JP5600081B2 - Pre-coated fin material for heat exchanger and heat exchanger - Google Patents

Pre-coated fin material for heat exchanger and heat exchanger Download PDF

Info

Publication number
JP5600081B2
JP5600081B2 JP2011105498A JP2011105498A JP5600081B2 JP 5600081 B2 JP5600081 B2 JP 5600081B2 JP 2011105498 A JP2011105498 A JP 2011105498A JP 2011105498 A JP2011105498 A JP 2011105498A JP 5600081 B2 JP5600081 B2 JP 5600081B2
Authority
JP
Japan
Prior art keywords
water
fin
repellent
hydrophilic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011105498A
Other languages
Japanese (ja)
Other versions
JP2012237476A (en
Inventor
令子 高澤
透 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcom Nikkei Specialty Coatings Sdn Bhd
Original Assignee
Alcom Nikkei Specialty Coatings Sdn Bhd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcom Nikkei Specialty Coatings Sdn Bhd filed Critical Alcom Nikkei Specialty Coatings Sdn Bhd
Priority to JP2011105498A priority Critical patent/JP5600081B2/en
Priority to CN201280022516.5A priority patent/CN103703338B/en
Priority to KR1020137032356A priority patent/KR101555422B1/en
Priority to US14/117,207 priority patent/US20140231052A1/en
Priority to MYPI2013702101A priority patent/MY162775A/en
Priority to PCT/JP2012/057104 priority patent/WO2012153570A1/en
Publication of JP2012237476A publication Critical patent/JP2012237476A/en
Application granted granted Critical
Publication of JP5600081B2 publication Critical patent/JP5600081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4261Macromolecular compounds obtained by reactions involving only unsaturated carbon-to-carbon bindings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Description

本発明は、アルミニウム又はアルミニウム合金からなるアルミニウム板材の表面に優れた着霜抑制効果と凝縮水排除効果とが付与された熱交換器用プレコートフィン材、及びこれを用いて構成されたフィン構造を備えた熱交換器に関するものである。   The present invention includes a precoat fin material for a heat exchanger provided with an excellent frosting suppressing effect and a condensed water eliminating effect on the surface of an aluminum plate made of aluminum or an aluminum alloy, and a fin structure configured using the same. It relates to a heat exchanger.

アルミニウム板材からなる熱交換器用プレコートフィン材は、所望のフィン形状に成形加工することにより、ヒートポンプエアコン用熱交換器のフィン材として使用されている。しかるに、この熱交換器用プレコートフィン材を用いた熱交換器においては、暖房運転時の室外機において、空気の温度が低い場合や冷媒の蒸発温度が低い場合に、フィンの表面に霜が付着することがあり、そして、着霜するとフィン間が閉塞して通風抵抗が増大し、延いては熱交換器に流入する風量が低下し、室外機の熱交換器の蒸発能力が低下する。このため、熱交換器のフィン表面に霜が付着した際には、この霜を取り除くために、暖房運転を停止して除霜運転を行う必要が生じ、快適性が大きく低下するという問題があった。   A precoat fin material for a heat exchanger made of an aluminum plate is used as a fin material for a heat exchanger for a heat pump air conditioner by forming it into a desired fin shape. However, in the heat exchanger using the precoat fin material for heat exchanger, frost adheres to the fin surface when the air temperature is low or the refrigerant evaporation temperature is low in the outdoor unit during heating operation. When the frost is formed, the gap between the fins is closed and the ventilation resistance is increased. As a result, the amount of air flowing into the heat exchanger is decreased, and the evaporation capacity of the heat exchanger of the outdoor unit is decreased. For this reason, when frost adheres to the fin surface of the heat exchanger, it is necessary to stop the heating operation and perform the defrosting operation in order to remove the frost. It was.

また、このような着霜を抑える技術として、フィンの表面に撥水性皮膜を形成する方法があるが、この方法においては、着霜によって閉塞する時間を延ばすことはできるが、除霜後や比較的冷媒の温度が高くてフィンの表面に水滴が結露するような条件では、フィン間に凝縮水が付着し、この付着した凝縮水がフィン間でブリッジを形成して通風抵抗が増大し、結果として熱交換性能が低下するという問題がある。   In addition, as a technique for suppressing such frost formation, there is a method of forming a water-repellent film on the surface of the fin. In this method, it is possible to extend the time for blocking by frost formation, but after defrosting or comparison When the temperature of the refrigerant is high and water droplets are condensed on the fin surface, condensed water adheres between the fins, and this condensed water forms a bridge between the fins, resulting in increased ventilation resistance. As a result, there is a problem that the heat exchange performance is lowered.

このため、暖房運転時の熱交換器の熱効率を向上させるためには、フィン表面の凝縮水を着霜前に排除すると共に、フィン表面を着霜し難い表面にすることが求められており、また、この課題を解決するための手段としては、フィン表面に親水性皮膜を形成し、凝縮水を薄い水膜として流下させる親水処理方法(特許文献1〜3)、フィン表面に撥水性皮膜を形成し、凝縮水を早期に排除する撥水処理方法(特許文献4〜6)、及び、フィンの配置や部位に応じて撥水性皮膜と親水性皮膜とを形成し、これら撥水性皮膜及び親水性皮膜の長所及び短所を互いに補う撥水・親水処理方法(特許文献7〜9)等が提案されている。   For this reason, in order to improve the thermal efficiency of the heat exchanger during heating operation, it is required to remove the condensed water on the fin surface before frosting and to make the fin surface difficult to frost, Moreover, as means for solving this problem, a hydrophilic treatment method (Patent Documents 1 to 3) in which a hydrophilic film is formed on the fin surface and condensed water flows down as a thin water film, and a water-repellent film is formed on the fin surface. A water repellent treatment method (Patent Documents 4 to 6) for forming and removing condensed water at an early stage, and forming a water repellent film and a hydrophilic film according to the arrangement and location of the fins. Water repellent / hydrophilic treatment methods (Patent Documents 7 to 9) and the like have been proposed that compensate for the advantages and disadvantages of the conductive film.

特開平09-014,888号公報JP 09-014,888 特開2000-028,291号公報JP 2000-028,291 JP 特開2010-223,520号公報JP 2010-223,520 特開平08-269,367号公報Japanese Patent Laid-Open No. 08-269,367 特開平09-026,286号公報JP 09-026,286 JP 特開2009-270,181号公報JP 2009-270,181 特開平08-152,287号公報Japanese Patent Laid-Open No. 08-152,287 特許第3,761,262号公報Japanese Patent No. 3,761,262 特開2006-046,695号公報JP 2006-046,695 gazette

しかしながら、特許文献1〜3の親水処理方法においては、薄い水膜として流下する機能が十分ではなく、暖房運転を行なった際に着霜を抑制する除霜性が十分でなく、また、特許文献4〜6の撥水処理方法においても、撥水性が十分でなく、結露した水滴を確実に排除して着霜を抑制する除霜性が十分でなく、更に、特許文献7〜9においては、フィンの配置や部位に応じて形成される撥水性皮膜及び親水性皮膜、特に撥水性皮膜において、その撥水性能や親水性能、特に撥水性能について必ずしも十分ではなく、満足し得る着霜抑制効果を達成できるまでには至っておらず、また、凝縮水によるフィン間の通風抵抗増大の問題を十分に解決できるまでには至っていない。   However, in the hydrophilic treatment methods of Patent Documents 1 to 3, the function of flowing down as a thin water film is not sufficient, and the defrosting property that suppresses frost formation during heating operation is not sufficient. Also in the water repellency treatment method of 4-6, the water repellency is not sufficient, the defrosting property that reliably eliminates the condensed water droplets and suppresses frost formation is not sufficient, and in Patent Documents 7-9, Water-repellent film and hydrophilic film formed according to fin arrangement and site, especially water-repellent film, water repellency performance and hydrophilic performance, especially water repellency performance is not always sufficient and satisfactory frost control effect Has not yet been achieved, and the problem of increased ventilation resistance between fins due to condensed water has not been sufficiently solved.

そこで、本発明者らは、これら従来技術の問題点に鑑み、優れた着霜抑制効果と凝縮水排除効果とを有する熱交換器用プレコートフィン材の開発を行い、このプレコートフィン材を用いて着霜抑制効果と凝縮水排除効果とを協働させることにより、暖房運転時に着霜が無く、しかも、凝縮水によるフィン間通風抵抗増大の問題もないフィン構造を備えた熱交換器を開発することについて鋭意検討を重ねた結果、撥水性皮膜中に特定の架橋構造を導入して得られた架橋撥水性皮膜が着霜抑制効果に優れており、また、この架橋撥水性皮膜を凝縮水排除効果に優れた親水性皮膜と相対面させて協働させることにより、優れた着霜抑制効果と優れた凝縮水排除効果とを兼ね備えたフィン構造を構成できることを見い出し、本発明を完成した。   In view of these problems of the prior art, the present inventors have developed a precoat fin material for heat exchangers that has an excellent frost suppression effect and a condensed water elimination effect, and uses this precoat fin material. To develop a heat exchanger with a fin structure that has no frost formation during heating operation and that does not have the problem of increased ventilation resistance between the fins due to condensed water by cooperating the frost suppression effect and the condensed water exclusion effect. As a result of intensive studies, the cross-linked water-repellent film obtained by introducing a specific cross-linked structure into the water-repellent film has excellent anti-frosting effect. It was found that a fin structure having both an excellent frost suppression effect and an excellent condensed water elimination effect can be constructed by cooperating with an excellent hydrophilic film on the surface, and the present invention was completed.

従って、本発明の目的は、一方の面に優れた着霜抑制効果を有する架橋撥水性皮膜を有すると共に、他方の面に凝縮水排除効果を有する親水性皮膜を有する熱交換器用プレコートフィン材を提供することにある。   Accordingly, an object of the present invention is to provide a precoat fin material for a heat exchanger having a cross-linked water-repellent film having an excellent frosting-inhibiting effect on one surface and a hydrophilic film having a condensate eliminating effect on the other surface. It is to provide.

また、本発明の他の目的は、前記熱交換器用プレコートフィン材からなる片面撥水性/片面親水性フィン材を用い、あるいは、両面に優れた着霜抑制効果を有する架橋撥水性皮膜を備えた両面撥水性フィン材と、両面に優れた凝縮水排除効果を有する親水性皮膜を備えた両面親水性フィン材とを用い、優れた着霜抑制効果を有する架橋撥水性皮膜と優れた凝縮水排除効果を有する親水性皮膜とを相対面させて協働させ、暖房運転時の着霜を可及的に防止すると共に、フィン表面が結露し易い条件下では凝縮水の水滴を親水性皮膜に接触させてこの水滴を速やかに排除することができ、これによって通風抵抗を増大させることなく良好な熱交換機能を継続し得るフィン構造を備えた熱交換器を提供することにある。   Another object of the present invention is to use a single-sided water-repellent / single-sided hydrophilic fin material made of the precoat fin material for heat exchangers, or a cross-linked water-repellent film having an excellent frosting-inhibiting effect on both sides. Using a double-sided water-repellent fin material and a double-sided hydrophilic fin material with a hydrophilic film having an excellent condensate draining effect on both sides, a cross-linked water-repellent film having an excellent frost-inhibiting effect and an excellent condensate drainage A hydrophilic film that has an effect is made to face each other and collaborate to prevent frost formation during heating operation as much as possible, and water droplets of condensed water contact the hydrophilic film under conditions where the fin surface tends to condense Accordingly, it is an object of the present invention to provide a heat exchanger having a fin structure that can quickly remove the water droplets and thereby continue a good heat exchange function without increasing the ventilation resistance.

すなわち、本発明は、アルミニウム又はアルミニウム合金からなるアルミニウム板材で形成されたフィン基板と、このフィン基板の一方の面に設けられた着霜抑制効果を有する架橋撥水性皮膜と、フィン基板の他方の面に設けられた凝縮水排除効果を有する親水性皮膜とを備えた熱交換器用のプレコートフィン材であって、前記架橋撥水性皮膜が、パーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する樹脂(A)、4級アンモニウム塩基含有変性エポキシ樹脂(B)及びアミノ樹脂(C)を含有し、4級アンモニウム塩基含有変性エポキシ樹脂(B)とアミノ樹脂(C)の固形分合計100質量部に対して、パーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する樹脂(A)の固形分が1〜30質量部である水性撥水塗料組成物から形成されていることを特徴とする熱交換器用プレコートフィン材である。   That is, the present invention provides a fin substrate formed of an aluminum plate made of aluminum or an aluminum alloy, a cross-linked water-repellent coating having a frost formation suppressing effect provided on one surface of the fin substrate, and the other of the fin substrate. A pre-coated fin material for a heat exchanger provided with a hydrophilic film having an effect of eliminating condensed water provided on the surface, wherein the crosslinked water-repellent film is selected from the group consisting of perfluoroalkyl groups and perfluoroalkenyl groups A resin having at least one fluorine atom-containing group (A), a quaternary ammonium base-containing modified epoxy resin (B) and an amino resin (C), and a quaternary ammonium base-containing modified epoxy resin (B) and amino It consists of a perfluoroalkyl group and a perfluoroalkenyl group with respect to a total solid content of 100 parts by mass of the resin (C). A precoat fin for a heat exchanger, wherein the resin (A) having at least one fluorine atom-containing group selected from the group is formed from a water-based water-repellent coating composition having a solid content of 1 to 30 parts by mass. It is a material.

また、本発明は、多数の平板状のプレコートフィン材が互いに所定の間隔でかつ平行に配置され、かつ、互いに隣接するプレコートフィン材間において着霜抑制効果を有する撥水性面と凝縮水排除効果を有する親水性面とが相対面するフィン構造を備えた熱交換器であり、前記多数のプレコートフィン材が、アルミニウム又はアルミニウム合金からなるアルミニウム板材で形成されたフィン基板の一方の面に撥水性面を形成する架橋撥水性皮膜を有すると共に他方の面に親水性面を形成する親水性皮膜を有する多数の片面撥水性/片面親水性フィン材で構成されており、あるいは、アルミニウム又はアルミニウム合金からなるアルミニウム板材で形成されたフィン基板の両面に撥水性面を形成する架橋撥水性皮膜を有する複数の両面撥水性フィン材と、アルミニウム又はアルミニウム合金からなるアルミニウム板材で形成されたフィン基板の両面に親水性面を形成する親水性皮膜を有する複数の両面親水性フィン材とで構成されており、前記架橋撥水性皮膜が、パーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する樹脂(A)、4級アンモニウム塩基含有変性エポキシ樹脂(B)及びアミノ樹脂(C)を含有し、4級アンモニウム塩基含有変性エポキシ樹脂(B)とアミノ樹脂(C)の固形分合計100質量部に対して、パーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する樹脂(A)の固形分が1〜30質量部である水性撥水塗料組成物から形成されていることを特徴とする熱交換器である。   Further, the present invention provides a water repellent surface and a condensed water eliminating effect in which a large number of flat precoated fin materials are arranged in parallel with each other at a predetermined interval and have a frosting suppressing effect between adjacent precoated fin materials. A heat exchanger having a fin structure facing a hydrophilic surface having a plurality of pre-coated fin materials on one surface of a fin substrate formed of an aluminum plate made of aluminum or an aluminum alloy. It is composed of a number of single-sided water-repellent / single-sided hydrophilic fin materials having a cross-linked water-repellent film that forms a surface and a hydrophilic film that forms a hydrophilic surface on the other surface, or from aluminum or an aluminum alloy A plurality of double-sided water-repellent films having a cross-linked water-repellent film that forms a water-repellent surface on both sides of a fin substrate formed of an aluminum plate. And a plurality of double-sided hydrophilic fin materials having a hydrophilic film that forms hydrophilic surfaces on both sides of a fin substrate formed of an aluminum plate made of aluminum or an aluminum alloy, and the crosslinked water-repellent material Resin (A) whose film has at least one fluorine atom-containing group selected from the group consisting of perfluoroalkyl groups and perfluoroalkenyl groups, quaternary ammonium base-containing modified epoxy resin (B) and amino resin (C) At least one selected from the group consisting of a perfluoroalkyl group and a perfluoroalkenyl group with respect to a total of 100 parts by mass of the solid content of the quaternary ammonium base-containing modified epoxy resin (B) and amino resin (C) Aqueous water repellent coating composition in which the solid content of the resin (A) having a fluorine atom-containing group is 1 to 30 parts by mass It is a heat exchanger, characterized in that the al formed.

本発明において、前記フィン基板を形成するアルミニウム板材については、それが純アルミニウムからなるものであっても、また、アルミニウム合金からなるものであってもよく、特に制限されるものではないが、フィン基板については、耐食性の観点から、好ましくは、その両面に耐食性皮膜が設けられているのがよい。   In the present invention, the aluminum plate material forming the fin substrate may be made of pure aluminum or an aluminum alloy, and is not particularly limited. About a board | substrate, from a corrosion-resistant viewpoint, it is preferable that the corrosion-resistant film | membrane is provided in the both surfaces preferably.

この目的で上記フィン基板の両面に設けられる耐食性皮膜は、フィン基板の両面に耐食性処理剤を塗布して形成されるものであり、ここで使用される耐食性処理剤としては、例えば、クロメート処理剤、リン酸クロメート処理剤、クロムフリー化成処理剤、有機系の耐食性プライマー等を挙げることができ、環境に配慮した耐食性皮膜という観点から、クロムフリー化成処理剤や有機系の耐食性プライマーが好ましい。   For this purpose, the corrosion-resistant film provided on both surfaces of the fin substrate is formed by applying a corrosion-resistant treatment agent on both surfaces of the fin substrate. Examples of the corrosion-resistant treatment agent used here include a chromate treatment agent. In addition, a phosphoric acid chromate treatment agent, a chromium-free chemical conversion treatment agent, an organic corrosion-resistant primer, and the like can be mentioned. From the viewpoint of an environmentally friendly corrosion-resistant film, a chromium-free chemical conversion treatment agent and an organic corrosion-resistant primer are preferable.

