wherein the porous material is ceramics. その軸方向が上下方向となる散気筒であって、
外側筒状体と、その内側に所定の間隔を置いて配置された多孔質材料からなる内側筒状体と、前記外側筒状体の上端部、前記内側筒状体の上端部及び前記外側筒状体の上端部と前記内側筒状体の上端部との間に形成される上側開口部を気密的に塞ぐリング状の上側仕切板と、前記外側筒状体の下端部、前記内側筒状体の下端部及び前記外側筒状体の下端部と前記内側筒状体の下端部との間に形成される下側開口部を気密的に塞ぐリング状の下側仕切板とで区画された空気室を有する複数の散気筒分割体、並びに、
前記各散気筒分割体の前記上側仕切板と前記下側仕切板との内の少なくとも一方を貫通して、前記複数の散気筒分割体を上下方向で連結する空気供給管を備え、
当該空気供給管の前記各空気室内に位置する部分に、前記空気供給管内から前記空気室内に通じるオリフィスが、前記各空気室に対してそれぞれ少なくとも1つ設けられており、
より下方に位置する空気室に通じるオリフィスほどその径が大きくなる散気筒。
A cylindrical cylinder whose axial direction is the vertical direction,
An outer cylindrical body, an inner cylindrical body made of a porous material arranged at a predetermined interval on the inner side thereof, an upper end portion of the outer cylindrical body, an upper end portion of the inner cylindrical body, and the outer cylinder A ring-shaped upper partition plate that hermetically closes an upper opening formed between an upper end portion of the cylindrical body and an upper end portion of the inner cylindrical body, a lower end portion of the outer cylindrical body, and the inner cylindrical shape And a ring-shaped lower partition plate that hermetically closes the lower opening formed between the lower end of the body and the lower end of the outer cylindrical body and the lower end of the inner cylindrical body. A plurality of split cylinder divisions having an air chamber, and
An air supply pipe that passes through at least one of the upper partition plate and the lower partition plate of each of the above-mentioned divided cylinder divisions and connects the plurality of divided cylinder divisions in the vertical direction;
At least one orifice that communicates from the air supply pipe to the air chamber is provided for each air chamber in a portion of the air supply pipe located in each air chamber,
A diffuse cylinder in which the diameter of the orifice increases as the orifice communicates with the air chamber located below.
前記空気供給管により上下方向で連結された前記複数の散気筒分割体の内の何れか2つ以上が密接して配置されており、より上方に位置する散気筒分割体の前記下側仕切板と、その下方に密接する散気筒分割体の前記上側仕切板とが、共通の単一な仕切板となっている請求項5に記載の散気筒。   Any two or more of the plurality of divided cylinder divisions connected in the vertical direction by the air supply pipe are closely arranged, and the lower partition plate of the divided cylinder division located above the lower division plate The split cylinder according to claim 5, wherein the upper partition plate of the split cylinder divided body in close contact therewith is a common single partition plate. 前記空気供給管が、元々その軸方向に沿って径の異なる複数のオリフィスが設けられたものであり、前記複数のオリフィスの内、前記各空気室内に位置し、かつ、所望の径を有するオリフィス以外のオリフィスが閉塞された状態で使用されている請求項5又は6に記載の散気筒。   The air supply pipe is originally provided with a plurality of orifices having different diameters along the axial direction, and the orifice is located in each air chamber among the plurality of orifices and has a desired diameter. The dust cylinder according to claim 5 or 6, which is used in a state in which an orifice other than the above is closed. 前記多孔質材料がセラミックスである請求項5〜7の何れか一項に記載の散気筒。   The dust cylinder according to any one of claims 5 to 7, wherein the porous material is ceramics.
JP2010279036A 2010-12-15 2010-12-15 Spiral cylinder Active JP5604282B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010279036A JP5604282B2 (en) 2010-12-15 2010-12-15 Spiral cylinder
PCT/JP2011/078357 WO2012081481A1 (en) 2010-12-15 2011-12-07 Diffuser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279036A JP5604282B2 (en) 2010-12-15 2010-12-15 Spiral cylinder

Publications (2)

Publication Number Publication Date
JP2012125692A JP2012125692A (en) 2012-07-05
JP5604282B2 true JP5604282B2 (en) 2014-10-08

Family

ID=46244588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279036A Active JP5604282B2 (en) 2010-12-15 2010-12-15 Spiral cylinder

Country Status (2)

Country Link
JP (1) JP5604282B2 (en)
WO (1) WO2012081481A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10023831B2 (en) 2014-03-17 2018-07-17 Biogen Ma Inc. Gas delivery devices and associated systems and methods
JP6345546B2 (en) * 2014-09-02 2018-06-20 メタウォーター株式会社 Power-saving aeration stirrer
JP6534542B2 (en) * 2015-03-12 2019-06-26 佐竹化学機械工業株式会社 Aeration stirring device
WO2017221346A1 (en) * 2016-06-22 2017-12-28 佐竹化学機械工業株式会社 Aeration agitator
JP6759811B2 (en) * 2016-07-28 2020-09-23 トヨタ紡織株式会社 Micro bubble generator and cooling water circulation system equipped with it
CN111375323B (en) * 2018-12-28 2022-02-25 中国石油天然气股份有限公司 Baffle type foaming device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643437Y2 (en) * 1977-04-25 1981-10-12
AU4943185A (en) * 1984-12-07 1986-06-12 General Signal Corporation Aerating draft tube for water treatment
JPH01170432U (en) * 1988-05-20 1989-12-01
JPH0513439Y2 (en) * 1989-07-04 1993-04-08
JP2002248489A (en) * 2001-02-26 2002-09-03 Mitsui Miike Mach Co Ltd Air blowoff device of axial flow stirrer
JP2007181753A (en) * 2006-01-04 2007-07-19 Osaki Electric Co Ltd Aerator
JP4406022B2 (en) * 2007-08-21 2010-01-27 株式会社神鋼環境ソリューション Biological treatment method
JP5188997B2 (en) * 2009-01-20 2013-04-24 株式会社日立プラントテクノロジー Aeration stirrer
JP2010194425A (en) * 2009-02-24 2010-09-09 Ebara Corp Air diffuser and bubble generator
JP5728218B2 (en) * 2010-12-15 2015-06-03 メタウォーター株式会社 Aeration stirrer

Also Published As

Publication number Publication date
WO2012081481A1 (en) 2012-06-21
JP2012125692A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5604282B2 (en) Spiral cylinder
US7044453B2 (en) Membrane diffuser with uniform gas distribution
US4938899A (en) Gas diffusion system
KR100778491B1 (en) Diffuser for aeration
US7622040B2 (en) Fine bubble airlift device
JP4619316B2 (en) Gas-liquid mixing device
CN204058081U (en) A kind of special-shaped annulus of improvement closes aeration tube
US8002248B2 (en) Diffuser for an aeration system
CN102101730B (en) Gas diffusion device for aeration
EP3207979B1 (en) Fine bubble diffuser assembly and method of manufacturing
JP2003024974A (en) Air diffusing device and aeration tank using the same
JP4943482B2 (en) Underwater aerator
CN106242031B (en) Microbial sewage treatment aeration equipment
JP3551981B2 (en) Large capacity deep water aeration device
CN206203986U (en) A kind of microporous aeration device
KR101971427B1 (en) Aeration system
WO2012004893A1 (en) Wastewater treatment device
JP7474602B2 (en) Gas-liquid dispersion device
CN207632583U (en) High density polyethylene pipe formula aerator
US3790142A (en) Gas diffuser
JP2013226525A (en) Membrane for air diffusion device
CN105016457A (en) Degassing disc
CN210193503U (en) Micro-nano aeration pipe and aeration equipment
CN215102259U (en) Oxygen-charging and gas-distributing element
CN109200840B (en) Down-flow oxygenation mixer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5604282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250