JP5600900B2 - Water repellent composition - Google Patents

Water repellent composition Download PDF

Info

Publication number
JP5600900B2
JP5600900B2 JP2009172018A JP2009172018A JP5600900B2 JP 5600900 B2 JP5600900 B2 JP 5600900B2 JP 2009172018 A JP2009172018 A JP 2009172018A JP 2009172018 A JP2009172018 A JP 2009172018A JP 5600900 B2 JP5600900 B2 JP 5600900B2
Authority
JP
Japan
Prior art keywords
component
group
och
osi
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009172018A
Other languages
Japanese (ja)
Other versions
JP2011026402A (en
Inventor
和之 松村
秀好 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009172018A priority Critical patent/JP5600900B2/en
Publication of JP2011026402A publication Critical patent/JP2011026402A/en
Application granted granted Critical
Publication of JP5600900B2 publication Critical patent/JP5600900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車両や建築物等のガラスや繊維用品、多孔質材料などに撥水性を付与する撥水剤組成物に関する。   The present invention relates to a water repellent composition that imparts water repellency to glass, textiles, porous materials and the like of vehicles and buildings.

従来、ガラスや繊維製品などに撥水性を付与するものとして、種々のフッ素系材料を用いた撥水剤組成物が利用されてきた。このようなフッ素系材料としては、例えば分子内にパーフルオロ基又はフルオロアルキル基を含有するモノマーの重合物、あるいはこれらモノマーと他のモノマーとの共重合物等が用いられている。   Conventionally, water repellent compositions using various fluorine-based materials have been used as those for imparting water repellency to glass, fiber products and the like. As such a fluorine-based material, for example, a polymer of a monomer containing a perfluoro group or a fluoroalkyl group in the molecule, or a copolymer of these monomer and another monomer is used.

しかしながら、このようなフッ素系の重合物を用いた撥水剤組成物は、撥水効果は良好であるが、希釈用の溶剤として、大気のオゾン層破壊の一因として挙げられ、地球環境保護の見地からその使用が制限されているようなフッ素系溶剤を使用せざるを得ないという問題があった。また、このような問題のない代替溶剤の検討もなされているが、未だ満足すべき結果は得られていない。   However, although the water repellent composition using such a fluorine-based polymer has a good water repellent effect, it is cited as a cause of destruction of the ozone layer in the atmosphere as a solvent for dilution, and protects the global environment. In view of the above, there has been a problem that a fluorinated solvent whose use is restricted must be used. In addition, although an alternative solvent free from such problems has been studied, satisfactory results have not yet been obtained.

そこで、最近では、オゾン層破壊を引き起こすような溶剤を使用する必要がない、シリコーン系材料を用いた撥水剤組成物の検討が行われている。   Therefore, recently, a water repellent composition using a silicone material that does not require the use of a solvent that causes ozone layer destruction has been studied.

シリコーン系材料を用いた撥水剤組成物としては、例えば、特定の有機溶剤可溶性シリコーン樹脂及び/又は有機溶剤可溶性シリコーングラフトアクリル樹脂と、金属アルコキシドと、オルガノポリシロキサンとからなる撥水剤成分に、有機溶剤と噴射ガスとが配合されたエアゾール型撥水処理剤(特許文献1:特開2000−186279号公報参照)、両末端がアルコキシ基で封鎖されたポリオルガノシロキサンと、金属アルコキシド又はその部分加水分解縮合物と、エタノール又はイソプロパノールとが配合された撥水剤組成物(特許文献2:特許第3496976号公報参照)が提案されている。また、特定のポリオルガノシロキサン樹脂と、直鎖状ジポリオルガノシロキサンと、有機チタン酸エステル又は有機ジルコニウム酸エステル又は有機ゲルマニウム酸エステルなどと、第4級アンモニウム塩基を有する抗菌性シランと、溶剤とを含有する撥水処理剤組成物(特許文献3:特許第3187445号公報参照)、特定のポリオルガノシロキサン樹脂と、アルキル−アルコキシポリシロキサン樹脂と、縮合触媒と、芳香族系溶剤とからなる撥水剤(特許文献4:特開昭63−170484号公報参照)が提案されている。   Examples of the water repellent composition using a silicone material include a water repellent component composed of a specific organic solvent-soluble silicone resin and / or organic solvent-soluble silicone graft acrylic resin, a metal alkoxide, and an organopolysiloxane. , An aerosol-type water-repellent treatment agent in which an organic solvent and a jet gas are blended (see Patent Document 1: Japanese Patent Laid-Open No. 2000-186279), a polyorganosiloxane blocked at both ends with an alkoxy group, and a metal alkoxide or its There has been proposed a water repellent composition containing a partially hydrolyzed condensate and ethanol or isopropanol (see Patent Document 2: Japanese Patent No. 3496976). In addition, a specific polyorganosiloxane resin, a linear dipolyorganosiloxane, an organic titanate ester, an organic zirconate ester, an organic germanate ester, etc., an antibacterial silane having a quaternary ammonium base, a solvent, Water-repellent treatment composition (see Patent Document 3: Japanese Patent No. 3187445), a specific polyorganosiloxane resin, an alkyl-alkoxypolysiloxane resin, a condensation catalyst, and an aromatic solvent. A liquid medicine (Patent Document 4: Japanese Patent Laid-Open No. 63-170484) has been proposed.

しかしながら、シリコーン系材料を用いた撥水剤組成物は、一般に、フッ素系材料を用いた撥水剤組成物よりも撥水性や撥水持続性が不十分である場合が多く、これら特許文献に記載の撥水剤組成物を使用しても、十分な撥水性や撥水持続性が必ずしも得られない場合があった。   However, a water repellent composition using a silicone material generally has insufficient water repellency and water repellency compared to a water repellent composition using a fluorine-based material. Even when the described water repellent composition is used, sufficient water repellency and water repellency persistence may not always be obtained.

特開2000−186279号公報JP 2000-186279 A 特許第3496976号公報Japanese Patent No. 3496976 特許第3187445号公報Japanese Patent No. 3187445 特開昭63−170484号公報JP-A 63-170484

本発明は、上記事情に鑑みなされたものであり、シリコーン系材料を用いた撥水剤組成物において、優れた撥水性と撥水持続性とを付与でき、しかも環境的に安全な溶剤系で使用できる撥水剤組成物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a water repellent composition using a silicone-based material, it can impart excellent water repellency and water repellency, and is an environmentally safe solvent system. It aims at providing the water repellent composition which can be used.

本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、
[(A)オルガノポリシロキサン]
下記一般式(1)
m(R2nSi(OR1(4-m-n)・・・(1)
(式中、Xは置換又は非置換の炭素原子数6〜18の1価炭化水素基、R1は炭素原子数1〜4の1価炭化水素基、R2は炭素原子数1〜3の1価炭化水素基であり、mは1又は2、nは0又は1、m+nは1又は2である。)
で表される有機ケイ素化合物及び/又はその部分加水分解縮合物、又は
これと、下記一般式(2)
Z−Y−Si(R2p(OR13-p・・・(2)
〔式中、R1及びR2は上記と同じであり、Yは2価の有機基、又は−R4 s−(OSi(R32rO−R4 s−基であり、ここでR3は炭素原子数1〜6の1価炭化水素基、R4は炭素原子数1〜6の2価炭化水素基、rは1〜40の整数、sは0又は1である。Zは(OR13-q(R2qSi−基であり、qは0、1、2又は3であり、また、pは0、1、2又は3、p+qは0〜4である。〕
で表される有機ケイ素化合物及び/又はその部分加水分解縮合物と
を含む有機ケイ素化合物原料を、加水分解、重縮合することによって得られる環状体オルガノポリシロキサンとリニア体オルガノポリシロキサンを含有するオルガノポリシロキサンであって、ケイ素核磁気共鳴スペクトル分析における式(1)で表される有機ケイ素化合物及び/又はその部分加水分解縮合物由来のピークのアルコキシ基が2つ加水分解縮合し、シロキサン単位となった成分(T2成分)において、環状体部分由来の成分のピーク強度の積分値(T2a積分強度)とリニア体部分由来の成分のピーク強度の積分値(T2b積分強度)との比率(T2a積分強度/T2b積分強度)が2.3以上であるオルガノポリシロキサン、
[(B)溶剤成分]
揮発性の有機溶剤
を含有する撥水剤組成物を用いることにより、基材に対し良好な撥水性能と撥水持続性を付与でき、環境にも優しく、更に撥水剤組成物の保存安定性にも優れることを知見し、本発明をなすに至ったものである。
In order to achieve the above object, the present inventors have conducted extensive studies,
[(A) Organopolysiloxane]
The following general formula (1)
X m (R 2) n Si (OR 1) (4-mn) ··· (1)
(In the formula, X is a substituted or unsubstituted monovalent hydrocarbon group having 6 to 18 carbon atoms, R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, and R 2 is a group having 1 to 3 carbon atoms. (It is a monovalent hydrocarbon group, m is 1 or 2, n is 0 or 1, and m + n is 1 or 2.)
Or a partially hydrolyzed condensate thereof, or the following general formula (2)
Z—Y—Si (R 2 ) p (OR 1 ) 3-p (2)
[Wherein, R 1 and R 2 are the same as above, Y is a divalent organic group, or —R 4 s — (OSi (R 3 ) 2 ) r O—R 4 s — R 3 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, R 4 is a divalent hydrocarbon group having 1 to 6 carbon atoms, r is an integer of 1 to 40, and s is 0 or 1. Z is (OR 1) 3-q ( R 2) q Si- group, q is 0, 1, 2 or 3, also, p is 0, 1, 2 or 3, p + q is 0 to 4 is there. ]
An organosilicon compound containing a cyclic organopolysiloxane and a linear organopolysiloxane obtained by hydrolysis and polycondensation of an organosilicon compound raw material containing an organosilicon compound and / or a partial hydrolysis-condensation product thereof Two polysiloxanes having a peak derived from the organosilicon compound represented by the formula (1) and / or a partial hydrolysis condensate thereof in the silicon nuclear magnetic resonance spectrum analysis are hydrolyzed and condensed to form siloxane units. in since component (T2 components), the ratio (T2a integral with the integral value of the peak intensity of the component derived from the annular body portion (T2a integrated intensity) and the integral value of the peak intensity of the component derived from the linear body portion (T2b integrated intensity) Strength / T2b integral strength ) is 2.3 or more,
[(B) Solvent component]
By using a water repellent composition containing a volatile organic solvent, it can impart good water repellency and water repellency to the substrate, is environmentally friendly, and is stable in storage of the water repellent composition. As a result, the inventors have found that the present invention is also excellent, and have reached the present invention.