本発明においては、熱交換器用プレコートフィン材として、上記フィン基板の一方の面に撥水性面を形成する架橋撥水性皮膜が設けられると共に他方の面に親水性面を形成する親水性皮膜が設けられて片面撥水性/片面親水性フィン材が形成されるか、あるいは、上記フィン基板の両面に着霜抑制効果を有する架橋撥水性皮膜が設けられて両面撥水性フィン材が形成されるが、この着霜抑制効果を有する架橋撥水性皮膜については、後述するフッ素原子含有基を有する樹脂(A)、4級アンモニウム塩基含有変性エポキシ樹脂(B)及びアミノ樹脂(C)を含有する水性撥水塗料組成物から形成される撥水性皮膜が架橋構造を形成することが必要である。   In the present invention, as a precoat fin material for a heat exchanger, a cross-linked water-repellent film that forms a water-repellent surface is provided on one side of the fin substrate, and a hydrophilic film that forms a hydrophilic surface is provided on the other side. A single-sided water-repellent / single-sided hydrophilic fin material is formed, or a double-sided water-repellent fin material is formed by providing a cross-linked water-repellent film having a frosting-inhibiting effect on both sides of the fin substrate. The crosslinked water-repellent film having the effect of suppressing frost formation is a water-repellent water-repellent film containing a resin (A) having a fluorine atom-containing group, a quaternary ammonium base-containing modified epoxy resin (B), and an amino resin (C) described later. It is necessary that the water-repellent film formed from the coating composition forms a crosslinked structure.

ここで、上記着霜抑制効果を有する架橋撥水性皮膜については、その水接触角が好ましくは100°以上、より好ましくは105°以上であり、また、その膜厚が通常0.05〜5.0μm、好ましくは0.1〜4.0μm、より好ましくは0.2〜2.0μmである。この架橋撥水性皮膜の水接触角については、高ければ高いほどよいが、この架橋撥水性皮膜の水接触角が100°より低いと、着霜抑制効果が低くなるという問題があり、また、上記架橋撥水性皮膜の膜厚については、0.05μm未満であると、ロット間での着霜抑制と親水性のバラツキが大きくなり、また着霜抑制と親水持続性の経時劣化が大きくなる等の問題があり、反対に、5.0μmを超えると、これ以上の着霜抑制、親水性の向上は期待できないだけではなく、むしろフィン材に冷媒用の銅管をロウ付けする際の熱による皮膜の焦げが目立つようになり、また膜厚が厚くなるにつれてコストアップとなる等の問題がある。   Here, about the crosslinked water-repellent film having the frosting-inhibiting effect, the water contact angle is preferably 100 ° or more, more preferably 105 ° or more, and the film thickness is usually 0.05 to 5. The thickness is 0 μm, preferably 0.1 to 4.0 μm, more preferably 0.2 to 2.0 μm. The higher the water contact angle of this crosslinked water-repellent film, the better. However, if the water contact angle of this crosslinked water-repellent film is lower than 100 °, there is a problem that the effect of suppressing frost formation is reduced. Regarding the film thickness of the crosslinked water-repellent film, if it is less than 0.05 μm, the frost formation between lots and hydrophilic variations increase, and the aging of frost formation and hydrophilic durability increases over time. On the other hand, if the thickness exceeds 5.0 μm, it is not only possible to expect further suppression of frost formation and improvement in hydrophilicity, but rather a heat-induced film when brazing a copper pipe for refrigerant to the fin material There is a problem that the burning of the film becomes conspicuous and the cost increases as the film thickness increases.

本発明において、上記着霜抑制効果を発揮する架橋撥水性皮膜は、水性撥水塗料組成物を塗布して形成されるものであり、この目的で使用される水性撥水塗料組成物としては、着霜抑制効果を長期間維持する観点から、パーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する樹脂(A)、4級アンモニウム塩基含有変性エポキシ樹脂(B)及びアミノ樹脂(C)を含む水性撥水塗料組成物を挙げることができる。なお、以下の記載において、“パーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する樹脂(A)”を単に「フッ素原子含有基を有する樹脂(A)」と記載することがある。   In the present invention, the crosslinked water-repellent coating film that exhibits the above-described frosting-inhibiting effect is formed by applying an aqueous water-repellent coating composition, and as an aqueous water-repellent coating composition used for this purpose, Resin having at least one fluorine atom-containing group selected from the group consisting of a perfluoroalkyl group and a perfluoroalkenyl group (A), a quaternary ammonium base-containing modified epoxy resin, from the viewpoint of maintaining a frosting suppression effect for a long period of time An aqueous water-repellent coating composition containing (B) and an amino resin (C) can be mentioned. In the following description, “resin (A) having at least one fluorine atom-containing group selected from the group consisting of perfluoroalkyl groups and perfluoroalkenyl groups” is simply referred to as “resin having fluorine atom-containing group (A ) ".

<フッ素原子含有基を有する樹脂(A)>
上記水性撥水塗料組成物において、フッ素原子含有基を有する樹脂(A)は、パーフルオロアルキル基及び/又はパーフルオロアルケニル基を有する樹脂であれば公知のものを使用することができ、水又は水を主成分とする媒体(以下、「水性媒体」と称する。)に分散又は溶解したものを用いることができる。このようなフッ素原子含有基を有する樹脂(A)は、例えば下記一般式(1)に示した構造のパーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する重合性不飽和単量体(a-1)〔以下、「フッ素原子含有基を有する重合性不飽和単量体(a-1)」と記すことがある〕と、その他の重合性不飽和単量体(a-2)とを、共重合反応させることにより得られた樹脂であることが好ましい。上記重合反応を行う方法は、公知の重合方法から選択することができ、例えば、バルク重合、溶液重合、乳化重合、懸濁重合、分散重合等を挙げることができ、水性媒体に分散又は溶解した樹脂の製造効率等の観点から、乳化重合が好ましい。
<Resin having fluorine atom-containing group (A)>
In the water-based water-repellent coating composition, as the resin (A) having a fluorine atom-containing group, a known resin can be used as long as it has a perfluoroalkyl group and / or a perfluoroalkenyl group. What was disperse | distributed or melt | dissolved in the medium (henceforth an "aqueous medium") which has water as a main component can be used. The resin (A) having such a fluorine atom-containing group is, for example, at least one fluorine atom-containing group selected from the group consisting of a perfluoroalkyl group and a perfluoroalkenyl group having a structure represented by the following general formula (1). Polymerizable unsaturated monomer (a-1) [hereinafter, sometimes referred to as “polymerizable unsaturated monomer (a-1) having a fluorine atom-containing group]” and other polymerizable unsaturated monomers A resin obtained by copolymerizing a saturated monomer (a-2) is preferable. The method for carrying out the polymerization reaction can be selected from known polymerization methods, and examples thereof include bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, dispersion polymerization, and the like, which are dispersed or dissolved in an aqueous medium. From the viewpoint of resin production efficiency and the like, emulsion polymerization is preferred.

Figure 0005600081
Figure 0005600081

(式中、Rfは炭素数1〜21の直鎖状又は分岐状のパーフルオロアルキル基又はパーフルオロアルケニル基を表わす。Rは水素原子、ハロゲン原子、又はメチル基を表わす。Xは酸素原子又はイミノ基を表わす。Yは酸素原子、硫黄原子、窒素原子又はリン原子を含んでいても含んでいなくてもよい、炭素数1〜20の2価の有機基を表わす。) (In the formula, Rf represents a linear or branched perfluoroalkyl group or perfluoroalkenyl group having 1 to 21 carbon atoms. R represents a hydrogen atom, a halogen atom, or a methyl group. X represents an oxygen atom or Y represents an imino group, and Y represents a divalent organic group having 1 to 20 carbon atoms which may or may not contain an oxygen atom, a sulfur atom, a nitrogen atom or a phosphorus atom.

上記フッ素原子含有基としては、パーフルオロアルキル基であることが好ましく、該パーフルオロアルキル基としては、例えば、−CF3、−CF2CF3、−CF2CF2CF3、−CF(CF3)2、−CF2CF2CF2CF3、−CF2CF(CF3)2、−C(CF3)3、−(CF2)4CF3、−(CF2)2CF(CF3)2、−CF2C(CF3)3、−CF(CF3)CF2CF2CF3、−(CF2)5CF3、−(CF2)3CF(CF3)2、−(CF2)4CF(CF3)2、−(CF2)7CF3、−(CF2)5CF(CF3)2、−(CF2)6CF(CF3)2、−(CF2)9CF3等が挙げられる。パーフルオロアルキル基の炭素数は、1〜21、好ましくは2〜20、更に好ましくは4〜16である。 The fluorine atom-containing group is preferably a perfluoroalkyl group. Examples of the perfluoroalkyl group include —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 CF 3 , —CF (CF 3) 2, -CF 2 CF 2 CF 2 CF 3, -CF 2 CF (CF 3) 2, -C (CF 3) 3, - (CF 2) 4 CF 3, - (CF 2) 2 CF (CF 3) 2, -CF 2 C ( CF 3) 3, -CF (CF 3) CF 2 CF 2 CF 3, - (CF 2) 5 CF 3, - (CF 2) 3 CF (CF 3) 2, - (CF 2 ) 4 CF (CF 3 ) 2 ,-(CF 2 ) 7 CF 3 ,-(CF 2 ) 5 CF (CF 3 ) 2 ,-(CF 2 ) 6 CF (CF 3 ) 2 ,-(CF 2) 9 CF 3, and the like. The carbon number of the perfluoroalkyl group is 1 to 21, preferably 2 to 20, and more preferably 4 to 16.

フッ素原子含有基を有する重合性不飽和単量体(a-1)の乳化重合は、該単量体(a-1)とその他の重合性不飽和単量体(a-2)との混合物を、乳化剤、重合開始剤を用いて、水性媒体中で乳化重合させる公知の方法により行うことができる。なお、該乳化重合においては、必要に応じて親水性又は疎水性の有機溶剤を使用してもよい。   Emulsion polymerization of a polymerizable unsaturated monomer (a-1) having a fluorine atom-containing group is a mixture of the monomer (a-1) and another polymerizable unsaturated monomer (a-2). Can be carried out by a known method of emulsion polymerization in an aqueous medium using an emulsifier and a polymerization initiator. In the emulsion polymerization, a hydrophilic or hydrophobic organic solvent may be used as necessary.

乳化剤としては、従来公知の乳化剤を使用することができ、例えば、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤、又はそれらを組合せたものが用いられる。上記界面活性剤としては、必要に応じてフッ化アルキル基等のフッ素原子が結合した化合物を用いてもよい。   A conventionally well-known emulsifier can be used as an emulsifier, For example, anionic surfactant, a nonionic surfactant, an amphoteric surfactant, or what combined them is used. As the surfactant, a compound to which a fluorine atom such as a fluorinated alkyl group is bonded may be used as necessary.

重合開始剤としては、従来公知の重合開始剤を使用することができ、例えば、過硫酸アンモニウム(APS)、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩類や、ジイソプロピルパーオキシジカーボネート(IPP)、過酸化ベンゾイル、過酸化ジブチル、アゾビスイソブチロニトリル(AIBN)等の油溶性重合開始剤等が挙げられる。   As the polymerization initiator, conventionally known polymerization initiators can be used, for example, persulfates such as ammonium persulfate (APS), potassium persulfate, sodium persulfate, diisopropyl peroxydicarbonate (IPP), Examples thereof include oil-soluble polymerization initiators such as benzoyl peroxide, dibutyl peroxide, and azobisisobutyronitrile (AIBN).

また、上記乳化重合反応において、連鎖移動剤を用いてもよく、該連鎖移動剤として、例えば、マロン酸ジエチル(MDE)、マロン酸ジメチル等のマロン酸ジエステル類や、酢酸エチル、酢酸ブチル等の酢酸エステル類や、メタノール、エタノール等のアルコール類や、n-ラウリルメルカプタン、n-オクチルメルカプタン等のメルカプタン類や、α-メチルスチレンダイマー等が挙げられる。   In the emulsion polymerization reaction, a chain transfer agent may be used. Examples of the chain transfer agent include malonic acid diesters such as diethyl malonate (MDE) and dimethyl malonate, ethyl acetate, butyl acetate and the like. Examples thereof include acetates, alcohols such as methanol and ethanol, mercaptans such as n-lauryl mercaptan and n-octyl mercaptan, and α-methylstyrene dimer.

重合反応は、重合温度20〜150℃、重合時間0.1〜100時間で行うことによって、フッ素原子含有基を有する樹脂(A)の水分散体を製造することができる。該水分散体において、フッ素原子含有基を有する樹脂(A)は、平均粒子径が10〜500nm、好ましくは30〜200nmの粒子として得られる。固形分濃度は5〜50質量%程度が望ましい。   By carrying out the polymerization reaction at a polymerization temperature of 20 to 150 ° C. and a polymerization time of 0.1 to 100 hours, an aqueous dispersion of the resin (A) having a fluorine atom-containing group can be produced. In the aqueous dispersion, the resin (A) having a fluorine atom-containing group is obtained as particles having an average particle diameter of 10 to 500 nm, preferably 30 to 200 nm. The solid content concentration is preferably about 5 to 50% by mass.

上記フッ素原子含有基を有する樹脂(A)の粒子は、単層構造あるいはコアシェル構造を含む多層構造であってもよく、また、粒子内部は架橋されていてもよく、これらの粒子は、乳化重合において公知の方法によって得ることができる。   The particles of the resin (A) having a fluorine atom-containing group may have a single-layer structure or a multilayer structure including a core-shell structure, and the inside of the particles may be cross-linked. Can be obtained by a known method.

上記その他の重合性不飽和単量体(a-2)としては、フッ素原子含有基を有する重合性不飽和単量体(a-1)と共重合反応性を有するものであれば、特に制限なく使用することができ、例えば、アクリル酸、メタクリル酸、イタコン酸、無水イタコン酸、無水マレイン酸、ブタジエン、イソプレン、クロロプレン、アルキル基の炭素数が1〜20の(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸シクロヘキシルエステル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ベンジルエステル、ジ(メタ)アクリル酸ポリエチレングリコール;スチレン、α−メチルスチレン、p−メチルスチレン等の芳香族ビニル系単量体;2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシアミル(メタ)アクリレート及びヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;アルキル基の炭素数が1〜20のビニルアルキルエーテル;アルキル基の炭素数が1〜20のハロゲン化アルキルビニルエーテル;アルキル基の炭素数が1〜20のビニルアルキルケトン;ビニルトリエトキシシラン、γ-(メタクリロキシプロピル)トリメトキシシラン等のシリル基含有不飽和単量体;(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-n-プロポキシメチル(メタ)アクリルアミド、N-イソプロポキシメチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-sec-ブトキシメチル(メタ)アクリルアミド、N-tert-ブトキシメチル(メタ)アクリルアミド等の(メタ)アクリルアミド系モノマー;酢酸ビニル、「ベオバ」(シェル社製のビニルエステル)等のビニルエステル類、アクリロニトリル、メタクリロニトリルエチレン、ブタジエン等挙げることができる。なお、本明細書において、(メタ)アクリル酸はアクリル酸及びメタクリル酸の総称であり、(メタ)アクリレートはアクリレート及びメタクリレートの総称であって、(メタ)アクリルアミドはアクリルアミド及びメタクリルアミドの総称である。   The other polymerizable unsaturated monomer (a-2) is not particularly limited as long as it has copolymerization reactivity with the polymerizable unsaturated monomer (a-1) having a fluorine atom-containing group. For example, acrylic acid, methacrylic acid, itaconic acid, itaconic anhydride, maleic anhydride, butadiene, isoprene, chloroprene, alkyl (meth) acrylic acid alkyl ester having 1 to 20 carbon atoms, (Meth) acrylic acid cyclohexyl ester, (meth) acrylic acid isobornyl, (meth) acrylic acid benzyl ester, di (meth) acrylic acid polyethylene glycol; aromatic vinyl-based singles such as styrene, α-methylstyrene, p-methylstyrene 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate Hydroxyalkyl (meth) acrylates such as hydroxyamyl (meth) acrylate and hydroxyhexyl (meth) acrylate; vinyl alkyl ethers having 1 to 20 carbon atoms in the alkyl group; halogenated alkyl vinyl ethers having 1 to 20 carbon atoms in the alkyl group A vinyl alkyl ketone having an alkyl group having 1 to 20 carbon atoms; a silyl group-containing unsaturated monomer such as vinyltriethoxysilane or γ- (methacryloxypropyl) trimethoxysilane; (meth) acrylamide, N-methylol ( (Meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, Nn-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-sec-butoxymethyl (meth) acryl (Meth) acrylamide monomers such as amide and N-tert-butoxymethyl (meth) acrylamide; vinyl acetate, vinyl esters such as “Veova” (Shell's vinyl ester), acrylonitrile, methacrylonitrile ethylene, butadiene, etc. Can be mentioned. In the present specification, (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid, (meth) acrylate is a generic term for acrylate and methacrylate, and (meth) acrylamide is a generic term for acrylamide and methacrylamide. .

水性媒体に溶解又は分散させたフッ素原子含有基を有する樹脂(A)の市販品としては、ユニダインTG−652、ユニダインTG−664、ユニダインTG−410、ユニダインTG−5521、ユニダインTG−5601、ユニダインTG−8711、ユニダインTG−470B、ユニダインTG−500S、ユニダインTG−580、ユニダインTG−581、ユニダインTG−658(以上、ダイキン社製、商品名)、SWK−601(セイミケミカル社製)、FS6810(フロロテクノロジー社製)、NKガードSR−108(日華化学社製)等が挙げられる。   Commercially available products of the resin (A) having a fluorine atom-containing group dissolved or dispersed in an aqueous medium include Unidyne TG-652, Unidyne TG-664, Unidyne TG-410, Unidyne TG-5521, Unidyne TG-5601, Unidyne. TG-8711, Unidyne TG-470B, Unidyne TG-500S, Unidyne TG-580, Unidyne TG-581, Unidyne TG-658 (above, Daikin, trade name), SWK-601 (Seimi Chemical), FS6810 (Manufactured by Fluoro Technology), NK guard SR-108 (manufactured by Nikka Chemical Co., Ltd.) and the like.

フッ素原子含有基を有する樹脂(A)の製造は、上記のフッ素原子含有基を有する重合性不飽和単量体(a-1)と、その他の重合性不飽和単量体(a-2)との共重合反応による方法以外に、パーフルオロアルキル基含有ラジカル発生剤を重合開始剤として用いた重合性不飽和単量体の重合反応により行うこともでき、該重合開始剤としては、例えば、特開平2010-195,937号公報に記載された含フッ素有機過酸化物等を挙げることができる。   The resin (A) having a fluorine atom-containing group is produced by the above polymerizable unsaturated monomer (a-1) having a fluorine atom-containing group and other polymerizable unsaturated monomer (a-2). In addition to the copolymerization reaction method, a polymerization reaction of a polymerizable unsaturated monomer using a perfluoroalkyl group-containing radical generator as a polymerization initiator can be performed. Examples thereof include fluorine-containing organic peroxides described in JP-A No. 2010-195,937.

