JP5601295B2 - Spiral steel pipe with internal protrusion with low yield ratio and its manufacturing method - Google Patents

Spiral steel pipe with internal protrusion with low yield ratio and its manufacturing method Download PDF

Info

Publication number
JP5601295B2
JP5601295B2 JP2011190972A JP2011190972A JP5601295B2 JP 5601295 B2 JP5601295 B2 JP 5601295B2 JP 2011190972 A JP2011190972 A JP 2011190972A JP 2011190972 A JP2011190972 A JP 2011190972A JP 5601295 B2 JP5601295 B2 JP 5601295B2
Authority
JP
Japan
Prior art keywords
steel pipe
less
strength
mpa
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011190972A
Other languages
Japanese (ja)
Other versions
JP2013053325A (en
Inventor
好男 寺田
孝行 坂井
浩司 波多野
逸人 太田
尚 平田
俊彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011190972A priority Critical patent/JP5601295B2/en
Publication of JP2013053325A publication Critical patent/JP2013053325A/en
Application granted granted Critical
Publication of JP5601295B2 publication Critical patent/JP5601295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、建築物や橋梁、鉄塔などの基礎構造に用いられるコンクリート充填鋼管に使用される450MPa以上650MPa以下の降伏強度と0.85未満の降伏比を有する、内面突起つきスパイラル鋼管およびその製造法に関するものである。   The present invention relates to a spiral steel pipe with an internally projecting projection having a yield strength of 450 MPa or more and 650 MPa or less and a yield ratio of less than 0.85, which is used for a concrete-filled steel pipe used for a foundation structure such as a building, a bridge, or a steel tower. It is about the law.

一般に、ビルディング等の建築物や橋梁、鉄塔などの基礎構造は、鋼管杭の杭頭部にフーチングを支持させた構造になっている。鋼管杭の杭頭部には、建築物等の自重や地震時に発生する水平力により、軸力やせん断力や曲げモーメントが作用することになるが、最近の鋼管杭では、鋼管の高支持力化等による基礎構造の合理化等を背景に、杭頭部に要求される耐力が大きくなってきている。かかる要求に対応すべく、大径で厚肉の鋼管杭を用いることも行われているが、大径の鋼管杭に用いられるスパイラル鋼管は、加工上の理由から強度や板厚に限度がある。そこで、従来から鋼管杭において特に大きな曲げモーメントが発生する杭頭部を別途補強することが行われている。   In general, a building such as a building or a basic structure such as a bridge or a steel tower has a structure in which a footing is supported on a pile head of a steel pipe pile. The pile heads of steel pipe piles are subject to axial forces, shearing forces and bending moments due to the weight of buildings, etc., and horizontal forces generated during earthquakes. Against the backdrop of rationalization of the foundation structure due to composting etc., the proof stress required for the pile head is increasing. Large diameter and thick steel pipe piles are also used to meet such demands, but spiral steel pipes used for large diameter steel pipe piles are limited in strength and thickness for processing reasons. . Therefore, conventionally, a pile head where a particularly large bending moment is generated in a steel pipe pile is separately reinforced.

例えば、特許文献1には、杭頭部の内部に鉄筋とコンクリートを充填した構造が開示されている。また、特許文献2には、二重管式杭頭構造の構築方法が開示されている。また、特許文献3には、フーチングの下部の鋼管杭と外管との中間に形成される空間内に物質を充填して水平耐力を増大させる方法が開示されている。また、特許文献4には、ずれ止めあるいは鉄筋を取り付けてコンクリートと鋼管との付着力を増大させる構造が開示されている。   For example, Patent Document 1 discloses a structure in which reinforcing bars and concrete are filled inside a pile head. Patent Document 2 discloses a method for constructing a double-pipe pile head structure. Patent Document 3 discloses a method of increasing horizontal proof stress by filling a material in a space formed between a steel pipe pile and an outer pipe below the footing. Patent Document 4 discloses a structure for increasing the adhesion between concrete and steel pipe by attaching a stopper or a reinforcing bar.

一方、建築構造物の大型化や鋼管杭の高支持力化に伴う杭本数の効率化などを背景に、杭頭部にはより一層大きな支持力が要求されるようになった。杭頭の耐力を高めるためには、鋼管の高強度化、大径化、厚肉化、コンクリート充填鋼管が有効である。鋼管を高強度化する方法は数多くあり、例えば、特許文献5には、鋼管を加熱して水冷することによる厚肉高強度曲り管の製造方法が開示されている。また特許文献6にはコンクリートを充填する合成鋼管の製造方法が開示されている。   On the other hand, against the backdrop of the increase in the number of piles accompanying the increase in the size of building structures and the increase in bearing capacity of steel pipe piles, a greater bearing capacity has been required for the pile heads. In order to increase the strength of the pile head, it is effective to increase the strength, diameter, thickness, and concrete-filled steel pipe of the steel pipe. There are many methods for increasing the strength of a steel pipe. For example, Patent Document 5 discloses a method for manufacturing a thick-walled high-strength bent pipe by heating and cooling a steel pipe. Patent Document 6 discloses a method for manufacturing a synthetic steel pipe filled with concrete.

さらに、特許文献7および特許文献8には内面突起を有する高強度スパイラル鋼管の製造方法が開示されている。   Furthermore, Patent Document 7 and Patent Document 8 disclose a method for manufacturing a high-strength spiral steel pipe having an inner surface protrusion.

特開2005−163421号公報JP 2005-163421 A 特開2009−30372号公報JP 2009-30372 A 特開2009−46879号公報JP 2009-46879 A 特開2009−46881号公報JP 2009-46881 A 特開平5−279743号公報JP-A-5-279743 特開昭53−53021号公報JP-A-53-53021 特開2011−63878号公報JP 2011-63878 A 特開2011−63879号公報JP 2011-63879 A

しかしながら、上記特許文献1のように、杭頭部の内部から補強するためには、鋼管杭を地盤に打設した後、あるいは、打設している最中に、杭頭部の内部を洗浄等することが必要となり、施工性を低下させるといった難点がある。また、上記特許文献2〜4の方法では、いずれの場合も建設現場で杭頭部を補強する作業をしなければならず、施工が煩雑となり、施工コストが高くなるという課題もある。   However, in order to reinforce from the inside of the pile head as in Patent Document 1, the inside of the pile head is washed after the steel pipe pile is placed on the ground or during the placement. Etc., and there is a problem that the workability is lowered. Moreover, in the method of the said patent documents 2-4, the operation | work which reinforces a pile head at a construction site must be performed in any case, and there also exists a subject that construction becomes complicated and construction cost becomes high.