従って、本発明は、下記の撥水剤組成物を提供する。
〔請求項1〕
(A)下記一般式(1)
m(R2nSi(OR1(4-m-n)・・・(1)
(式中、Xは炭素原子数6〜18のアルキル基、R1メチル基、エチル基、プロピル基又はブチル基、R2メチル基、エチル基又はプロピル基であり、mは1又は2、nは0又は1、m+nは1又は2である。)
で表される有機ケイ素化合物及び/又はその部分加水分解縮合物、又はこの有機ケイ素化合物及び/又はその部分加水分解縮合物と、下記一般式(2)
Z−Y−Si(R2p(OR13-p・・・(2)
〔式中、R1及びR2は上記と同じであり、Yは炭素原子数1〜20のアルキレン基、又は−R4 s−(OSi(R32rO−R4 s−基であり、ここで、R3は炭素原子数1〜6のアルキル基、R4は炭素原子数1〜6のアルキレン基、rは1〜40の整数、sは0又は1である。Zは(OR13-q(R2qSi−基であり、qは0、1、2又は3であり、また、pは0、1、2又は3、p+qは0〜4である。〕
で表される有機ケイ素化合物及び/又はその部分加水分解縮合物;上記一般式(1)で表される有機ケイ素化合物及び/又はその部分加水分解縮合物1モルに対して0.01〜0.3モルとなる量
を含む有機ケイ素化合物原料を、尿素塩酸塩を使用して加水分解、重縮合することによって得られる環状体オルガノポリシロキサンとリニア体オルガノポリシロキサンを含有するオルガノポリシロキサンであって、ケイ素核磁気共鳴スペクトル分析における式(1)で表される有機ケイ素化合物及び/又はその部分加水分解縮合物由来のピークのアルコキシ基が2つ加水分解縮合し、シロキサン単位となった−55〜−61ppmの成分(T2成分)において、環状体部分由来の成分である−55〜−59ppmの範囲のピーク強度の積分値(T2a積分強度)とリニア体部分由来の成分である−59〜−61ppmの範囲のピーク強度の積分値(T2b積分強度)との比率(T2a積分強度/T2b積分強度)が2.3以上8.6以下であるオルガノポリシロキサン、
(B)溶剤成分として揮発性の有機溶剤
を含有することを特徴とする撥水剤組成物。
〔請求項
(B)成分である揮発性の有機溶剤が、パラフィン系炭化水素及び/又はシリコーンオイルを主剤とする有機溶剤であることを特徴とする請求項1記載の撥水剤組成物。
Accordingly, the present invention provides the following water repellent composition.
[Claim 1]
(A) The following general formula (1)
X m (R 2) n Si (OR 1) (4-mn) ··· (1)
(Wherein, X represents an alkyl group having carbon atom number having 6 to 18, R 1 is a methyl group, an ethyl group, a propyl group or a butyl group, R 2 is methyl group, ethyl group or propyl group, m is 1 or 2, n is 0 or 1, and m + n is 1 or 2.)
An organosilicon compound and / or a partially hydrolyzed condensate thereof, or an organosilicon compound and / or a partially hydrolyzed condensate thereof, and the following general formula (2)
Z—Y—Si (R 2 ) p (OR 1 ) 3-p (2)
[Wherein, R 1 and R 2 are the same as above, and Y is an alkylene group having 1 to 20 carbon atoms , or —R 4 s — (OSi (R 3 ) 2 ) r O—R 4 s — group. Wherein R 3 is an alkyl group having 1 to 6 carbon atoms, R 4 is an alkylene group having 1 to 6 carbon atoms, r is an integer of 1 to 40, and s is 0 or 1. Z is (OR 1) 3-q ( R 2) q Si- group, q is 0, 1, 2 or 3, also, p is 0, 1, 2 or 3, p + q is 0 to 4 is there. ]
The organic silicon compound and / or its partial hydrolysis condensate represented by the general formula (1): 0.01 to 0.001 per mol of the organosilicon compound represented by the general formula (1) and / or its partial hydrolysis condensate. An organopolysiloxane containing a cyclic organopolysiloxane and a linear organopolysiloxane obtained by hydrolyzing and polycondensing an organosilicon compound raw material containing 3 moles using urea hydrochloride. Te, an alkoxy group of peaks derived from the organic silicon compound represented by the formula (1) in the silicon nuclear magnetic resonance spectroscopy and / or partial hydrolysis-condensation product thereof combined two hydrolytic condensation became siloxane units -55 in the component of ~-61 ppm (T2 components), the integral value of the peak intensity in the range of -55 to-59 ppm is a component derived from the cyclic moiety ( 2a integrated intensity) and the ratio (T2a integrated intensity / T2b integrated intensity of the integral value (T2b integrated intensity) of the peak intensity in the range of -59~-61ppm a component derived from the linear body portion) 2.3 or 8. An organopolysiloxane that is 6 or less ,
(B) A water repellent composition comprising a volatile organic solvent as a solvent component.
[Claim 2 ]
Component (B) is a volatile organic solvent is paraffinic hydrocarbons and / or water repellent composition of claim 1 Symbol mounting, characterized in that an organic solvent for the silicone oil a main agent.

本発明の撥水剤組成物は撥水性及び撥水接続性に優れたものである。   The water repellent composition of the present invention is excellent in water repellency and water repellency connectivity.

合成例2で得られたオルガノポリシロキサン1のケイ素核磁気共鳴スペクトルである。3 is a silicon nuclear magnetic resonance spectrum of organopolysiloxane 1 obtained in Synthesis Example 2. FIG.

以下、本発明につき更に詳しく説明する。
[(A)成分]
本発明の撥水剤組成物の主剤となる(A)オルガノポリシロキサン成分は、上述したように下記一般式(1)
m(R2nSi(OR1(4-m-n)・・・(1)
で表される有機ケイ素化合物及び/又はその部分加水分解縮合物、又は
これと、下記一般式(2)
Z−Y−Si(R2p(OR13-p・・・(2)
で表される有機ケイ素化合物及び/又はその部分加水分解縮合物とを含む有機ケイ素化合物原料を加水分解縮合したものであり、生成するオルガノポリシロキサンと分離状態となる液状の加水分解縮合触媒を使用して加水分解、重縮合することにより得られるオルガノポリシロキサンを使用することが特徴である。
Hereinafter, the present invention will be described in more detail.
[(A) component]
As described above, the (A) organopolysiloxane component that is the main component of the water repellent composition of the present invention is represented by the following general formula (1).
X m (R 2) n Si (OR 1) (4-mn) ··· (1)
Or a partially hydrolyzed condensate thereof, or the following general formula (2)
Z—Y—Si (R 2 ) p (OR 1 ) 3-p (2)
The organosilicon compound raw material containing the organosilicon compound and / or its partial hydrolysis-condensation product represented by the above formula is hydrolyzed and condensed, and a liquid hydrolysis-condensation catalyst that is separated from the resulting organopolysiloxane is used. It is characterized by using an organopolysiloxane obtained by hydrolysis and polycondensation.

式(1)におけるXは、置換又は非置換の炭素原子数6〜18の1価炭化水素基であり、アルキル基、特に直鎖状のアルキル基であることが好ましく、また置換基としては、炭素原子に結合した水素原子の一部又は全部をフッ素原子、塩素原子等のハロゲン原子で置換した基が挙げられ、好ましくは非置換の基である。例えば、C613−基、C817−基、C1021−基、C1225−基、C1429−基、C1633−基、C1837−基等が挙げられる。R1は炭素原子数1〜4の1価炭化水素基であり、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、メチル基、エチル基が好ましい。R2は炭素原子数1〜3の1価炭化水素基であり、メチル基、エチル基、プロピル基等が挙げられ、メチル基が好ましい。また、mは1又は2、nは0又は1、m+nは1又は2である。好ましくは、mが1、nが0、m+nは1である。 X in Formula (1) is a substituted or unsubstituted monovalent hydrocarbon group having 6 to 18 carbon atoms, and is preferably an alkyl group, particularly a linear alkyl group. Examples include a group in which some or all of the hydrogen atoms bonded to the carbon atom are substituted with a halogen atom such as a fluorine atom or a chlorine atom, and an unsubstituted group is preferred. For example, C 6 H 13 -group, C 8 H 17 -group, C 10 H 21 -group, C 12 H 25 -group, C 14 H 29 -group, C 16 H 33 -group, C 18 H 37 -group Etc. R 1 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group, and a methyl group and an ethyl group are preferable. R 2 is a monovalent hydrocarbon group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group, and a methyl group is preferable. M is 1 or 2, n is 0 or 1, and m + n is 1 or 2. Preferably, m is 1, n is 0, and m + n is 1.

このような化合物の例としては、C613Si(OCH33、C613SiCH3(OCH32、C613Si(OCH2CH33、C613SiCH3(OCH2CH32、C817Si(OCH33、C817SiCH3(OCH32、C817Si(OCH2CH33、C817SiCH3(OCH2CH32、C1021Si(OCH33、C1021SiCH3(OCH32、C1021Si(OCH2CH33、C1021SiCH3(OCH2CH32、C1225Si(OCH33、C1225SiCH3(OCH32、C1225Si(OCH2CH33、C1225SiCH3(OCH2CH32、C1429Si(OCH33、C1429SiCH3(OCH32、C1429Si(OCH2CH33、C1429SiCH3(OCH2CH32、C1633Si(OCH33、C1633SiCH3(OCH32、C1633Si(OCH2CH33、C1633SiCH3(OCH2CH32、C1837Si(OCH33、C1837SiCH3(OCH32、C1837Si(OCH2CH33、C1837SiCH3(OCH2CH32等が挙げられる。 Examples of such compounds, C 6 H 13 Si (OCH 3) 3, C 6 H 13 SiCH 3 (OCH 3) 2, C 6 H 13 Si (OCH 2 CH 3) 3, C 6 H 13 SiCH 3 (OCH 2 CH 3 ) 2 , C 8 H 17 Si (OCH 3 ) 3 , C 8 H 17 SiCH 3 (OCH 3 ) 2 , C 8 H 17 Si (OCH 2 CH 3 ) 3 , C 8 H 17 SiCH 3 (OCH 2 CH 3 ) 2 , C 10 H 21 Si (OCH 3 ) 3 , C 10 H 21 SiCH 3 (OCH 3 ) 2 , C 10 H 21 Si (OCH 2 CH 3 ) 3 , C 10 H 21 SiCH 3 (OCH 2 CH 3 ) 2 , C 12 H 25 Si (OCH 3 ) 3 , C 12 H 25 SiCH 3 (OCH 3 ) 2 , C 12 H 25 Si (OCH 2 CH 3 ) 3 , C 12 H 25 SiCH 3 (OCH 2 CH 3) 2 , C 14 H 29 Si (OCH 3) 3, C 14 H 29 SiCH 3 (OCH 3) 2, C 14 H 29 S (OCH 2 CH 3) 3, C 14 H 29 SiCH 3 (OCH 2 CH 3) 2, C 16 H 33 Si (OCH 3) 3, C 16 H 33 SiCH 3 (OCH 3) 2, C 16 H 33 Si (OCH 2 CH 3 ) 3 , C 16 H 33 SiCH 3 (OCH 2 CH 3 ) 2 , C 18 H 37 Si (OCH 3 ) 3 , C 18 H 37 SiCH 3 (OCH 3 ) 2 , C 18 H 37 Si (OCH 2 CH 3) 3, C 18 H 37 SiCH 3 (OCH 2 CH 3) 2 and the like.

式(2)中のR1、R2は式(1)と同じである。また、Yはハロゲン原子を含んでもよい炭素原子数1〜20のアルキレン基等の2価の有機基、又は−R4 s−(OSi(R32rO−R4 s−基である(ここで、R3は炭素原子数1〜6の1価炭化水素基、具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、n−ヘキシル基等のアルキル基が挙げられ、特にメチル基が好ましい。また、R4は炭素原子数1〜6の2価炭化水素基であり、具体的には−CH2−、−CH2CH2−、−CH2CH2CH2CH2−、−CH2CH2CH2CH2CH2CH2−等のアルキレン基が挙げられる。rは1〜40の整数、sは0又は1である。)。具体的には下記のものを例示することができるが、これに限定されるものではない。 R 1 and R 2 in the formula (2) are the same as those in the formula (1). Y is a divalent organic group such as an alkylene group having 1 to 20 carbon atoms which may contain a halogen atom, or a —R 4 s — (OSi (R 3 ) 2 ) r O—R 4 s — group. (Wherein R 3 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, specifically a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group) Group, an alkyl group such as an n-hexyl group, and the like, particularly preferably a methyl group, and R 4 is a divalent hydrocarbon group having 1 to 6 carbon atoms, specifically, —CH 2 —, — Examples include an alkylene group such as CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —, etc. r is an integer of 1 to 40, and s is 0. Or 1.) Specifically, the following can be exemplified, but the present invention is not limited thereto.