<4級アンモニウム塩基含有変性エポキシ樹脂(B)>
前記水性撥水塗料組成物は、得られる塗膜の加工性、密着性、耐湿性及び耐食性の観点から、以下に述べる4級アンモニウム塩基含有変性エポキシ樹脂(B)を含む。
<Quaternary ammonium base-containing modified epoxy resin (B)>
The aqueous water-repellent coating composition contains a quaternary ammonium base-containing modified epoxy resin (B) described below from the viewpoint of processability, adhesion, moisture resistance, and corrosion resistance of the resulting coating film.

該変性エポキシ樹脂(B)は、エポキシ樹脂(b-1)、カルボキシル基含有アクリル樹脂(b-2)及びアミン化合物(b-3)を含む混合物を反応させることにより製造することができる。該反応においては、4級アンモニウム塩基を生成する反応と、エポキシ樹脂に含まれるエポキシ基とカルボキシル基含有アクリル樹脂に含まれるカルボキシル基とのエステル化反応とが進行して、4級アンモニウム塩基含有変性エポキシ樹脂(B)を生成する。また、該反応においては、エポキシ樹脂(b-1)のエポキシ基は開環し、水酸基を生成する。そして、このようにして生成した上記4級アンモニウム塩基含有変性エポキシ樹脂(B)の水酸基は、後述するアミノ樹脂(C)と反応性を有する。   The modified epoxy resin (B) can be produced by reacting a mixture containing an epoxy resin (b-1), a carboxyl group-containing acrylic resin (b-2) and an amine compound (b-3). In the reaction, a reaction for producing a quaternary ammonium base and an esterification reaction between an epoxy group contained in the epoxy resin and a carboxyl group contained in the carboxyl group-containing acrylic resin proceeded to modify the quaternary ammonium base-containing modification. An epoxy resin (B) is produced. In the reaction, the epoxy group of the epoxy resin (b-1) is opened to generate a hydroxyl group. And the hydroxyl group of the said quaternary ammonium base containing modified epoxy resin (B) produced | generated in this way has reactivity with the amino resin (C) mentioned later.

エポキシ樹脂(b-1)としては、密着性、耐食性の観点から、ビスフェノール型エポキシ樹脂が好ましい。ビスフェノール型エポキシ樹脂は、ビスフェノール化合物とエピハロヒドリン、例えば、エピクロルヒドリンとの反応により得られる樹脂である。   The epoxy resin (b-1) is preferably a bisphenol type epoxy resin from the viewpoints of adhesion and corrosion resistance. The bisphenol type epoxy resin is a resin obtained by a reaction between a bisphenol compound and an epihalohydrin, for example, epichlorohydrin.

上記ビスフェノール化合物としては、例えば、ビス(4-ヒドロキシフェニル)-2,2-プロパン[ビスフェノールA]、4,4-ジヒドロキシベンゾフェノン、ビス(4-ヒドロキシフェニル)メタン[ビスフェノールF]、4,4-ジヒドロキシジフェニルスルホン[ビスフェノールS]等を挙げることができる。ビスフェノール型エポキシ樹脂(b-1)の中でも、耐食性の観点からビスフェノールA型エポキシ樹脂を用いることが好ましい。   Examples of the bisphenol compound include bis (4-hydroxyphenyl) -2,2-propane [bisphenol A], 4,4-dihydroxybenzophenone, bis (4-hydroxyphenyl) methane [bisphenol F], 4,4- Dihydroxydiphenyl sulfone [bisphenol S] and the like can be mentioned. Among the bisphenol type epoxy resins (b-1), it is preferable to use a bisphenol A type epoxy resin from the viewpoint of corrosion resistance.

水性媒体中での分散安定性、得られる塗膜の加工性や衛生性等の観点から、ビスフェノール型エポキシ樹脂(b-1)の数平均分子量については、4,000〜30,000、好ましくは5,000〜30,000の範囲内であり、かつエポキシ当量が2,000〜10,000、好ましくは2,500〜10,000の範囲内のものが好適に使用される。   From the viewpoint of dispersion stability in an aqueous medium, processability and hygiene of the resulting coating film, the number average molecular weight of the bisphenol type epoxy resin (b-1) is preferably 4,000 to 30,000, preferably Those having an epoxy equivalent in the range of 5,000 to 30,000 and an epoxy equivalent in the range of 2,000 to 10,000, preferably 2,500 to 10,000 are preferably used.

ここで、ビスフェノール型エポキシ樹脂(b-1)として使用できるビスフェノールA型エポキシ樹脂の市販品としては、例えば、ジャパンエポキシレジン社製のjER1010、jER1256B40、jER1256等を挙げることができる。   Here, examples of commercially available bisphenol A type epoxy resins that can be used as the bisphenol type epoxy resin (b-1) include jER1010, jER1256B40, and jER1256 manufactured by Japan Epoxy Resin Co., Ltd.

また、ビスフェノールA型エポキシ樹脂は、ビスフェノールA型エポキシ樹脂を二塩基酸で変性したビスフェノールA型の変性エポキシ樹脂であってもよい。この場合、二塩基酸と反応させるビスフェノールA型エポキシ樹脂としては、数平均分子量が2,000〜8,000であり、かつエポキシ当量が1,000〜4,000の範囲内にあるものを好適に使用することができる。また、上記二塩基酸としては、一般式HOOC-(CH2)n-COOH(式中、nは1〜12の整数を示す。)で表される化合物、具体的にはコハク酸、アジピン酸、ピメリン酸、アゼライン酸、セバシン酸、ドデカン二酸等や、ヘキサヒドロフタル酸等が使用でき、特にアジピン酸が好適に使用できる。 The bisphenol A type epoxy resin may be a bisphenol A type modified epoxy resin obtained by modifying a bisphenol A type epoxy resin with a dibasic acid. In this case, as the bisphenol A type epoxy resin to be reacted with the dibasic acid, those having a number average molecular weight of 2,000 to 8,000 and an epoxy equivalent in the range of 1,000 to 4,000 are suitable. Can be used for Examples of the dibasic acid include compounds represented by the general formula HOOC— (CH 2 ) n —COOH ( where n represents an integer of 1 to 12), specifically succinic acid and adipic acid. Pimelic acid, azelaic acid, sebacic acid, dodecanedioic acid and the like, hexahydrophthalic acid and the like can be used, and adipic acid can be particularly preferably used.

上記ビスフェノールA型の変性エポキシ樹脂は、上記ビスフェノールA型エポキシ樹脂と二塩基酸との混合物を、例えばトリ-n-ブチルアミン等のエステル化触媒や有機溶剤の存在下に、反応温度120〜180℃及び反応時間約1〜4時間の条件で反応させることによって、得ることができる。   The modified bisphenol A type epoxy resin is prepared by reacting a mixture of the bisphenol A type epoxy resin and a dibasic acid in the presence of an esterification catalyst such as tri-n-butylamine or an organic solvent at a reaction temperature of 120 to 180 ° C. And a reaction time of about 1 to 4 hours.

上記4級アンモニウム塩基含有変性エポキシ樹脂(B)の製造に用いられるカルボキシル基含有アクリル樹脂(b-2)は、カルボキシル基含有重合性不飽和単量体及びその他の重合性不飽和単量体を含む混合物を、例えば、ラジカル重合開始剤を用いて有機溶剤中80〜150℃及び1〜10時間の条件で加熱し、共重合反応させることによって、製造することができる。   The carboxyl group-containing acrylic resin (b-2) used in the production of the modified quaternary ammonium base-containing modified epoxy resin (B) is composed of a carboxyl group-containing polymerizable unsaturated monomer and other polymerizable unsaturated monomers. It can manufacture by heating the mixture which contains it on the conditions of 80-150 degreeC and 1 to 10 hours in an organic solvent using a radical polymerization initiator, for example, and carrying out a copolymerization reaction.

カルボキシル基含有アクリル樹脂(b-2)の製造に用いることのできる上記その他の重合性不飽和単量体としては、例えば、フッ素原子含有基を有する樹脂(A)について記載した、前記その他の重合性不飽和単量体(a-2)を挙げることができる。   Examples of the other polymerizable unsaturated monomer that can be used for the production of the carboxyl group-containing acrylic resin (b-2) include, for example, the other polymerization described in the resin (A) having a fluorine atom-containing group. And unsaturated unsaturated monomer (a-2).

カルボキシル基含有アクリル樹脂(b-2)の製造に用いられる上記ラジカル重合開始剤としては、有機過酸化物系、アゾ系等が用いられ、有機過酸化物系としては、例えばベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、t-アミルパーオキシ-2-エチルヘキサノエート等が挙げられ、また、アゾ系としては、例えばアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等が挙げられる。   As the radical polymerization initiator used in the production of the carboxyl group-containing acrylic resin (b-2), an organic peroxide type, an azo type, or the like is used. Examples of the organic peroxide type include benzoyl peroxide, t -Butylperoxy-2-ethylhexanoate, di-t-butylperoxide, t-butylperoxybenzoate, t-amylperoxy-2-ethylhexanoate, etc. Examples thereof include azobisisobutyronitrile and azobisdimethylvaleronitrile.

上記カルボキシル基含有アクリル樹脂(b-2)を製造する際における共重合反応においては、必要により連鎖移動剤を用いてもよく、この連鎖移動剤としては、例えば、α-メチルスチレンダイマー、メルカプタン化合物等の公知のものが挙げられる。   In the copolymerization reaction in producing the carboxyl group-containing acrylic resin (b-2), a chain transfer agent may be used as necessary. Examples of the chain transfer agent include α-methylstyrene dimer and mercaptan compounds. And the like.

カルボキシル基含有アクリル樹脂(b-2)は、水性媒体中での安定性、得られる塗膜の加工性、密着性等の観点から、重量均分子量が5,000〜100,000、好ましくは10,000〜100,000で樹脂酸価150〜700mgKOH/g、200〜500mgKOH/gの範囲内にあることが好ましい。   The carboxyl group-containing acrylic resin (b-2) has a weight average molecular weight of 5,000 to 100,000, preferably 10 from the viewpoints of stability in an aqueous medium, processability of the resulting coating film, adhesion, and the like. The resin acid value is preferably in the range of 150 to 700 mgKOH / g and 200 to 500 mgKOH / g.

上記アミン化合物(b-3)としては、例えば、トリエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、モノメチルジエタノールアミン、N-メチルモルホリン等の第3級のアミン化合物が好ましい。   The amine compound (b-3) is preferably a tertiary amine compound such as triethylamine, dimethylethanolamine, triethanolamine, monomethyldiethanolamine, N-methylmorpholine.

4級アンモニウム塩基含有変性エポキシ樹脂(B)は、上記のエポキシ樹脂(b-1)、カルボキシル基含有アクリル樹脂(b-2)及びアミン化合物(b-3)を含む混合物を、有機溶剤中80〜120℃及び0.5〜8時間の条件で加熱し反応させることにより製造することできる。   The quaternary ammonium base-containing modified epoxy resin (B) is a mixture of the epoxy resin (b-1), carboxyl group-containing acrylic resin (b-2) and amine compound (b-3) in an organic solvent. It can manufacture by heating and making it react on conditions of -120 degreeC and 0.5 to 8 hours.

ここで、上記反応におけるエポキシ樹脂(b-1)とカルボキシル基含有アクリル樹脂(b-2)との配合割合については、塗装作業性や塗膜性能に応じて適宜選択すればよいが、好ましくは、樹脂(b-1)/樹脂(b-2)の固形分質量比で、10/90〜95/5、更には60/40〜90/10の範囲内であることがよい。   Here, the blending ratio of the epoxy resin (b-1) and the carboxyl group-containing acrylic resin (b-2) in the above reaction may be appropriately selected according to coating workability and coating film performance, preferably The solid content mass ratio of resin (b-1) / resin (b-2) is preferably in the range of 10/90 to 95/5, more preferably 60/40 to 90/10.

また、上記アミン化合物(b-3)の使用量は、得られた皮膜の耐湿性や耐食性等の観点から、エポキシ樹脂(b-1)とカルボキシル基含有アクリル樹脂(b-2)の合計固形分を基準にして1〜10質量%の範囲が好適である。   The amount of the amine compound (b-3) used is the total solid content of the epoxy resin (b-1) and the carboxyl group-containing acrylic resin (b-2) from the viewpoint of the moisture resistance and corrosion resistance of the obtained film. A range of 1-10% by weight based on the minutes is preferred.

上記反応によって得られる4級アンモニウム塩基含有変性エポキシ樹脂(B)については、水性媒体中での安定性、得られる塗膜の加工性、密着性、耐湿性及び耐食性の観点から、酸価が20〜120mgKOH/g、好ましくは30〜100mgKOH/gであって、重量平均分子量が1,000〜40,000、好ましくは2,000〜15,000の範囲内であることが好ましい。   The quaternary ammonium base-containing modified epoxy resin (B) obtained by the above reaction has an acid value of 20 from the viewpoints of stability in an aqueous medium, processability of the resulting coating film, adhesion, moisture resistance, and corrosion resistance. ˜120 mg KOH / g, preferably 30 to 100 mg KOH / g, and the weight average molecular weight is 1,000 to 40,000, preferably 2,000 to 15,000.

なお、本明細書において、「重量平均分子量」は、溶媒としてテトラヒドロフランを使用し、ゲルパーミュエーションクロマトグラフィにより測定した保持時間(保持容量)をポリスチレンの重量平均分子量を基準にして換算した値である。また、「数平均分子量」は、その重量平均分子量から計算によって求めた値である。   In this specification, “weight average molecular weight” is a value obtained by converting retention time (retention capacity) measured by gel permeation chromatography using polystyrene as a solvent, based on the weight average molecular weight of polystyrene. . The “number average molecular weight” is a value obtained by calculation from the weight average molecular weight.

ゲルパーミエーションクロマトグラフは、「HLC8120GPC」(東ソー社製)を使用した。カラムとしては、「TSKgel G-4000HXL」、「TSKgel G-3000HXL」、「TSKgel G-2500HXL」、「TSKgel G-2000HXL」(いずれも東ソー(株)社製、商品名)の4本を用い、移動相;テトラヒドロフラン、測定温度;40℃、流速;1ml/分、検出器;RIの条件で行ったものである。   As the gel permeation chromatograph, “HLC8120GPC” (manufactured by Tosoh Corporation) was used. As the column, four columns of “TSKgel G-4000HXL”, “TSKgel G-3000HXL”, “TSKgel G-2500HXL”, “TSKgel G-2000HXL” (both manufactured by Tosoh Corporation, trade name) are used, Mobile phase: Tetrahydrofuran, measurement temperature: 40 ° C., flow rate: 1 ml / min, detector: under the conditions of RI.

上記4級アンモニウム塩基含有変性エポキシ樹脂(B)は、水性媒体中に中和、分散されるが、中和に用いられる中和剤としては、アミン類やアンモニア等の塩基性化合物が好適に使用される。   The quaternary ammonium base-containing modified epoxy resin (B) is neutralized and dispersed in an aqueous medium, but as a neutralizing agent used for neutralization, basic compounds such as amines and ammonia are preferably used. Is done.

上記中和剤として用いられるアミン類の代表例としては、例えば、トリエチルアミン、トリエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、モルホリン等が挙げられる。中でも特にトリエチルアミン、ジメチルエタノールアミンが好適に挙げられる。また、4級アンモニウム塩基含有変性エポキシ樹脂(B)の中和は、樹脂中のカルボキシル基に対して通常0.2〜2.0当量中和の範囲が好ましい。   Representative examples of amines used as the neutralizing agent include triethylamine, triethanolamine, dimethylethanolamine, diethylethanolamine, morpholine, and the like. Of these, triethylamine and dimethylethanolamine are particularly preferred. The neutralization of the quaternary ammonium base-containing modified epoxy resin (B) is usually preferably in the range of 0.2 to 2.0 equivalent neutralization with respect to the carboxyl group in the resin.

本発明においては、密着性、耐湿性、耐食性等の観点から、上記エステル化反応時及び中和によって形成される4級アンモニウム塩基量(樹脂1g当たりに含まれる4級アンモニウム塩基のモル数)が3.0×10-4mol/g以下の範囲内、好ましくは0.6×10-4〜3.0×10-4mol/gの範囲内、より好ましくは0.8×10-4〜2.5×10-4mol/gの範囲内であることが望ましい。 In the present invention, from the viewpoint of adhesion, moisture resistance, corrosion resistance, etc., the amount of quaternary ammonium base formed during the esterification reaction and by neutralization (number of moles of quaternary ammonium base contained per 1 g of resin) is 3.0 × 10 −4 mol / g or less, preferably 0.6 × 10 −4 to 3.0 × 10 −4 mol / g, more preferably 0.8 × 10 −4 to It is desirable to be within the range of 2.5 × 10 −4 mol / g.

ここで、4級アンモニウム塩基量の測定は次のようにして行われる。すなわち、反応開始後の試料を溶媒に溶解して試料溶液を調製し、得られた試料溶液中に指示薬溶液(溶媒中に官能基としてスルホン酸基及びヒドロキシル基を有する指示薬を溶解して得られた溶液)を滴下して滴定反応を行い、指示薬溶液中の指示薬と試料溶液中の4級アンモニウム塩化エポキシ化合物とが反応し、スルホン酸基及びヒドロキシル基の両者が同時にイオン化されたイオン化指示薬とカルボン酸とが形成される滴定反応の第1段階、及び、この第1段階の滴定反応で生成したイオン化指示薬と上記指示薬溶液中の指示薬とが反応してスルホン酸基のみがイオン化されたスルホン酸基イオン化指示薬が形成される滴定反応の第2段階について、それぞれ滴定量と電導度との関係をプロットし、第1段階におけるプロットを結ぶ直線と第2段階におけるプロットを結ぶ直線との交点における滴定量から第1段階における滴定量t1を求め、下記式(1)により、試料固形分換算1g中の4級アンモニウム塩量(mol/g)を求める。 Here, the amount of the quaternary ammonium base is measured as follows. That is, the sample after the start of the reaction is dissolved in a solvent to prepare a sample solution, and the obtained sample solution is obtained by dissolving an indicator solution (an indicator having a sulfonic acid group and a hydroxyl group as functional groups in the solvent. The titration reaction is carried out by dropping the solution, and the indicator in the indicator solution reacts with the quaternary ammonium chloride epoxy compound in the sample solution to simultaneously ionize both the sulfonic acid group and the hydroxyl group. The first stage of the titration reaction in which an acid is formed, and the sulfonic acid group in which only the sulfonic acid group is ionized by the reaction of the ionization indicator generated in the first stage titration reaction with the indicator in the indicator solution. For the second stage of the titration reaction in which an ionization indicator is formed, plot the relationship between the titer and conductivity, and connect the plots in the first stage. Lines and determine the titer t 1 in the first stage from the titer at an intersection between the straight line connecting the plots in the second stage, by the following equation (1), quaternary ammonium salts of the sample in terms of solid content in 1 g (mol / g).