鋼管杭の杭頭部の耐力を高めるためには、鋼管の高強度化、大径化、厚肉化、コンクリート充填鋼管が有効であり、上記特許文献5には、API規格X65〜X70クラスの高強度厚肉曲り管の製造方法が開示されているが、コンクリートとの合成構造を目的とした鋼管ではないので、鋼管杭が素管(コンクリートとの合成構造ではない鋼管単体)だけの場合には杭頭部の十分な耐力が得られない。鋼管とコンクリートの付着強度を向上させるための方法としては鋼管に溶接ビードやスタッドボルトを施す方法も考えられるが、高強度材への溶接は施工管理が難しく合成構造とすることは困難である。また、鋼管杭が素管の場合、杭頭部の十分な耐力を得るためには、例えば降伏強度で700MPa以上の鋼管が必要となり、合金元素の添加量が必然的に多くなるので、溶接性(耐溶接低温割れ性)や焼き戻し処理後の溶接金属の低温靭性が低下するという問題があった。   In order to increase the strength of the pile head of the steel pipe pile, it is effective to increase the strength, increase the diameter, increase the thickness of the steel pipe, and fill the concrete-filled steel pipe. Patent Document 5 includes the API standard X65 to X70 class. Although a manufacturing method of high strength thick-walled curved pipe is disclosed, it is not a steel pipe intended for a composite structure with concrete, so when the steel pipe pile is only a bare pipe (a steel pipe that is not a composite structure with concrete) Does not provide sufficient strength of the pile head. As a method for improving the adhesion strength between the steel pipe and the concrete, a method in which a weld bead or a stud bolt is applied to the steel pipe is also conceivable. However, it is difficult to control the construction of the high strength material and to make a composite structure. In addition, when the steel pipe pile is a raw pipe, in order to obtain a sufficient yield strength of the pile head, for example, a steel pipe having a yield strength of 700 MPa or more is required, and the amount of alloying elements is inevitably increased. There has been a problem that the low-temperature toughness of the weld metal after tempering (welding cold cracking resistance) and tempering treatment is reduced.

上記特許文献6にはコンクリートとの合成構造に使用される内面突起つきスパイラル鋼管の製造方法が開示されている。高強度の内面突起つきスパイラル鋼管を製造するためには高強度の熱延コイルが必要となるが、熱延コイルの巻取り能力の観点から高強度で厚肉の熱延コイルを経済的に製造することは困難である。また高強度の熱延コイルをスパイラル成形する際も大きな成形荷重が必要となり製造上の課題がある。   Patent Document 6 discloses a method of manufacturing a spiral steel pipe with an inner protrusion used for a composite structure with concrete. High strength hot rolled coils are required to produce high strength spiral steel pipes with internal protrusions, but high strength and thick hot rolled coils are economically manufactured from the viewpoint of the winding ability of hot rolled coils. It is difficult to do. In addition, when a high-strength hot-rolled coil is spirally formed, a large forming load is required, which causes a manufacturing problem.

上記特許文献7には内面突起つきスパイラル鋼管を加熱後、外面側から水冷して高強度化する方法が開示されている。この製造方法では降伏比が0.85を超えるため、巨大地震発生時の構造物の信頼性が低下するという課題がある。   Patent Document 7 discloses a method of increasing the strength by heating a spiral steel pipe with an inner surface protrusion and then cooling it with water from the outer surface side. In this manufacturing method, since the yield ratio exceeds 0.85, there is a problem that the reliability of the structure at the time of the occurrence of a huge earthquake is lowered.

上記特許文献8には内面突起つきスパイラル鋼管を鋼管長手方向が上下方向となる状態で加熱後、外面側から水冷して高強度化する方法が開示されている。上記特許文献7と同様、この製造方法では降伏比が0.85を超えるため、巨大地震発生時の構造物の信頼性が低下するという課題がある。   Patent Document 8 discloses a method of increasing strength by heating a spiral steel pipe with an inner protrusion in a state where the longitudinal direction of the steel pipe is in the vertical direction and then cooling with water from the outer surface side. Similar to the above-mentioned Patent Document 7, this manufacturing method has a problem that the yield ratio exceeds 0.85, and thus the reliability of the structure at the time of the occurrence of a huge earthquake is lowered.

本発明の目的は、現場での補強作業を省略でき、建築物等から受ける軸力や曲げモーメントに対しても十分な強度と低降伏比を有するコンクリート充填鋼管に使用される内面突起つきスパイラル鋼管およびその製造法を提供することにある。   An object of the present invention is to provide a spiral steel pipe with an internal protrusion that can be used for a concrete-filled steel pipe that can omit reinforcement work on site and has sufficient strength and low yield ratio against axial force and bending moment received from a building or the like. And providing a manufacturing method thereof.

本発明によれば、質量%で、C:0.05〜0.20、Si:0.01〜0.6、Mn:0.8〜2.2、P:0.02以下、S:0.005以下、Nb:0.005〜0.080、Ti:0.005〜0.030、Al:0.001〜0.05、N:0.001〜0.006、O:0.006以下を含有し、残部が鉄および不可避的不純物からなり、かつ、下記式(1)で定義されるCE値が0.40〜0.55の範囲にあり、フェライト分率が16〜50%、残部の組織がベイナイトとマルテンサイトからなることを特徴とする450MPa以上650MPa以下の降伏強度、かつ、0.85未満の降伏比を有する内面突起つきスパイラル鋼管が提供される。
CE=C+Si/24+Mn/6 ・・・(1)
According to the present invention, by mass%, C: 0.05-0.20, Si: 0.01-0.6, Mn: 0.8-2.2, P: 0.02 or less, S: 0 0.005 or less, Nb: 0.005 to 0.080, Ti: 0.005 to 0.030, Al: 0.001 to 0.05, N: 0.001 to 0.006, O: 0.006 or less The balance is made of iron and inevitable impurities, and the CE value defined by the following formula (1) is in the range of 0.40 to 0.55, the ferrite fraction is 16 to 50%, and the balance There is provided a spiral steel pipe with an inner surface protrusion having a yield strength of 450 MPa or more and 650 MPa or less and a yield ratio of less than 0.85, characterized in that the structure of bainite and martensite.
CE = C + Si / 24 + Mn / 6 (1)

このスパイラル鋼管は、鋼成分が、質量%で、さらにCr:0.1〜0.5、Mo:0.1〜0.5、V:0.01〜0.10、B:0.0003〜0.002のうち一種または二種以上を含有し、かつ、前記式(1)に代えて、下記式(2)で定義されるCE値が0.40〜0.55の範囲にあっても良い。
CE=C+Si/24+Mn/6+Cr/5+Mo/4+V/14 ・・・(2)
In this spiral steel pipe, the steel component is in mass%, and Cr: 0.1 to 0.5 , Mo: 0.1 to 0.5 , V: 0.01 to 0.10, B: 0.0003 to Even if it contains one or two or more of 0.002 and the CE value defined by the following formula (2) is in the range of 0.40 to 0.55 instead of the formula (1), good.
CE = C + Si / 24 + Mn / 6 + Cr / 5 + Mo / 4 + V / 14 (2)