−CH2−、−CH2CH2−、−CH2CH2CH2CH2−、
−CH2CH2CH2CH2CH2CH2−、
−CH2CH2CH2CH2CH2CH2CH2CH2−、
−CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2−、
−CH248CH2−、−CH2612CH2−、
−(OSi(CH322O−、−(OSi(CH324O−、
−(OSi(CH326O−、−(OSi(CH328O−、
−(OSi(CH3210O−、−(OSi(CH3220O−、
−(OSi(CH3230O−、−(OSi(CH322O−CH2−、
−(OSi(CH324O−CH2−、−(OSi(CH326O−CH2−、
−(OSi(CH328O−CH2−、−(OSi(CH3210O−CH2−、
−(OSi(CH3220O−CH2−、−(OSi(CH3230O−CH2−、
−(OSi(CH322O−CH2CH2−、
−(OSi(CH324O−CH2CH2−、
−(OSi(CH326O−CH2CH2−、
−(OSi(CH328O−CH2CH2−、
−(OSi(CH3210O−CH2CH2−、
−(OSi(CH3220O−CH2CH2−、
−(OSi(CH3230O−CH2CH2−、
−CH2CH2−(OSi(CH322O−CH2CH2−、
−CH2CH2−(OSi(CH324O−CH2CH2−、
−CH2CH2−(OSi(CH326O−CH2CH2−、
−CH2CH2−(OSi(CH328O−CH2CH2−、
−CH2CH2−(OSi(CH3210O−CH2CH2−、
−CH2CH2−(OSi(CH3220O−CH2CH2−、
−CH2CH2−(OSi(CH3230O−CH2CH2−。
-CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 -,
-CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -,
-CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -,
-CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -,
-CH 2 C 4 F 8 CH 2 -, - CH 2 C 6 F 12 CH 2 -,
- (OSi (CH 3) 2 ) 2 O -, - (OSi (CH 3) 2) 4 O-,
- (OSi (CH 3) 2 ) 6 O -, - (OSi (CH 3) 2) 8 O-,
- (OSi (CH 3) 2 ) 10 O -, - (OSi (CH 3) 2) 20 O-,
- (OSi (CH 3) 2 ) 30 O -, - (OSi (CH 3) 2) 2 O-CH 2 -,
- (OSi (CH 3) 2 ) 4 O-CH 2 -, - (OSi (CH 3) 2) 6 O-CH 2 -,
- (OSi (CH 3) 2 ) 8 O-CH 2 -, - (OSi (CH 3) 2) 10 O-CH 2 -,
- (OSi (CH 3) 2 ) 20 O-CH 2 -, - (OSi (CH 3) 2) 30 O-CH 2 -,
- (OSi (CH 3) 2 ) 2 O-CH 2 CH 2 -,
- (OSi (CH 3) 2 ) 4 O-CH 2 CH 2 -,
- (OSi (CH 3) 2 ) 6 O-CH 2 CH 2 -,
- (OSi (CH 3) 2 ) 8 O-CH 2 CH 2 -,
- (OSi (CH 3) 2 ) 10 O-CH 2 CH 2 -,
- (OSi (CH 3) 2 ) 20 O-CH 2 CH 2 -,
- (OSi (CH 3) 2 ) 30 O-CH 2 CH 2 -,
-CH 2 CH 2 - (OSi ( CH 3) 2) 2 O-CH 2 CH 2 -,
-CH 2 CH 2 - (OSi ( CH 3) 2) 4 O-CH 2 CH 2 -,
-CH 2 CH 2 - (OSi ( CH 3) 2) 6 O-CH 2 CH 2 -,
-CH 2 CH 2 - (OSi ( CH 3) 2) 8 O-CH 2 CH 2 -,
-CH 2 CH 2 - (OSi ( CH 3) 2) 10 O-CH 2 CH 2 -,
-CH 2 CH 2 - (OSi ( CH 3) 2) 20 O-CH 2 CH 2 -,
-CH 2 CH 2 - (OSi ( CH 3) 2) 30 O-CH 2 CH 2 -.

pとしては0、1、2又は3、好ましくは0又は1であり、特に撥水性を高めるにはp=0が好ましい。
また、Zは(OR13-q(R2qSi−基であり、R1、R2は式(1)と同じである。
qは0、1、2又は3、好ましくは0又は1であり、特にq=0が好ましい。
(2)で表される有機ケイ素化合物は、撥水持続性等の特性を優れたものとするために、分子中に2つ以上のアルコキシ基を有する必要があるため、p+qは0〜4であり、好ましくは0〜2である。
p is 0, 1, 2, or 3, preferably 0 or 1, and p = 0 is particularly preferable for improving water repellency.
Z is an (OR 1 ) 3-q (R 2 ) q Si— group, and R 1 and R 2 are the same as those in the formula (1).
q is 0, 1, 2 or 3, preferably 0 or 1, particularly preferably q = 0.
Since the organosilicon compound represented by (2) needs to have two or more alkoxy groups in the molecule in order to have excellent properties such as water repellency, p + q is 0-4. Yes, preferably 0-2.

これらを満たす有機ケイ素化合物の具体例としては、
(CH3O)3SiCH2Si(OCH33
(CH3O)3SiCH2CH2Si(OCH33
(CH3O)3SiCH2CH2CH2CH2Si(OCH33
(CH3O)3SiCH2CH2CH2CH2CH2CH2Si(OCH33
(CH3O)3SiCH2CH2CH2CH2CH2CH2CH2CH2Si(OCH33
(CH3O)2(CH3)SiCH2Si(CH3)(OCH32
(CH3O)2(CH3)SiCH2CH2Si(CH3)(OCH32
(CH3O)2(CH3)SiCH2CH2CH2CH2Si(CH3)(OCH32
(CH3O)2(CH3)SiCH2CH2CH2CH2CH2CH2Si(CH3)(OCH32
(CH3O)2(CH3)SiCH2CH2CH2CH2CH2CH2CH2CH2Si(CH3)(OCH32
(CH3O)2(CH3)SiCH2CH2CH2CH2CH2CH2CH2CH2CH2CH2Si(CH3)(OCH32
(CH3O)3SiCH2CH248CH2CH2Si(OCH33
(CH3O)3SiCH2CH2612CH2CH2Si(OCH33
(CH3O)3SiCH2CH2816CH2CH2Si(OCH33
(CH3O)3SiCH2CH21020CH2CH2Si(OCH33
(CH3O)2(CH3)SiCH2CH248CH2CH2Si(CH3)(OCH32
(CH3O)2(CH3)SiCH2CH2612CH2CH2Si(CH3)(OCH32
(CH3O)2(CH3)SiCH2CH2816CH2CH2Si(CH3)(OCH32
(CH3O)2(CH3)SiCH2CH21020CH2CH2Si(CH3)(OCH32
(CH3O)3Si(OSi(CH32)OSi(OCH33
(CH3O)3Si(OSi(CH322OSi(OCH33
(CH3O)3Si(OSi(CH324OSi(OCH33
(CH3O)3Si(OSi(CH326OSi(OCH33
(CH3O)3Si(OSi(CH328OSi(OCH33
(CH3O)3Si(OSi(CH3210OSi(OCH33
(CH3O)3Si(OSi(CH3220OSi(OCH33
(CH3O)3Si(OSi(CH3230OSi(OCH33
(CH33Si(OSi(CH324OSi(OCH33
(CH33Si(OSi(CH326OSi(OCH33
(CH33Si(OSi(CH328OSi(OCH33
(CH33Si(OSi(CH329OSi(OCH33
(CH33Si(OSi(CH3210OSi(OCH33
(CH33Si(OSi(CH3220OSi(OCH33
(CH33Si(OSi(CH3230OSi(OCH33
(CH33Si(OSi(CH3240OSi(OCH33
等が挙げられる。
Specific examples of organosilicon compounds that satisfy these requirements include:
(CH 3 O) 3 SiCH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 2 (CH 3 ) SiCH 2 Si (CH 3 ) (OCH 3 ) 2 ,
(CH 3 O) 2 (CH 3) SiCH 2 CH 2 Si (CH 3) (OCH 3) 2,
(CH 3 O) 2 (CH 3) SiCH 2 CH 2 CH 2 CH 2 Si (CH 3) (OCH 3) 2,
(CH 3 O) 2 (CH 3 ) SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3 ) (OCH 3 ) 2 ,
(CH 3 O) 2 (CH 3) SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3) (OCH 3) 2,
(CH 3 O) 2 (CH 3) SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3) (OCH 3) 2,
(CH 3 O) 3 SiCH 2 CH 2 C 4 F 8 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 C 6 F 12 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 C 8 F 16 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 C 10 F 20 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 2 (CH 3) SiCH 2 CH 2 C 4 F 8 CH 2 CH 2 Si (CH 3) (OCH 3) 2,
(CH 3 O) 2 (CH 3) SiCH 2 CH 2 C 6 F 12 CH 2 CH 2 Si (CH 3) (OCH 3) 2,
(CH 3 O) 2 (CH 3) SiCH 2 CH 2 C 8 F 16 CH 2 CH 2 Si (CH 3) (OCH 3) 2,
(CH 3 O) 2 (CH 3) SiCH 2 CH 2 C 10 F 20 CH 2 CH 2 Si (CH 3) (OCH 3) 2,
(CH 3 O) 3 Si (OSi (CH 3 ) 2 ) OSi (OCH 3 ) 3 ,
(CH 3 O) 3 Si (OSi (CH 3 ) 2 ) 2 OSi (OCH 3 ) 3 ,
(CH 3 O) 3 Si (OSi (CH 3 ) 2 ) 4 OSi (OCH 3 ) 3 ,
(CH 3 O) 3 Si (OSi (CH 3 ) 2 ) 6 OSi (OCH 3 ) 3 ,
(CH 3 O) 3 Si (OSi (CH 3 ) 2 ) 8 OSi (OCH 3 ) 3 ,
(CH 3 O) 3 Si (OSi (CH 3 ) 2 ) 10 OSi (OCH 3 ) 3 ,
(CH 3 O) 3 Si (OSi (CH 3 ) 2 ) 20 OSi (OCH 3 ) 3 ,
(CH 3 O) 3 Si (OSi (CH 3 ) 2 ) 30 OSi (OCH 3 ) 3 ,
(CH 3 ) 3 Si (OSi (CH 3 ) 2 ) 4 OSi (OCH 3 ) 3 ,
(CH 3 ) 3 Si (OSi (CH 3 ) 2 ) 6 OSi (OCH 3 ) 3 ,
(CH 3 ) 3 Si (OSi (CH 3 ) 2 ) 8 OSi (OCH 3 ) 3 ,
(CH 3 ) 3 Si (OSi (CH 3 ) 2 ) 9 OSi (OCH 3 ) 3 ,
(CH 3 ) 3 Si (OSi (CH 3 ) 2 ) 10 OSi (OCH 3 ) 3 ,
(CH 3 ) 3 Si (OSi (CH 3 ) 2 ) 20 OSi (OCH 3 ) 3 ,
(CH 3 ) 3 Si (OSi (CH 3 ) 2 ) 30 OSi (OCH 3 ) 3 ,
(CH 3 ) 3 Si (OSi (CH 3 ) 2 ) 40 OSi (OCH 3 ) 3 ,
Etc.

上記有機ケイ素化合物及び/又はその部分加水分解縮合物を加水分解、縮合する場合において、各有機ケイ素化合物及び/又はその部分加水分解縮合物のモル比は特に限定されない。式(1)の化合物単独でもよいが、撥水特性、特に撥水維持性や耐久性を付与する目的で式(2)の化合物を加えた方がより好ましい。その際のモル比は、式(1)の化合物1モルに対して式(2)の化合物を0〜0.5モルが好ましく、より好ましくは0.01〜0.3モル、特に好ましくは0.02〜0.2モルである。この式(2)の比率が0.5以上となると撥水性能がやや悪くなる場合がある。   In the case of hydrolyzing and condensing the organosilicon compound and / or its partial hydrolysis condensate, the molar ratio of each organosilicon compound and / or its partial hydrolysis condensate is not particularly limited. Although the compound of Formula (1) may be used alone, it is more preferable to add the compound of Formula (2) for the purpose of imparting water repellency characteristics, particularly water repellency maintenance and durability. In this case, the molar ratio of the compound of the formula (2) is preferably 0 to 0.5 mol, more preferably 0.01 to 0.3 mol, particularly preferably 0 with respect to 1 mol of the compound of the formula (1). 0.02 to 0.2 mole. When the ratio of the formula (2) is 0.5 or more, the water repellency may be slightly deteriorated.

また、本発明の効果を損なわない範囲で、式(1),(2)以外のシラン、シロキサン化合物を必要に応じて使用してもよい。   Moreover, you may use the silane other than Formula (1), (2), and a siloxane compound as needed in the range which does not impair the effect of this invention.

本発明の(A)オルガノポリシロキサンを製造する際には、生成するオルガノポリシロキサン組成物と分離状態となる液状の加水分解縮合触媒を使用するのが好ましい。このようなオルガノポリシロキサンと分離状態となる液状の加水分解触媒は、特に限定されないが、特に尿素と塩酸との塩である尿素塩酸塩が好ましく、更に好ましくは尿素塩酸塩のアルコール溶液が好ましい。使用されるアルコールは、特に限定されないが、例えばメタノール、エタノール、プロパノール、ブタノール等が挙げられる。   When the (A) organopolysiloxane of the present invention is produced, it is preferable to use a liquid hydrolysis condensation catalyst that is separated from the organopolysiloxane composition to be produced. The liquid hydrolysis catalyst that is separated from such an organopolysiloxane is not particularly limited, but urea hydrochloride which is a salt of urea and hydrochloric acid is particularly preferable, and an alcohol solution of urea hydrochloride is more preferable. Although the alcohol used is not specifically limited, For example, methanol, ethanol, propanol, butanol etc. are mentioned.