4級アンモニウム塩量(mol/g)
=t1(ml)×2×指示薬濃度(mol/l)×(1/1,000)
×{100/(試料(g)×固形分(%))} ………………式(1)
なお、4級アンモニウム塩基含有変性エポキシ樹脂(B)を分散する水性媒体は、水のみであってもよいし、また、水と有機溶剤との混合物であってもよい。この有機溶剤としては、4級アンモニウム塩基含有変性エポキシ樹脂(B)の水性媒体中での安定性を損なわない限り、従来公知のいずれのものも使用することができる。
Quaternary ammonium salt content (mol / g)
= T 1 (ml) × 2 × indicator concentration (mol / l) × (1 / 1,000)
× {100 / (Sample (g) × Solid content (%))} ……………… Formula (1)
The aqueous medium in which the quaternary ammonium base-containing modified epoxy resin (B) is dispersed may be water alone or a mixture of water and an organic solvent. Any known organic solvent can be used as long as the stability of the quaternary ammonium base-containing modified epoxy resin (B) in an aqueous medium is not impaired.

<アミノ樹脂(C)>
上記水性撥水塗料組成物に含まれるアミノ樹脂(C)としては、例えばメラミン樹脂、尿素樹脂及びベンゾグアナミン樹脂等が挙げられるが、加工性、密着性の観点からメラミン樹脂が好ましい。
<Amino resin (C)>
Examples of the amino resin (C) contained in the aqueous water-repellent coating composition include melamine resin, urea resin, and benzoguanamine resin, and melamine resin is preferable from the viewpoint of processability and adhesion.

メラミン樹脂としては、例えば、メチロール化メラミンのメチロール基の一部又は全部を炭素数1〜8の1価アルコール、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、i-ブチルアルコール、2-エチルブタノール、2-エチルヘキサノール等で、エーテル化した部分エーテル化又はフルエーテル化メラミン樹脂が挙げられる。   As the melamine resin, for example, a part or all of the methylol group of methylolated melamine is a monohydric alcohol having 1 to 8 carbon atoms such as methyl alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl. Examples include partially etherified or fully etherified melamine resins etherified with alcohol, i-butyl alcohol, 2-ethylbutanol, 2-ethylhexanol and the like.

これらは、メチロール基が全てエーテル化されているか、又は部分的にエーテル化され、メチロール基やイミノ基が残存しているものも使用できる。例えばメチルエーテル化メラミン、エチルエーテル化メラミン、ブチルエーテル化メラミン等のアルキルエーテル化メラミンを挙げることができ、1種のみ、又は必要に応じて2種以上を併用してもよい。なかでもメチロール基の少なくとも一部をメチルエーテル化したメチルエーテル化メラミン樹脂が好適である。   These may be used in which all methylol groups are etherified or partially etherified, and methylol groups or imino groups remain. For example, alkyl etherified melamines such as methyl etherified melamine, ethyl etherified melamine, butyl etherified melamine and the like can be mentioned, and only one kind or two or more kinds may be used in combination. Among these, a methyl etherified melamine resin obtained by methyl etherifying at least a part of methylol groups is preferable.

このような条件を満たすメラミン樹脂の市販品としては、例えば、「サイメル202」、「サイメル232」、「サイメル235」、「サイメル238」、「サイメル254」、「サイメル266」、「サイメル267」、「サイメル272」、「サイメル285」、「サイメル301」、「サイメル303」、「サイメル325」、「サイメル327」、「サイメル350」、「サイメル370」、「サイメル701」、「サイメル703」、「サイメル736」、「サイメル738」、「サイメル771」、「サイメル1141」、「サイメル1156」、「サイメル1158」、「マイコート212」、「マイコート715」、「マイコート776」等(以上、日本サイテック社製)、「ユーバン120」、「ユーバン20HS」、「ユーバン2021」、「ユーバン2028」、「ユーバン2061」等(以上、三井化学社製)、及び「メラン522」等(日立化成社製)の商品名で市販されている。   Examples of commercially available melamine resins that satisfy such conditions include “Cymel 202”, “Cymel 232”, “Cymel 235”, “Cymel 238”, “Cymel 254”, “Cymel 266”, and “Cymel 267”. , “Cymel 272”, “Cymel 285”, “Cymel 301”, “Cymel 303”, “Cymel 325”, “Cymel 327”, “Cymel 350”, “Cymel 370”, “Cymel 701”, “Cymel 703” , “Cymel 736”, “Cymel 738”, “Cymel 771”, “Cymel 1141”, “Cymel 1156”, “Cymel 1158”, “My Coat 212”, “My Coat 715”, “My Coat 776”, etc. (Nippon Cytec Co., Ltd.), “Uban 120”, “Uban 20HS”, “ Ban 2021 "," U-VAN 2028 "," U-VAN 2061 "and the like (or more, manufactured by Mitsui Chemicals Co., Ltd.) are commercially available under the trade name of, and" Melan 522 "and the like (manufactured by Hitachi Chemical Co., Ltd.).

なお、4級アンモニウム塩基含有変性エポキシ樹脂(B)及びアミノ樹脂(C)の配合割合は、4級アンモニウム塩基含有変性エポキシ樹脂(B)/アミノ樹脂(C)の固形分質量比として、95/5〜50/50、特に93/7〜60/40の範囲内が好ましい。アミノ樹脂(C)の量が少な過ぎると十分な硬化性が得られず、反対に、多過ぎると製造されたプレコートフィン材の加工性が低下することがある。   The blending ratio of the quaternary ammonium base-containing modified epoxy resin (B) and amino resin (C) is 95 / as the solid content mass ratio of the quaternary ammonium base-containing modified epoxy resin (B) / amino resin (C). A range of 5-50 / 50, particularly 93 / 7-60 / 40 is preferred. If the amount of the amino resin (C) is too small, sufficient curability cannot be obtained. On the other hand, if the amount is too large, the processability of the manufactured pre-coated fin material may be lowered.

上記水性撥水塗料組成物におけるフッ素原子含有基を有する樹脂(A)の含有量は、着霜抑制性、耐食性、塗料安定性の観点から、固形分換算で、前記4級アンモニウム塩基含有変性エポキシ樹脂(B)とアミノ樹脂(C)の合計100質量部に対して、1〜30質量部、好ましくは3〜25質量部、更に好ましくは10〜22質量部である。   The content of the resin (A) having a fluorine atom-containing group in the water-based water-repellent coating composition is the above-mentioned quaternary ammonium base-containing modified epoxy in terms of solid content from the viewpoints of frost formation suppression, corrosion resistance, and coating stability. It is 1-30 mass parts with respect to a total of 100 mass parts of resin (B) and amino resin (C), Preferably it is 3-25 mass parts, More preferably, it is 10-22 mass parts.

なお、本発明における水性撥水塗料組成物には、フッ素原子含有基を有する樹脂(A)、4級アンモニウム塩基含有変性エポキシ樹脂(B)及びアミノ樹脂(C)以外に、必要に応じて、塩基性化合物、アミノ樹脂(C)以外の架橋剤(例えばブロック化ポリイソシアネート等)、コロイダルシリカ、防菌剤、着色顔料、それ自体既知の防錆顔料(例えばクロム酸塩系、鉛系、モリブデン酸系等)、防錆剤(例えばタンニン酸、没食子酸等のフェノール性カルボン酸及びその塩類、フイチン酸、ホスフィン酸等の有機リン酸、重リン酸の金属塩類、亜硝酸塩等)等の添加剤や、水性媒体を加えることができる。ここで、上記水性媒体としては、水であってもよいし、水と少量の有機溶剤やアミン類やアンモニア等の塩基性化合物との混合溶媒であってもよく、また、混合溶媒において、水の含有量は通常80質量%以上である。   In addition to the resin having a fluorine atom-containing group (A), the quaternary ammonium base-containing modified epoxy resin (B) and the amino resin (C), the water-based water-repellent coating composition in the present invention, if necessary, Basic compound, crosslinking agent other than amino resin (C) (eg, blocked polyisocyanate), colloidal silica, antibacterial agent, coloring pigment, rust preventive pigment known per se (eg, chromate-based, lead-based, molybdenum) Acid), rust inhibitors (eg, phenolic carboxylic acids such as tannic acid and gallic acid and their salts, organic phosphoric acids such as phytic acid and phosphinic acid, metal salts of heavy phosphoric acid, nitrite, etc.) Agents and aqueous media can be added. Here, the aqueous medium may be water or a mixed solvent of water and a small amount of an organic solvent or a basic compound such as amines or ammonia. The content of is usually 80% by mass or more.

そして、本発明においては、上記片面撥水性/片面親水性フィン材を用いて、撥水性面と親水性面とが相対面する熱交換器のフィン構造が構成されるか、あるいは、フィン基板の両面に撥水性面を形成する架橋撥水性皮膜が設けられた両面撥水性フィン材と、フィン基板の両面に親水性面を形成する親水性皮膜が設けられた両面親水性フィン材とを用いて、撥水性面と親水性面とが相対面する熱交換器のフィン構造が構成されるが、上記の片面撥水性/片面親水性フィン材や両面親水性フィン材における親水性皮膜は、後述する親水塗料を塗布して形成される。   In the present invention, the single-side water-repellent / single-side hydrophilic fin material is used to form a heat exchanger fin structure in which the water-repellent surface and the hydrophilic surface face each other, or the fin substrate Using a double-sided water-repellent fin material provided with a cross-linked water-repellent film that forms a water-repellent surface on both sides, and a double-sided hydrophilic fin material provided with a hydrophilic film that forms a hydrophilic surface on both sides of a fin substrate The fin structure of the heat exchanger in which the water-repellent surface and the hydrophilic surface face each other is configured. The hydrophilic film on the one-sided water-repellent / single-sided hydrophilic fin material and the two-sided hydrophilic fin material will be described later. It is formed by applying a hydrophilic paint.

ここで、上記凝縮水排除効果を発揮する親水性皮膜については、その水接触角が好ましくは40°以下、より好ましくは30°以下であり、また、その膜厚が通常0.05〜5.0μm以下、好ましくは0.1〜4.0μm、より好ましくは0.2〜2.0μmである。この親水性皮膜の水接触角については、低ければ低いほどよいが、この親水性皮膜の水接触角が40°より高いと、凝縮水が流れにくいという問題があり、また、上記親水性皮膜の膜厚については、架橋撥水性皮膜の場合と同様に、0.05μm未満であると、ロット間での着霜抑制と親水性のバラツキが大きくなり、また着霜抑制と親水持続性の経時劣化が大きくなる等の問題があり、反対に、5.0μmを超えると、これ以上の着霜抑制、親水性の向上は期待できないだけではなく、むしろフィン材に冷媒用の銅管をロウ付けする際の熱による皮膜の焦げが目立つようになり、また膜厚が厚くなるにつれてコストアップとなる等の問題がある。   Here, about the hydrophilic membrane | film which exhibits the said condensed water exclusion effect, the water contact angle becomes like this. Preferably it is 40 degrees or less, More preferably, it is 30 degrees or less, Moreover, the film thickness is 0.05-5. It is 0 μm or less, preferably 0.1 to 4.0 μm, more preferably 0.2 to 2.0 μm. The lower the water contact angle of this hydrophilic film, the better. However, if the water contact angle of this hydrophilic film is higher than 40 °, there is a problem that condensed water does not flow easily. As in the case of the cross-linked water-repellent film, if the film thickness is less than 0.05 μm, frost suppression between lots and hydrophilic variation increase, and frost suppression and hydrophilic durability deteriorate over time. On the contrary, if it exceeds 5.0 μm, it is not only possible to expect further frosting suppression and hydrophilic improvement, but rather braze a copper pipe for refrigerant to the fin material There are problems such as the scorching of the film due to the heat at the time becomes conspicuous and the cost increases as the film thickness increases.

本発明において、上記凝縮水排除効果を発揮する親水性皮膜を形成するために用いられる親水塗料としては、例えば、水ガラス系、シリカ系、ベーマイト系等の無機系親水塗料や、水溶性アクリル樹脂、水溶性セルロース樹脂、水溶性アミノ樹脂、ポリビニルアルコール等を含有する有機系親水塗料や、無機系材料と有機樹脂とを含有する有機無機複合系親水塗料等を挙げることができ、臭気対策や金型磨耗対策の観点から、有機系親水塗料が好ましい。   In the present invention, examples of the hydrophilic paint used to form the hydrophilic film exhibiting the effect of eliminating condensed water include inorganic hydrophilic paints such as water glass, silica and boehmite, and water-soluble acrylic resins. Organic hydrophilic coatings containing water-soluble cellulose resin, water-soluble amino resin, polyvinyl alcohol, etc., organic-inorganic composite hydrophilic coatings containing inorganic materials and organic resins, etc. From the viewpoint of mold wear countermeasures, organic hydrophilic paints are preferred.

上記有機系親水塗料としては、公知のものを使用することができ、例えば、以下の有機系親水塗料組成物(E)を挙げることができる。
(1)87%以上のケン化度を有するポリビニルアルコールと、300mgKOH/g以上の樹脂酸価を有する高酸価アクリル樹脂のカルボキシル基の少なくとも一部を、180℃未満の沸点を有さずかつ180℃未満で分解しない塩基性化合物で中和し、塩を形成させて得られた中和樹脂とを含有する有機系親水塗料組成物。
(2)ポリビニルアルコール系樹脂及びポリエチレングリコール系樹脂を主成分として含み、かつ、1価又は2価の元素を有する硝酸化合物を含有する有機系親水塗料組成物(特開2002-275,407号公報参照)。
A well-known thing can be used as said organic hydrophilic coating material, For example, the following organic hydrophilic coating composition (E) can be mentioned.
(1) Polyvinyl alcohol having a saponification degree of 87% or more and at least a part of carboxyl groups of a high acid value acrylic resin having a resin acid value of 300 mgKOH / g or more have no boiling point of less than 180 ° C. and An organic hydrophilic coating composition containing a neutralized resin obtained by neutralizing with a basic compound that does not decompose at less than 180 ° C. to form a salt.
(2) An organic hydrophilic coating composition containing a polyvinyl alcohol resin and a polyethylene glycol resin as main components and containing a nitric acid compound having a monovalent or divalent element (see JP 2002-275,407) .

<耐食性皮膜、架橋撥水性皮膜、及び親水性皮膜の形成方法>
前記のフィン基板の表面に耐食性皮膜、架橋撥水性被膜、及び親水性被膜を形成する方法については、特に制限はなく、例えば、通常良く用いられるロールコーターを用いて塗布するロールコーター方法や、塗布量管理に便利なグラビアロールを用いて塗布するグラビアロール方法や、厚塗りするのに便利なナチュラルコート方式や、塗布面を綺麗に仕上げるのに有利なリバースコート方式、バーコート法、スプレー法等を採用することができる。
<Corrosion-resistant film, crosslinked water-repellent film, and method for forming hydrophilic film>
There is no particular limitation on the method of forming the corrosion-resistant film, the crosslinked water-repellent film, and the hydrophilic film on the surface of the fin substrate. For example, a roll coater method that uses a commonly used roll coater or a coating method Gravure roll method to apply using gravure roll convenient for volume control, natural coat method convenient for thick coating, reverse coat method, bar coat method, spray method, etc., which are advantageous for beautifully finishing the coated surface Can be adopted.

例えば、前記のフィン基板の一方の面に前記水性撥水塗料組成物を用いて架橋撥水性皮膜を形成し、また、他方の面に前記有機系親水塗料組成物を用いて親水性皮膜を形成することにより、熱交換器用の片面撥水性/片面親水性フィン材を製造する際には、先ず、ロールコーター等を用いてフィン基板の一方の面に前記水性撥水塗料組成物を塗布し、次いで例えばフローターオーブン等により高温通風下での加熱、好ましくは10〜30m/分の高温通風下に60〜300℃の高温で2秒間〜30分間の加熱を行って、フィン基板の一方の面に架橋撥水性皮膜を形成し、次に、上記フィン基板の他方の面に親水塗料組成物を塗布し、次いで例えばフローターオーブン等により高温通風下での加熱、好ましくは10〜30m/分の高温通風下に60〜300℃の高温で2秒間〜30分間の加熱を行う。若しくは、ロールコーター等を用いてフィン基板の一方の面に前記水性撥水塗料組成物を塗布し、次いで、フィン基板の他方の面に親水塗料組成物を塗布し、次いで例えばフローターオーブン等により高温通風下での加熱、好ましくは10〜30m/分の高温通風下に60〜300℃の高温で2秒間〜30分間の加熱を行う。   For example, a cross-linked water-repellent coating is formed on one surface of the fin substrate using the water-based water-repellent coating composition, and a hydrophilic coating is formed on the other surface using the organic hydrophilic coating composition. Thus, when producing a single-sided water-repellent / single-sided hydrophilic fin material for a heat exchanger, first, the water-repellent coating composition is applied to one surface of the fin substrate using a roll coater or the like, Next, for example, heating is performed under high temperature ventilation with a floater oven or the like, preferably heating is performed at high temperature of 60 to 300 ° C. for 2 seconds to 30 minutes under high temperature ventilation of 10 to 30 m / min, and one surface of the fin substrate is formed. A crosslinked water-repellent film is formed, then a hydrophilic coating composition is applied to the other surface of the fin substrate, and then heated under high temperature ventilation, for example, by a floater oven, preferably at high temperature ventilation of 10 to 30 m / min. 60 ~ below Heating is performed at a high temperature of 300 ° C. for 2 seconds to 30 minutes. Alternatively, the water-based water-repellent coating composition is applied to one surface of the fin substrate using a roll coater or the like, then the hydrophilic coating composition is applied to the other surface of the fin substrate, and then heated at a high temperature using, for example, a floater oven. Heating under ventilation, preferably heating at a high temperature of 60 to 300 ° C. under high temperature ventilation of 10 to 30 m / min for 2 seconds to 30 minutes.