また、本発明によれば、質量%で、C:0.05〜0.20、Si:0.01〜0.6、Mn:0.8〜2.2、P:0.02以下、S:0.005以下、Nb:0.005〜0.080、Ti:0.005〜0.030、Al:0.001〜0.05、N:0.001〜0.006、O:0.006以下を含有し、残部が鉄および不可避的不純物からなり、かつ、下記式(1)で定義されるCE値が0.40〜0.55の範囲にある母材からなる内面突起つきスパイラル鋼管を、860〜960℃に加熱後、鋼管外表面が650〜850℃の温度から水槽の中に鋼管を浸漬させて、10℃/秒以上の冷却速度となるように200℃以下まで水冷し、その後、650℃以下で焼き戻し処理することを特徴とする450MPa以上650MPa以下の降伏強度、かつ、0.85未満の降伏比を有する内面突起つきスパイラル鋼管の製造法が提供される。
CE=C+Si/24+Mn/6 ・・・(1)
Moreover, according to the present invention, by mass, C: 0.05 to 0.20, Si: 0.01 to 0.6, Mn: 0.8 to 2.2, P: 0.02 or less, S : 0.005 or less, Nb: 0.005 to 0.080, Ti: 0.005 to 0.030, Al: 0.001 to 0.05, N: 0.001 to 0.006, O: 0.00. 006 or less, the balance is made of iron and inevitable impurities, and the spiral steel pipe with an inner surface protrusion is made of a base material whose CE value defined by the following formula (1) is in the range of 0.40 to 0.55 After heating to 860-960 ° C., the steel pipe outer surface is immersed in a water tank from a temperature of 650-850 ° C., and water-cooled to 200 ° C. or less so as to have a cooling rate of 10 ° C./second or more, Thereafter, tempering is performed at 650 ° C. or lower, and 450 MPa or more and 650 MPa Yield strength of the lower and inner surface projections with the preparation of the spiral pipe is provided having a yield ratio of less than 0.85.
CE = C + Si / 24 + Mn / 6 (1)

この製造法において、前記母材が、質量%で、さらに、Cr:0.1〜0.5、Mo:0.1〜0.5、V:0.01〜0.10、B:0.0003〜0.002のうち一種または二種以上を含有し、かつ、前記式(1)に代えて、下記式(2)で定義されるCE値が0.40〜0.55の範囲にあっても良い。
CE=C+Si/24+Mn/6+Cr/5+Mo/4+V/14 ・・・(2)
In this production method, the base material is in mass%, and Cr: 0.1 to 0.5, Mo: 0.1 to 0.5, V: 0.01 to 0.10, B: 0.0. One or more of 0003 to 0.002 are contained, and the CE value defined by the following formula (2) is in the range of 0.40 to 0.55 instead of the formula (1). May be.
CE = C + Si / 24 + Mn / 6 + Cr / 5 + Mo / 4 + V / 14 (2)

本発明によれば、溶接性に優れた450MPa以上の降伏強度と0.85未満の降伏比を有する、内面突起つきスパイラル鋼管が安定して製造できる。その結果、ビルディング等の建築物や橋梁、鉄塔などの基礎構造の安全性が向上する。   ADVANTAGE OF THE INVENTION According to this invention, the spiral steel pipe with an inner surface protrusion which has the yield strength of 450 Mpa or more excellent in weldability, and the yield ratio of less than 0.85 can be manufactured stably. As a result, the safety of buildings such as buildings and foundation structures such as bridges and steel towers is improved.

以下に、本発明の降伏比の低い内面突起つきスパイラル鋼管およびその製造法について詳細に説明する。   Below, the spiral steel pipe with an internal protrusion of the low yield ratio of this invention and its manufacturing method are demonstrated in detail.

ビルディング等の建築物や橋梁、鉄塔などの基礎構造において、鋼管杭の杭頭部の耐力を高めるためには、鋼管の高強度化、大径化、厚肉化、コンクリート充填鋼管が有効であるが、溶接性の観点から鋼管杭の耐力の増加について研究した結果、本発明に至った。すなわち、コンクリート充填鋼管に使用される内面突起つき鋼管の化学成分、降伏強度の範囲を制限するとともに、スパイラル鋼管を860〜960℃に加熱後、鋼管外表面が650〜850℃の温度から水槽の中に鋼管を浸漬させて水冷し、その後焼戻しすることによって、高強度かつ低降伏比の内面突起つきスパイラル鋼管が得られる。   In foundation structures such as buildings, bridges, and steel towers, increasing the strength, diameter, thickness, and concrete-filled steel pipes of steel pipes is effective for increasing the strength of pile heads of steel pipe piles. However, as a result of studying the increase in yield strength of steel pipe piles from the viewpoint of weldability, the present invention has been achieved. That is, while limiting the range of chemical composition and yield strength of steel pipes with internal protrusions used for concrete-filled steel pipes, and after heating spiral steel pipes to 860-960 ° C., the outer surface of the steel pipe is adjusted from the temperature of 650-850 ° C. By immersing the steel pipe in it, cooling it with water, and then tempering it, a spiral steel pipe with internal protrusions having high strength and a low yield ratio can be obtained.

鋼管杭をコンクリートとの合成構造とした場合、杭頭部にはN−M曲線(軸力Nと曲げモーメントMの関係曲線)において曲げ耐力(曲げモーメントに対する耐力)で15,000kN・m以上が求められている。これを達成するためには、内面突起つき鋼管の降伏強度として、450MPa以上650MPa以下、鋼管の厚みとして14mm以上25mm以下が必要である。この時の鋼管厚みは、内面突起部のない箇所の厚みを示す。例えば、外径1400mmで鋼管厚25mmの時、降伏強度が450MPaで曲げ耐力19,000kN・mが得られる。また、外径1400mmで鋼管厚14mmの時、降伏強度が650MPaで曲げ耐力16,500kN・mが得られる。なお、鋼管厚みは、熱延巻き取り能力の観点から最大厚みを25mmとすることが好ましい。また、降伏強度が650MPaを超えると鋼管の溶接性が低下するので、溶接性の観点から降伏強度の上限を650MPaに制限した。また建築用基礎杭として、巨大地震発生時の構造物の安全性の観点から0.85未満の低降伏比が必要であることがわかった。このような高強度と低降伏比を達成する金属組織として、本発明では、フェライト分率が16〜50%、残部の組織をベイナイトあるいはマルテンサイトとする必要があり、フェライト分率が15%以下では低降伏比が達成できず、50%以上になると、降伏強度が450MPaを満足できない。なお、フェライト分率は水冷開始前に生成するポリゴナルフェライトおよび水冷中の生成するアシキュラーフェライトの分率を合わせたものである。   When the steel pipe pile has a composite structure with concrete, the pile head has a bending strength (proof strength against bending moment) of 15,000 kN · m or more in the NM curve (relation curve between axial force N and bending moment M). It has been demanded. In order to achieve this, it is necessary that the yield strength of the steel pipe with an internal protrusion is 450 MPa or more and 650 MPa or less and the thickness of the steel pipe is 14 mm or more and 25 mm or less. The thickness of the steel pipe at this time indicates the thickness of the portion having no inner surface protrusion. For example, when the outer diameter is 1400 mm and the steel pipe thickness is 25 mm, the yield strength is 450 MPa and the bending strength is 19,000 kN · m. Further, when the outer diameter is 1400 mm and the steel pipe thickness is 14 mm, the yield strength is 650 MPa and the bending strength is 16,500 kN · m. In addition, it is preferable that the steel pipe thickness is set to a maximum thickness of 25 mm from the viewpoint of the hot rolling winding ability. Moreover, since the weldability of a steel pipe falls when the yield strength exceeds 650 MPa, the upper limit of the yield strength is limited to 650 MPa from the viewpoint of weldability. In addition, it was found that a low yield ratio of less than 0.85 is necessary as a foundation pile for construction from the viewpoint of the safety of the structure when a huge earthquake occurs. As a metal structure that achieves such a high strength and a low yield ratio, in the present invention, the ferrite fraction must be 16 to 50%, the remaining structure must be bainite or martensite, and the ferrite fraction is 15% or less. Then, a low yield ratio cannot be achieved, and if it is 50% or more, the yield strength cannot satisfy 450 MPa. The ferrite fraction is the sum of the fractions of polygonal ferrite generated before the start of water cooling and acicular ferrite generated during water cooling.

つぎに、化学成分の限定理由について述べる。なお、成分についての%の表記は、特に断りがない場合は質量%を意味する。   Next, the reasons for limiting chemical components will be described. In addition, the description of% about a component means the mass% unless there is particular notice.

Cの下限0.05%は、強度の確保ならびにNb、V添加による析出硬化、結晶粒の微細化効果を発揮させるための最小量である。しかしC量が多過ぎると溶接性や低温靱性の著しい低下を招くので、上限を0.20%とした。   The lower limit of 0.05% of C is the minimum amount for ensuring the strength, precipitation hardening by adding Nb and V, and the effect of refining crystal grains. However, if the amount of C is too large, the weldability and low temperature toughness are significantly reduced, so the upper limit was made 0.20%.

Siは脱酸や強度向上のため添加する元素であり、その下限は0.01%である。しかし、多く添加すると溶接性、低温靭性を低下させるので、上限を0.6%とした。   Si is an element added for deoxidation and strength improvement, and its lower limit is 0.01%. However, if added in a large amount, the weldability and low temperature toughness are lowered, so the upper limit was made 0.6%.

Mnは強度、低温靭性を確保する上で不可欠な元素であり、その下限は0.8%である。しかし、Mnが多すぎると鋼の焼入性が増加して溶接性、低温靭性を低下させるだけでなく、連続鋳造鋼片の中心偏析を助長し、低温靭性も低下させるので上限を2.2%とした。   Mn is an indispensable element for securing strength and low temperature toughness, and its lower limit is 0.8%. However, if Mn is too much, not only the hardenability of the steel is increased and the weldability and the low temperature toughness are lowered, but also the center segregation of the continuously cast steel piece is promoted and the low temperature toughness is also lowered. %.

本発明において、不可避的不純物であるP量を0.02%以下とする。この主たる理由は、母材の低温靭性をより一層向上させるためである。P量の低減は、連続鋳造スラブの中心偏析を低減させて、粒界破壊を防止し低温靭性を向上させる。なお、本発明において、Pは不純物であり、含有していなくても良い。   In the present invention, the amount of P which is an inevitable impurity is set to 0.02% or less. The main reason for this is to further improve the low temperature toughness of the base material. Reduction of the amount of P reduces the center segregation of a continuous casting slab, prevents a grain boundary fracture, and improves low temperature toughness. In the present invention, P is an impurity and may not be contained.

またS量を0.005%以下とする。S量の低減は、延伸化したMnSを低減して延靱性を向上させる効果がある。なお、本発明において、Sは不純物であり、含有していなくても良い。   Further, the S amount is set to 0.005% or less. The reduction of the amount of S has the effect of improving the ductility by reducing the stretched MnS. In the present invention, S is an impurity and may not be contained.

Nbは制御圧延において結晶粒の微細化や析出硬化に寄与し、鋼を強靱化する作用を有する。この効果を発揮させるための最小量として、その下限を0.005%とした。しかしNbを0.080%以上添加すると、溶接金属のNb量が増加し、溶接金属の低温靭性を低下させるとともに溶接性や低温靱性に悪影響をもたらすので、その上限を0.080%とした。   Nb contributes to crystal grain refinement and precipitation hardening in controlled rolling, and has the effect of strengthening steel. As a minimum amount for exhibiting this effect, the lower limit was made 0.005%. However, if Nb is added in an amount of 0.080% or more, the amount of Nb in the weld metal increases, which lowers the low temperature toughness of the weld metal and adversely affects weldability and low temperature toughness, so the upper limit was made 0.080%.

Ti添加は微細なTiNを形成し、スラブ再加熱時および溶接HAZのオ−ステナイト粒の粗大化を抑制してミクロ組織を微細化し、低温靱性を改善する。このようなTiNの効果を発現させるためには、最低0.005%のTi添加が必要である。しかしTi量が多過ぎると、TiNの粗大化やTiCによる析出硬化が生じ、低温靱性が低下するので、その上限は0.030%に限定した。   Ti addition forms fine TiN, suppresses coarsening of austenite grains during slab reheating and welded HAZ, refines the microstructure, and improves low-temperature toughness. In order to exhibit such an effect of TiN, it is necessary to add at least 0.005% Ti. However, when the amount of Ti is too large, TiN coarsening and precipitation hardening due to TiC occur, and the low-temperature toughness decreases, so the upper limit was limited to 0.030%.

Alは通常脱酸剤として鋼に含まれる元素で組織の微細化にも効果があり、その下限は0.001%である。しかしAl量が0.05%を超えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.05%とした。   Al is an element usually contained in steel as a deoxidizer, and is effective in refining the structure, and its lower limit is 0.001%. However, if the Al content exceeds 0.05%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.05%.

NはTiNを形成してスラブ再加熱時および溶接熱影響部(HAZ)のオ−ステナイト粒の粗大化を抑制して母材、HAZの低温靱性を向上させる。このために必要な最小量は0.001%である。しかし多過ぎるとスラブ表面疵や固溶NによるHAZ靱性の低下の原因となるので、その上限は0.006%に抑える必要がある。   N forms TiN and suppresses the coarsening of austenite grains in the slab reheating and welding heat affected zone (HAZ) to improve the low temperature toughness of the base material and HAZ. The minimum amount required for this is 0.001%. However, if the amount is too large, the HAZ toughness is reduced due to slab surface flaws or solute N, so the upper limit must be limited to 0.006%.

O量の低減は鋼中の酸化物を少なくして、低温靱性の改善に効果があるので、その上限は0.006%以下とした。なお、本発明においてOは不純物であり、含有していなくても良い。   The reduction of the amount of O reduces the oxide in the steel and is effective in improving the low temperature toughness, so the upper limit was made 0.006% or less. In the present invention, O is an impurity and may not be contained.

さらに、本発明のスパイラル鋼管は、下記式(1)で定義されるCE値が0.40〜0.55の範囲にある。
CE=C+Si/24+Mn/6 ・・・(1)
この式(1)において、「C」、「Si」、「Mn」は、スパイラル鋼管に含有される各化学成分の質量%を意味する。
Further, the spiral steel pipe of the present invention has a CE value defined by the following formula (1) in the range of 0.40 to 0.55.
CE = C + Si / 24 + Mn / 6 (1)
In this formula (1), “C”, “Si”, and “Mn” mean mass% of each chemical component contained in the spiral steel pipe.

CE値が0.40未満では十分な強度が得られない。またCE値が0.55を超えると、溶接性および靭性が低下する。   If the CE value is less than 0.40, sufficient strength cannot be obtained. On the other hand, when the CE value exceeds 0.55, the weldability and toughness are lowered.

また、本発明のスパイラル鋼管は、鋼成分が、質量%で、さらにCr:0.1〜1.0、Mo:0.1〜1.0、V:0.01〜0.10、B:0.0003〜0.002のうち一種または二種以上を含有しても良い。   Further, the spiral steel pipe of the present invention has a steel component in mass%, and Cr: 0.1 to 1.0, Mo: 0.1 to 1.0, V: 0.01 to 0.10, B: You may contain 1 type, or 2 or more types among 0.0003-0.002.

さらにCr、Mo、V、Bを添加する理由について説明する。基本成分にさらにこれらの元素を添加する主たる目的は、本発明鋼の特徴を損なうことなく、強度・低温靭性などの特性の向上をはかるためである。したがって、その添加量は自ら制限されるべき性質のものである。   Further, the reason for adding Cr, Mo, V, B will be described. The main purpose of adding these elements to the basic component is to improve the properties such as strength and low temperature toughness without impairing the characteristics of the steel of the present invention. Therefore, the amount of addition is a property that should be restricted by itself.

Crは母材の強度を増加させる効果があり、この効果を発揮させるためには0.1%以上の添加が必要である。しかし、多過ぎると溶接性やHAZ靱性を低下させる。このためCr量の上限は0.5%である。   Cr has an effect of increasing the strength of the base material, and in order to exert this effect, addition of 0.1% or more is necessary. However, if too much, weldability and HAZ toughness are reduced. For this reason, the upper limit of the Cr amount is 0.5%.

Moは母材及び溶接部の強度を上昇させる元素であるが、0.5%を超えるとCrと同様に母材、HAZ靭性及び溶接性を低下させる。また、0.1%以下の添加ではその効果が薄い。   Mo is an element that increases the strength of the base metal and the welded portion. However, when it exceeds 0.5%, the base metal, the HAZ toughness and the weldability are reduced in the same manner as Cr. In addition, the effect is small when 0.1% or less is added.

Vは、ほぼNbと同様の効果を有するが、その効果はNbに比較して格段に弱い。その効果を発揮させるためには0.01%以上の添加が必要である。また、上限は現地溶接性、HAZ靭性の点から0.1%まで許容できる。   V has substantially the same effect as Nb, but the effect is much weaker than Nb. In order to exhibit the effect, addition of 0.01% or more is necessary. Further, the upper limit is allowable up to 0.1% from the viewpoint of on-site weldability and HAZ toughness.

Bは極微量で鋼の焼入性を飛躍的に高め、良好な強度と靭性が得られる。この効果を発揮させるためには0.0003%以上の添加が必要である。また、多すぎるとHAZ靭性を低下させるので、その上限の値を0.002%に限定した。   B is a very small amount, which dramatically enhances the hardenability of the steel and provides good strength and toughness. In order to exert this effect, 0.0003% or more must be added. Moreover, since it will reduce HAZ toughness when there is too much, the upper limit value was limited to 0.002%.

また、本発明のスパイラル鋼管は、このようにCr、Mo、V、Bのうち一種または二種以上を含有する場合は、前記式(1)に代えて、下記式(2)で定義されるCE値が0.40〜0.55の範囲にある。
CE=C+Si/24+Mn/6+Cr/5+Mo/4+V/14 ・・・(2)
この式(2)において、「C」、「Si」、「Mn」、「Cr」、「Mo」、「V」は、スパイラル鋼管に含有される各化学成分の質量%を意味する。
Moreover, when the spiral steel pipe of this invention contains 1 type, or 2 or more types among Cr, Mo, V, and B in this way, it replaces with said Formula (1) and is defined by following formula (2). The CE value is in the range of 0.40 to 0.55.
CE = C + Si / 24 + Mn / 6 + Cr / 5 + Mo / 4 + V / 14 (2)
In this formula (2), “C”, “Si”, “Mn”, “Cr”, “Mo”, and “V” mean mass% of each chemical component contained in the spiral steel pipe.

この式(2)で定義されるCE値が0.40〜0.55の範囲に限定する。CE値が0.40未満では十分な強度が得られない。またCE値が0.55を超えると、溶接性および靭性が低下する。   The CE value defined by the formula (2) is limited to the range of 0.40 to 0.55. If the CE value is less than 0.40, sufficient strength cannot be obtained. On the other hand, when the CE value exceeds 0.55, the weldability and toughness are lowered.

なお、本発明のスパイラル鋼管において、これらCr、Mo、V、Bは選択的に含有される化学成分である。したがって、これらCr、Mo、V、Bについては、含有しない場合は上記(式2)において0として計算する。   In addition, in the spiral steel pipe of this invention, these Cr, Mo, V, and B are chemical components contained selectively. Therefore, when Cr, Mo, V, and B are not contained, they are calculated as 0 in the above (Equation 2).

つぎに製造条件の限定理由について説明する。
本発明では、上記の成分を有する内面突起つきスパイラル鋼管を860〜960℃に加熱後、鋼管外表面が650〜850℃の温度から、鋼管長手方向が水平方向となる状態で水槽の中に鋼管を浸漬させ、10℃/秒以上の冷却速度となるように200℃以下まで水冷し、その後、650℃以下で焼き戻し処理する。
Next, the reasons for limiting the manufacturing conditions will be described.
In this invention, after heating the spiral steel pipe with an internal protrusion which has said component to 860-960 degreeC, the steel pipe outer surface is a temperature of 650-850 degreeC, and a steel pipe is put in a water tank in the state from which a steel pipe longitudinal direction becomes a horizontal direction. Is immersed in water and cooled to 200 ° C. or lower so that the cooling rate is 10 ° C./second or higher, and then tempered at 650 ° C. or lower.

内面突起つき熱延コイルをスパイラル状に成形、溶接した鋼管をコンクリートとの合成構造に用いることにより、コンクリートと鋼管の密着性を高めることができる。なお、内面突起つき鋼管の突起高さおよび突起間隔はJIS A 5525(2009)で規定されている。   Adhesion between concrete and steel pipe can be improved by using a steel pipe formed by welding a hot-rolled coil with an inner protrusion in a spiral shape and welding it to a composite structure with concrete. In addition, the protrusion height and protrusion space | interval of the steel pipe with an inner surface protrusion are prescribed | regulated by JISA5525 (2009).

鋼管の加熱温度を860〜960℃とする理由は、オ−ステナイト域で合金元素を溶体化させ、強度と低温靱性を向上させるためである。しかし加熱温度が960℃を超えると、加熱時のオ−ステナイト粒が成長し、結晶粒が大きくなって低温靱性の低下を招くばかりでなく、加熱時に鋼管が自重により大きく変形するためである。このため加熱温度の上限は960℃とした。   The reason why the heating temperature of the steel pipe is set to 860 to 960 ° C. is to make the alloy elements in solution in the austenite region and improve strength and low temperature toughness. However, when the heating temperature exceeds 960 ° C., austenite grains during heating grow and the crystal grains become large, leading to a decrease in low temperature toughness, and the steel pipe is greatly deformed by its own weight during heating. For this reason, the upper limit of heating temperature was 960 degreeC.

加熱後、外表面が650〜850℃の温度から水槽の中に鋼管を浸漬させて、10℃/秒以上の冷却速度で200℃以下まで冷却することによって、ミクロ組織をフェライトとベイナイトやマルテンサイトの2相混合組織とし、所定の強度と0.85未満の低降伏比を達成する。650℃以上から水冷する理由は、過度なフェライトの生成を抑制し、未変態のオーステナイトを変態強化によって十分な強度を得るためである。850℃以下から水冷する理由は、水冷後のミクロ組織をフェライトとベイナイトやマルテンサイトの2相混合組織として、低降伏比を達成するためである。また10℃/秒以上の冷却速度で冷却する理由は、未変態のオーステナイトを変態強化によってベイナイトやマルテンサイトを生成させて、十分な強度を得るためである。さらに200℃以下まで冷却する理由は、水冷による変態強化によってベイナイトやマルテンサイトを生成させて十分な強度を得るためである。鋼管を冷却する際、水槽の中に浸漬する必要がある。水槽に浸漬せずに鋼管外表面側から冷却する方法では、冷却に時間を要し、鋼管内の材質ばらつきが多くなるとともに製造コストが上昇するからである。水槽の中に浸漬して鋼管を冷却する場合、鋼管内の材質ばらつきが低減できる。650℃を超える温度で焼き戻しすると、所定の強度が得られないので、上限の温度を650℃とした。   After heating, the outer surface of the steel tube is immersed in a water bath from a temperature of 650 to 850 ° C., and cooled to 200 ° C. or less at a cooling rate of 10 ° C./second or more, thereby allowing the microstructure to become ferrite and bainite or martensite. A two-phase mixed structure is achieved, and a predetermined strength and a low yield ratio of less than 0.85 are achieved. The reason for water cooling from 650 ° C. or more is to suppress the formation of excessive ferrite and to obtain sufficient strength by transformation strengthening of untransformed austenite. The reason for water cooling from 850 ° C. or lower is to achieve a low yield ratio by using a microstructure after water cooling as a two-phase mixed structure of ferrite and bainite or martensite. Further, the reason for cooling at a cooling rate of 10 ° C./second or more is to obtain bainite and martensite by transformation strengthening of untransformed austenite to obtain sufficient strength. Further, the reason for cooling to 200 ° C. or lower is to obtain sufficient strength by generating bainite and martensite by transformation strengthening by water cooling. When cooling a steel pipe, it is necessary to immerse it in a water tank. This is because the method of cooling from the outer surface side of the steel pipe without immersing it in the water tank requires time for cooling, increases the material variation in the steel pipe and increases the manufacturing cost. When the steel pipe is cooled by being immersed in the water tank, the material variation in the steel pipe can be reduced. When tempering at a temperature exceeding 650 ° C., a predetermined strength cannot be obtained, so the upper limit temperature was set to 650 ° C.

本発明の実施例について述べる。種々の成分を有する熱延コイルからスパイラル成形、溶接して、外径1400mmの内面突起つきスパイラル鋼管を製造した。その後、この鋼管に加熱、水冷、焼き戻し処理をして、諸性質を調査した。低温靭性はシャルピー衝撃試験を行い、0℃での吸収エネルギーで評価した。鋼管の溶接性は鋼管へ付属品を溶接した時の低温割れ発生の有無で評価した。   Examples of the present invention will be described. Spiral forming and welding were performed from hot-rolled coils having various components, and a spiral steel pipe with an inner surface protrusion having an outer diameter of 1400 mm was manufactured. Thereafter, the steel pipe was heated, cooled with water, and tempered to investigate various properties. The low temperature toughness was evaluated by the absorbed energy at 0 ° C. after a Charpy impact test. The weldability of the steel pipe was evaluated by the presence or absence of cold cracking when the accessories were welded to the steel pipe.

成分範囲および製造条件が本発明の範囲内である本発明鋼No.1〜16の組成、組織、降伏強度および降伏比を表1に示す。また、成分範囲もしくは製造条件が本発明の範囲から外れた条件を有する比較鋼No.17〜35の組成、組織、降伏強度および降伏比を表2に示す。また、表1に示すそれぞれの母材からなるスパイラル鋼管の加熱、冷却、焼き戻し条件および諸性質を、それぞれ表3に示す。また、表2に示すそれぞれの母材からなるスパイラル鋼管の加熱、冷却、焼き戻し条件および諸性質を、それぞれ表4に示す。なお、表2、4において、本発明の範囲から外れている条件または性質を示す欄にアンダーラインを付した。   Steel No. of the present invention whose component range and production conditions are within the scope of the present invention. Table 1 shows the composition, structure, yield strength, and yield ratio of 1-16. Moreover, comparative steel No. which has the conditions in which the component range or manufacturing conditions deviated from the scope of the present invention. Table 2 shows the composition, structure, yield strength, and yield ratio of 17-35. Table 3 shows the heating, cooling, tempering conditions and various properties of the spiral steel pipes made of the respective base materials shown in Table 1. Table 4 shows the heating, cooling, tempering conditions and various properties of the spiral steel pipes made of the respective base materials shown in Table 2. In Tables 2 and 4, the columns indicating conditions or properties that are out of the scope of the present invention are underlined.

Figure 0005601295
Figure 0005601295
Figure 0005601295
Figure 0005601295
Figure 0005601295
Figure 0005601295
Figure 0005601295
Figure 0005601295

表1、3に示すように、本発明例であるNo.1〜16の内面突起つき鋼管は、強度、低温靭性、溶接性において、優れた特性を有していた。これに対して、表2、4に示すように、比較鋼No.17〜35は、化学成分またはスパイラル鋼管の製造条件が適切でなく、いずれかの特性が劣っていた。No.17は母材のC量が多過ぎるため、低温靱性が低い。No.18は母材のMn量が多過ぎるため、低温靱性が低い。No.19は母材のNb量が多過ぎるため、低温靱性が低い。No.20はCr量が多すぎるため、低温靭性が低い。No.21はMo量が多すぎるため、低温靭性が低い。No.22はV量が多すぎるため、低温靭性が低い。No.23はB量が多すぎるため、低温靭性が低い。No.24はCE値が大きすぎるため、強度が著しく上昇し、低温靭性が低く、溶接時に低温割れが発生した。No.25はCE値が低く、降伏強度YSが低いため十分な曲げ耐力が得られない。No.26はフェライト分率が高く、降伏強度が低いため十分な曲げ耐力が得られない。No.27はCE値が高く、強度が高すぎるため、低温靭性が低く、溶接時に低温割れが発生した。No.28は鋼管の加熱温度が低すぎるため、降伏強度が低く、十分な曲げ耐力が得られない。   As shown in Tables 1 and 3, No. The steel pipes having 1-16 inner surface protrusions had excellent characteristics in strength, low temperature toughness, and weldability. On the other hand, as shown in Tables 2 and 4, comparative steel No. In Nos. 17 to 35, the chemical components or the manufacturing conditions of the spiral steel pipe were not appropriate, and any of the characteristics was inferior. No. Since No. 17 has too much C content of a base material, low temperature toughness is low. No. Since No. 18 has too much Mn content of the base material, low temperature toughness is low. No. Since No. 19 has too much Nb content of the base material, low temperature toughness is low. No. No. 20 has low Cr toughness due to too much Cr. No. Since No. 21 has too much Mo amount, low temperature toughness is low. No. Since 22 has too much V amount, low temperature toughness is low. No. Since No. 23 has too much B content, low temperature toughness is low. No. Since the CE value of No. 24 was too large, the strength was remarkably increased, the low temperature toughness was low, and low temperature cracks occurred during welding. No. No. 25 has a low CE value and a low yield strength YS, so a sufficient bending strength cannot be obtained. No. No. 26 has a high ferrite fraction and a low yield strength, so a sufficient bending strength cannot be obtained. No. No. 27 had a high CE value and too high strength, so the low temperature toughness was low and cold cracking occurred during welding. No. In No. 28, since the heating temperature of the steel pipe is too low, the yield strength is low and sufficient bending strength cannot be obtained.

No.29は鋼管の加熱温度が高すぎるため、降伏比が0.85を超え、低温靱性が低い。No.30は加熱後の水冷開始温度が低すぎるため、強度が低い。No.31は加熱後の水冷開始温度が高すぎるため、降伏比が0.85を超える。No.32は加熱後の冷却速度が遅いため強度が低い。No.33は冷却停止温度が高すぎるため、強度が低く、低温靭性も低い。No.34は冷却時に水槽内に浸漬せず、鋼管外表面から冷却しているため、円周方向の降伏強度のばらつきが大きい。No.35は焼き戻し温度が高すぎるため、強度が低く、低温靭性も低い。   No. In No. 29, since the heating temperature of the steel pipe is too high, the yield ratio exceeds 0.85 and the low temperature toughness is low. No. No. 30 has a low strength because the water cooling start temperature after heating is too low. No. No. 31 has a yield ratio exceeding 0.85 because the water cooling start temperature after heating is too high. No. No. 32 has a low strength because the cooling rate after heating is slow. No. Since the cooling stop temperature is too high, 33 has low strength and low temperature toughness. No. Since 34 is not immersed in the water tank at the time of cooling but is cooled from the outer surface of the steel pipe, the variation in the yield strength in the circumferential direction is large. No. No. 35 has a low tempering temperature and therefore has low strength and low temperature toughness.

以上のように、本発明のいずれかの条件から外れると、良好な性質のスパイラル鋼管が得られないのに対し、本発明により、溶接性に優れた450MPa以上の降伏強度と0.85未満の降伏比を有する、溶接性に優れた内面突起つきスパイラル鋼管が安定して製造できた。   As described above, a spiral steel pipe having good properties cannot be obtained if it deviates from any of the conditions of the present invention. On the other hand, according to the present invention, the yield strength of 450 MPa or more excellent in weldability and less than 0.85 A spiral steel pipe with an inner surface protrusion having a yield ratio and excellent weldability could be stably produced.

本発明は、建築物や橋梁、鉄塔などの基礎構造に用いられるコンクリート充填鋼管に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for concrete-filled steel pipes used for foundation structures such as buildings, bridges, and steel towers.

Claims (4)

質量%で、C:0.05〜0.20、Si:0.01〜0.6、Mn:0.8〜2.2、P:0.02以下、S:0.005以下、Nb:0.005〜0.080、Ti:0.005〜0.030、Al:0.001〜0.05、N:0.001〜0.006、O:0.006以下を含有し、残部が鉄および不可避的不純物からなり、かつ、下記式(1)で定義されるCE値が0.40〜0.55の範囲にあり、フェライト分率が16〜50%、残部の組織がベイナイトとマルテンサイトからなることを特徴とする450MPa以上650MPa以下の降伏強度、かつ、0.85未満の降伏比を有する内面突起つきスパイラル鋼管。
CE=C+Si/24+Mn/6 ・・・(1)
In mass%, C: 0.05 to 0.20, Si: 0.01 to 0.6, Mn: 0.8 to 2.2, P: 0.02 or less, S: 0.005 or less, Nb: 0.005-0.080, Ti: 0.005-0.030, Al: 0.001-0.05, N: 0.001-0.006, O: 0.006 or less, the balance being It consists of iron and unavoidable impurities, and the CE value defined by the following formula (1) is in the range of 0.40 to 0.55, the ferrite fraction is 16 to 50%, and the remaining structure is bainite and martense. A spiral steel pipe with an inner protrusion having a yield strength of 450 MPa or more and 650 MPa or less and a yield ratio of less than 0.85.
CE = C + Si / 24 + Mn / 6 (1)
鋼成分が、質量%で、さらにCr:0.1〜0.5、Mo:0.1〜0.5、V:0.01〜0.10、B:0.0003〜0.002のうち一種または二種以上を含有し、かつ、前記式(1)に代えて、下記式(2)で定義されるCE値が0.40〜0.55の範囲にあることを特徴とする請求項1記載の450MPa以上650MPa以下の降伏強度、かつ、0.85未満の降伏比を有する内面突起つきスパイラル鋼管。
CE=C+Si/24+Mn/6+Cr/5+Mo/4+V/14 ・・・(2)
Steel component is mass%, and Cr: 0.1-0.5 , Mo: 0.1-0.5 , V: 0.01-0.10, B: 0.0003-0.002 1 or 2 types or more and it replaces with said Formula (1), and CE value defined by following formula (2) exists in the range of 0.40-0.55, It is characterized by the above-mentioned. 1. A spiral steel pipe with an inner surface protrusion having a yield strength of 450 MPa to 650 MPa and a yield ratio of less than 0.85.
CE = C + Si / 24 + Mn / 6 + Cr / 5 + Mo / 4 + V / 14 (2)
質量%で、C:0.05〜0.20、Si:0.01〜0.6、Mn:0.8〜2.2、P:0.02以下、S:0.005以下、Nb:0.005〜0.080、Ti:0.005〜0.030、Al:0.001〜0.05、N:0.001〜0.006、O:0.006以下を含有し、残部が鉄および不可避的不純物からなり、かつ、下記式(1)で定義されるCE値が0.40〜0.55の範囲にある母材からなる内面突起つきスパイラル鋼管を、860〜960℃に加熱後、鋼管外表面が650〜850℃の温度から水槽の中に鋼管を浸漬させて、10℃/秒以上の冷却速度となるように200℃以下まで水冷し、その後、650℃以下で焼き戻し処理することを特徴とする450MPa以上650MPa以下の降伏強度、かつ、0.85未満の降伏比を有する内面突起つきスパイラル鋼管の製造法。
CE=C+Si/24+Mn/6 ・・・(1)
In mass%, C: 0.05 to 0.20, Si: 0.01 to 0.6, Mn: 0.8 to 2.2, P: 0.02 or less, S: 0.005 or less, Nb: 0.005-0.080, Ti: 0.005-0.030, Al: 0.001-0.05, N: 0.001-0.006, O: 0.006 or less, the balance being A spiral steel pipe with an inner protrusion made of iron and unavoidable impurities and having a CE value defined by the following formula (1) in the range of 0.40 to 0.55 is heated to 860 to 960 ° C. After that, the steel pipe outer surface is immersed in a water bath from a temperature of 650 to 850 ° C., water cooled to 200 ° C. or lower so that the cooling rate is 10 ° C./second or higher, and then tempered at 650 ° C. or lower. Yield strength of 450 MPa or more and 650 MPa or less characterized by processing, and Preparation of the inner surface projections with spiral pipe having a yield ratio of less than .85.
CE = C + Si / 24 + Mn / 6 (1)
前記母材が、質量%で、さらに、Cr:0.1〜0.5、Mo:0.1〜0.5、V:0.01〜0.10、B:0.0003〜0.002のうち一種または二種以上を含有し、かつ、前記式(1)に代えて、下記式(2)で定義されるCE値が0.40〜0.55の範囲にあることを特徴とする請求項3記載の450MPa以上650MPa以下の降伏強度、かつ、0.85未満の降伏比を有する内面突起つきスパイラル鋼管の製造法。
CE=C+Si/24+Mn/6+Cr/5+Mo/4+V/14 ・・・(2)
The said base material is the mass%, and also Cr: 0.1-0.5, Mo: 0.1-0.5, V: 0.01-0.10, B: 0.0003-0.002 1 or 2 or more of them, and, instead of the formula (1), the CE value defined by the following formula (2) is in the range of 0.40 to 0.55. The manufacturing method of the spiral steel pipe with an inner surface protrusion which has the yield strength of 450 MPa or more and 650 MPa or less of Claim 3, and the yield ratio of less than 0.85.
CE = C + Si / 24 + Mn / 6 + Cr / 5 + Mo / 4 + V / 14 (2)
JP2011190972A 2011-09-01 2011-09-01 Spiral steel pipe with internal protrusion with low yield ratio and its manufacturing method Active JP5601295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190972A JP5601295B2 (en) 2011-09-01 2011-09-01 Spiral steel pipe with internal protrusion with low yield ratio and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190972A JP5601295B2 (en) 2011-09-01 2011-09-01 Spiral steel pipe with internal protrusion with low yield ratio and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2013053325A JP2013053325A (en) 2013-03-21
JP5601295B2 true JP5601295B2 (en) 2014-10-08

Family

ID=48130585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190972A Active JP5601295B2 (en) 2011-09-01 2011-09-01 Spiral steel pipe with internal protrusion with low yield ratio and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5601295B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256851A (en) * 1993-03-04 1994-09-13 Nippon Steel Corp Production of square pipe having low yield ratio and excellent weatherability
JP2006299414A (en) * 2005-03-24 2006-11-02 Jfe Steel Kk Method for producing low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP5069863B2 (en) * 2005-09-28 2012-11-07 株式会社神戸製鋼所 490 MPa class low yield ratio cold-formed steel pipe excellent in weldability and manufacturing method thereof
JP5447278B2 (en) * 2009-08-17 2014-03-19 新日鐵住金株式会社 Spiral steel pipe with internal protrusion and its manufacturing method
JP5609404B2 (en) * 2009-08-17 2014-10-22 新日鐵住金株式会社 Manufacturing method of spiral steel pipe with internal protrusion

Also Published As

Publication number Publication date
JP2013053325A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5447278B2 (en) Spiral steel pipe with internal protrusion and its manufacturing method
JP5573265B2 (en) High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
JP5385760B2 (en) Cold-formed square steel pipe with excellent earthquake resistance
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP4858221B2 (en) High-tensile steel with excellent ductile crack initiation characteristics
JP4072009B2 (en) Manufacturing method of UOE steel pipe with high crushing strength
JP6725020B2 (en) Valve plate and method for manufacturing valve plate
JP5786720B2 (en) High tensile thick steel plate having a tensile strength of 780 MPa or more and method for producing the same
JP6128042B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
JP6819831B2 (en) H-shaped steel with protrusions and its manufacturing method
JP5609404B2 (en) Manufacturing method of spiral steel pipe with internal protrusion
JP2009235516A (en) 590 MPa CLASS HIGH YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5998670B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
US8685182B2 (en) High-strength steel pipe and producing method thereof
JP5601295B2 (en) Spiral steel pipe with internal protrusion with low yield ratio and its manufacturing method
JP5655598B2 (en) High tensile steel plate and method for manufacturing the same
JP3737300B2 (en) Non-tempered low yield ratio high tensile strength steel plate with excellent weldability
JP7410438B2 (en) steel plate
JP7347361B2 (en) H-shaped steel with protrusions and its manufacturing method
JP4646719B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP7393614B2 (en) High strength, high ductility steel plate and its manufacturing method
JP5874290B2 (en) Steel material for welded joints excellent in ductile crack growth characteristics and method for producing the same
JP2002206140A (en) Steel tube and production method therefor
JP5741016B2 (en) Method for producing high-strength thick steel plate with excellent weldability and base metal toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R151 Written notification of patent or utility model registration

Ref document number: 5601295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350