本発明に用いる加水分解縮合触媒の使用量も特に限定されないが、式(1)の化合物1molに対し、又は式(1)と(2)の化合物のトータル1molに対し、0.001mol以上加えればよく、好ましくは0.01〜20mol程度であり、より好ましくは0.1〜5mol程度である。少なすぎると、加水分解縮合に時間がかかり、またモノマー残存量が多くなることがあり、多すぎると、オルガノポリシロキサン組成物と分離状態が悪くなったり、また経済的にも不利である。   The amount of the hydrolysis-condensation catalyst used in the present invention is not particularly limited, but 0.001 mol or more is added to 1 mol of the compound of the formula (1) or 1 mol of the compounds of the formulas (1) and (2). It is preferably about 0.01 to 20 mol, more preferably about 0.1 to 5 mol. If the amount is too small, it may take time for hydrolysis and condensation, and the residual monomer amount may increase. If the amount is too large, the separation state from the organopolysiloxane composition may be deteriorated, and it is economically disadvantageous.

アルコール添加量も任意であるが、加水分解縮合触媒とアルコールとの合計量中に1〜99質量%程度であり、特に10〜60質量%程度が好ましい。   Although the addition amount of alcohol is also arbitrary, it is about 1-99 mass% in the total amount of a hydrolysis-condensation catalyst and alcohol, and especially about 10-60 mass% is preferable.

特に好ましく使用する触媒である尿素塩酸塩の調製方法は、特に限定されないが、尿素をアルコール中に分散させ、濃塩酸あるいは塩酸水を加えて調製した尿素塩酸塩の含水アルコール溶液を使用してもよく、またハロゲノシランと尿素を分散させた中に、アルコールを加えてハロゲノシランをアルコキシ化し、その際に生成する尿素塩酸塩をそのまま加水分解縮合触媒として使用してもよく、また、このようにして調製した尿素塩酸塩を分離し、本発明で使用する有機ケイ素化合物の加水分解縮合触媒として使用することも可能である。   The method for preparing urea hydrochloride, which is a catalyst that is particularly preferably used, is not particularly limited, but it is possible to use a hydroalcoholic solution of urea hydrochloride prepared by dispersing urea in alcohol and adding concentrated hydrochloric acid or aqueous hydrochloric acid. In addition, it is also possible to alkoxylate the halogenosilane by adding alcohol to the dispersed halogenosilane and urea, and use the urea hydrochloride formed at that time as the hydrolysis condensation catalyst. It is also possible to separate the prepared urea hydrochloride and use it as a hydrolysis condensation catalyst for the organosilicon compound used in the present invention.

(A)成分のオルガノポリシロキサンを製造する際の加水分解、重縮合に使用する水の使用量は、生成させるオルガノポリシロキサン混合物にはモノマーを含まず、なるべく重合度が高くなることが好ましく、使用する有機ケイ素化合物の加水分解可能な全アルコキシ基1molに対して、水を0.3〜5モル使用することが好ましく、より好ましくは0.5〜3mol、特に好ましくは0.8〜2.0molである。
この量が少なすぎると分子量が上がらず、撥水性能や撥水持続性が不十分な場合がある。またこの量が多すぎると保存安定性が悪くなる場合がある。
The amount of water used for hydrolysis and polycondensation when producing the organopolysiloxane of the component (A) is preferably such that the organopolysiloxane mixture to be produced does not contain a monomer and the degree of polymerization is as high as possible. It is preferable to use 0.3 to 5 mol of water, more preferably 0.5 to 3 mol, particularly preferably 0.8 to 2 mol per mol of all hydrolyzable alkoxy groups of the organosilicon compound to be used. 0 mol.
If this amount is too small, the molecular weight will not increase, and the water repellency and water repellency may be insufficient. If this amount is too large, the storage stability may deteriorate.

加水分解反応を行う際の水の添加方法は任意であり、例えば、有機ケイ素化合物と無水状態の加水分解縮合触媒存在下に、水を加えて加水分解反応を行えばよく、その際アルコール等の溶剤に希釈して加えてもよい。   The method for adding water during the hydrolysis reaction is arbitrary. For example, in the presence of an organosilicon compound and an anhydrous hydrolysis condensation catalyst, water may be added to carry out the hydrolysis reaction. You may dilute and add to a solvent.

また、前述したように尿素と濃塩酸あるいは塩酸水を混合することで加水分解縮合触媒を調製した場合には、有機ケイ素化合物に調製した含水加水分解縮合触媒を加えることで反応を行ってもよい。   In addition, as described above, when the hydrolysis condensation catalyst is prepared by mixing urea and concentrated hydrochloric acid or aqueous hydrochloric acid, the reaction may be performed by adding the hydrous hydrolysis condensation catalyst prepared to the organosilicon compound. .

また、調製した含水加水分解縮合触媒中に有機ケイ素化合物及び/又はその部分加水分解縮合物を加えて、加水分解、縮合反応を行ってもよい。   Moreover, you may add an organosilicon compound and / or its partial hydrolysis-condensation product in the prepared hydrous hydrolysis-condensation catalyst, and may perform a hydrolysis and a condensation reaction.

加水分解、縮合反応の際、必要に応じてアルコール類、エーテル類、エステル類、ケトン類、脂肪族炭化水素類、芳香族炭化水素類等の有機溶媒を使用してもよい。これらの有機溶媒の具体例としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、プロピレングリコールモノメチルエーテル等のアルコール類、ジエチルエーテル、ジプロピルエーテル等のエーテル類、酢酸メチル、酢酸エチル、アセト酢酸エチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ヘキサン、ヘプタン、デカン等の脂肪族炭化水素類、トルエン、キシレン等の芳香族炭化水素類等が挙げられる。但し、これらの溶媒を加えた場合も有機ケイ素化合物及び/又はその部分加水分解縮合物から得られるポリシロキサンと加水分解縮合触媒とが分離状態となっている必要があるため、このような溶媒としては、ヘキサン、ヘプタン、デカン等の脂肪族炭化水素類、トルエン、キシレン等の芳香族炭化水素類等がより好ましい。   In the hydrolysis and condensation reaction, an organic solvent such as alcohols, ethers, esters, ketones, aliphatic hydrocarbons, and aromatic hydrocarbons may be used as necessary. Specific examples of these organic solvents include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol and propylene glycol monomethyl ether, ethers such as diethyl ether and dipropyl ether, methyl acetate, ethyl acetate and acetoacetic acid. Examples thereof include esters such as ethyl, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, aliphatic hydrocarbons such as hexane, heptane, and decane, and aromatic hydrocarbons such as toluene and xylene. However, even when these solvents are added, the polysiloxane obtained from the organosilicon compound and / or its partial hydrolysis-condensation product and the hydrolysis-condensation catalyst must be in a separated state. Are more preferably aliphatic hydrocarbons such as hexane, heptane and decane, and aromatic hydrocarbons such as toluene and xylene.

加水分解、縮合反応は−10〜150℃の温度範囲で実施すればよいが、一般的には、0℃より低い温度では反応の進行が遅くなるため実用的でなく、また高温すぎる場合もゲル状物となったり、有機官能基への悪影響が発生するため、0〜130℃の温度範囲とすることが好ましく、更に好ましくは10〜100℃の温度範囲である。   The hydrolysis and condensation reaction may be carried out in the temperature range of −10 to 150 ° C. Generally, however, the reaction proceeds slowly at a temperature lower than 0 ° C., and is not practical. The temperature range is preferably 0 to 130 ° C., and more preferably 10 to 100 ° C., because it becomes a product or an adverse effect on the organic functional group occurs.

反応後、使用した触媒は分離して除去すればよく、また加水分解して生成したアルコール類、あるいは使用した溶剤、低沸点類の留去などによる精製工程を行った後、触媒を分離してもよい。   After the reaction, the used catalyst may be separated and removed, and after performing a purification step by distilling off the alcohols produced by hydrolysis, the solvent used, or low boiling points, the catalyst is separated. Also good.

本発明における(A)成分を得るための加水分解、縮合反応は、加水分解縮合触媒と生成したオルガノポリシロキサンとが分離状態となることが重要であり、これにより加水分解縮合触媒の溶液に溶解しやすいモノマーあるいは低分子量体が優先的に加水分解されることでモノマーあるいは低分子量体成分含有量が少なくなり、高分子量体を得ることができる。一般的に炭化水素基が長くなるにつれて、有機ケイ素化合物の加水分解性は悪くなり、モノマーが残存したり、分子量が上がらない傾向があり、そのようなものを撥水剤組成物として使用しても良好な撥水性能を得ることが今まではできなかったが、この方法ではモノマーを残存させずに容易に高分子化することが可能である。   In the hydrolysis and condensation reaction for obtaining the component (A) in the present invention, it is important that the hydrolysis condensation catalyst and the produced organopolysiloxane are in a separated state, thereby dissolving in the solution of the hydrolysis condensation catalyst. As a result, the monomer or low molecular weight substance is preferentially hydrolyzed, so that the monomer or low molecular weight component content is reduced, and a high molecular weight body can be obtained. In general, as the hydrocarbon group becomes longer, the hydrolyzability of the organosilicon compound becomes worse, and there is a tendency that the monomer does not remain or the molecular weight does not increase. Such a product is used as a water repellent composition. However, in this method, it is possible to easily polymerize without leaving any monomer.

また、ケイ素核磁気共鳴スペクトル分析における式(1)で表される有機ケイ素化合物及び/又はその部分加水分解縮合物由来のピークのアルコキシ基が2つ加水分解縮合しシロキサン単位となった成分(T2成分)において、環状体成分を表すピーク成分(T2a成分)とリニア体成分を表すピーク成分(T2b成分)との比率(T2a成分/T2b成分)が0.9以上となり、環状体成分量の多いポリシロキサン混合物が得られることもこの方法の特徴であり、このようなものを撥水剤組成物として使用することにより、良好な撥水性能と撥水維持性、耐久性、また安定性にも優れることが特徴である。   In addition, a component (T2) in which two alkoxy groups having a peak derived from the organosilicon compound represented by the formula (1) and / or a partial hydrolysis-condensation product thereof in the silicon nuclear magnetic resonance spectrum analysis are hydrolyzed and condensed to form a siloxane unit. Component), the ratio (T2a component / T2b component) of the peak component (T2a component) representing the cyclic body component to the peak component (T2b component) representing the linear body component is 0.9 or more, and the amount of the cyclic body component is large. It is also a feature of this method that a polysiloxane mixture can be obtained. By using such a product as a water repellent composition, good water repellency performance, water repellency maintenance, durability, and stability can be obtained. It is characterized by being excellent.

[(B)成分]
(B)成分は、上述の(A)成分を溶解する溶媒として使用されるものであり、揮発性の有機溶剤であれば特に限定はされないが、環境保全性、安全性の面から、特にパラフィン系炭化水素及び/又はシリコーンオイルを主剤とする揮発性の有機溶剤系が好ましい。なお、主剤とは(B)成分中50質量%以上、特に80質量%以上含有することをいう。パラフィン系炭化水素としては、特にイソパラフィン、即ち8〜16の炭素原子を含有する分岐アルカンであるものが好ましい。例えば、”Isopar”の商品名で販売されているもの、ペルメチル製品、特にイソドデカン(2,2,4,4,6−ペンタメチルヘプタンとしても知られている)である。いうまでもなく、このようなイソパラフィンの混合物も使用可能である。他の揮発性炭化水素ベースのオイル、例えば、石油精製物、特に、”Shell”社から”Shell Solt”の商品名で販売されているものもまた使用可能である。
[Component (B)]
The component (B) is used as a solvent for dissolving the component (A), and is not particularly limited as long as it is a volatile organic solvent, but is particularly paraffin from the viewpoints of environmental conservation and safety. A volatile organic solvent system based on a base hydrocarbon and / or silicone oil is preferred. In addition, a main ingredient means containing 50 mass% or more in (B) component, especially 80 mass% or more. The paraffinic hydrocarbon is particularly preferably an isoparaffin, that is, a branched alkane containing 8 to 16 carbon atoms. For example, those sold under the name “Isopar”, permethyl products, in particular isododecane (also known as 2,2,4,4,6-pentamethylheptane). Needless to say, a mixture of such isoparaffins can also be used. Other volatile hydrocarbon-based oils may also be used, for example petroleum refineries, in particular those sold under the name “Shell Salt” by the company “Shell”.

また、シリコーンオイルとしては、例えば、環状の揮発性シリコーンや直鎖状の揮発性シリコーンが挙げられ、環状の揮発性シリコーンとしては、例えば、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサデカメチルシクロヘキサシロキサン等が挙げられ、直鎖状の揮発性シリコーンとしては、例えば、オクタメチルトリシロキサン、ヘプタメチルヘキシルトリシロキサン、ヘプタメチルオクチルトリシロキサン等が挙げられる。   Examples of the silicone oil include cyclic volatile silicone and linear volatile silicone. Examples of the cyclic volatile silicone include octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and hexadeca Examples of the linear volatile silicone include octamethyltrisiloxane, heptamethylhexyltrisiloxane, heptamethyloctyltrisiloxane, and the like.

撥水剤組成物として、上記(A)成分と(B)成分との混合割合は、特に限定されないが、(A):(B)=0.1〜30:99.9〜70(質量%比)が好ましい。特に好ましくは0.5〜10:99.5〜90(質量%比)である。この時の(A)の比率が0.1より少ないと撥水性能が弱い場合がある。   As a water repellent composition, the mixing ratio of the component (A) and the component (B) is not particularly limited, but (A) :( B) = 0.1-30: 99.9-70 (mass%) Ratio) is preferred. Most preferably, it is 0.5-10: 99.5-90 (mass% ratio). If the ratio of (A) at this time is less than 0.1, the water repellency may be weak.

また、本発明の撥水剤組成物は、(A),(B)成分の他に従来撥水剤組成物やコーティング剤組成物の添加剤として公知の添加剤等の任意成分を撥水性能や安定性を損なわない範囲で含んでいてもよい。   In addition to the components (A) and (B), the water-repellent composition of the present invention comprises an optional component such as a known additive as an additive for conventional water-repellent compositions and coating agent compositions. Or in a range that does not impair the stability.

本発明の撥水剤組成物の対象物としてはなんら限定されないが、自動車、航空機、電車等の車両用ガラス基材、建築・建材のガラス基材や外壁、衣類や皮革等の繊維製品、紙またコンクリートやレンガ、石、陶器、瓦、木材のような多孔質基材などに使用可能である。   The object of the water repellent composition of the present invention is not limited in any way, but glass substrates for vehicles such as automobiles, airplanes and trains, glass substrates and outer walls of construction and building materials, textile products such as clothing and leather, paper It can also be used for porous substrates such as concrete, brick, stone, pottery, tile, and wood.

塗布方法や容器も特に限定されないが、塗布方法としては、刷毛塗り、ディッピング、スポンジ塗りなど一般的な方法で差し支えない。また適当な容器に封入し、スプレー塗りなども可能である。   The coating method and the container are not particularly limited, but the coating method may be a general method such as brush coating, dipping, or sponge coating. It can also be sealed in a suitable container and sprayed.

このような方法で基材に対してフッ素系材料並みの撥水性、撥水維持性、耐久性を付与でき、また保存安定性にも優れており、環境保全性にも優れているという特徴を有するものである。   With such a method, it is possible to impart water repellency, water repellency maintenance and durability comparable to fluorine-based materials to the base material, and it has excellent storage stability and environmental conservation. It is what you have.

以下、本発明を合成例、実施例及び比較例により更に具体的に説明するが、実施例は本発明の単なる例示を意図するものに過ぎない。本発明はその要旨を超えない限り以下の実施例によって限定されることはない。   Hereinafter, the present invention will be described more specifically with reference to synthesis examples, examples and comparative examples, but the examples are only intended to illustrate the present invention. The present invention is not limited by the following examples unless it exceeds the gist.

なお、実施例で得られたオルガノポリシロキサンの分析は、以下に示した方法で実施した。
(1)オルガノポリシロキサンの平均分子量であるポリスチレン換算分子量における重量平均分子量(Mw)をポリスチレン標準サンプルから作成した検量線を基準として算出した。
(2)ケイ素核磁気共鳴スペクトル分析におけるアルコキシ基が2つ加水分解縮合し、シロキサン単位となった成分(T2成分)は、例えば官能基がアルキル基の場合、−55〜−61ppmのピークであり、
環状体成分を表すピーク成分(T2a成分)はT2成分のうちの前半部分のピークであり、例えば官能基がアルキル基の場合、−55〜−59ppmの範囲のピークの積分値であり、リニア体成分を表すピーク成分(T2b成分)は−59〜−61ppmの範囲のピークの積分値である。このT2成分のピーク範囲は官能基の種類によって異なるが、全体のピーク形状からどの位置がT2成分であり、そのうちの前半部分がT2a成分であることは判断可能である(図1を参考例として示す)。
In addition, the analysis of the organopolysiloxane obtained in the Example was implemented by the method shown below.
(1) The weight average molecular weight (Mw) in the polystyrene conversion molecular weight which is the average molecular weight of the organopolysiloxane was calculated on the basis of a calibration curve prepared from a polystyrene standard sample.
(2) The component (T2 component) in which two alkoxy groups in the nuclear magnetic resonance spectrum analysis are hydrolyzed and condensed to form a siloxane unit has a peak of −55 to −61 ppm, for example, when the functional group is an alkyl group. ,
The peak component (T2a component) representing the cyclic component is a peak in the first half of the T2 component. For example, when the functional group is an alkyl group, it is an integral value of a peak in the range of −55 to −59 ppm, The peak component (T2b component) representing the component is an integral value of a peak in the range of −59 to −61 ppm. Although the peak range of this T2 component differs depending on the type of functional group, it can be determined from the overall peak shape which position is the T2 component, and the first half of it is the T2a component (see FIG. 1 as a reference example). Show).

[合成例1]
触媒の調製
撹拌装置、冷却コンデンサー、温度計、滴下ロートを取り付けた容量300mLのフラスコに、メタノール60g(1.875mol)、尿素66g(1.1mol)を仕込み、内温22℃にて、濃塩酸(塩酸濃度35質量%)100gをゆっくり滴下した。溶液は発熱し、35℃まで上昇した。滴下終了後、撹拌を続けたところ、30分で25℃まで温度が低下したことから撹拌を停止し、尿素塩酸塩の含水メタノール溶液を得た。
[Synthesis Example 1]
Preparation of catalyst 60 g (1.875 mol) of methanol and 66 g (1.1 mol) of urea were charged into a 300 mL flask equipped with a stirrer, cooling condenser, thermometer and dropping funnel, and concentrated hydrochloric acid at an internal temperature of 22 ° C. 100 g (hydrochloric acid concentration 35 mass%) was slowly added dropwise. The solution exothermed and rose to 35 ° C. Stirring was continued after the completion of dropping, and the temperature dropped to 25 ° C. in 30 minutes. Therefore, stirring was stopped to obtain a hydrous methanol solution of urea hydrochloride.

[合成例2]
撹拌装置、冷却コンデンサー、温度計、滴下ロートを取り付けた容量1Lのフラスコに、C1225Si(OCH33 145g(0.5mol)及びC1429Si(OCH33 160g(0.5mol)を仕込み、65℃にて、合成例1にて調製した尿素塩酸塩の含水メタノール溶液62.6g(水1.0mol)をゆっくり滴下した。滴下には30分を要した。滴下終了後、70〜65℃にて3時間撹拌を続けた。撹拌を停止すると、生成したポリシロキサンと尿素塩酸塩触媒層は分離状態であった。その後、冷却を行い、トルエン200gを加えて静置し、下層の触媒層を分離した。得られた上層を90℃、減圧度0.7kPaにて減圧濃縮を行い、更に濾過による精製を行ったところ、得られたオルガノポリシロキサン1は266gであった。
このもののキャノンフェンスケ粘度計による(以下同じ)25℃における粘度は50.5mm2/sであり、25℃における比重は0.924であった。また、このもののゲルパーミエーションクロマトグラフィー分析における重量平均分子量(Mw)は1,360であり、図1のケイ素核磁気共鳴スペクトル分析における環状体成分を表すピーク成分(T2a成分)とリニア体成分を表すピーク成分(T2b成分)との比率(T2a成分/T2b成分)は3.6であった。
[Synthesis Example 2]
Into a 1 L flask equipped with a stirrer, a cooling condenser, a thermometer and a dropping funnel, 145 g (0.5 mol) of C 12 H 25 Si (OCH 3 ) 3 and 160 g of C 14 H 29 Si (OCH 3 ) 3 (0 0.5 mol) was added, and 62.6 g of water-containing methanol solution of urea hydrochloride prepared in Synthesis Example 1 (1.0 mol of water) was slowly added dropwise at 65 ° C. The dripping took 30 minutes. After completion of dropping, stirring was continued at 70 to 65 ° C. for 3 hours. When the stirring was stopped, the produced polysiloxane and urea hydrochloride catalyst layer were in a separated state. Then, it cooled, added toluene 200g, and left still, and isolate | separated the lower catalyst layer. The obtained upper layer was concentrated under reduced pressure at 90 ° C. under a reduced pressure of 0.7 kPa, and further purified by filtration. As a result, the obtained organopolysiloxane 1 was 266 g.
This product had a viscosity at 25 ° C. of 50.5 mm 2 / s as measured by a Cannon-Fenske viscometer (hereinafter the same) and a specific gravity at 25 ° C. of 0.924. Moreover, the weight average molecular weight (Mw) in the gel permeation chromatography analysis of this thing is 1,360, The peak component (T2a component) and linear body component showing the cyclic body component in the silicon nuclear magnetic resonance spectrum analysis of FIG. The ratio (T2a component / T2b component) to the peak component (T2b component) to be expressed was 3.6.

[合成例3]
撹拌装置、冷却コンデンサー、温度計、滴下ロートを取り付けた容量2Lのフラスコに、C1225SiCl3 152g(0.5mol)及びC1429SiCl3 167g(0.5mol)を仕込み、65℃にて、メタノール64g(2.0mol)を滴下し、脱塩酸反応を行った。その後、尿素を66g(1.1mol)添加し、撹拌を続けた。更に、65℃にて、メタノール38.4g(1.2mol)をゆっくり滴下した。滴下終了後、更に65℃にて、2時間撹拌を続けた。撹拌を停止すると、フラスコ内は、メトキシ化して生じた、C1225Si(OCH33 145g及びC1429Si(OCH33と発生した塩酸により生成した尿素塩酸塩が分離した状態であることが確認できた。この反応液を再度撹拌し、65℃にて、水54g(3mol)をゆっくり滴下した。滴下には15分を要した。滴下終了後、65℃にて3時間撹拌を続けた。その後、冷却を行い、トルエン200gを加えて静置し、下層の触媒層を分離した。得られた上層を90℃、減圧度0.7kPaにて減圧濃縮を行い、更に濾過による精製を行ったところ、得られたオルガノポリシロキサン2は251gであった。
このものの25℃における粘度は239mm2/sであり、25℃における比重は0.948であった。また、このもののゲルパーミエーションクロマトグラフィー分析における重量平均分子量(Mw)は1,778であった。
更に、ケイ素核磁気共鳴スペクトル分析における環状体成分を表すピーク成分(T2a成分)とリニア体成分を表すピーク成分(T2b成分)との比率(T2a成分/T2b成分)は5.5であった。
[Synthesis Example 3]
A flask having a capacity of 2 L equipped with a stirrer, a cooling condenser, a thermometer, and a dropping funnel was charged with 152 g (0.5 mol) of C 12 H 25 SiCl 3 and 167 g (0.5 mol) of C 14 H 29 SiCl 3 at 65 ° C. Then, 64 g (2.0 mol) of methanol was added dropwise to carry out dehydrochlorination reaction. Thereafter, 66 g (1.1 mol) of urea was added and stirring was continued. Further, 38.4 g (1.2 mol) of methanol was slowly added dropwise at 65 ° C. After completion of the dropping, stirring was further continued at 65 ° C. for 2 hours. When the stirring was stopped, 145 g of C 12 H 25 Si (OCH 3 ) 3 and C 14 H 29 Si (OCH 3 ) 3 produced by methoxylation and urea hydrochloride produced by the generated hydrochloric acid were separated in the flask. It was confirmed that it was in a state. The reaction solution was stirred again, and 54 g (3 mol) of water was slowly added dropwise at 65 ° C. The dripping took 15 minutes. After completion of dropping, stirring was continued at 65 ° C. for 3 hours. Then, it cooled, added toluene 200g, and left still, and isolate | separated the lower catalyst layer. The obtained upper layer was concentrated under reduced pressure at 90 ° C. under a reduced pressure of 0.7 kPa, and further purified by filtration. As a result, the obtained organopolysiloxane 2 was 251 g.
This had a viscosity at 25 ° C. of 239 mm 2 / s and a specific gravity at 25 ° C. of 0.948. Moreover, the weight average molecular weight (Mw) in the gel permeation chromatography analysis of this thing was 1,778.
Furthermore, the ratio (T2a component / T2b component) of the peak component (T2a component) representing the cyclic component and the peak component (T2b component) representing the linear component in the silicon nuclear magnetic resonance spectrum analysis was 5.5.

[合成例4]
合成例3における水の量を108g(6.0mol)とし、他は同様に操作を行ったところ、オルガノポリシロキサン3を267g得た。
このものの25℃における粘度は251mm2/sであり、25℃における比重は0.94であった。また、このもののゲルパーミエーションクロマトグラフィー分析における重量平均分子量(Mw)は1,796であった。
更に、ケイ素核磁気共鳴スペクトル分析における環状体成分を表すピーク成分(T2a成分)とリニア体成分を表すピーク成分(T2b成分)との比率(T2a成分/T2b成分)は8.6であった。
[Synthesis Example 4]
When the amount of water in Synthesis Example 3 was set to 108 g (6.0 mol) and the other operations were performed in the same manner, 267 g of organopolysiloxane 3 was obtained.
This had a viscosity at 25 ° C. of 251 mm 2 / s and a specific gravity at 25 ° C. of 0.94. Moreover, the weight average molecular weight (Mw) in the gel permeation chromatography analysis of this thing was 1,796.
Furthermore, the ratio (T2a component / T2b component) of the peak component (T2a component) representing the cyclic component and the peak component (T2b component) representing the linear component in the silicon nuclear magnetic resonance spectrum analysis was 8.6.

[合成例5]
合成例2におけるC1225Si(OCH33及びC1429Si(OCH33を、C1021Si(OCH33 262g(1.0mol)とし、合成例1にて調製した尿素塩酸塩の含水メタノール溶液を93.8g(水1.5mol)とした他は同様に操作を行ったところ、オルガノポリシロキサン4を203g得た。
このものの25℃における粘度は93.0mm2/sであり、25℃における比重は0.941であった。また、このもののゲルパーミエーションクロマトグラフィー分析における重量平均分子量(Mw)は1,430であった。
更に、ケイ素核磁気共鳴スペクトル分析における環状体成分を表すピーク成分(T2a成分)とリニア体成分を表すピーク成分(T2b成分)との比率(T2a成分/T2b成分)は2.3であった。
[Synthesis Example 5]
In Synthesis Example 1, C 12 H 25 Si (OCH 3 ) 3 and C 14 H 29 Si (OCH 3 ) 3 in Synthesis Example 2 were changed to 262 g (1.0 mol) of C 10 H 21 Si (OCH 3 ) 3 . The same operation was conducted except that the prepared aqueous methanol solution of urea hydrochloride was changed to 93.8 g (water 1.5 mol). As a result, 203 g of organopolysiloxane 4 was obtained.
This had a viscosity at 25 ° C. of 93.0 mm 2 / s and a specific gravity at 25 ° C. of 0.941. Moreover, the weight average molecular weight (Mw) in the gel permeation chromatography analysis of this thing was 1,430.
Further, the ratio (T2a component / T2b component) of the peak component (T2a component) representing the cyclic component and the peak component (T2b component) representing the linear component in the silicon nuclear magnetic resonance spectrum analysis was 2.3.

[合成例6]
撹拌装置、冷却コンデンサー、温度計、滴下ロートを取り付けた容量2Lのフラスコに、C1225SiCl3 152g(0.5mol)及びC1429SiCl3 167g(0.5mol)を仕込み、65℃にて、メタノール64g(2.0mol)を滴下し、脱塩酸反応を行った。その後、尿素を66g(1.1mol)添加し、撹拌を続けた。更に、65℃にて、メタノール38.4g(1.2mol)をゆっくり滴下した。滴下終了後、更に65℃にて、2時間撹拌を続けた。撹拌を停止すると、フラスコ内は、メトキシ化して生じた、C1225Si(OCH33 145g及びC1429Si(OCH33と発生した塩酸により生成した尿素塩酸塩が分離した状態であることが確認できた。ここに、(CH33Si(OSi(CH329OSi(OCH33 8.8g(0.01mol)を添加し、再度撹拌し、65℃にて、水54g(3mol)をゆっくり滴下した。滴下には15分を要した。滴下終了後、65℃にて3時間撹拌を続けた。その後、冷却を行い、トルエン200gを加えて静置し、下層の触媒層を分離した。得られた上層を90℃、減圧度0.7kPaにて減圧濃縮を行い、更に濾過による精製を行ったところ、得られたオルガノポリシロキサン5は260gであった。
このものの25℃における粘度は200mm2/sであり、25℃における比重は0.940であった。また、このもののゲルパーミエーションクロマトグラフィー分析における重量平均分子量(Mw)は1,987であった。
更に、ケイ素核磁気共鳴スペクトル分析における環状体成分を表すピーク成分(T2a成分)とリニア体成分を表すピーク成分(T2b成分)との比率(T2a成分/T2b成分)は3.6であった。
[Synthesis Example 6]
A flask having a capacity of 2 L equipped with a stirrer, a cooling condenser, a thermometer, and a dropping funnel was charged with 152 g (0.5 mol) of C 12 H 25 SiCl 3 and 167 g (0.5 mol) of C 14 H 29 SiCl 3 at 65 ° C. Then, 64 g (2.0 mol) of methanol was added dropwise to carry out dehydrochlorination reaction. Thereafter, 66 g (1.1 mol) of urea was added and stirring was continued. Further, 38.4 g (1.2 mol) of methanol was slowly added dropwise at 65 ° C. After completion of the dropping, stirring was further continued at 65 ° C. for 2 hours. When the stirring was stopped, 145 g of C 12 H 25 Si (OCH 3 ) 3 and C 14 H 29 Si (OCH 3 ) 3 produced by methoxylation and urea hydrochloride produced by the generated hydrochloric acid were separated in the flask. It was confirmed that it was in a state. To this, 8.8 g (0.01 mol) of (CH 3 ) 3 Si (OSi (CH 3 ) 2 ) 9 OSi (OCH 3 ) 3 was added, stirred again, and at 65 ° C., 54 g (3 mol) of water. Was slowly added dropwise. The dripping took 15 minutes. After completion of dropping, stirring was continued at 65 ° C. for 3 hours. Then, it cooled, added toluene 200g, and left still, and isolate | separated the lower catalyst layer. The obtained upper layer was concentrated under reduced pressure at 90 ° C. and a reduced pressure degree of 0.7 kPa, and further purified by filtration. As a result, the obtained organopolysiloxane 5 was 260 g.
This had a viscosity at 25 ° C. of 200 mm 2 / s and a specific gravity at 25 ° C. of 0.940. Moreover, the weight average molecular weight (Mw) in the gel permeation chromatography analysis of this thing was 1,987.
Furthermore, the ratio (T2a component / T2b component) of the peak component (T2a component) representing the cyclic component and the peak component (T2b component) representing the linear component in the silicon nuclear magnetic resonance spectrum analysis was 3.6.

[合成例7]
撹拌装置、冷却コンデンサー、温度計、滴下ロートを取り付けた容量2Lのフラスコに、C1225SiCl3 152g(0.5mol)及びC1429SiCl3 167g(0.5mol)を仕込み、65℃にて、メタノール64g(2.0mol)を滴下し、脱塩酸反応を行った。その後、尿素を66g(1.1mol)添加し、撹拌を続けた。更に、65℃にて、メタノール38.4g(1.2mol)をゆっくり滴下した。滴下終了後、更に65℃にて、2時間撹拌を続けた。撹拌を停止すると、フラスコ内は、メトキシ化して生じた、C1225Si(OCH33 145g及びC1429Si(OCH33と発生した塩酸により生成した尿素塩酸塩が分離した状態であることが確認できた。ここに、(CH33Si(OSi(CH3230OSi(OCH33 26.2g(0.01mol)を添加し、再度撹拌し、65℃にて、水54g(3mol)をゆっくり滴下した。滴下には15分を要した。滴下終了後、65℃にて3時間撹拌を続けた。その後、冷却を行い、トルエン200gを加えて静置し、下層の触媒層を分離した。得られた上層を90℃、減圧度0.7kPaにて減圧濃縮を行い、更に濾過による精製を行ったところ、得られたオルガノポリシロキサン6は272gであった。
このものの25℃における粘度は257mm2/sであり、25℃における比重は0.944であった。また、このもののゲルパーミエーションクロマトグラフィー分析における重量平均分子量(Mw)は2,282であった。
更に、ケイ素核磁気共鳴スペクトル分析における環状体成分を表すピーク成分(T2a成分)とリニア体成分を表すピーク成分(T2b成分)との比率(T2a成分/T2b成分)は3.6であった。
[Synthesis Example 7]
A flask having a capacity of 2 L equipped with a stirrer, a cooling condenser, a thermometer, and a dropping funnel was charged with 152 g (0.5 mol) of C 12 H 25 SiCl 3 and 167 g (0.5 mol) of C 14 H 29 SiCl 3 at 65 ° C. Then, 64 g (2.0 mol) of methanol was added dropwise to carry out dehydrochlorination reaction. Thereafter, 66 g (1.1 mol) of urea was added and stirring was continued. Further, 38.4 g (1.2 mol) of methanol was slowly added dropwise at 65 ° C. After completion of the dropping, stirring was further continued at 65 ° C. for 2 hours. When the stirring was stopped, 145 g of C 12 H 25 Si (OCH 3 ) 3 and C 14 H 29 Si (OCH 3 ) 3 produced by methoxylation and urea hydrochloride produced by the generated hydrochloric acid were separated in the flask. It was confirmed that it was in a state. To this, 26.2 g (0.01 mol) of (CH 3 ) 3 Si (OSi (CH 3 ) 2 ) 30 OSi (OCH 3 ) 3 was added, stirred again, and at 65 ° C., 54 g (3 mol) of water. Was slowly added dropwise. The dripping took 15 minutes. After completion of dropping, stirring was continued at 65 ° C. for 3 hours. Then, it cooled, added toluene 200g, and left still, and isolate | separated the lower catalyst layer. The obtained upper layer was concentrated under reduced pressure at 90 ° C. under a reduced pressure of 0.7 kPa, and further purified by filtration. As a result, the obtained organopolysiloxane 6 was 272 g.
This had a viscosity at 25 ° C. of 257 mm 2 / s and a specific gravity at 25 ° C. of 0.944. Moreover, the weight average molecular weight (Mw) in the gel permeation chromatography analysis of this thing was 2,282.
Furthermore, the ratio (T2a component / T2b component) of the peak component (T2a component) representing the cyclic component and the peak component (T2b component) representing the linear component in the silicon nuclear magnetic resonance spectrum analysis was 3.6.

[合成例8]
撹拌装置、冷却コンデンサー、温度計、滴下ロートを取り付けた容量2Lのフラスコに、C1225SiCl3 152g(0.5mol)及びC1429SiCl3 167g(0.5mol)を仕込み、65℃にて、メタノール64g(2.0mol)を滴下し、脱塩酸反応を行った。その後、尿素を66g(1.1mol)添加し、撹拌を続けた。更に、65℃にて、メタノール38.4g(1.2mol)をゆっくり滴下した。滴下終了後、更に65℃にて、2時間撹拌を続けた。撹拌を停止すると、フラスコ内は、メトキシ化して生じた、C1225Si(OCH33 145g及びC1429Si(OCH33と発生した塩酸により生成した尿素塩酸塩が分離した状態であることが確認できた。ここに、(CH3O)3SiCH2CH2Si(CH32(OSi(CH328OSi(CH32CH2CH2Si(OCH33 7.8g(0.01mol)を添加し、再度撹拌し、65℃にて、水54g(3mol)をゆっくり滴下した。滴下には15分を要した。滴下終了後、65℃にて3時間撹拌を続けた。その後、冷却を行い、トルエン200gを加えて静置し、下層の触媒層を分離した。得られた上層を90℃、減圧度0.7kPaにて減圧濃縮を行い、更に濾過による精製を行ったところ、得られたオルガノポリシロキサン7は257gであった。
このものの25℃における粘度は263mm2/sであり、25℃における比重は0.940であった。また、このもののゲルパーミエーションクロマトグラフィー分析における重量平均分子量(Mw)は1,944であった。
更に、ケイ素核磁気共鳴スペクトル分析における環状体成分を表すピーク成分(T2a成分)とリニア体成分を表すピーク成分(T2b成分)との比率(T2a成分/T2b成分)は3.6であった。
[Synthesis Example 8]
A flask having a capacity of 2 L equipped with a stirrer, a cooling condenser, a thermometer, and a dropping funnel was charged with 152 g (0.5 mol) of C 12 H 25 SiCl 3 and 167 g (0.5 mol) of C 14 H 29 SiCl 3 at 65 ° C. Then, 64 g (2.0 mol) of methanol was added dropwise to carry out dehydrochlorination reaction. Thereafter, 66 g (1.1 mol) of urea was added and stirring was continued. Further, 38.4 g (1.2 mol) of methanol was slowly added dropwise at 65 ° C. After completion of the dropping, stirring was further continued at 65 ° C. for 2 hours. When the stirring was stopped, 145 g of C 12 H 25 Si (OCH 3 ) 3 and C 14 H 29 Si (OCH 3 ) 3 produced by methoxylation and urea hydrochloride produced by the generated hydrochloric acid were separated in the flask. It was confirmed that it was in a state. Here, (CH 3 O) 3 SiCH 2 CH 2 Si (CH 3 ) 2 (OSi (CH 3 ) 2 ) 8 OSi (CH 3 ) 2 CH 2 CH 2 Si (OCH 3 ) 3 7.8 g (0. 01 mol) was added, stirred again, and water (54 g, 3 mol) was slowly added dropwise at 65 ° C. The dripping took 15 minutes. After completion of dropping, stirring was continued at 65 ° C. for 3 hours. Then, it cooled, added toluene 200g, and left still, and isolate | separated the lower catalyst layer. The obtained upper layer was concentrated under reduced pressure at 90 ° C. under a reduced pressure of 0.7 kPa, and further purified by filtration. As a result, the obtained organopolysiloxane 7 was 257 g.
This had a viscosity at 25 ° C. of 263 mm 2 / s and a specific gravity at 25 ° C. of 0.940. Moreover, the weight average molecular weight (Mw) in the gel permeation chromatography analysis of this thing was 1,944.
Furthermore, the ratio (T2a component / T2b component) of the peak component (T2a component) representing the cyclic component and the peak component (T2b component) representing the linear component in the silicon nuclear magnetic resonance spectrum analysis was 3.6.

[比較合成例1]
撹拌装置、冷却コンデンサー、温度計、滴下ロートを取り付けた容量1Lのフラスコに、C1021Si(OCH33 262g(1.0mol)及びメタノール772g(24.1mol)を仕込み、25℃にて、5%塩酸水56.8g(水3mol)を滴下し、加水分解反応を行った。更に65℃にて、3時間撹拌を続けた。その後、冷却を行い、90℃、減圧度0.7kPaにて減圧濃縮を行い、更に濾過による精製を行ったところ、得られたオルガノポリシロキサン8は164gであった。
このもののゲルパーミエーションクロマトグラフィー分析における重量平均分子量(Mw)は710であった。本合成方法では、モノマー成分であるフェニルトリメトキシシランが15.6%含まれていた。
更に、ケイ素核磁気共鳴スペクトル分析における環状体成分を表すピーク成分(T2a成分)とリニア体成分を表すピーク成分(T2b成分)との比率(T2a成分/T2b成分)は0.79であった。
[Comparative Synthesis Example 1]
A 1 L flask equipped with a stirrer, a cooling condenser, a thermometer, and a dropping funnel was charged with 262 g (1.0 mol) of C 10 H 21 Si (OCH 3 ) 3 and 772 g (24.1 mol) of methanol at 25 ° C. Then, 56.8 g of 5% hydrochloric acid water (3 mol of water) was added dropwise to carry out a hydrolysis reaction. Further, stirring was continued at 65 ° C. for 3 hours. Then, it cooled, concentrated under reduced pressure at 90 degreeC and the pressure reduction degree 0.7kPa, and also refined by filtration, The obtained organopolysiloxane 8 was 164g.
The weight average molecular weight (Mw) of this product in gel permeation chromatography analysis was 710. In this synthesis method, 15.6% of phenyltrimethoxysilane as a monomer component was contained.
Furthermore, the ratio (T2a component / T2b component) of the peak component (T2a component) representing the cyclic component and the peak component (T2b component) representing the linear component in the silicon nuclear magnetic resonance spectrum analysis was 0.79.

[比較合成例2]
撹拌装置、冷却コンデンサー、温度計、滴下ロートを取り付けた容量2Lのフラスコに、C1225SiCl3 152g(0.5mol)及びC1429SiCl3 167g(0.5mol)を仕込み、65℃にて、メタノール64g(2.0mol)及び水54g(3mol)を滴下し、脱塩酸加水分解反応を行った(尿素塩酸塩が存在しない状態での加水分解縮合反応)。その後、尿素を66g(1.1mol)添加し、撹拌を続けた。更に、65℃にて、メタノール38.4g(1.2mol)をゆっくり滴下した。滴下終了後、更に65℃にて、2時間撹拌を続けた。撹拌を停止すると、フラスコ内は、メトキシ化して生じた、C1225Si(OCH33 145g及びC1429Si(OCH33と発生した塩酸により生成した尿素塩酸塩が分離した状態であることが確認できた。その後、冷却を行い、トルエン200gを加えて静置し、下層の触媒層を分離した。得られた上層を90℃、減圧度0.7kPaにて減圧濃縮を行い、更に濾過による精製を行ったところ、得られたオルガノポリシロキサン9は232gであった。
このものの25℃における粘度は110mm2/sであり、25℃における比重は0.941であった。また、このもののゲルパーミエーションクロマトグラフィー分析における重量平均分子量(Mw)は1,720であった。
更に、ケイ素核磁気共鳴スペクトル分析における環状体成分を表すピーク成分(T2a成分)とリニア体成分を表すピーク成分(T2b成分)との比率(T2a成分/T2b成分)は0.81であった。
[Comparative Synthesis Example 2]
A flask having a capacity of 2 L equipped with a stirrer, a cooling condenser, a thermometer, and a dropping funnel was charged with 152 g (0.5 mol) of C 12 H 25 SiCl 3 and 167 g (0.5 mol) of C 14 H 29 SiCl 3 at 65 ° C. Then, 64 g (2.0 mol) of methanol and 54 g (3 mol) of water were dropped, and dehydrochlorination hydrolysis reaction was performed (hydrolysis condensation reaction in the absence of urea hydrochloride). Thereafter, 66 g (1.1 mol) of urea was added and stirring was continued. Further, 38.4 g (1.2 mol) of methanol was slowly added dropwise at 65 ° C. After completion of the dropping, stirring was further continued at 65 ° C. for 2 hours. When the stirring was stopped, 145 g of C 12 H 25 Si (OCH 3 ) 3 and C 14 H 29 Si (OCH 3 ) 3 produced by methoxylation and urea hydrochloride produced by the generated hydrochloric acid were separated in the flask. It was confirmed that it was in a state. Then, it cooled, added toluene 200g, and left still, and isolate | separated the lower catalyst layer. The obtained upper layer was concentrated under reduced pressure at 90 ° C. under a reduced pressure of 0.7 kPa, and further purified by filtration. As a result, the obtained organopolysiloxane 9 was 232 g.
This had a viscosity at 25 ° C. of 110 mm 2 / s and a specific gravity at 25 ° C. of 0.941. Moreover, the weight average molecular weight (Mw) in the gel permeation chromatography analysis of this thing was 1,720.
Furthermore, the ratio (T2a component / T2b component) of the peak component (T2a component) representing the cyclic component and the peak component (T2b component) representing the linear component in the silicon nuclear magnetic resonance spectrum analysis was 0.81.

[実施例1〜8、比較例1,2]
上記のように合成したオルガノポリシロキサン及び溶剤を表1に示す割合で混合し撥水剤を得た。その撥水剤を、ガラス基材や綿布に処理し、その撥水性、耐久性を評価した。
その方法は以下の通りである。
[Examples 1 to 8, Comparative Examples 1 and 2]
The organopolysiloxane synthesized as described above and the solvent were mixed at a ratio shown in Table 1 to obtain a water repellent. The water repellent was treated on a glass substrate or cotton cloth, and its water repellency and durability were evaluated.
The method is as follows.

基材:ガラスの場合
処理方法)
ガラス板(縦150mm×横50mm×1.5mm)を市販の油膜とり剤により汚れを取り除き、よく乾燥させた。そこに表1の撥水剤をスポイドで3滴垂らし、ティッシュにてよく塗りこみ処理をした。
Substrate: Processing method for glass)
The glass plate (length 150 mm × width 50 mm × 1.5 mm) was cleaned with a commercially available oil film remover and dried well. Three drops of the water-repellent agent shown in Table 1 were dropped with a dropper and well-treated with a tissue.

撥水性評価)
常温で30分放置後、協和界面化学社製DM701機により水の接触角及び滑落角の測定を行った。
Water repellency evaluation)
After leaving at room temperature for 30 minutes, the contact angle and sliding angle of water were measured with a DM701 machine manufactured by Kyowa Interface Chemical Co., Ltd.

撥水持続性評価)
新東化学社製のScratching Intensity Tester HEIDON−18機により、ネル布を用いて、荷重1kgで耐磨耗耐久試験を行った。1万回往復磨耗後の水の接触角と滑落角を測定した。
Water repellent durability evaluation)
An abrasion resistance test was conducted with a load of 1 kg using a flannel cloth by a Scratching Intensity Tester HEIDON-18 machine manufactured by Shinto Chemical. The contact angle and sliding angle of water after 10,000 round-trip wear were measured.

基材:綿布の場合
処理方法)
撥水剤に試験布(200mm×200mm)を浸漬し、マングルで絞り、20℃、50%RHの室内で1日乾燥し、処理を行った。
Substrate: Processing method for cotton)
A test cloth (200 mm × 200 mm) was dipped in a water repellent, squeezed with a mangle, dried in a room at 20 ° C. and 50% RH for 1 day, and processed.

撥水性評価)
撥水性試験:得られた処理布を用い、JIS L 1092のスプレー法によって撥水性を評価した。即ち、処理布を直径約15cmの枠にしわが生じないように取り付け、水平面に対し45度の角度で保持し、そこへ撥水処理済み試験布中心から15cmの高さに設置したスプレーノズルから、27±1℃のイオン交換水250mLを処理布へ散布した。次に、枠を台上から取り外し、枠の一端を持ち、表面を下向きにして他端を叩いて余分な水滴を落とした後、処理布の濡れの状態を以下の判定標準により評価した。撥水性は該試験法に基づく下記評価基準により判定した。
撥水性:
100・・・表面に付着湿潤のないもの
90・・・表面に僅かに付着湿潤を示すもの
80・・・表面に水滴状に湿潤を示すもの
70・・・表面にかなり部分湿潤を示すもの
60・・・70と50の中間の湿潤を示すもの
50・・・表面全体に湿潤を示すもの
0・・・表裏に湿潤を示すもの
Water repellency evaluation)
Water repellency test: Water repellency was evaluated by the spray method of JIS L 1092 using the obtained treated cloth. That is, a treatment cloth is attached to a frame having a diameter of about 15 cm so as not to be wrinkled, held at an angle of 45 degrees with respect to a horizontal plane, and there from a spray nozzle set at a height of 15 cm from the center of the water-repellent treated cloth. 250 mL of ion-exchanged water at 27 ± 1 ° C. was sprayed on the treated cloth. Next, after removing the frame from the table, holding one end of the frame, hitting the other end with the surface facing down, and dropping excess water droplets, the wet state of the treated cloth was evaluated according to the following criteria. The water repellency was determined according to the following evaluation criteria based on the test method.
Water repellency:
100... Without adhering wetness on the surface
90 ... Slightly adhering to the surface
80... Showing wetness in the form of water droplets on the surface
70... Showing a very partial wetting on the surface
60 ... indicating a wetness between 70 and 50
50... Showing wetness on the entire surface
0 ... Indicates moisture on both sides

撥水持続性評価)
処理布にイオン交換水を10L連続して散布した。その後、20℃、50%RHの室内で1日乾燥させ、更にイオン交換水を10L連続して散布後、上記撥水性試験の判定基準により評価した。
Water repellent durability evaluation)
10 L of ion exchange water was continuously sprayed on the treated cloth. Thereafter, the sample was dried for one day in a room at 20 ° C. and 50% RH, and further 10 L of ion-exchanged water was sprayed continuously, and then evaluated according to the criteria for the water repellency test.

基材:モルタルの場合
処理方法)
吸水防止性能JISモルタル(50×50×25mm)の全面に撥水剤が100g/m2になるように刷毛塗りし、50%RHの雰囲気下で7日間養生させた。
Substrate: Processing method for mortar)
Water absorption prevention performance A brush was applied to the entire surface of the JIS mortar (50 × 50 × 25 mm) so that the water repellent was 100 g / m 2 , and was cured for 7 days in an atmosphere of 50% RH.

評価方法)
表面状態:
目視にてこのものの表面状態を観察した。評価基準は下記の通りである。
表面状態評価基準
○:濡れ色なし、×:濡れ色あり
Evaluation method)
Surface condition:
The surface condition of this was observed visually. The evaluation criteria are as follows.
Surface condition evaluation criteria ○: No wet color, x: wet color

吸水率:
この撥水剤処理モルタルを水道水中に28日間浸漬させ、次式にて吸水率を算出した。
吸水率(%)=〔{(吸水後のモルタル質量)−(吸水前のモルタル質量)}/
(吸水前のモルタル質量)〕×100
Water absorption rate:
This water repellent-treated mortar was immersed in tap water for 28 days, and the water absorption rate was calculated by the following formula.
Water absorption (%) = [{(Mortar mass after water absorption) − (Mortar mass before water absorption)} /
(Mortar mass before water absorption)] × 100

浸透深さ:
養生した撥水剤処理サンプルを2つに切断(縦断)し、切断面に水をかけて硬化層を見易くし、表面からの浸透深さを測定した。
Penetration depth:
The cured water repellent treated sample was cut into two (longitudinal cut), and water was applied to the cut surface to make the cured layer easy to see, and the penetration depth from the surface was measured.

撥水性:
養生した撥水剤処理サンプルの表面に0.5ccの水滴を落し、状態観察を行った。評価基準は次の通りである。
評価基準
○:接触角大(撥水性良好)、△:接触角中、×:吸水される
Water repellency:
A 0.5 cc water droplet was dropped on the surface of the cured water repellent treated sample, and the state was observed. The evaluation criteria are as follows.
Evaluation criteria ○: Large contact angle (good water repellency), △: Medium in contact angle, x: Water absorption

Figure 0005600900
*)組成の数値は質量%を示す。
Figure 0005600900
*) The numerical value of the composition indicates mass%.

表の結果から明らかなように、各実施例によれば、撥水性と撥水持続性とを付与できる撥水剤組成物が提供できた。   As apparent from the results in the table, according to each Example, a water repellent composition capable of imparting water repellency and water repellency persistence could be provided.

Claims (2)

(A)下記一般式(1)
m(R2nSi(OR1(4-m-n)・・・(1)
(式中、Xは炭素原子数6〜18のアルキル基、R1メチル基、エチル基、プロピル基又はブチル基、R2メチル基、エチル基又はプロピル基であり、mは1又は2、nは0又は1、m+nは1又は2である。)
で表される有機ケイ素化合物及び/又はその部分加水分解縮合物、又はこの有機ケイ素化合物及び/又はその部分加水分解縮合物と、下記一般式(2)
Z−Y−Si(R2p(OR13-p・・・(2)
〔式中、R1及びR2は上記と同じであり、Yは炭素原子数1〜20のアルキレン基、又は−R4 s−(OSi(R32rO−R4 s−基であり、ここで、R3は炭素原子数1〜6のアルキル基、R4は炭素原子数1〜6のアルキレン基、rは1〜40の整数、sは0又は1である。Zは(OR13-q(R2qSi−基であり、qは0、1、2又は3であり、また、pは0、1、2又は3、p+qは0〜4である。〕
で表される有機ケイ素化合物及び/又はその部分加水分解縮合物;上記一般式(1)で表される有機ケイ素化合物及び/又はその部分加水分解縮合物1モルに対して0.01〜0.3モルとなる量
を含む有機ケイ素化合物原料を、尿素塩酸塩を使用して加水分解、重縮合することによって得られる環状体オルガノポリシロキサンとリニア体オルガノポリシロキサンを含有するオルガノポリシロキサンであって、ケイ素核磁気共鳴スペクトル分析における式(1)で表される有機ケイ素化合物及び/又はその部分加水分解縮合物由来のピークのアルコキシ基が2つ加水分解縮合し、シロキサン単位となった−55〜−61ppmの成分(T2成分)において、環状体部分由来の成分である−55〜−59ppmの範囲のピーク強度の積分値(T2a積分強度)とリニア体部分由来の成分である−59〜−61ppmの範囲のピーク強度の積分値(T2b積分強度)との比率(T2a積分強度/T2b積分強度)が2.3以上8.6以下であるオルガノポリシロキサン、
(B)溶剤成分として揮発性の有機溶剤
を含有することを特徴とする撥水剤組成物。
(A) The following general formula (1)
X m (R 2) n Si (OR 1) (4-mn) ··· (1)
(Wherein, X represents an alkyl group having carbon atom number having 6 to 18, R 1 is a methyl group, an ethyl group, a propyl group or a butyl group, R 2 is methyl group, ethyl group or propyl group, m is 1 or 2, n is 0 or 1, and m + n is 1 or 2.)
An organosilicon compound and / or a partially hydrolyzed condensate thereof, or an organosilicon compound and / or a partially hydrolyzed condensate thereof, and the following general formula (2)
Z—Y—Si (R 2 ) p (OR 1 ) 3-p (2)
[Wherein, R 1 and R 2 are the same as above, and Y is an alkylene group having 1 to 20 carbon atoms , or —R 4 s — (OSi (R 3 ) 2 ) r O—R 4 s — group. Wherein R 3 is an alkyl group having 1 to 6 carbon atoms, R 4 is an alkylene group having 1 to 6 carbon atoms, r is an integer of 1 to 40, and s is 0 or 1. Z is (OR 1) 3-q ( R 2) q Si- group, q is 0, 1, 2 or 3, also, p is 0, 1, 2 or 3, p + q is 0 to 4 is there. ]
The organic silicon compound and / or its partial hydrolysis condensate represented by the general formula (1): 0.01 to 0.001 per mol of the organosilicon compound represented by the general formula (1) and / or its partial hydrolysis condensate. An organopolysiloxane containing a cyclic organopolysiloxane and a linear organopolysiloxane obtained by hydrolyzing and polycondensing an organosilicon compound raw material containing 3 moles using urea hydrochloride. Te, an alkoxy group of peaks derived from the organic silicon compound represented by the formula (1) in the silicon nuclear magnetic resonance spectroscopy and / or partial hydrolysis-condensation product thereof combined two hydrolytic condensation became siloxane units -55 in the component of ~-61 ppm (T2 components), the integral value of the peak intensity in the range of -55 to-59 ppm is a component derived from the cyclic moiety ( 2a integrated intensity) and the ratio (T2a integrated intensity / T2b integrated intensity of the integral value (T2b integrated intensity) of the peak intensity in the range of -59~-61ppm a component derived from the linear body portion) 2.3 or 8. An organopolysiloxane that is 6 or less ,
(B) A water repellent composition comprising a volatile organic solvent as a solvent component.
(B)成分である揮発性の有機溶剤が、パラフィン系炭化水素及び/又はシリコーンオイルを主剤とする有機溶剤であることを特徴とする請求項1記載の撥水剤組成物。 Component (B) is a volatile organic solvent is paraffinic hydrocarbons and / or water repellent composition of claim 1 Symbol mounting, characterized in that an organic solvent for the silicone oil a main agent.
JP2009172018A 2009-07-23 2009-07-23 Water repellent composition Active JP5600900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009172018A JP5600900B2 (en) 2009-07-23 2009-07-23 Water repellent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009172018A JP5600900B2 (en) 2009-07-23 2009-07-23 Water repellent composition

Publications (2)

Publication Number Publication Date
JP2011026402A JP2011026402A (en) 2011-02-10
JP5600900B2 true JP5600900B2 (en) 2014-10-08

Family

ID=43635526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172018A Active JP5600900B2 (en) 2009-07-23 2009-07-23 Water repellent composition

Country Status (1)

Country Link
JP (1) JP5600900B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381829B2 (en) * 2010-03-16 2014-01-08 信越化学工業株式会社 Surface-treated inorganic powder
JP5891043B2 (en) * 2012-01-19 2016-03-22 株式会社Uacj Water-slidable aluminum fin material for heat exchanger and method for producing heat exchanger
WO2018142552A1 (en) * 2017-02-02 2018-08-09 日立化成株式会社 Treatment agent for treating fibers, fibers and production method therefor, and fiber sheet production method
WO2018142542A1 (en) * 2017-02-02 2018-08-09 日立化成株式会社 Treatment agent for treating particles, water-repellent particles and production method therefor, water-repellent layer, and penetration preventing structure
WO2018142551A1 (en) * 2017-02-02 2018-08-09 日立化成株式会社 Water-repellent agent, water-repellent structure, and production method for said structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500824B2 (en) * 1990-10-25 1996-05-29 松下電器産業株式会社 Fluorocarbon coating film and method for producing the same
JP2690876B2 (en) * 1995-05-01 1997-12-17 松下電器産業株式会社 Translucent substrate
JPH08325562A (en) * 1995-03-27 1996-12-10 Shin Etsu Chem Co Ltd Water-soluble water absorption-preventive agent and prevention of water absorption
JP2577203B2 (en) * 1995-08-25 1997-01-29 松下電器産業株式会社 Method for producing antifouling glass
JPH09143457A (en) * 1995-11-27 1997-06-03 Shin Etsu Chem Co Ltd Water absorption inhibitor in water system for porous inorganic material
JP4256324B2 (en) * 2004-10-13 2009-04-22 信越化学工業株式会社 Room temperature curable organopolysiloxane composition
JP2006298947A (en) * 2005-04-15 2006-11-02 Daikin Ind Ltd Surface treatment agent of fluorine-containing silsesquioxane metal salt

Also Published As

Publication number Publication date
JP2011026402A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
US5650474A (en) Process for preparing organic functional group-containing organopolysiloxanes, organopolysiloxanes obtained by the process and novel mercapto group and alkoxy group-containing organopolysiloxanes and preparation thereof
US6197989B1 (en) Fluorinated organosilicon compounds and process for the preparation thereof
JPH06296850A (en) Decomposable fluorinated alkoxysilane surfactant and waterproof coating agent prepared therefrom
JP5600900B2 (en) Water repellent composition
CN112011059A (en) Tailored SiOC-based polyether siloxanes
JPH03170530A (en) Organopolysiloxane having one branched molecular terminal and blocked by aminoalkyl group, and its preparation
KR20210005862A (en) Polysiloxane resin composition
KR101854906B1 (en) Compositions of aminosiloxanes, alkoxysilicon compounds and metal carboxylates
JP2007538070A (en) Silicone condensation reaction
JP4201385B2 (en) Siloxane-polyether copolymer having unsaturated functional group and process for producing the same
EP2528927B1 (en) Silicon polyethers and method of producing the same
KR102489200B1 (en) surface treatment agent
JP3228085B2 (en) Water repellent agent
JP6060884B2 (en) Surface modifier and surface modification method
JP7239836B2 (en) Film-forming composition
WO1997033034A1 (en) Method for softening a fabric material, preventing yellowing thereof and conferring hydrophilic properties thereto by means of a polyorganosiloxane composition
KR101280849B1 (en) Lyotropic liquid crystals and vesicles
US11377523B2 (en) Process for producing non-cyclic alkoxy-functional polysiloxanes
US9012671B2 (en) Process for preparing amino-mercapto functional organopolysiloxanes
JP2019189564A (en) Silsesquioxane derivative containing alkoxysilyl group
JP7328520B2 (en) Curable composition
JP5042165B2 (en) Fluorine-containing organosilicon compound and method for producing the same
JP2000007786A (en) Production of fluoroalkyl group-containing linear siloxane
JP7397558B2 (en) Water- and oil-repellent film composition and its use
WO2013191955A1 (en) Monofunctional organopolysiloxanes for compatabilzing polyheterosiloxanes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5600900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150