<熱交換器のフィン構造>
以上のようにして得られた本発明の熱交換器用プレコートフィン材は、通常の成形加工、例えば、プレコートフィン材の表面にプレス成形加工用の揮発性プレス油を塗布した後、スリット加工等の成形加工を施すことにより、所望のフィン形状を有する熱交換フィンに成形され、使用される。
<Fin structure of heat exchanger>
The precoat fin material for a heat exchanger of the present invention obtained as described above is subjected to normal molding processing, for example, after applying volatile press oil for press molding processing to the surface of the precoat fin material, slit processing, etc. By performing the forming process, the heat exchange fin having a desired fin shape is formed and used.

そして、上記の熱交換フィンを用いて形成される熱交換器のフィン構造は、その架橋撥水性皮膜が設けられた撥水性面と親水性皮膜が設けられた親水性面とが相対面するように構成される。
例えば、熱交換器用プレコートフィン材として上記の片面撥水性/片面親水性フィン材が用いられる場合には、多数の片面撥水性/片面親水性フィン材をその撥水性面と親水性面とが相対面するように配置してチューブ材に固定し、フィン構造を構成すればよい。また、熱交換器用プレコートフィン材として上記の両面撥水性フィン材が用いられる場合には、この両面撥水性フィン材と共に、フィン基板の両面に上記親水塗料を用いて親水性皮膜が形成された両面親水性フィン材を使用し、これら両面撥水性フィン材と両面親水性フィン材とを撥水性面と親水性面とが相対面するように交互に配置してチューブ材に固定し、フィン構造を構成すればよい。
The fin structure of the heat exchanger formed using the heat exchange fins described above is such that the water-repellent surface provided with the crosslinked water-repellent coating and the hydrophilic surface provided with the hydrophilic coating face each other. Configured.
For example, when the above single-sided water-repellent / single-sided hydrophilic fin material is used as the precoat fin material for a heat exchanger, a large number of single-sided water-repellent / single-sided hydrophilic fin materials have a relative relationship between the water-repellent surface and the hydrophilic surface. The fin structure may be configured by arranging it so as to face and fixing it to the tube material. Further, when the above double-sided water-repellent fin material is used as a precoat fin material for a heat exchanger, both sides of the double-sided water-repellent fin material and a hydrophilic film formed on both sides of the fin substrate using the above-mentioned hydrophilic paint. Using a hydrophilic fin material, these double-sided water-repellent fin material and double-sided hydrophilic fin material are alternately arranged so that the water-repellent surface and the hydrophilic surface face each other and fixed to the tube material, and the fin structure is What is necessary is just to comprise.

本発明の片面撥水性/片面親水性フィン材からなる熱交換器用プレコートフィン材によれば、一方の面に設けられた架橋撥水性皮膜により優れた着霜抑制効果が発揮され、また、他方の面に設けられた親水性皮膜により優れた凝縮水排除効果が発揮されるので、この熱交換器用プレコートフィン材を用いて、着霜抑制特性及び凝縮水排除特性に優れた熱交換器のフィン構造を容易に構成することができる。   According to the precoat fin material for a heat exchanger composed of the single-sided water-repellent / single-sided hydrophilic fin material of the present invention, the cross-linked water-repellent coating provided on one surface exhibits an excellent frosting-inhibiting effect, and the other Since the excellent condensate drainage effect is exhibited by the hydrophilic film provided on the surface, using this precoat fin material for heat exchangers, the fin structure of the heat exchanger excellent in frost suppression characteristics and condensate drainage characteristics Can be configured easily.

また、本発明のフィン構造を備えた熱交換器によれば、架橋撥水性皮膜の撥水性面による優れた着霜抑制効果と親水性皮膜の親水性面による優れた凝縮水排除効果とが協働し、暖房運転時においては着霜を可及的に防止すると共に、フィン表面に結露し易い条件下では、撥水性面で凝縮して発生した水滴が隣接する親水性面に接触した際に、この水滴を容易に親水性面側に移行させて速やかに排除することができ、これによって通風抵抗を増大させることなく良好な熱交換機能を長期に亘って維持することができる。   Further, according to the heat exchanger having the fin structure of the present invention, the excellent frost formation suppressing effect due to the water repellent surface of the crosslinked water repellent coating and the excellent condensed water eliminating effect due to the hydrophilic surface of the hydrophilic coating are cooperating. In the heating operation, frost formation is prevented as much as possible, and under the condition where condensation is likely to occur on the fin surface, when water droplets generated by condensation on the water-repellent surface come into contact with the adjacent hydrophilic surface The water droplets can be easily transferred to the hydrophilic surface side and can be quickly removed, whereby a good heat exchange function can be maintained over a long period of time without increasing the ventilation resistance.

以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。
なお、以下の実施例及び比較例において、架橋撥水性皮膜及び親水性皮膜の水接触角の測定、及び着霜抑制効果の確認は、以下の方法で行った。
Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.
In the following Examples and Comparative Examples, the measurement of the water contact angle of the crosslinked water-repellent coating and the hydrophilic coating and the confirmation of the frosting suppression effect were performed by the following methods.

〔水接触角の測定〕
各実施例及び比較例で作製した熱交換器用プレコートフィン材の一部を7cm×15cmの大きさに切り出し、水平に設置した試験片の皮膜上に純水2μLを滴下し、接触角計(協和界面科学社製:CA‐A)を用いて、上記試験片の皮膜上に形成された水滴の接触角を測定した。
(Measurement of water contact angle)
A part of the precoat fin material for heat exchangers prepared in each example and comparative example was cut into a size of 7 cm × 15 cm, and 2 μL of pure water was dropped on the film of a horizontally installed test piece, and a contact angle meter (Kyowa) The contact angle of water droplets formed on the film of the test piece was measured using Interface Science Co., Ltd. (CA-A).

〔着霜抑制・凝縮水排除効果の確認試験〕
各実施例1〜8及び比較例1〜8で得られた片面撥水性/片面親水性フィン材(JIS A 1050、500mm×25mm×0.1mm)に2列×12列のカラー部をプレス加工して熱交換フィンとし、この熱交換フィンを、前記カラー部が一致するように、かつ、撥水性面と親水性面とが1.5mmの間隔で互いに相対面するフィン構造が形成されるように積層し、この積層体のカラー部に銅管(JIS-C1220、外径7mm、肉厚0.3mm)を挿入し、次いで前記銅管をマンドレルにより拡管して、カラー部を機械的に接合してクロスフィンチューブタイプの熱交換器(外寸500mm×25mm×250mm)を作製し、撥水性面と親水性面とが1.5mmの間隔で互いに相対面するフィン構造を有する各実施例1〜8及び比較例1〜8のクロスフィンアンドチューブ型の試験用熱交換器を作製した。
[Confirmation test for frost suppression and condensed water elimination effect]
2 rows x 12 rows of color parts are pressed into the single-sided water-repellent / single-sided hydrophilic fin material (JIS A 1050, 500 mm x 25 mm x 0.1 mm) obtained in each of Examples 1-8 and Comparative Examples 1-8. A heat exchange fin, and a fin structure is formed so that the collar portion coincides and the water repellent surface and the hydrophilic surface face each other at an interval of 1.5 mm. Laminate and insert a copper tube (JIS-C1220, outer diameter 7mm, wall thickness 0.3mm) into the collar of this laminate, then expand the copper tube with a mandrel and mechanically join the collar Examples 1 to 8 each having a fin structure in which a cross fin tube type heat exchanger (outside dimensions 500 mm × 25 mm × 250 mm) is manufactured and the water-repellent surface and the hydrophilic surface face each other at intervals of 1.5 mm And the heat exchanger for a cross fin and tube type test of Comparative Examples 1-8 was produced.

また、比較例9のフィン材を上記と同様にプレス加工して熱交換フィンとし、この熱交換フィンを、前記カラー部が一致するように、1.5mmの間隔で積層し,この積層体のカラー部に銅管(JIS-C1220、外径7mm、肉厚0.3mm)を挿入し、次いで前記銅管をマンドレルにより拡管して、カラー部を機械的に接合してクロスフィンチューブタイプ型の試験用熱交換器(外寸500mm×25mm×250mm)を作製した。   Further, the fin material of Comparative Example 9 was pressed in the same manner as described above to form heat exchange fins, and the heat exchange fins were laminated at intervals of 1.5 mm so that the collar portions coincided with each other. Insert a copper tube (JIS-C1220, outer diameter 7mm, wall thickness 0.3mm) into the collar, then expand the copper tube with a mandrel and mechanically join the collar to test the cross fin tube type A heat exchanger (outside dimensions 500 mm × 25 mm × 250 mm) was prepared.

更に、各実施例9〜11で得られた両面撥水性フィン材と両面親水性フィン材(JIS A 1050、500mm×25mm×0.1mm)を用い、上記と同様に撥水性面と親水性面とが互いに1.5mmの間隔で相対面するフィン構造が形成されるように積層し、上記と同様にして撥水性面と親水性面とが1.5mmの間隔で互いに相対面するフィン構造を有する各実施例9〜11のクロスフィンアンドチューブ型の試験用熱交換器を作製した。   Furthermore, using the double-sided water-repellent fin material and double-sided hydrophilic fin material (JIS A 1050, 500 mm × 25 mm × 0.1 mm) obtained in each of Examples 9 to 11, the water-repellent surface and the hydrophilic surface Have a fin structure in which the water-repellent surface and the hydrophilic surface face each other at an interval of 1.5 mm in the same manner as described above. The cross fin and tube type test heat exchangers of Examples 9 to 11 were produced.

また、比較例10では、2枚の実施例9の両面撥水性フィン材(JIS A 1050、500mm×25mm×0.1mm)を積層させて次に2枚の両面親水性フィン材(JIS A 1050、500mm×25mm×0.1mm)を積層させる構成を、複数回繰り返してフィン構造を形成し、撥水性面と撥水性面、撥水性面と親水性面、及び親水性面と親水性面が1.5mmの等間隔で形成されるように積層された比較例10のクロスフィンアンドチューブ型の試験用熱交換器を作製した。更に、比較例11では、5枚の実施例10の両面撥水性フィン材(JIS A 1050、500mm×25mm×0.1mm)を積層させて次に5枚の両面親水性フィン材(JIS A 1050、500mm×25mm×0.1mm)を積層させる構成を、複数回繰り返してフィン構造を形成し、撥水性面と撥水性面、撥水性面と親水性面、及び親水性面と親水性面が1.5mmの等間隔で形成されるように積層された比較例11のクロスフィンアンドチューブ型の試験用熱交換器を作製した。   In Comparative Example 10, two double-sided water-repellent fin materials (JIS A 1050, 500 mm × 25 mm × 0.1 mm) of Example 9 were laminated, and then two double-sided hydrophilic fin materials (JIS A 1050, 500 mm × 25 mm × 0.1 mm) is repeated a plurality of times to form a fin structure, and the water repellent surface and water repellent surface, the water repellent surface and hydrophilic surface, and the hydrophilic surface and hydrophilic surface are 1. A cross fin and tube type test heat exchanger of Comparative Example 10 laminated so as to be formed at equal intervals of 5 mm was produced. Furthermore, in Comparative Example 11, five double-sided water-repellent fin materials (JIS A 1050, 500 mm × 25 mm × 0.1 mm) of Example 10 were laminated, and then five double-sided hydrophilic fin materials (JIS A 1050, 500 mm × 25 mm × 0.1 mm) is repeated a plurality of times to form a fin structure, and the water repellent surface and water repellent surface, the water repellent surface and hydrophilic surface, and the hydrophilic surface and hydrophilic surface are 1. A cross fin and tube type test heat exchanger of Comparative Example 11 laminated so as to be formed at equal intervals of 5 mm was produced.

次に、このようにして作成された各実施例1〜11及び比較例1〜11の試験用熱交換器に冷媒として50wt%-プロピレングリコール水溶液を導入し、室温2℃、湿度RH90%以上の恒温室内で、冷媒温度−6℃、及び冷媒流量1L/minの条件で循環させ、45分間運転して各試験用熱交換器の熱交換フィンにおける着霜状態を観察した。また、着霜した後に30℃の冷媒で3分間の除霜運転を行い、熱交換フィン間に発生した融解水(又は凝縮水)によるブリッジの形成有無を観察した。   Next, a 50 wt% -propylene glycol aqueous solution was introduced as a refrigerant into the test heat exchangers of Examples 1 to 11 and Comparative Examples 1 to 11 prepared in this way, and the room temperature was 2 ° C and the humidity was RH 90% or more. In a thermostatic chamber, the refrigerant was circulated under conditions of a refrigerant temperature of −6 ° C. and a refrigerant flow rate of 1 L / min, and operated for 45 minutes to observe the frost formation state on the heat exchange fins of each test heat exchanger. Moreover, after defrosting, the defrosting operation for 3 minutes was performed with the 30 degreeC refrigerant | coolant, and the formation presence or absence of the bridge | bridging by the molten water (or condensed water) which generate | occur | produced between the heat exchange fins was observed.

着霜抑制効果は、全面着霜するまでの時間を測定して、×:15分未満の場合、△:15分以上30分未満の場合、○:30分以上45分未満の場合、及び、◎:45分経過しても着霜のない場合の基準で評価し、また、凝縮水排除効果は、除霜運転後のフィン間における融解水(又は凝縮水)の付着状況を観察し、×:ほぼ全面にブリッジが発生した場合、△:一部にブリッジが発生した場合、及び、○:ブリッジの発生が認められない場合の基準で評価した。   The frosting suppression effect is measured by measuring the time until the entire surface is frosted. X: When it is less than 15 minutes, Δ: When it is 15 minutes or more and less than 30 minutes, ○: When it is 30 minutes or more and less than 45 minutes, and A: Evaluated based on the standard when no frost is formed even after 45 minutes, and the condensed water removal effect is observed by observing the adhesion of molten water (or condensed water) between the fins after the defrosting operation. : Evaluation was made on the basis of a case where bridges occurred on almost the entire surface, Δ: A case where some bridges occurred, and ○: A case where no bridges were observed.

<フィン基板イ及びロの作製>
アルミニウムフィン材として板厚100μmのアルミニウム材(JIS A 1050)を用い、脱脂処理後、アルミ材の両面に、耐食性処理剤としてクロメート系処理剤(処理剤イ:日本パーカライジング社製、商品名「アルクロム712」)、又は、有機系処理剤(処理剤ロ:関西ペイント社製、商品名「Cosmer 9105」)をロールコーターで塗装し、耐食性皮膜を形成し、以下の実施例及び比較例で用いるフィン基板イ及びロを作製した。
<Production of fin substrates A and B>
A 100 μm thick aluminum material (JIS A 1050) is used as the aluminum fin material. After the degreasing treatment, a chromate treatment agent (treatment agent I: manufactured by Nihon Parkerizing Co., Ltd. 712 "), or an organic processing agent (Treatment agent: manufactured by Kansai Paint Co., Ltd., trade name" Cosmer 9105 ") is applied with a roll coater to form a corrosion-resistant film, and used in the following examples and comparative examples. Substrates A and B were produced.

ここで、処理剤イを用いてフィン基板イを調製するに際しては、アルミ材両面に、ロールコーターを用いて処理剤イをCr量で20mg/m2となるように塗装し、次いでPMT(Peak Metal Temperature)230℃の温度で15秒間乾燥させることにより形成し、また、処理剤ロを用いる場合には、アルミ板片の両面に、処理剤ロを膜厚1.0g/m2となるようにロールコーターで塗装し、次いでPMT250℃の温度で10秒間乾燥させることにより形成した。 Here, when preparing the fin substrate (a) using the treatment agent (a), the treatment agent (a) is applied to both surfaces of the aluminum material using a roll coater so that the Cr amount is 20 mg / m 2, and then PMT (Peak Metal Temperature) It is formed by drying at a temperature of 230 ° C. for 15 seconds, and when a treatment agent is used, the treatment agent is made to have a film thickness of 1.0 g / m 2 on both sides of the aluminum plate. It was formed by coating with a roll coater and then drying at a temperature of PMT of 250 ° C. for 10 seconds.

<水性撥水塗料組成物の製造例>
以下の製造例において、「部」は質量部、「%」は質量%を示す。
(1) アンモニウム塩基含有変性エポキシ樹脂(B)の製造に使用するカルボキシル基含有アクリル樹脂(ca)の製造
〔製造例1:カルボキシル基含有アクリル樹脂(ca-1)の溶液〕
n-ブタノール850部を窒素気流下で100℃に加熱し、その中に単量体混合物及び重合開始剤「メタクリル酸450部、スチレン450部、エチルアクリレート100部、t-ブチルパーオキシ−2-エチルヘキサノエート 40部」を3時間で滴下し、滴下後1時間熟成した。次いで、t-ブチルパーオキシ−2-エチルヘキサノエート10部とn-ブタノール100部との混合溶液を30分間かけて滴下し、滴下後2時間熟成した。次いで、n-ブタノール933部、エチレングリコールモノブチルエーテル400部を加え、固形分約30%のカルボキシル基含有アクリル樹脂(ca-1)の溶液を得た。得られた樹脂は、樹脂酸価300mgKOH/g、重量平均分子量約17,000を有していた。
<Example of production of water-based water-repellent coating composition>
In the following production examples, “parts” represents mass parts, and “%” represents mass%.
(1) Manufacture of carboxyl group-containing acrylic resin (ca) used for manufacture of ammonium base-containing modified epoxy resin (B) [Production Example 1: Solution of carboxyl group-containing acrylic resin (ca-1)]
850 parts of n-butanol was heated to 100 ° C. under a nitrogen stream, and a monomer mixture and a polymerization initiator “450 parts of methacrylic acid, 450 parts of styrene, 100 parts of ethyl acrylate, t-butylperoxy-2- 40 parts of ethylhexanoate "was added dropwise over 3 hours, and the mixture was aged for 1 hour after the addition. Subsequently, a mixed solution of 10 parts of t-butylperoxy-2-ethylhexanoate and 100 parts of n-butanol was added dropwise over 30 minutes, and then aged for 2 hours. Subsequently, 933 parts of n-butanol and 400 parts of ethylene glycol monobutyl ether were added to obtain a solution of a carboxyl group-containing acrylic resin (ca-1) having a solid content of about 30%. The obtained resin had a resin acid value of 300 mg KOH / g and a weight average molecular weight of about 17,000.

〔製造例2:カルボキシル基含有アクリル樹脂(ca-2)の溶液〕
n-ブタノール1,400部を窒素気流下で100℃に加熱し、その中に単量体混合物及び重合開始剤「メタクリル酸670部、スチレン250部、エチルアクリレート80部、t-ブチルパーオキシ-2-エチルヘキサノエート50部」を3時間で滴下し、滴下後1時間熟成した。次いで、t-ブチルパーオキシ−2-エチルヘキサノエート10部とn-ブタノール100部との混合溶液を30分間かけて滴下し、滴下後2時間熟成した。次いで、n-ブタノール373部、エチレングリコールモノブチルエーテル400部を加え、固形分約30%のカルボキシル基含有アクリル樹脂(ca-2)の溶液を得た。得られた樹脂は、樹脂酸価450mgKOH/g、重量平均分子量約14,000を有していた。
[Production Example 2: Solution of carboxyl group-containing acrylic resin (ca-2)]
1,400 parts of n-butanol were heated to 100 ° C. under a nitrogen stream, and the monomer mixture and the polymerization initiator “methacrylic acid 670 parts, styrene 250 parts, ethyl acrylate 80 parts, t-butylperoxy- "50 parts of 2-ethylhexanoate" was added dropwise over 3 hours, and the mixture was aged for 1 hour after the addition. Subsequently, a mixed solution of 10 parts of t-butylperoxy-2-ethylhexanoate and 100 parts of n-butanol was added dropwise over 30 minutes, and then aged for 2 hours. Subsequently, 373 parts of n-butanol and 400 parts of ethylene glycol monobutyl ether were added to obtain a solution of a carboxyl group-containing acrylic resin (ca-2) having a solid content of about 30%. The obtained resin had a resin acid value of 450 mg KOH / g and a weight average molecular weight of about 14,000.

(2) アンモニウム塩基含有変性エポキシ樹脂(ae)の製造
〔製造例3:アンモニウム塩基含有変性エポキシ樹脂(ae-1)の水分散体〕
jER828EL〔ジャパンエポキシレジン(株)製、エポキシ樹脂、エポキシ当量約190、数平均分子量約380〕513部、ビスフェノールA287部、テトラメチルアンモニウムクロライド0.3部及びメチルイソブチルケトン89部を仕込み、窒素気流下で140℃に加熱しながら約4時間反応を行い、エポキシ樹脂溶液を得た。得られたエポキシ樹脂はエポキシ当量3,700、数平均分子量約1,7000を有していた。
(2) Production of ammonium base-containing modified epoxy resin (ae) [Production Example 3: Aqueous dispersion of ammonium base-containing modified epoxy resin (ae-1)]
jER828EL [manufactured by Japan Epoxy Resin Co., Ltd., epoxy resin, epoxy equivalent of about 190, number average molecular weight of about 380] 513 parts, bisphenol A 287 parts, tetramethylammonium chloride 0.3 parts and methyl isobutyl ketone 89 parts, nitrogen stream The reaction was carried out for about 4 hours while heating to 140 ° C. to obtain an epoxy resin solution. The resulting epoxy resin had an epoxy equivalent of 3,700 and a number average molecular weight of about 1,7000.

次いで、得られたエポキシ樹脂溶液に製造例1で得た固形分約30%のカルボキシル基含有アクリル樹脂(ca-1)の溶液を667部仕込み、90℃に加熱して均一に溶解させた後、同温度で脱イオン水40部を30分かけて滴下し、次いでジメチルエタノールアミン30部を添加して1時間撹拌して反応を行った。更に、脱イオン水2380部を1時間かけて添加して固形分約25%のアンモニウム塩基含有変性エポキシ樹脂(ae-1)の水分散体を得た。得られた樹脂は、樹脂酸価48mgKOH/g、4級アンモニウム塩量(明細書中の導電率滴定方法による)1.2×10-4mol/g、重量平均分子量26,000を有していた。 Next, 667 parts of a solution of the carboxyl group-containing acrylic resin (ca-1) having a solid content of about 30% obtained in Production Example 1 was added to the obtained epoxy resin solution and heated to 90 ° C. to uniformly dissolve the solution. Then, 40 parts of deionized water was added dropwise at the same temperature over 30 minutes, and then 30 parts of dimethylethanolamine was added and stirred for 1 hour to carry out the reaction. Further, 2380 parts of deionized water was added over 1 hour to obtain an aqueous dispersion of an ammonium base-containing modified epoxy resin (ae-1) having a solid content of about 25%. The obtained resin has a resin acid value of 48 mg KOH / g, a quaternary ammonium salt amount (according to the conductivity titration method in the specification) 1.2 × 10 −4 mol / g, and a weight average molecular weight of 26,000. It was.

〔製造例4:アンモニウム塩基含有変性エポキシ樹脂(ae-2)の水分散体〕
jER828EL〔ジャパンエポキシレジン(株)製、エポキシ樹脂、エポキシ当量約190、数平均分子量約380〕519部、ビスフェノールA281部、テトラメチルアンモニウムクロライド0.3部及びメチルイソブチルケトン89部を仕込み、窒素気流下で140℃に加熱しながら約4時間反応を行い、エポキシ樹脂溶液を得た。得られたエポキシ樹脂はエポキシ当量2,800、数平均分子量約12,000を有していた。
[Production Example 4: Aqueous dispersion of ammonium base-containing modified epoxy resin (ae-2)]
jER828EL [manufactured by Japan Epoxy Resin Co., Ltd., epoxy resin, epoxy equivalent of about 190, number average molecular weight of about 380] 519 parts, bisphenol A 281 parts, tetramethylammonium chloride 0.3 parts and methyl isobutyl ketone 89 parts, nitrogen stream The reaction was carried out for about 4 hours while heating to 140 ° C. to obtain an epoxy resin solution. The resulting epoxy resin had an epoxy equivalent of 2,800 and a number average molecular weight of about 12,000.

次いで、得られたエポキシ樹脂溶液に製造例2で得た固形分約30%のカルボキシル基含有アクリル樹脂(ca-2)の溶液を667部仕込み、90℃に加熱して均一に溶解させた後、同温度で脱イオン水40部を30分かけて滴下し、次いでジメチルエタノールアミン53部を添加して1時間撹拌して反応を行った。更に、脱イオン水2,350部を1時間かけて添加して固形分約25%のアンモニウム塩基含有変性エポキシ樹脂(ae-2)の水分散体を得た。得られた樹脂は、樹脂酸価75mgKOH/g、4級アンモニウム塩量(導電率滴定による結果)1.8×10-4mol/g、重量平均分子量18,000を有していた。 Next, 667 parts of a solution of the carboxyl group-containing acrylic resin (ca-2) having a solid content of about 30% obtained in Production Example 2 was added to the obtained epoxy resin solution and heated to 90 ° C. to uniformly dissolve the solution. At the same temperature, 40 parts of deionized water was added dropwise over 30 minutes, and then 53 parts of dimethylethanolamine was added and stirred for 1 hour to carry out the reaction. Further, 2,350 parts of deionized water was added over 1 hour to obtain an aqueous dispersion of an ammonium base-containing modified epoxy resin (ae-2) having a solid content of about 25%. The obtained resin had a resin acid value of 75 mg KOH / g, a quaternary ammonium salt amount (result of conductivity titration) of 1.8 × 10 −4 mol / g, and a weight average molecular weight of 18,000.

(3) 水性撥水塗料組成物(D)の製造
〔製造例5:水性撥水塗料組成物(D-1)〕
ユニダインTG−500S(注2の*1)を10部(固形分)、製造例3で得た4級アンモニウム塩基含有変性エポキシ樹脂(ae-1)を90部(固形分)、マイコート715(注2の*4)を10部(固形分)加え、更に脱イオン水を加えて固形分を調整して、固形分10%の水性撥水塗料組成物(D-1)を得た。
(3) Production of water-based water-repellent coating composition (D) [Production Example 5: Water-based water-repellent coating composition (D-1)]
Unidyne TG-500S (* 2 of Note 2) 10 parts (solid content), 90 parts (solid content) of the quaternary ammonium base-containing modified epoxy resin (ae-1) obtained in Production Example 3, Mycoat 715 ( * 4) of Note 2 was added in 10 parts (solid content), and deionized water was further added to adjust the solid content to obtain an aqueous water-repellent coating composition (D-1) having a solid content of 10%.

〔製造例6〜12:水性撥水塗料組成物(D-2)〜(D-8)〕
下記表1及び表2に示す配合に従って各成分を攪拌機で十分に混合し、脱イオン水を加えて固形分を調整して固形分10%の水性撥水塗料組成物(D-2)〜(D-8)を作成した。
[Production Examples 6 to 12: Water-based water-repellent coating composition (D-2) to (D-8)]
Each component is thoroughly mixed with a stirrer according to the formulation shown in Table 1 and Table 2 below, and deionized water is added to adjust the solid content to obtain a water-based water-repellent coating composition (D-2) to (D-2) to ( D-8) was created.

Figure 0005600081
Figure 0005600081

<親水塗料組成物(E)の製造例>
〔製造例13:ポリビニルアルコール水溶液(e-1)〕
デンカポバールK−05(電気化学工業(株)製、ケン化度99%、重合度550)を水に溶解し、固形分14%のポリビニルアルコール水溶液(e-1)を得た。
<Production example of hydrophilic coating composition (E)>
[Production Example 13: Polyvinyl alcohol aqueous solution (e-1)]
Denkapoval K-05 (manufactured by Denki Kagaku Kogyo Co., Ltd., saponification degree 99%, polymerization degree 550) was dissolved in water to obtain a polyvinyl alcohol aqueous solution (e-1) having a solid content of 14%.

〔製造例14:アクリル樹脂水溶液〕
「ジュリマーAC10LP」〔日本純薬(株)製のポリアクリル酸、重量平均分子量25,000、酸価779mgKOH/g〕80部を3%-n-ブタノール水溶液535部に溶解させ、固形分13%のアクリル樹脂水溶液(e-2)を得た。
[Production Example 14: Acrylic resin aqueous solution]
80 parts of “Julimer AC10LP” (manufactured by Nippon Pure Chemical Co., Ltd., polyacrylic acid, weight average molecular weight 25,000, acid value 779 mg KOH / g) is dissolved in 535 parts of a 3% -n-butanol aqueous solution, and an acrylic having a solid content of 13% An aqueous resin solution (e-2) was obtained.

〔製造例15:アクリル樹脂水溶液〕
「ジュリマーAC10LHP」〔日本純薬(株)製のポリアクリル酸、重量平均分子量250,000、酸価779mgKOH/g〕80部を3%-n-ブタノール水溶液920部に溶解させ、固形分8%のアクリル樹脂水溶液(e-3)を得た。
[Production Example 15: Acrylic resin aqueous solution]
80 parts of “Julimer AC10LHP” (manufactured by Nippon Pure Chemicals Co., Ltd., polyacrylic acid, weight average molecular weight 250,000, acid value 779 mg KOH / g) is dissolved in 920 parts of a 3% -n-butanol aqueous solution, and an acrylic having a solid content of 8% An aqueous resin solution (e-3) was obtained.

〔製造例16:親水塗料組成物(E-2)〕
製造例13で得た固形分14%のポリビニルアルコール水溶液(e-1)357部に製造例14で得た固形分13%のアクリル樹脂水溶液(e-2)385部を加え、更にアクリル樹脂のカルボキシル基の中和度が0.6当量となるように14.6部の水酸化リチウム一水和物(LiOH・H2O)と3%-n-ブタノール水溶液131.4部との混合溶液(水酸化リチウム一水和物の濃度が10%の溶液)146部加えて混合攪拌を行い、更に3%-n-ブタノール水溶液112部を加えて均一になるように混合攪拌を行い固形分10%の親水塗料組成物(E-2)を得た。表2に塗料配合を示す。
[Production Example 16: hydrophilic coating composition (E-2)]
To 357 parts of the 14% solid polyvinyl alcohol aqueous solution (e-1) obtained in Production Example 13, 385 parts of the 13% solid acrylic resin aqueous solution (e-2) obtained in Production Example 14 was added. A mixed solution of 14.6 parts of lithium hydroxide monohydrate (LiOH.H 2 O) and 131.4 parts of 3% -n-butanol aqueous solution so that the neutralization degree of the carboxyl group is 0.6 equivalent (Solution having a 10% lithium hydroxide monohydrate concentration) 146 parts were added and mixed and stirred, and 112 parts of 3% -n-butanol aqueous solution was added and mixed and stirred to obtain a solid content of 10 parts. % Hydrophilic coating composition (E-2) was obtained. Table 2 shows the paint formulation.

〔製造例17:親水塗料組成物(E-3)〕
製造例13で得た固形分14%のポリビニルアルコール水溶液(e-1)357部に製造例15で得た固形分13%のアクリル樹脂水溶液(e-3)385部を加え、更にアクリル樹脂のカルボキシル基の中和度が0.6当量となるように14.6部の水酸化リチウム一水和物(LiOH・H2O)と3%n-ブタノール水溶液131.4部との混合溶液(水酸化リチウム一水和物の濃度が10%の溶液)146部加えて混合攪拌を行い、更に3%n-ブタノール水溶液112部を加えて均一になるように混合攪拌を行い固形分10%の親水塗料組成物(E-3)を得た。表2に塗料配合を示す。
[Production Example 17: hydrophilic coating composition (E-3)]
To 357 parts of the polyvinyl alcohol aqueous solution (e-1) having a solid content of 14% obtained in Production Example 13, 385 parts of the aqueous acrylic resin solution (e-3) having a solid content of 13% obtained in Production Example 15 was added. A mixed solution of 14.6 parts of lithium hydroxide monohydrate (LiOH.H 2 O) and 131.4 parts of a 3% n-butanol aqueous solution so that the neutralization degree of the carboxyl group is 0.6 equivalent ( 146 parts of a lithium hydroxide monohydrate concentration of 10%) was added and mixed and stirred, and 112 parts of 3% n-butanol aqueous solution was added and mixed and stirred to obtain a solid content of 10%. A hydrophilic coating composition (E-3) was obtained. Table 2 shows the paint formulation.

Figure 0005600081
Figure 0005600081

<比較撥水塗料組成物の調製>
〔比較製造例1:4級アンモニウム塩基を含まない変性エポキシ樹脂〕
jER828EL〔ジャパンエポキシレジン(株)製、エポキシ樹脂、エポキシ当量約190、数平均分子量約380〕513部、ビスフェノールA287部、テトラメチルアンモニウムクロライド0.3部、及びメチルイソブチルケトン89部を仕込み、窒素気流下で140℃に加熱しながら約4時間反応を行い、エポキシ樹脂溶液を得た。得られたエポキシ樹脂は、エポキシ当量が3,700であって、数平均分子量が約1,7000であった。
<Preparation of comparative water-repellent coating composition>
[Comparative Production Example 1: Modified epoxy resin containing no quaternary ammonium base]
jER828EL [manufactured by Japan Epoxy Resin Co., Ltd., epoxy resin, epoxy equivalent of about 190, number average molecular weight of about 380] 513 parts, bisphenol A 287 parts, tetramethylammonium chloride 0.3 parts, and methyl isobutyl ketone 89 parts, nitrogen The reaction was carried out for about 4 hours while heating to 140 ° C. under an air stream to obtain an epoxy resin solution. The obtained epoxy resin had an epoxy equivalent of 3,700 and a number average molecular weight of about 1,7000.

次に、このようにして得られたエポキシ樹脂溶液に、製造例1で得られた固形分約30%のカルボキシル基含有アクリル樹脂(ca-1)の溶液667部を仕込み、90℃に加熱して均一に溶解させた後、同温度で脱イオン水40部を30分かけて滴下し、次いで、テトラメチルアンモニウムクロライド0.2部を添加して3時間撹拌下に反応を行った。更に、脱イオン水2380部と25%-アンモニア水23部とを混合したものを1時間かけて添加し、固形分約25%の4級アンモニウム塩基を含まない変性エポキシ樹脂の水分散体を得た。得られた樹脂は、樹脂酸価が48mgKOH/gであって、重量平均分子量が24,000であった。   Next, the epoxy resin solution thus obtained was charged with 667 parts of a carboxyl group-containing acrylic resin (ca-1) having a solid content of about 30% obtained in Production Example 1, and heated to 90 ° C. After uniformly dissolving, 40 parts of deionized water was added dropwise at the same temperature over 30 minutes, then 0.2 part of tetramethylammonium chloride was added, and the reaction was carried out with stirring for 3 hours. Further, a mixture of 2380 parts of deionized water and 23 parts of 25% -ammonia water was added over 1 hour to obtain an aqueous dispersion of a modified epoxy resin containing no quaternary ammonium base having a solid content of about 25%. It was. The obtained resin had a resin acid value of 48 mg KOH / g and a weight average molecular weight of 24,000.

Figure 0005600081
Figure 0005600081

<片面撥水性/片面親水性フィン材の製造例>
〔実施例1〕
フィン基板として上記フィン基板イを用い、このフィン基板イの一方の面の耐食性皮膜の上に、ロールコーター(又は、バーコーター)により表1に示す水性撥水塗料組成物の塗料D-1を表4に示す膜厚で塗布し、次いでPMT220℃の温度で10秒間乾燥させて架橋撥水性皮膜を形成した。
<Example of production of single-sided water-repellent / single-sided hydrophilic fin material>
[Example 1]
Using the above-mentioned fin substrate A as the fin substrate, a coating D-1 of the water-repellent water-repellent coating composition shown in Table 1 is applied on the corrosion-resistant film on one surface of the fin substrate A by a roll coater (or bar coater). The film was coated at the film thickness shown in Table 4, and then dried at a temperature of PMT of 220 ° C. for 10 seconds to form a crosslinked water-repellent film.

次に、片面に架橋撥水性皮膜を設けたフィン基板イの他方の面の耐食性皮膜の上に、ロールコーターによりカルボキシメチルセルロース系の塗料E-1(日本ペイント社製、商品名「サーファルコート160」)を表4に示す膜厚で塗布し、次いでPMT200℃の温度で10秒間乾燥させて親水性皮膜を形成し、実施例1に係る片面撥水性/片面親水性フィン材を調製した。   Next, a carboxymethylcellulose-based paint E-1 (trade name “Surfal Coat 160, manufactured by Nippon Paint Co., Ltd.) was applied on the corrosion-resistant film on the other side of the fin substrate a having a crosslinked water-repellent film on one side by a roll coater. )) Was applied at a film thickness shown in Table 4, and then dried at a temperature of PMT of 200 ° C. for 10 seconds to form a hydrophilic film, whereby a single-sided water-repellent / single-sided hydrophilic fin material according to Example 1 was prepared.

〔実施例2〜8〕
表4に示すフィン基板を用い、表4に示す水性撥水塗料組成物と親水性塗料組成物として塗料E-1、又は表2に示す塗料E-2又は塗料E-3を用い、上記実施例1と同様にして、また、塗料E-2及び塗料E-3を用いた場合にはPMT230℃及び10秒間の条件で、それぞれ実施例2〜8に係る片面撥水性/片面親水性フィン材を調製した。
[Examples 2 to 8]
Using the fin substrate shown in Table 4, the water-repellent water-repellent paint composition shown in Table 4 and the paint E-1 as the hydrophilic paint composition, or the paint E-2 or paint E-3 shown in Table 2 are used. In the same manner as in Example 1 and when paint E-2 and paint E-3 were used, the single-sided water-repellent / single-sided hydrophilic fin material according to Examples 2 to 8 under the conditions of PMT 230 ° C. and 10 seconds, respectively. Was prepared.

〔比較例1〕
フィン基板として上記フィン基板イを用い、このフィン基板イの両面に設けられた耐食性皮膜の上に、ロールコーターにより表1に示す水性撥水塗料組成物の塗料D-1を表4に示す膜厚で塗布し、次いでPMT220℃の温度で10秒間乾燥させ、フィン基板イの両面に架橋撥水性皮膜を有する比較例1の両面撥水性フィン材を形成した。
(Comparative Example 1)
Using the above-mentioned fin substrate A as the fin substrate, the coating D-1 of the water-repellent water-repellent coating composition shown in Table 1 is formed on the corrosion-resistant film provided on both surfaces of the fin substrate A by the film shown in Table 4. The double-sided water-repellent fin material of Comparative Example 1 having a crosslinked water-repellent film on both sides of the fin substrate A was formed by coating with a thickness and then drying at a temperature of PMT 220 ° C. for 10 seconds.

〔比較例2〕
フィン基板として上記フィン基板イを用い、このフィン基板イの両面に設けられた耐食性皮膜の上に、ロールコーターにより表1に示す親水塗料組成物の塗料E-2を表4に示す膜厚で塗布し、次いでPMT230℃の温度で10秒間乾燥させ、フィン基板イの両面に親水性皮膜を有する比較例2の両面親水性フィン材を形成した。
[Comparative Example 2]
The above-mentioned fin substrate A is used as the fin substrate, and the coating E-2 of the hydrophilic coating composition shown in Table 1 is applied to the film thickness shown in Table 4 by a roll coater on the corrosion-resistant film provided on both surfaces of the fin substrate A. It was applied and then dried at a temperature of PMT of 230 ° C. for 10 seconds to form a double-sided hydrophilic fin material of Comparative Example 2 having a hydrophilic film on both sides of the fin substrate.

〔比較例3〕
フィン基板として上記フィン基板イを用い、このフィン基板イの一方の面の耐食性皮膜の上に、ロールコーターにより表3に示す比較撥水塗料組成物の塗料F-1を表4に示す膜厚で塗布し、次いでPMT220℃の温度で10秒間乾燥させて撥水性皮膜を形成した。
[Comparative Example 3]
The above-mentioned fin substrate A is used as the fin substrate, and the coating F-1 of the comparative water-repellent coating composition shown in Table 3 is formed on the corrosion-resistant film on one surface of the fin substrate A by the roll coater as shown in Table 4. And then dried at a temperature of PMT of 220 ° C. for 10 seconds to form a water repellent film.

次に、片面に撥水性皮膜を設けたフィン基板イの他方の面の耐食性皮膜の上に、ロールコーターにより親水性塗料組成物の塗料E-1を表4に示す膜厚で塗布し、次いでPMT200℃の温度で10秒間乾燥させて親水性皮膜を形成し、比較例3に係る片面撥水性/片面親水性フィン材を調製した。   Next, the coating material E-1 of the hydrophilic coating composition was applied with a film thickness shown in Table 4 on the other surface of the fin substrate A provided with a water-repellent coating on one side by a roll coater. A hydrophilic film was formed by drying at a temperature of PMT of 200 ° C. for 10 seconds to prepare a single-sided water-repellent / single-sided hydrophilic fin material according to Comparative Example 3.

〔比較例4〕
フィン基板として上記フィン基板イを用い、このフィン基板イの一方の面の耐食性皮膜の上に、ロールコーターにより表1に示す水性撥水塗料組成物の塗料D-2を表4に示す膜厚で塗布し、次いでPMT220℃の温度で10秒間乾燥させて架橋撥水性皮膜を形成した。
[Comparative Example 4]
The above-mentioned fin substrate A is used as the fin substrate, and the coating D-2 of the water-repellent water-repellent coating composition shown in Table 1 is formed on the corrosion-resistant film on one surface of the fin substrate A by the roll coater as shown in Table 4. And then dried at a temperature of PMT of 220 ° C. for 10 seconds to form a crosslinked water-repellent film.

次に、片面に架橋撥水性皮膜を設けたフィン基板イの他方の面の耐食性皮膜の上に、ロールコーターにより親水性塗料組成物の塗料E-2を表4に示す膜厚で塗布し、次いでPMT270℃の温度で10秒間乾燥させて親水性皮膜を形成し、比較例4に係る片面撥水性/片面親水性フィン材を調製した。   Next, the coating E-2 of the hydrophilic coating composition was applied at a film thickness shown in Table 4 by a roll coater on the corrosion-resistant coating on the other side of the fin substrate a provided with a crosslinked water-repellent coating on one side. Next, the film was dried at a temperature of PMT of 270 ° C. for 10 seconds to form a hydrophilic film, and a single-sided water-repellent / single-sided hydrophilic fin material according to Comparative Example 4 was prepared.

〔比較例5〕
フィン基板として上記フィン基板イを用い、このフィン基板イの一方の面の耐食性皮膜の上に、ロールコーターにより表3に示す比較撥水塗料組成物の塗料F-2を表4に示す膜厚で塗布し、次いでPMT220℃の温度で10秒間乾燥させて撥水性皮膜を形成した。
[Comparative Example 5]
The above-mentioned fin substrate A is used as the fin substrate, and the coating F-2 of the comparative water-repellent coating composition shown in Table 3 is formed on the corrosion-resistant film on one surface of the fin substrate A by the roll coater as shown in Table 4. And then dried at a temperature of PMT of 220 ° C. for 10 seconds to form a water repellent film.

次に、片面に撥水性皮膜を設けたフィン基板イの他方の面の耐食性皮膜の上に、ロールコーターにより親水性塗料組成物の塗料E-1を表4に示す膜厚で塗布し、次いでPMT270℃の温度で10秒間乾燥させて親水性皮膜を形成し、比較例4に係る片面撥水性/片面親水性フィン材を調製した。   Next, the coating material E-1 of the hydrophilic coating composition was applied with a film thickness shown in Table 4 on the other surface of the fin substrate A provided with a water-repellent coating on one side by a roll coater. A hydrophilic film was formed by drying at a temperature of PMT of 270 ° C. for 10 seconds to prepare a single-sided water-repellent / single-sided hydrophilic fin material according to Comparative Example 4.

〔比較例6〜9〕
フィン基板として上記フィン基板ロを用い、このフィン基板ロの両面に設けられた耐食性皮膜の上に、ロールコーターにより表3に示す比較撥水塗料組成物F3、F4、F5を表4に示す膜厚で塗布し、次いでPMT220℃の温度で10秒間乾燥させてフィン基板ロの両面に比較撥水性皮膜を有する比較例6〜8の両面撥水性フィン材を形成した。
また、比較例9では、フィン基板として上記フィン基板ロを用い、撥水性若しくは親水性皮膜を形成しないフィン材を調製した。
[Comparative Examples 6-9]
The above-mentioned fin substrate B is used as the fin substrate, and the comparative water-repellent coating compositions F3, F4, and F5 shown in Table 3 are formed on the corrosion-resistant film provided on both surfaces of the fin substrate B by a roll coater. The double-sided water-repellent fin material of Comparative Examples 6 to 8 having a comparative water-repellent film on both sides of the fin substrate was formed by coating with a thickness and then drying at a temperature of PMT of 220 ° C. for 10 seconds.
In Comparative Example 9, the fin substrate B was used as the fin substrate, and a fin material that did not form a water-repellent or hydrophilic film was prepared.

以上のようにして作製された各実施例1〜8及び比較例1〜9の片面撥水性/片面親水性フィン材について、各実施例1〜8の架橋撥水性皮膜及び各比較例1〜9の撥水性皮膜により形成された撥水性面と各実施例1〜8及び比較例1〜9の親水性皮膜により形成された親水性面における水接触角の測定と、各実施例1〜8及び比較例1〜9について、熱交換器を作製し、着霜抑制・凝縮水排除効果の確認試験とを実施した。
結果を表4に示す。
About the single-sided water-repellent / single-sided hydrophilic fin materials of Examples 1-8 and Comparative Examples 1-9 produced as described above, the crosslinked water-repellent coatings of Examples 1-8 and Comparative Examples 1-9 Measurement of the water contact angle on the water-repellent surface formed by the water-repellent film and the hydrophilic surfaces formed by the hydrophilic films of Examples 1 to 8 and Comparative Examples 1 to 9, and Examples 1 to 8 and About Comparative Examples 1-9, the heat exchanger was produced and the confirmation test of frost formation suppression and a condensed water exclusion effect was implemented.
The results are shown in Table 4.

Figure 0005600081
Figure 0005600081

実施例1〜8では、使用された熱交換フィンにおいて、親水性皮膜が形成されている親水性面では着霜したが、霜が閉塞するまで成長することはなかった。もう一方の架橋撥水性皮膜が形成されている撥水性面においては着霜現象は起きず、30分以内に全面着霜することはなかった。除霜運転後、親水性面に付着した霜の融解水は流れ落ち、また、撥水性面上の結露水は、親水性面に触れて流れ落ち、ブリッジの形成は無く、良好な通風状態であった。その際に親水性面に付着した霜も融解して流れ落ちた。   In Examples 1 to 8, the heat exchange fins used were frosted on the hydrophilic surface on which the hydrophilic film was formed, but did not grow until the frost was blocked. On the water-repellent surface on which the other crosslinked water-repellent film was formed, no frosting phenomenon occurred, and the entire surface did not frost within 30 minutes. After defrosting operation, the frost melting water adhering to the hydrophilic surface flows down, and the condensed water on the water-repellent surface flows down by touching the hydrophilic surface, there is no bridge formation, and the ventilation state is good. . At that time, the frost adhered to the hydrophilic surface also melted and flowed down.

これに対して、比較例1においては、熱交換フィンの両面が着霜抑制効果のある撥水性皮膜のみであるため、着霜現象は起きなかったが、除霜運転後、結露水によってブリッジを形成した。また、比較例2においては、熱交換フィンの両面が親水性皮膜のみであるため、短時間で全面着霜して閉塞した。更に、比較例3、5、6、8においては、着霜抑制の持続効果のない撥水性皮膜のため、15分〜30分で全面着霜し、除霜運転後、結露水によってブリッジを形成した。比較例4においては、片面が着霜抑制効果のある撥水性皮膜であったため、30分以内に着霜することはなかったが、除霜運転後、親水性面に付着した霜の融解水は流れ落ちず、また、撥水性面上の結露水は、親水性面に触れていたが流れ落ちず、結露水によってブリッジを形成した。更にまた、比較例7においては、着霜抑制効果の低い撥水性皮膜のため、15分以内で全面着霜し、除霜運転後、結露水によってブリッジを形成した。更にまた、無処理の熱交換フィンを用いた比較例9の場合には、比較例7と同様に、15分以内で全面着霜し、除霜運転後、結露水によってブリッジを形成した。   On the other hand, in Comparative Example 1, since both surfaces of the heat exchange fin were only a water-repellent film having a frost-inhibiting effect, no frosting phenomenon occurred, but after defrosting operation, the bridge was formed by dew condensation water. Formed. Moreover, in Comparative Example 2, since both surfaces of the heat exchange fin were only hydrophilic films, the entire surface was frosted and blocked in a short time. Furthermore, in Comparative Examples 3, 5, 6, and 8, because of the water-repellent coating that has no effect of suppressing frost formation, the entire surface is frosted in 15 to 30 minutes, and a bridge is formed by dew condensation water after defrosting operation. did. In Comparative Example 4, since one side was a water-repellent film having a frost-inhibiting effect, frost was not formed within 30 minutes, but after defrosting operation, the frost melting water adhering to the hydrophilic surface was The condensed water on the water-repellent surface did not flow down but touched the hydrophilic surface, but did not flow down, and a bridge was formed by the condensed water. Furthermore, in Comparative Example 7, because of the water-repellent film having a low frost suppression effect, the entire surface was frosted within 15 minutes, and after defrosting operation, a bridge was formed with condensed water. Furthermore, in the case of Comparative Example 9 using untreated heat exchange fins, as in Comparative Example 7, the entire surface was frosted within 15 minutes, and after defrosting operation, a bridge was formed with condensed water.

<両面撥水性フィン材の製造例>
〔実施例9〕
フィン基板として上記フィン基板イ又はロを用い、このフィン基板イ又はロの両面に設けられた耐食性皮膜の上に、ロールコーターにより表1に示す水性撥水塗料組成物の塗料D-2を表5に示す膜厚で塗布し、次いでPMT220℃の温度で10秒間乾燥させ、フィン基板イの両面に架橋撥水性皮膜を有する実施例9の両面撥水性フィン材を形成した。
<Production example of double-sided water-repellent fin material>
Example 9
Using the above-mentioned fin substrate A or B as the fin substrate, the paint D-2 of the water-repellent water-repellent coating composition shown in Table 1 is displayed on the corrosion-resistant film provided on both surfaces of the fin substrate A or B by a roll coater. 5 and then dried at a temperature of 220 ° C. for 10 seconds to form a double-sided water-repellent fin material of Example 9 having a crosslinked water-repellent film on both sides of the fin substrate A.

〔実施例10〕
フィン基板として上記フィン基板ロを用い、このフィン基板ロの両面に設けられた耐食性皮膜の上に、ロールコーターにより表1に示す水性撥水塗料組成物の塗料D-3を表5に示す膜厚で塗布し、次いでPMT220℃の温度で10秒間乾燥させ、フィン基板の両面に架橋撥水性皮膜を有する実施例10の両面撥水性フィン材を形成した。
Example 10
The above-mentioned fin substrate B is used as the fin substrate, and the coating D-3 of the water-repellent water-repellent coating composition shown in Table 1 is applied to the film shown in Table 5 by a roll coater on the corrosion-resistant film provided on both surfaces of the fin substrate B. The double-sided water-repellent fin material of Example 10 having a cross-linked water-repellent coating on both sides of the fin substrate was formed by coating with a thickness and then drying at a temperature of PMT 220 ° C. for 10 seconds.

〔実施例11〕
フィン基板として上記フィン基板ロを用い、このフィン基板ロの両面に設けられた耐食性皮膜の上に、ロールコーターにより表1に示す水性撥水塗料組成物の塗料D-4を表5に示す膜厚で塗布し、次いでPMT220℃の温度で10秒間乾燥させ、フィン基板の両面に架橋撥水性皮膜を有する実施例11の両面撥水性フィン材を形成した。
Example 11
The above-mentioned fin substrate B is used as the fin substrate, and the coating D-4 of the water-repellent water-repellent coating composition shown in Table 1 is applied to the film shown in Table 5 by a roll coater on the corrosion-resistant film provided on both surfaces of the fin substrate B. The double-sided water-repellent fin material of Example 11 having a cross-linked water-repellent film on both sides of the fin substrate was formed by coating with a thickness and then drying at a temperature of PMT 220 ° C. for 10 seconds.

得られた各実施例9〜11の両面撥水性フィン材について、それぞれ上記と同様にして水接触角の測定を行った。結果を表5に示す。   About the obtained double-sided water-repellent fin material of each of Examples 9 to 11, the water contact angle was measured in the same manner as described above. The results are shown in Table 5.

Figure 0005600081
Figure 0005600081

<両面親水性フィン材の製造例>
フィン基板として上記フィン基板イ又はロを用い、このフィン基板イ又はロの両面に設けられた耐食性皮膜の上に、ロールコーター(又は、バーコーター)により表2に示す親水塗料組成物の塗料E-1、E-2、E-3を表6に示す膜厚で塗布し、次いでE-1では、PMT200℃の温度で10秒間、また、E-2、E-3では、PMT230℃の温度で10秒間それぞれ乾燥させ、フィン基板イ又はロの両面に親水性皮膜を有する3種の両面親水性フィン材(a〜c)を形成した。
<Example of manufacturing double-sided hydrophilic fin material>
The above-described fin substrate A or B is used as the fin substrate, and the coating E of the hydrophilic coating composition shown in Table 2 is provided on the corrosion-resistant film provided on both surfaces of the fin substrate A or B by a roll coater (or bar coater). -1, E-2 and E-3 were applied at the film thicknesses shown in Table 6, and then for E-1, 10 seconds at a temperature of PMT of 200 ° C, and for E-2 and E-3, a temperature of 230 ° C for PMT And dried for 10 seconds to form three types of double-sided hydrophilic fin materials (ac) having hydrophilic coatings on both sides of the fin substrate A or B.

得られた各両面親水性フィン材(a〜c)について、それぞれ上記と同様にして水接触角の測定を行った。結果を表6に示す。   About each obtained double-sided hydrophilic fin material (ac), the water contact angle was measured in the same manner as described above. The results are shown in Table 6.

Figure 0005600081
Figure 0005600081

<フィン構造の作成と着霜抑制・凝縮水排除効果の確認試験>
〔実施例9〜11及び比較例10〜11〕
以上のようにして作製された表5に示す実施例9〜11の両面撥水性フィン材と表6に示す各両面親水性フィン材a〜cとを用い、これら両面撥水性フィン材と両面親水性フィン材とを撥水性面と親水性面とが互いに1.5mmの間隔で相対面するように交互に配置して実施例9〜11のフィン構造を構成し、実施例1〜8の場合と同様にクロスフィンチューブ型の試験用熱交換器を作製し、着霜抑制・凝縮水排除効果の確認試験を実施した。
<Fin structure creation and frost control / condensate rejection test>
[Examples 9 to 11 and Comparative Examples 10 to 11]
Using the double-sided water-repellent fin materials of Examples 9 to 11 shown in Table 5 and the double-sided hydrophilic fin materials a to c shown in Table 6 prepared as described above, these double-sided water-repellent fin materials and double-sided hydrophilic materials. In the case of Examples 1 to 8, the fin structures of Examples 9 to 11 are configured by alternately arranging the conductive fin material so that the water-repellent surface and the hydrophilic surface face each other at an interval of 1.5 mm. A cross-fin tube type heat exchanger for testing was prepared in the same manner as above, and a confirmation test of the effect of suppressing frost formation and eliminating condensed water was conducted.

また、比較例10では、2枚の実施例9の両面撥水性フィン材を積層させて次に2枚の両面親水性フィンaを積層させる構成を、複数回繰り返してフィン構造を構成し、また、比較例11では、5枚の実施例10の両面撥水性フィン材D-3を積層させて次に5枚の両面親水性フィンbを積層させる構成を、複数回繰り返してフィン構造を構成し、上記と同様にしてクロスフィンチューブ型の試験用熱交換器を作製し、着霜抑制・凝縮水排除効果の確認試験を実施した。
各実施例9〜11及び比較例10〜11の結果を表7に示す。
Further, in Comparative Example 10, a structure in which two double-sided water-repellent fin materials of Example 9 are laminated and then two double-sided hydrophilic fins a are laminated is repeated a plurality of times to form a fin structure. In Comparative Example 11, the structure in which five double-sided water-repellent fin materials D-3 of Example 10 were laminated and then five double-sided hydrophilic fins b were laminated was repeated a plurality of times to form a fin structure. In the same manner as described above, a cross-fin tube type heat exchanger for testing was produced, and a confirmation test of the effect of suppressing frost formation and eliminating condensed water was performed.
Table 7 shows the results of Examples 9 to 11 and Comparative Examples 10 to 11.

Figure 0005600081
Figure 0005600081

Claims (9)

アルミニウム又はアルミニウム合金からなるアルミニウム板材で形成されたフィン基板と、このフィン基板の一方の面に設けられた着霜抑制効果を有する架橋撥水性皮膜と、フィン基板の他方の面に設けられた凝縮水排除効果を有する親水性皮膜とを備えた熱交換器用のプレコートフィン材であって、
前記架橋撥水性皮膜が、パーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する樹脂(A)、4級アンモニウム塩基含有変性エポキシ樹脂(B)及びアミノ樹脂(C)を含有し、4級アンモニウム塩基含有変性エポキシ樹脂(B)とアミノ樹脂(C)の固形分合計100質量部に対して、パーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する樹脂(A)の固形分が1〜30質量部である水性撥水塗料組成物から形成されていることを特徴とする熱交換器用プレコートフィン材。
Fin substrate made of aluminum plate made of aluminum or aluminum alloy, cross-linked water-repellent film having frost formation suppressing effect provided on one surface of this fin substrate, and condensation provided on the other surface of the fin substrate A precoat fin material for a heat exchanger provided with a hydrophilic film having a water exclusion effect,
The crosslinked water-repellent coating is a resin (A) having at least one fluorine atom-containing group selected from the group consisting of a perfluoroalkyl group and a perfluoroalkenyl group, a quaternary ammonium base-containing modified epoxy resin (B), and amino The resin (C) is contained and selected from the group consisting of a perfluoroalkyl group and a perfluoroalkenyl group with respect to a total solid content of 100 parts by mass of the quaternary ammonium base-containing modified epoxy resin (B) and amino resin (C). A precoat fin material for a heat exchanger, wherein the resin (A) having at least one fluorine atom-containing group is formed from an aqueous water-repellent coating composition having a solid content of 1 to 30 parts by mass.
前記架橋撥水性皮膜は、前記フィン基板の両面に設けられた耐食性皮膜の何れか一方の上に形成されている請求項1に記載の熱交換器用プレコートフィン材。   The pre-coated fin material for a heat exchanger according to claim 1, wherein the crosslinked water-repellent coating is formed on any one of the corrosion-resistant coatings provided on both surfaces of the fin substrate. 前記架橋撥水性皮膜は、その水接触角が100°以上である請求項1又は2に記載の熱交換器用プレコートフィン材。   The pre-coated fin material for a heat exchanger according to claim 1 or 2, wherein the crosslinked water-repellent coating has a water contact angle of 100 ° or more. 前記親水性皮膜は、その水接触角が40°以下である請求項1〜3のいずれかに記載の熱交換器用プレコートフィン材。   The precoat fin material for a heat exchanger according to any one of claims 1 to 3, wherein the hydrophilic film has a water contact angle of 40 ° or less. 前記架橋撥水性皮膜は、水性撥水塗料組成物を塗布した後に焼き付けて形成されており、その膜厚が0.05〜5.0μmである請求項1〜4のいずれかに記載の熱交換器用プレコートフィン材。   The heat exchange according to any one of claims 1 to 4, wherein the crosslinked water-repellent coating is formed by baking after applying the water-based water-repellent coating composition, and has a film thickness of 0.05 to 5.0 µm. Pre-coated fin material for dexterity. 前記親水性皮膜は、親水塗料を塗布した後に焼き付けて形成されており、その膜厚が0.05〜5.0μmである請求項1〜4のいずれかに記載の熱交換器用プレコートフィン材。   The precoat fin material for a heat exchanger according to any one of claims 1 to 4, wherein the hydrophilic film is formed by baking after applying a hydrophilic paint, and the film thickness is 0.05 to 5.0 µm. 多数の平板状のプレコートフィン材が互いに所定の間隔でかつ平行に配置され、かつ、互いに隣接するプレコートフィン材間において着霜抑制効果を有する撥水性面と凝縮水排除効果を有する親水性面とが相対面するフィン構造を備えた熱交換器であり、
前記多数のプレコートフィン材は、アルミニウム又はアルミニウム合金からなるアルミニウム板材で形成されたフィン基板の一方の面に撥水性面を形成する架橋撥水性皮膜を有すると共に他方の面に親水性面を形成する親水性皮膜を有する多数の片面撥水性/片面親水性フィン材で構成されており、あるいは、アルミニウム又はアルミニウム合金からなるアルミニウム板材で形成されたフィン基板の両面に撥水性面を形成する架橋撥水性皮膜を有する複数の両面撥水性フィン材と、アルミニウム又はアルミニウム合金からなるアルミニウム板材で形成されたフィン基板の両面に親水性面を形成する親水性皮膜を有する複数の両面親水性フィン材とで構成されており、
前記架橋撥水性皮膜は、パーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する樹脂(A)、4級アンモニウム塩基含有変性エポキシ樹脂(B)及びアミノ樹脂(C)を含有し、4級アンモニウム塩基含有変性エポキシ樹脂(B)とアミノ樹脂(C)の固形分合計100質量部に対して、パーフルオロアルキル基及びパーフルオロアルケニル基からなる群より選ばれる少なくとも1種のフッ素原子含有基を有する樹脂(A)の固形分が1〜30質量部である水性撥水塗料組成物から形成されていることを特徴とする熱交換器。
A plurality of plate-like pre-coated fin materials are arranged in parallel with each other at a predetermined interval, and a water-repellent surface having a frosting suppressing effect and a hydrophilic surface having a condensed water eliminating effect between adjacent pre-coated fin materials. Is a heat exchanger with a fin structure facing each other,
The plurality of pre-coated fin materials have a crosslinked water-repellent film that forms a water-repellent surface on one surface of a fin substrate formed of an aluminum plate made of aluminum or an aluminum alloy, and also forms a hydrophilic surface on the other surface. Cross-linked water repellency that is composed of a number of single-sided water-repellent / single-sided hydrophilic fin materials having a hydrophilic film or that forms a water-repellent surface on both sides of a fin substrate made of an aluminum plate made of aluminum or aluminum alloy Consists of a plurality of double-sided water-repellent fin materials having a film and a plurality of double-sided hydrophilic fin materials having a hydrophilic film that forms a hydrophilic surface on both surfaces of a fin substrate formed of an aluminum plate made of aluminum or an aluminum alloy Has been
The crosslinked water-repellent coating is composed of a resin (A) having at least one fluorine atom-containing group selected from the group consisting of a perfluoroalkyl group and a perfluoroalkenyl group, a quaternary ammonium base-containing modified epoxy resin (B), and an amino acid. The resin (C) is contained and selected from the group consisting of a perfluoroalkyl group and a perfluoroalkenyl group with respect to a total solid content of 100 parts by mass of the quaternary ammonium base-containing modified epoxy resin (B) and amino resin (C). A heat exchanger, wherein the resin (A) having at least one fluorine atom-containing group is formed from a water-based water-repellent coating composition having a solid content of 1 to 30 parts by mass.
前記多数のプレコートフィン材が、多数の片面撥水性/片面親水性フィン材で構成されている請求項7に記載の熱交換器。   The heat exchanger according to claim 7, wherein the plurality of pre-coated fin materials are formed of a plurality of single-side water-repellent / single-side hydrophilic fin materials. 前記多数のプレコートフィン材が、複数の両面撥水性フィン材と複数の両面親水性フィン材とで構成されている請求項7に記載の熱交換器。   The heat exchanger according to claim 7, wherein the plurality of pre-coated fin materials are composed of a plurality of double-sided water-repellent fin materials and a plurality of double-sided hydrophilic fin materials.
JP2011105498A 2011-05-10 2011-05-10 Pre-coated fin material for heat exchanger and heat exchanger Expired - Fee Related JP5600081B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011105498A JP5600081B2 (en) 2011-05-10 2011-05-10 Pre-coated fin material for heat exchanger and heat exchanger
CN201280022516.5A CN103703338B (en) 2011-05-10 2012-03-21 Heat exchanger precoating fin material and heat exchanger
KR1020137032356A KR101555422B1 (en) 2011-05-10 2012-03-21 Precoated fin material for heat exchangers and heat exchanger
US14/117,207 US20140231052A1 (en) 2011-05-10 2012-03-21 Precoated fin material for heat exchangers and heat exchanger
MYPI2013702101A MY162775A (en) 2011-05-10 2012-03-21 Precoated Fin Material for Heat Exchangers and Heat Exchanger
PCT/JP2012/057104 WO2012153570A1 (en) 2011-05-10 2012-03-21 Precoated fin material for heat exchangers and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105498A JP5600081B2 (en) 2011-05-10 2011-05-10 Pre-coated fin material for heat exchanger and heat exchanger

Publications (2)

Publication Number Publication Date
JP2012237476A JP2012237476A (en) 2012-12-06
JP5600081B2 true JP5600081B2 (en) 2014-10-01

Family

ID=47139056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105498A Expired - Fee Related JP5600081B2 (en) 2011-05-10 2011-05-10 Pre-coated fin material for heat exchanger and heat exchanger

Country Status (6)

Country Link
US (1) US20140231052A1 (en)
JP (1) JP5600081B2 (en)
KR (1) KR101555422B1 (en)
CN (1) CN103703338B (en)
MY (1) MY162775A (en)
WO (1) WO2012153570A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5686474B2 (en) * 2011-05-18 2015-03-18 関西ペイント株式会社 Frost suppression treatment composition for heat exchanger fin material
CN105175602B (en) * 2015-09-10 2018-06-12 广州慧谷化学有限公司 Odorlessness hydrophilic coating organic hydrophilic resin and its coating composition and application
JP6596313B2 (en) * 2015-11-20 2019-10-23 株式会社Uacj Pre-coated fins and heat exchanger
JP2017180991A (en) * 2016-03-31 2017-10-05 株式会社Uacj Fin material for heat exchanger and heat exchanger
EP3515608B1 (en) * 2016-09-19 2024-01-03 Nelumbo Inc. Droplet ejecting coatings
US11473807B2 (en) 2017-01-12 2022-10-18 Nelumbo Inc. Temperature and relative humidity controller
KR101953966B1 (en) 2017-03-15 2019-03-04 두산중공업 주식회사 Heat transfer tube having superhydrophobic surface and manufacturing method therefor
KR101987699B1 (en) 2017-03-17 2019-06-11 엘지전자 주식회사 Heat exchanger
JP7209487B2 (en) * 2017-11-24 2023-01-20 Maアルミニウム株式会社 ALUMINUM FIN AND HEAT EXCHANGER EXCELLENT IN HYDROPHILIC AFTER BRAZING PROCESS AND METHOD FOR MANUFACTURING THE SAME
WO2019102915A1 (en) * 2017-11-24 2019-05-31 三菱アルミニウム株式会社 Aluminum fin having excellent hydrophilicity after brazing, and heat exchanger and method for producing same
US11041665B1 (en) 2017-11-30 2021-06-22 Nelumbo Inc. Droplet-field heat transfer surfaces and systems thereof
US10767941B2 (en) 2018-09-14 2020-09-08 Ford Global Technologies, Llc Method of forming a superhydrophobic layer on a motor vehicle heat exchanger housing and a heat exchanger incorporating such a housing

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153357A (en) * 1985-12-27 1987-07-08 Toyo Ink Mfg Co Ltd Paint for aluminum fin
JP3227895B2 (en) * 1993-04-23 2001-11-12 日立化成工業株式会社 Resin composition for water-based paint
JPH08113756A (en) * 1994-10-14 1996-05-07 Du Pont Mitsui Fluorochem Co Ltd Production of article having surface of water-repellent fluorine-containing resin
JPH08108139A (en) * 1994-10-13 1996-04-30 Du Pont Mitsui Fluorochem Co Ltd Production of article having surface of water-repellent fluorine-containing resin
JPH07251130A (en) * 1994-03-11 1995-10-03 Kansai Paint Co Ltd Formation of water-repellent coating film
JP3253851B2 (en) * 1996-04-18 2002-02-04 株式会社日立製作所 Super water repellent paint and super water repellent coating using the same
US6337129B1 (en) * 1997-06-02 2002-01-08 Toto Ltd. Antifouling member and antifouling coating composition
JP2000026759A (en) * 1998-07-09 2000-01-25 Kansai Paint Co Ltd Coating composition capable of forming water-slipping coating membrane
CN1714272A (en) * 2002-11-26 2005-12-28 大金工业株式会社 Heat exchanger for air and freezer device
JP2004294049A (en) * 2002-11-26 2004-10-21 Daikin Ind Ltd Air heat exchanger and refrigerating apparatus
JP2005113228A (en) * 2003-10-09 2005-04-28 Daikin Ind Ltd Plate stock, and its production method
US8801850B2 (en) * 2007-01-18 2014-08-12 Mitsubishi Electric Corporation Coating composition, and its production, heat exchanger and air conditioner
JP5281295B2 (en) * 2008-01-31 2013-09-04 住友軽金属工業株式会社 Aluminum fin material for heat exchanger and fin press method using the same
JP2010185598A (en) 2009-02-10 2010-08-26 Kobe Steel Ltd Fin material for heat exchanger
JP5446390B2 (en) * 2009-03-31 2014-03-19 Jfeスチール株式会社 Surface treatment agent, method for producing plated steel sheet using the surface treatment agent, and plated steel sheet
JP5485616B2 (en) * 2009-08-21 2014-05-07 関西ペイント株式会社 Surface treatment agent for aluminum fin materials
JP5554544B2 (en) * 2009-11-10 2014-07-23 関西ペイント株式会社 Frost suppression treatment composition for heat exchanger fin material
JP2011163646A (en) 2010-02-09 2011-08-25 Sumitomo Light Metal Ind Ltd Aluminum fin for heat exchanger and the heat exchanger
JP5753698B2 (en) * 2010-02-09 2015-07-22 株式会社Uacj Aluminum fin for heat exchanger and heat exchanger

Also Published As

Publication number Publication date
KR101555422B1 (en) 2015-09-23
KR20140033084A (en) 2014-03-17
JP2012237476A (en) 2012-12-06
WO2012153570A1 (en) 2012-11-15
US20140231052A1 (en) 2014-08-21
CN103703338B (en) 2016-02-10
MY162775A (en) 2017-07-14
CN103703338A (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5600081B2 (en) Pre-coated fin material for heat exchanger and heat exchanger
JP5712777B2 (en) Heat exchanger made of aluminum or aluminum alloy
EP2862634B1 (en) Method for covering aluminum fin material with hydrophilic film, aluminum fin material, and aluminum heat exchanger
JP6618903B2 (en) Method for coating hydrophilic film on aluminum fin material, aluminum fin material and aluminum heat exchanger
JP7233429B2 (en) pre-coated aluminum material
JP6654814B2 (en) Hydrophilizing agent, hydrophilic film forming method and hydrophilic film
JP2011148889A (en) Hydrophilicizing treatment agent
JP2011042842A (en) Substrate treating agent for aluminum fin material
JP2009149715A (en) Composition for hydrophilization treatment
JP4769112B2 (en) Aluminum coating material and aluminum fin material for heat exchanger using the same
JP2011102334A (en) Frost formation suppression treatment composition for heat exchanger fin material
JP6161122B2 (en) Film formation method for heat exchanger aluminum fins
JP2009103434A (en) Aluminum heat exchanger
JP2507060B2 (en) Aluminum heat exchanger and manufacturing method thereof
JP4834194B2 (en) Water-based paint composition
CN113226571B (en) Hydrophilizing agent, method for forming hydrophilic coating film, and hydrophilic coating film
JP4467264B2 (en) Fin coating composition and fin material
JP5567301B2 (en) Hydrophilization composition for heat exchanger fin material
WO2016170698A1 (en) Water-based surface-treating agent, process for producing coating film, and surface-treated material
JPH08334295A (en) Precoated fin material for heat-exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140814

R150 Certificate of patent or registration of utility model

Ref document number: 5600081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees