JP5596509B2 - Method for producing open cell cross-linked polyolefin resin foam - Google Patents

Method for producing open cell cross-linked polyolefin resin foam Download PDF

Info

Publication number
JP5596509B2
JP5596509B2 JP2010258891A JP2010258891A JP5596509B2 JP 5596509 B2 JP5596509 B2 JP 5596509B2 JP 2010258891 A JP2010258891 A JP 2010258891A JP 2010258891 A JP2010258891 A JP 2010258891A JP 5596509 B2 JP5596509 B2 JP 5596509B2
Authority
JP
Japan
Prior art keywords
value
foam
polyolefin resin
compression
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010258891A
Other languages
Japanese (ja)
Other versions
JP2012107161A (en
Inventor
直樹 橋本
弘行 丹羽
賢二 脇川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2010258891A priority Critical patent/JP5596509B2/en
Publication of JP2012107161A publication Critical patent/JP2012107161A/en
Application granted granted Critical
Publication of JP5596509B2 publication Critical patent/JP5596509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、低圧縮歪性及びシール性に優れた連続気泡架橋ポリオレフィン系樹脂発泡体を製造するための製造方法に関する。   The present invention relates to a production method for producing an open-cell crosslinked polyolefin resin foam excellent in low compression strain and sealing properties.

連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法として、独立気泡架橋ポリオレフィン系樹脂発泡体に対して、異方向に回転する2本のロール間隙を通過させて圧縮する圧縮処理を行うことにより、気泡膜を破裂させて気泡を連通化させる方法が知られている(例えば、特許文献1)。特許文献1の製造方法では、独立気泡架橋ポリオレフィン系樹脂発泡体として、発泡倍率が15〜70倍であり、平均気泡径のゲル分率に対する比が10〜300の関係あるポリオレフィン系樹脂発泡体を用いている。そして、圧縮処理における発泡体の圧縮率を87.5〜96%とし、ロールの周速比を1.0〜1.4としている。このように構成することで、発泡倍率及び連続気泡率が高く、表面が平滑な連続気泡架橋ポリオレフィン系樹脂発泡体を得ることができる。   As a method for producing an open-cell cross-linked polyolefin resin foam, a closed-cell cross-linked polyolefin resin foam is subjected to a compression process in which it is compressed by passing through a gap between two rolls rotating in different directions. A method is known in which bubbles are communicated by causing bubbles to communicate (for example, Patent Document 1). In the production method of Patent Document 1, as a closed cell crosslinked polyolefin resin foam, a polyolefin resin foam having a foaming ratio of 15 to 70 times and a ratio of an average cell diameter to a gel fraction of 10 to 300 is used. Used. And the compression rate of the foam in a compression process shall be 87.5-96%, and the peripheral speed ratio of the roll shall be 1.0-1.4. By comprising in this way, the open cell bridge | crosslinking polyolefin resin foam with a high foaming ratio and an open cell rate, and a smooth surface can be obtained.

特開2001−040128号公報JP 2001-040128 A

ところで、連続気泡架橋ポリオレフィン系樹脂発泡体をシール材として用いる場合には、高いシール性に加えて低圧縮歪性が求められるが、特許文献1の製造方法では低圧縮歪性及び高いシール性を有する連続気泡架橋ポリオレフィン系樹脂発泡体を得ることは困難であった。特許文献1の製造方法を用いて、シール性の高い(気泡の細かい)連続気泡架橋ポリオレフィン系樹脂発泡体を得ようとした場合、気泡径に合わせてゲル分率を下げる必要があるが、ゲル分率を下げると樹脂強度が低下してしまい低圧縮歪性を得ることができなくなる。また、低圧縮歪性を求めてゲル分率を高めた場合、ゲル分率に合わせて気泡径が大きくなってしまうことから、高いシール性を得ることができなくなる。   By the way, when using an open-cell crosslinked polyolefin resin foam as a sealing material, low compressive strain is required in addition to high sealing properties. However, the manufacturing method of Patent Document 1 has low compressive strain and high sealing properties. It was difficult to obtain an open-cell crosslinked polyolefin resin foam having the same. When trying to obtain an open cell crosslinked polyolefin resin foam having high sealing properties (fine bubbles) using the production method of Patent Document 1, it is necessary to lower the gel fraction in accordance with the cell diameter. When the fraction is lowered, the resin strength is lowered and low compression strain cannot be obtained. In addition, when the gel fraction is increased in order to obtain low compressive strain, the bubble diameter increases in accordance with the gel fraction, so that high sealing performance cannot be obtained.

この発明は、こうした従来の実情に鑑みてなされたものであり、その目的は、低圧縮歪性及びシール性に優れた連続気泡架橋ポリオレフィン系樹脂発泡体を製造するための製造方法を提供することにある。   The present invention has been made in view of such conventional circumstances, and an object of the present invention is to provide a production method for producing an open-cell crosslinked polyolefin resin foam excellent in low compression strain and sealability. It is in.

上記の目的を達成するために請求項1に記載の連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法は、独立気泡架橋ポリオレフィン系樹脂発泡体に対し、異方向へ回転する2本のロール間隙を通過させて圧縮する圧縮処理を行うことにより気泡を連通させて連続気泡架橋ポリオレフィン系樹脂発泡体を製造する方法であって、ポリオレフィン系樹脂、発泡剤、及び架橋剤を含有する発泡体原料を反応及び発泡させてなり、JIS K6767に規定される引張強さと、JIS K6767に規定される25mmあたりの平均セル数との積として得られる第1の値が4.5以上である独立気泡架橋ポリオレフィン系樹脂発泡体を用い、前記圧縮処理を複数回繰り返し行う圧縮工程を有し、該圧縮工程において、前記ロールの周速比と圧縮率との積を圧縮処理毎に算出し、それを総和した値を第2の値としたとき、前記第2の値を前記第1の値で除した値として得られる第3の値が100〜290の範囲であることを特徴とする。   In order to achieve the above object, the method for producing an open-cell crosslinked polyolefin resin foam according to claim 1 passes through two roll gaps rotating in different directions with respect to the closed-cell crosslinked polyolefin resin foam. A method of producing an open-cell crosslinked polyolefin-based resin foam by allowing bubbles to communicate by performing a compression treatment, wherein the foam raw material containing a polyolefin-based resin, a foaming agent, and a crosslinking agent is reacted and Closed-cell cross-linked polyolefin resin obtained by foaming and having a first value of 4.5 or more as a product of the tensile strength defined in JIS K6767 and the average number of cells per 25 mm defined in JIS K6767 Using a foam, and having a compression step of repeatedly performing the compression treatment a plurality of times, in the compression step, between the peripheral speed ratio of the roll and the compression ratio When the product is calculated for each compression process and the sum total of these is used as the second value, the third value obtained by dividing the second value by the first value is 100 to 290. It is a range.

請求項2に記載の連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法は、請求項1に記載の発明において、前記第3の値が105〜280の範囲であることを特徴とする。
請求項3に記載の連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法は、請求項1又は請求項2に記載の発明において、前記第1の値が4.5〜21.0の範囲であり、前記第2の値が620〜4800の範囲であることを特徴とする。
The method for producing an open-cell crosslinked polyolefin resin foam according to claim 2 is characterized in that, in the invention according to claim 1, the third value is in the range of 105 to 280.
The method for producing an open-cell crosslinked polyolefin-based resin foam according to claim 3 is the invention according to claim 1 or 2, wherein the first value is in the range of 4.5 to 21.0, The second value is in a range of 620 to 4800.

本発明の連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法によれば、低圧縮歪性及びシール性に優れた連続気泡架橋ポリオレフィン系樹脂発泡体を製造することができる。   According to the method for producing an open-cell crosslinked polyolefin resin foam of the present invention, an open-cell crosslinked polyolefin resin foam excellent in low compression strain and sealing properties can be produced.

以下、本発明を具体化した実施形態を詳細に説明する。
本実施形態の製造方法は、特定の独立気泡架橋ポリオレフィン系樹脂発泡体に対して、特定の条件による圧縮処理を複数回行う圧縮工程を施すことにより、発泡体内の気泡を連通化させて連続気泡架橋ポリオレフィン系樹脂発泡体を製造するものである。以下では、本実施形態の製造方法に用いる独立気泡架橋ポリオレフィン系樹脂発泡体、及び圧縮工程について具体的に説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described in detail.
In the manufacturing method of the present embodiment, a specific closed cell cross-linked polyolefin resin foam is subjected to a compression process in which a compression process under a specific condition is performed a plurality of times, thereby allowing the bubbles in the foam to communicate with each other to form an open cell. A crosslinked polyolefin resin foam is produced. Below, the closed-cell crosslinked polyolefin resin foam used for the manufacturing method of this embodiment and a compression process are demonstrated concretely.

[独立気泡架橋ポリオレフィン系樹脂発泡体]
本実施形態の製造方法に用いられる独立気泡架橋ポリオレフィン系樹脂発泡体(以下、独立気泡発泡体と記載する。)としては、JIS K6767(1999附属書1の2)に規定される引張強さ(N/mm)と、JIS K6767(1999附属書A)に規定される、長さ25mmあたりの平均セル数(個/25mm)との積として得られる第1の値が4.5以上、好ましくは4.5〜21.0の範囲である発泡体が用いられる。上記第1の値が4.5未満である場合、最終的に得られる連続気泡架橋ポリオレフィン系樹脂発泡体(以下、連続気泡発泡体と記載する)のシール性が著しく低下するおそれがある。
[Closed cell crosslinked polyolefin resin foam]
As the closed cell cross-linked polyolefin resin foam (hereinafter referred to as closed cell foam) used in the production method of the present embodiment, the tensile strength defined in JIS K6767 (1999 Appendix 1-2) ( N / mm 2 ) and the first value obtained as a product of JIS K6767 (1999 Annex A) and the average number of cells per 25 mm (pieces / 25 mm) is 4.5 or more, preferably Is used in the range of 4.5 to 21.0. When the first value is less than 4.5, the sealing property of the finally obtained open-cell crosslinked polyolefin resin foam (hereinafter referred to as open-cell foam) may be significantly reduced.

上記独立気泡発泡体は、平均セル数が15〜60個/25mmであることが好ましい。平均セル数が15個/25mm未満である場合、上記第1の値が4.5以上にすることが困難になり、結果として最終的に得られる連続気泡発泡体のシール性が低下しやすい。一方、平均セル数が60個/25mmを超える場合、後の圧縮工程において気泡を連通させることが困難になる。   The closed cell foam preferably has an average cell number of 15 to 60 cells / 25 mm. When the average number of cells is less than 15 cells / 25 mm, it becomes difficult for the first value to be 4.5 or more, and as a result, the sealing property of the finally obtained open-cell foam tends to deteriorate. On the other hand, when the average number of cells exceeds 60 cells / 25 mm, it becomes difficult to communicate bubbles in the subsequent compression step.

また、上記独立気泡発泡体は、発泡倍率が15〜50倍であることが好ましい。発泡倍率が15倍未満である場合、発泡体が硬くなりすぎて後の圧縮工程において気泡を連通させることが困難になる。一方、発泡倍率が50倍を超える場合、発泡体が柔軟化されすぎて後の圧縮工程において形状を保持することが困難になる。   The closed cell foam preferably has an expansion ratio of 15 to 50 times. When the expansion ratio is less than 15 times, the foam becomes too hard and it becomes difficult to allow bubbles to communicate in the subsequent compression step. On the other hand, when the expansion ratio exceeds 50 times, the foam is too soft and it becomes difficult to maintain the shape in the subsequent compression step.

上記独立気泡発泡体は、ポリオレフィン系樹脂、発泡剤、及び架橋剤を含有する発泡体原料を反応させることにより製造することができる。具体的には、発泡体原料を混合するとともに押出機等によりシート状に形成し、同シートを加熱することによって含有される発泡剤及び架橋剤を分解させて、架橋構造を形成するとともに発泡させることによって製造することができる。   The closed cell foam can be produced by reacting a foam material containing a polyolefin resin, a foaming agent, and a crosslinking agent. Specifically, the foam raw material is mixed and formed into a sheet by an extruder or the like, and the foaming agent and the crosslinking agent contained therein are decomposed by heating the sheet to form a crosslinked structure and foam. Can be manufactured.

発泡体原料に含有されるポリオレフィン系樹脂としては、例えば、ポリオレフィン樹脂、及びポリオレフィン共重合樹脂を用いることができる。ポリオレフィン樹脂としては、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、及びポリプロピレンが挙げられる。ポリオレフィン共重合樹脂は、オレフィン及びオレフィンと共重合可能な単量体の共重合体であり、例えば、エチレン−酢酸ビニル共重合樹脂、エチレン−プロピレン共重合樹脂、エチレン−ブテン共重合樹脂、エチレン−アクリル酸エステル(メチルエステル、エチルエステル、プロピルエステル、ブチルエステル等)共重合樹脂、又はそれらの塩素化物、或いはポリプロピレン(アイソタクチックポリプロピレン又はアタクチックポリプロピレン)との混合物が挙げられる。これらの具体例のうち、一種のみが単独で含有されてもよいし、二種以上が組み合わされて含有されてもよい。   As the polyolefin resin contained in the foam material, for example, a polyolefin resin and a polyolefin copolymer resin can be used. Examples of the polyolefin resin include low density polyethylene, high density polyethylene, linear low density polyethylene, and polypropylene. The polyolefin copolymer resin is a copolymer of an olefin and a monomer copolymerizable with the olefin. For example, an ethylene-vinyl acetate copolymer resin, an ethylene-propylene copolymer resin, an ethylene-butene copolymer resin, an ethylene- Examples thereof include acrylic acid ester (methyl ester, ethyl ester, propyl ester, butyl ester, etc.) copolymer resins, or chlorinated products thereof, or a mixture with polypropylene (isotactic polypropylene or atactic polypropylene). Among these specific examples, only 1 type may be contained independently and 2 or more types may be combined and contained.

発泡剤は分解により窒素ガス等のガスを発生し、ポリオレフィン系樹脂を発泡させるものである。発泡体原料に含有される発泡剤としては、例えば、アゾジカルボンアミド(ADCA)、アゾビスイソブチロニトリル(AIBN)、ジニトロソペンタンメチレンテトラミン(DPT)、p−トルエンスルホニルヒドラジド(TSH)を用いることができる。これらの具体例のうち、一種のみが単独で含有されてもよいし、二種以上が組み合わされて含有されてもよい。また、発泡体原料における発泡剤の含有量は、ポリオレフィン系樹脂100質量部に対して12〜26質量部であることが好ましい。   The foaming agent generates a gas such as nitrogen gas by decomposition and foams the polyolefin resin. Examples of the foaming agent contained in the foam material include azodicarbonamide (ADCA), azobisisobutyronitrile (AIBN), dinitrosopentanemethylenetetramine (DPT), and p-toluenesulfonyl hydrazide (TSH). be able to. Among these specific examples, only 1 type may be contained independently and 2 or more types may be combined and contained. Moreover, it is preferable that content of the foaming agent in a foam raw material is 12-26 mass parts with respect to 100 mass parts of polyolefin resin.

架橋剤は独立気泡発泡体に架橋構造を形成して所定の硬さや強度を付与する。発泡体原料に含有される架橋剤としては、加熱により分解され、遊離ラジカルを発生してポリオレフィン系樹脂に架橋結合を生じさせる有機過酸化物が用いられる。こうした有機過酸化物としては、例えば、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、4,4−ジ(t−ブチルパーオキシ)−n−ブチルバレエート、α,α´−ジ(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、1,3−ビス−t−ブチルパーオキシイソプロピルベンゼンが挙げられる。これらの具体例のうち、一種のみが単独で含有されてもよいし、二種以上が組み合わされて含有されてもよい。   The cross-linking agent forms a cross-linked structure in the closed cell foam to give a predetermined hardness and strength. As the cross-linking agent contained in the foam material, an organic peroxide that is decomposed by heating to generate free radicals to cause cross-linking in the polyolefin resin is used. Examples of such organic peroxides include dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, and 4,4-di (t-butylperoxy) -n-. Examples include butyl valerate, α, α′-di (t-butylperoxy-m-isopropyl) benzene, and 1,3-bis-t-butylperoxyisopropylbenzene. Among these specific examples, only 1 type may be contained independently and 2 or more types may be combined and contained.

発泡体原料における架橋剤の含有量は、ポリオレフィン系樹脂100質量部に対して0.5〜1.4質量部であることが好ましい。上記架橋剤の含有量が0.5質量部未満である場合、最終的に得られる連続気泡発泡体のシール性が低下するおそれがある。また、上記架橋剤の含有量が1.4質量部を超える場合、独立気泡発泡体の発泡時に裂けが生じる等、成形性に悪影響を与えるおそれがある。   The content of the crosslinking agent in the foam raw material is preferably 0.5 to 1.4 parts by mass with respect to 100 parts by mass of the polyolefin resin. When content of the said crosslinking agent is less than 0.5 mass part, there exists a possibility that the sealing performance of the open-cell foam finally obtained may fall. Moreover, when content of the said crosslinking agent exceeds 1.4 mass parts, there exists a possibility of having a bad influence on moldability, such as tearing at the time of foaming of a closed cell foam.

また、発泡体原料には上記各成分に加えて、例えば、発泡助剤、架橋促進剤、無機充填剤、整泡剤、難燃剤、安定剤、可塑剤、着色剤等の他の成分を適宜、配合することができる。上記他の成分のうち、発泡助剤及び架橋促進剤について説明する。   In addition to the above components, the foam raw material may contain other components such as a foaming aid, a crosslinking accelerator, an inorganic filler, a foam stabilizer, a flame retardant, a stabilizer, a plasticizer, and a colorant as appropriate. Can be blended. Among the other components, the foaming aid and the crosslinking accelerator will be described.

発泡助剤は上記発泡剤による発泡作用を調整する。発泡助剤としては、例えば、尿素等の尿素系助剤、金属酸化物、及び脂肪酸金属塩を用いることができる。金属酸化物としては、例えば、酸化亜鉛、塩化亜鉛、酢酸亜鉛、硝酸亜鉛、酸化鉛、二塩基性亜リン酸鉛、及び三塩基性硫酸鉛が挙げられる。脂肪酸金属塩としては、例えば、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸マグネシウム、及びステアリン酸カルシウムが挙げられる。これらの具体例のうち、一種のみが単独で含有されてもよいし、二種以上が組み合わされて含有されてもよい。また、発泡体原料における発泡助剤の含有量は、ポリオレフィン系樹脂100質量部に対して0.01〜0.08質量部であることが好ましい。   The foaming assistant adjusts the foaming action of the foaming agent. As the foaming aid, for example, urea aids such as urea, metal oxides, and fatty acid metal salts can be used. Examples of the metal oxide include zinc oxide, zinc chloride, zinc acetate, zinc nitrate, lead oxide, dibasic lead phosphite, and tribasic lead sulfate. Examples of the fatty acid metal salt include zinc stearate, lead stearate, magnesium stearate, and calcium stearate. Among these specific examples, only 1 type may be contained independently and 2 or more types may be combined and contained. Moreover, it is preferable that content of the foaming adjuvant in a foam raw material is 0.01-0.08 mass part with respect to 100 mass parts of polyolefin resin.

架橋促進剤は上記架橋剤による架橋作用を促進する。架橋促進剤としては、例えば、トリアリルトリメリテート、トリアリルメリテート、ジアリルメリテート、ジアリルフタレート、ジビニルベンゼン、トリメチロールプロパントリメタクリレート、1,9−ノナンジオールジメタクリレート、1,10−デカンジオールジメタクリレート、トリメリット酸トリアリルエステル、トリアリルイソシアヌレート、エチルビニルベンゼン、ネオペンチルグリコールジメタクリレート、1,2,4−ベンゼントリカルボン酸トリアリルエステル、及び1,6−ヘキサンジオールジメタクリレートを用いることができる。これらの具体例のうち、一種のみが単独で含有されてもよいし、二種以上が組み合わされて含有されてもよい。また、発泡体原料における架橋促進剤の含有量は、ポリオレフィン系樹脂100質量部に対して0.1〜1.0質量部であることが好ましい。上記架橋促進剤の含有量が1.0質量部を超える場合、独立気泡発泡体の発泡時に裂けが生じる等、成形性に悪影響を与えるおそれがある。   The crosslinking accelerator promotes the crosslinking action by the crosslinking agent. Examples of the crosslinking accelerator include triallyl trimellitate, triallyl melitte, diallyl melitlate, diallyl phthalate, divinylbenzene, trimethylolpropane trimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol. Use dimethacrylate, trimellitic acid triallyl ester, triallyl isocyanurate, ethyl vinyl benzene, neopentyl glycol dimethacrylate, 1,2,4-benzenetricarboxylic acid triallyl ester, and 1,6-hexanediol dimethacrylate Can do. Among these specific examples, only 1 type may be contained independently and 2 or more types may be combined and contained. Moreover, it is preferable that content of the crosslinking accelerator in a foam raw material is 0.1-1.0 mass part with respect to 100 mass parts of polyolefin resin. When the content of the crosslinking accelerator exceeds 1.0 part by mass, the moldability may be adversely affected, such as tearing during foaming of the closed cell foam.

[圧縮工程]
圧縮工程は、異方向へ回転する2本のロールの間に上記独立気泡発泡体を通過させる圧縮処理を複数回、繰り返して行うことにより、気泡膜を破裂させて独立気泡発泡体の気泡を連通化させる工程である。ここで、各圧縮処理時における圧縮条件(圧縮率、ロールの周速比)及び処理回数を、次の要件を満たすように設定する。まず、予定するロールの周速比と圧縮率との積を圧縮処理毎に算出し、それを総和した値を第2の値とする。そして、この第2の値を(圧縮工程に供する独立気泡発泡体の)第1の値で除した値を第3の値としたとき、この第3の値が100〜290の範囲、好ましくは105〜280の範囲となるように設定する。なお、圧縮工程においては複数回の圧縮処理を繰り返し行うが、各圧縮処理の圧縮条件は全て同じであってもよいし、圧縮処理毎に変更してもよい。
[Compression process]
In the compression step, by repeatedly performing the compression process of passing the closed cell foam between two rolls rotating in different directions a plurality of times, the cell membrane is ruptured and the bubbles of the closed cell foam are connected. It is a process of making it general. Here, the compression conditions (compression rate, roll peripheral speed ratio) and the number of processes in each compression process are set so as to satisfy the following requirements. First, the product of the planned peripheral speed ratio of the roll and the compression ratio is calculated for each compression process, and the sum total of these is defined as the second value. And when the value which remove | divided this 2nd value by the 1st value (of the closed-cell foam used for a compression process) is made into the 3rd value, this 3rd value is the range of 100-290, Preferably It sets so that it may become the range of 105-280. In the compression process, the compression process is repeated a plurality of times, but the compression conditions for each compression process may all be the same or may be changed for each compression process.

ここで、上記圧縮率は、圧縮工程における独立気泡発泡体の圧縮度合を表す数値であって、下記一般式(1)により算出することができる。
「圧縮率(%)」=(「独立気泡発泡体の厚み」−「ロール間距離」)/「独立気泡発泡体の厚み」×100・・・(1)
また、上記周速比は、圧縮工程における2本のロールの回転速度の比を表す数値であって、下記一般式(2)により算出することができる。
Here, the said compression rate is a numerical value showing the compression degree of the closed cell foam in a compression process, Comprising: It can calculate by following General formula (1).
“Compression rate (%)” = (“Thickness of closed cell foam” − “Distance between rolls”) / “Thickness of closed cell foam” × 100 (1)
Moreover, the said peripheral speed ratio is a numerical value showing ratio of the rotational speed of two rolls in a compression process, Comprising: It can calculate by following General formula (2).

「周速比」=「回転の速いロールの回転速度」/「回転の遅いロールの回転速度」・・・(2)
上記第3の値が100未満である場合、高いシール性が得られなくなる、又は気泡を十分に連通させることができなくなるおそれがある。一方、上記第3の値が290を超える場合、低圧縮歪性に優れた連続気泡発泡体を得ることができなくなる。なお、上記圧縮率は独立気泡発泡体の気泡の連通効率を高めるという観点から、90%以上であることが好ましい。また、2本のロールの回転速度が同じ、つまり周速比が「1」であってもよいが、独立気泡発泡体の気泡の連通効率を高めるという観点から、2本のロールの回転速度を異ならせる、つまり周速比が「1」を超える値となるようにロールの回転速度を設定することが好ましい。
“Peripheral speed ratio” = “Rotation speed of a fast rotating roll” / “Rotation speed of a slow rotating roll” (2)
When the third value is less than 100, high sealing performance may not be obtained, or bubbles may not be sufficiently communicated. On the other hand, when the third value exceeds 290, it becomes impossible to obtain an open-cell foam excellent in low compression strain. In addition, it is preferable that the said compression rate is 90% or more from a viewpoint of improving the communication efficiency of the bubble of a closed-cell foam. Further, the rotational speeds of the two rolls may be the same, that is, the peripheral speed ratio may be “1”. However, from the viewpoint of improving the bubble communication efficiency of the closed cell foam, the rotational speeds of the two rolls are It is preferable to set the rotation speed of the rolls so as to be different, that is, the peripheral speed ratio exceeds “1”.

一例として、第1の値が「7.5」である独立気泡発泡体に対して、条件1(圧縮率95%、周速比1.35)の圧縮処理を6回、条件2(圧縮率95%、周速比1.3)の圧縮処理を3回行った場合における第2の値及び第3の値の算出例を以下に記載する。なお、同例は後述する実施例の試験例2に関するものである。   As an example, for the closed-cell foam whose first value is “7.5”, the compression treatment under condition 1 (compression rate 95%, peripheral speed ratio 1.35) is performed six times, and condition 2 (compression rate) A calculation example of the second value and the third value when the compression process of 95% and the peripheral speed ratio 1.3) is performed three times will be described below. This example relates to Test Example 2 of an example described later.

「第2の値」=(95×1.35)×6+(95×1.3)×3=1140
「第3の値」=1140÷7.5=152
次に本実施形態における作用効果について、以下に記載する。
“Second value” = (95 × 1.35) × 6 + (95 × 1.3) × 3 = 1140
“Third value” = 1140 ÷ 7.5 = 152
Next, operational effects in the present embodiment will be described below.

(1)本実施形態の連続気泡発泡体の製造方法では、独立気泡発泡体に対し、異方向へ回転する2本のロール間隙を通過させて圧縮する圧縮処理を複数回繰り返し行う圧縮工程を有する。そして、独立気泡発泡体として、ポリオレフィン系樹脂、発泡剤、及び架橋剤を含有する発泡体原料を反応させてなり、引張強さと平均セル数との積として得られる第1の値が4.5以上である独立気泡発泡体を用いる。また、圧縮工程では、ロールの周速比と圧縮率との積を圧縮処理毎に算出し、それを総和した値を第2の値としたとき、第2の値を第1の値で除した値として得られる第3の値が100〜290の範囲となるように周速比、圧縮率及び処理回数を設定する。   (1) The method for producing an open-cell foam according to the present embodiment includes a compression step of repeatedly performing a compression process for compressing the closed-cell foam by passing through two gaps that rotate in different directions. . Then, as a closed cell foam, a foam raw material containing a polyolefin resin, a foaming agent, and a crosslinking agent is reacted, and the first value obtained as the product of tensile strength and average cell number is 4.5. The above closed cell foam is used. Also, in the compression process, when the product of the peripheral speed ratio of the roll and the compression ratio is calculated for each compression process, and the sum of these is the second value, the second value is divided by the first value. The peripheral speed ratio, the compression rate, and the number of processes are set so that the third value obtained as the obtained value is in the range of 100 to 290.

上記構成によれば、得られる連続気泡発泡体は、低圧縮歪性で、かつシール性に優れた発泡体となる。したがって、水シールやエアシール等のシール材、及び緩衝材等に適した連続気泡樹脂発泡体を製造することができる。   According to the above configuration, the obtained open-cell foam is a foam having low compressive strain and excellent sealing properties. Therefore, an open cell resin foam suitable for a sealing material such as a water seal or an air seal, and a buffer material can be manufactured.

また、上記構成によれば、圧縮工程前の独立気泡発泡体について、引張強さ及び平均セル数の2つの物性値さえ把握すればよく、他の物性値を把握する必要がない。そのため、圧縮工程前の独立気泡発泡体について、発泡倍率、平均気泡径及びゲル分率の3つの物性値を把握する必要のある特許文献1に記載された発明と比較して、効率よく連続気泡発泡体を製造することができる。   Moreover, according to the said structure, about the closed-cell foam before a compression process, it is only necessary to grasp | ascertain two physical-property values of tensile strength and an average cell number, and it is not necessary to grasp | ascertain another physical-property value. Therefore, for the closed cell foam before the compression step, compared to the invention described in Patent Document 1 where it is necessary to grasp the three physical property values of the expansion ratio, the average cell diameter and the gel fraction, the open cell is more efficient. A foam can be produced.

(2)好ましくは、発泡体原料における架橋剤の含有量は、ポリオレフィン系樹脂100質量部に対して0.5〜1.4質量部である。この場合、独立気泡発泡体の成形性、及び最終的に得られる連続気泡発泡体のシール性を好適に確保することができる。   (2) Preferably, content of the crosslinking agent in a foam raw material is 0.5-1.4 mass parts with respect to 100 mass parts of polyolefin resin. In this case, the moldability of the closed cell foam and the sealing property of the finally obtained open cell foam can be suitably ensured.

次に、上記実施形態から把握できる技術的思想について記載する。
(イ)前記発泡体原料における前記架橋剤の含有量は、前記ポリオレフィン系樹脂100質量部に対して0.5〜1.4質量部であることを特徴とする連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法。
Next, a technical idea that can be grasped from the above embodiment will be described.
(B) The open cell crosslinked polyolefin resin foam, wherein the content of the crosslinking agent in the foam raw material is 0.5 to 1.4 parts by mass with respect to 100 parts by mass of the polyolefin resin. Manufacturing method.

(ロ)前記発泡体原料は架橋促進剤を含有し、前記発泡体原料における前記架橋促進剤の含有量は、0.1〜1.0質量部であることを特徴とする連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法。   (B) The foam raw material contains a crosslinking accelerator, and the content of the crosslinking accelerator in the foam raw material is 0.1 to 1.0 part by mass. Manufacturing method of resin foam.

(ハ)圧縮永久歪が8%以下であり、エア漏れ量が1.0L/min以下である連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法。
(ニ)シール材として用いられる連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法。
(C) A method for producing an open-cell crosslinked polyolefin resin foam having a compression set of 8% or less and an air leakage amount of 1.0 L / min or less.
(D) A method for producing an open-cell crosslinked polyolefin resin foam used as a sealing material.

次に、各試験例を挙げて上記実施形態を更に具体的に説明する。
まず、各試験例に使用した、独立気泡架橋ポリオレフィン系樹脂発泡体(以下、独立気泡発泡体と記載する。)に用いた発泡体原料の成分を以下に示す。
Next, the above embodiment will be described more specifically with reference to each test example.
First, the components of the foam raw material used for the closed cell crosslinked polyolefin resin foam (hereinafter referred to as closed cell foam) used in each test example are shown below.

ポリオレフィン系樹脂1:エチレン酢酸ビニル共重合体(東ソー社製、630)
ポリオレフィン系樹脂2:低密度ポリエチレン(旭化成社製、F2225.4)
発泡剤:アゾジカルボンアミド(永和化成社製、AC#1L)
発泡助剤:尿素系助剤(永和化成社製、セルペースト101)
架橋剤:ジクミルパーオキサイド(化薬アクゾ社製、BC−FF)
架橋促進剤:トリメチロールプロパントリメタクリレート(日本ユピカ社製、TMPT)
上記各成分を下記表1〜5に示す配合割合で調整した各発泡体原料を押出機にて混練するとともにシート状に押出してシートを形成した。そして、このシートをオーブン中に運搬しながら、120〜250℃にて5〜20分間加熱して発泡させることにより独立気泡型発泡体を得た。なお、表1〜5中の各成分の数値は質量部を表す。
Polyolefin resin 1: Ethylene vinyl acetate copolymer (manufactured by Tosoh Corporation, 630)
Polyolefin resin 2: Low density polyethylene (Asahi Kasei Corporation, F2225.4)
Foaming agent: Azodicarbonamide (manufactured by Eiwa Kasei Co., Ltd., AC # 1L)
Foaming aid: urea-based aid (manufactured by Eiwa Kasei Co., Ltd., cell paste 101)
Crosslinking agent: Dicumyl peroxide (manufactured by Kayaku Akzo, BC-FF)
Cross-linking accelerator: trimethylolpropane trimethacrylate (manufactured by Nippon Yupica, TMPT)
Each foam raw material prepared by adjusting the above components at the blending ratios shown in Tables 1 to 5 below was kneaded with an extruder and extruded into a sheet to form a sheet. And while conveying this sheet | seat in oven, the closed cell type foam was obtained by making it foam by heating for 5 to 20 minutes at 120-250 degreeC. In addition, the numerical value of each component in Tables 1-5 represents a mass part.

得られた独立気泡型発泡体について、下記に示す方法により引張強さ及び平均セル数を測定するとともに、その測定結果に基づいて引張強さと平均セル数との積として得られる第1の値を算出した。その結果を表1〜5に示す。   For the obtained closed cell foam, the tensile strength and the average number of cells are measured by the method shown below, and the first value obtained as the product of the tensile strength and the average number of cells is calculated based on the measurement result. Calculated. The results are shown in Tables 1-5.

引張強さの測定:JIS K6767(1999附属書1の2)に準拠して引張強さの測定を行った。
平均セル数の測定:JIS K6767(1999附属書A)に準拠して平均セル数の測定を行った。
Measurement of tensile strength: Tensile strength was measured in accordance with JIS K6767 (1999 Annex 1-2).
Measurement of average cell number: The average cell number was measured in accordance with JIS K6767 (1999 Annex A).

次に、得られた独立気泡型発泡体のシートを厚さ10mmにスライスするとともに、スライスしたシートに対して、異方向へ回転する2本のロール間隙を通過させて圧縮する圧縮処理を複数回、繰り返し行った(圧縮工程)。圧縮処理の圧縮条件(圧縮率、周速比)、及び処理回数は表1〜5に示すとおりである。なお、2本のロールの径はともに200mmであり、ロールの回転速度(フォーム送り速度)は4〜6m/minの範囲で設定した。   Next, the obtained closed-cell foam sheet is sliced to a thickness of 10 mm, and the sliced sheet is compressed a plurality of times by passing through two roll gaps rotating in different directions. , Repeated (compression process). Tables 1 to 5 show the compression conditions (compression rate, peripheral speed ratio) of the compression process and the number of processes. The diameters of the two rolls were both 200 mm, and the roll rotation speed (foam feed speed) was set in the range of 4 to 6 m / min.

また、途中、圧縮条件を変更したものについては、表中において条件1及び条件2として2段で表している。例えば、試験例2では、条件1(圧縮率95%、周速比1.35)における圧縮処理を6回行った後に、条件2(圧縮率95%、周速比1.3)における圧縮処理を3回行っている。ここで、ロールの圧縮率と周速比との積を圧縮処理毎に算出し、それを総和した値として得られる第2の値を算出した。また、第2の値を第1の値で除した値として得られる第3の値を算出した。その結果を表1〜5に示す。   In the middle of the table, the compression conditions are changed and are shown in two stages as condition 1 and condition 2 in the table. For example, in Test Example 2, after performing the compression process under the condition 1 (compression rate 95%, circumferential speed ratio 1.35) six times, the compression process under the condition 2 (compression ratio 95%, circumferential speed ratio 1.3) Has been performed three times. Here, the product of the compression ratio of the roll and the peripheral speed ratio was calculated for each compression process, and a second value obtained as a total value was calculated. In addition, a third value obtained by dividing the second value by the first value was calculated. The results are shown in Tables 1-5.

次に、上記圧縮工程を経て製造された連続気泡架橋ポリオレフィン系樹脂発泡体(以下、連続気泡型発泡体と記載する。)について、下記に示す方法により、低圧縮歪性及びシール性の評価を行った。その結果を表1〜5に示す。   Next, for the open-cell crosslinked polyolefin resin foam produced through the compression step (hereinafter referred to as open-cell foam), low compression strain and sealability are evaluated by the following method. went. The results are shown in Tables 1-5.

低圧縮歪性の評価:JIS K6767(1999附属書1の4)に準拠して圧縮永久歪の測定を行った。なお、圧縮永久歪が8%以下であるか否かをもって、低圧縮歪性の良否を判断した。   Evaluation of low compression strain: Compression set was measured according to JIS K6767 (1999, Annex 1-4). In addition, the quality of the low compression distortion was judged depending on whether the compression set was 8% or less.

シール性の評価:得られた連続気泡型発泡体から外径80mm、内径60mm、厚さ8mmの円環板状の供試体を作成した。この供試体の一方側の側面に、供試体よりも外径の大きい円板状の第1ホルダを重ねるとともに、同他方側の側面に、第1ホルダと同じ外径かつ内径が60mmの貫通孔を中央に有する円環板状の第2ホルダを重ね、第1及び第2ホルダ間に供試体を挟持させた。そして、第1及び第2ホルダにて厚みが60%となるように供試体を圧縮させた状態で固定した。なお、第2部材及び供試体はそれぞれの貫通孔の位置が重なるように位置合わせされている。次に、第2ホルダの貫通孔に送風ファンを接続し、内部の空気圧力が390Paとなるように、第2ホルダの貫通孔を介して送風ファンにて加圧した。そして、供試体部分を通じて外部に漏れる空気量(エア漏れ量)を流量計にて測定した。なお、1分間あたりのエア漏れ量が1.0L以下であるか否かをもって、シール性の良否を判断した。   Evaluation of sealing property: An annular plate-shaped specimen having an outer diameter of 80 mm, an inner diameter of 60 mm, and a thickness of 8 mm was prepared from the obtained open cell foam. A disc-shaped first holder having an outer diameter larger than that of the specimen is stacked on one side surface of the specimen, and a through-hole having the same outer diameter as the first holder and an inner diameter of 60 mm is disposed on the other side face. An annular plate-like second holder having a central portion is stacked, and the specimen is sandwiched between the first and second holders. And it fixed in the state which compressed the specimen so that thickness might be set to 60% with the 1st and 2nd holder. In addition, the 2nd member and the test body are aligned so that the position of each through-hole may overlap. Next, a blower fan was connected to the through hole of the second holder, and pressure was applied by the blower fan through the through hole of the second holder so that the internal air pressure was 390 Pa. Then, the amount of air leaking outside through the specimen portion (air leakage amount) was measured with a flow meter. In addition, the quality of the sealing performance was judged by whether or not the amount of air leakage per minute was 1.0 L or less.

Figure 0005596509
表1に示す試験例1〜4では発泡体原料におけるポリオレフィン系樹脂の配合割合を変更している。第3の値が100〜290の範囲内である試験例1〜3は、圧縮永久歪が低く抑えられている。また、エア漏れ量が1.0(L/min)以下であり、シール性についても優れている。一方、第3の値が290を超えている試験例4では、圧縮永久歪が顕著に大きくなっている。
Figure 0005596509
In Test Examples 1 to 4 shown in Table 1, the blending ratio of the polyolefin resin in the foam material is changed. In Test Examples 1 to 3 in which the third value is in the range of 100 to 290, the compression set is kept low. Moreover, the air leakage amount is 1.0 (L / min) or less, and the sealing performance is also excellent. On the other hand, in Test Example 4 in which the third value exceeds 290, the compression set is significantly increased.

Figure 0005596509
表2に示す試験例2、5〜9では発泡体原料における架橋剤量を変更している。第3の値が100〜290の範囲内である試験例2、6〜8は、圧縮永久歪が低く抑えられ、かつシール性に優れている。また、発泡体原料中に含有される架橋剤量が、ポリオレフィン系樹脂100質量部に対して0.5質量部未満であり、第1の値が4.5未満であった試験例5は、エア漏れ量が1.2(L/min)であり、シール性に問題がある。上記架橋剤量が、ポリオレフィン系樹脂100質量部に対して1.5質量部であった試験例9は、発泡時に部分的に裂けが生じてしまい、正常に成形することができなかった。そのため、試験例9については圧縮工程を行わなかった。
Figure 0005596509
In Test Examples 2 and 5 to 9 shown in Table 2, the amount of the crosslinking agent in the foam material is changed. In Test Examples 2 and 6 to 8 in which the third value is in the range of 100 to 290, the compression set is suppressed to a low level and the sealing property is excellent. In addition, Test Example 5 in which the amount of the crosslinking agent contained in the foam raw material was less than 0.5 parts by mass with respect to 100 parts by mass of the polyolefin resin, and the first value was less than 4.5, The amount of air leakage is 1.2 (L / min), and there is a problem with sealing performance. In Test Example 9 in which the amount of the crosslinking agent was 1.5 parts by mass with respect to 100 parts by mass of the polyolefin-based resin, tearing occurred partially at the time of foaming and could not be molded normally. Therefore, the compression process was not performed for Test Example 9.

Figure 0005596509
表3に示す試験例2、10〜14では発泡体原料における発泡剤量を変更している。第3の値が100〜290の範囲内である試験例2、11、13、14は、圧縮永久歪が低く抑えられ、かつシール性に優れている。一方、第3の値が290を超えている試験例10、12では、圧縮永久歪が顕著に大きくなっている。
Figure 0005596509
In Test Examples 2 and 10 to 14 shown in Table 3, the amount of the foaming agent in the foam material is changed. In Test Examples 2, 11, 13, and 14 in which the third value is in the range of 100 to 290, the compression set is suppressed to a low level and the sealing property is excellent. On the other hand, in Test Examples 10 and 12 in which the third value exceeds 290, the compression set is significantly increased.

Figure 0005596509
表4に示す試験例2、15〜18では発泡体原料における架橋促進剤量を変更している。第3の値が100〜290の範囲内である試験例2、15〜17は、圧縮永久歪が低く抑えられ、かつシール性に優れている。また、発泡体原料中に含有される架橋促進剤量が、ポリオレフィン系樹脂100質量部に対して1.1質量部であった試験例18は、発泡時に部分的に裂けが生じてしまい、正常に成形することができなかった。そのため、試験例18については圧縮工程を行わなかった。
Figure 0005596509
In Test Examples 2 and 15 to 18 shown in Table 4, the amount of crosslinking accelerator in the foam material is changed. In Test Examples 2 and 15 to 17 in which the third value is in the range of 100 to 290, the compression set is suppressed to a low level and the sealing property is excellent. Further, in Test Example 18 in which the amount of the crosslinking accelerator contained in the foam raw material was 1.1 parts by mass with respect to 100 parts by mass of the polyolefin-based resin, tearing occurred partially during foaming, and normal Could not be molded. Therefore, the compression process was not performed for Test Example 18.

Figure 0005596509
表5に示す試験例2、19〜23では発泡体原料における発泡助剤量を変更している。第3の値が100〜290の範囲内である試験例2、19〜22は、圧縮永久歪が低く抑えられ、かつシール性に優れている。また、発泡体原料中に含有される発泡助剤量がポリオレフィン系樹脂100質量部に対して0.1質量部であった試験例23は、発泡時にガスが抜けてしまい、正常に成形することができなかった。
Figure 0005596509
In Test Examples 2 and 19 to 23 shown in Table 5, the amount of foaming aid in the foam material is changed. In Test Examples 2 and 19 to 22 in which the third value is in the range of 100 to 290, the compression set is suppressed to a low level and the sealing property is excellent. Further, in Test Example 23 in which the amount of the foaming assistant contained in the foam raw material was 0.1 part by mass with respect to 100 parts by mass of the polyolefin resin, the gas escaped during foaming, and the molding was normally performed. I could not.

Claims (3)

独立気泡架橋ポリオレフィン系樹脂発泡体に対し、異方向へ回転する2本のロール間隙を通過させて圧縮する圧縮処理を行うことにより気泡を連通させて連続気泡架橋ポリオレフィン系樹脂発泡体を製造する方法であって、
ポリオレフィン系樹脂、発泡剤、及び架橋剤を含有する発泡体原料を反応及び発泡させてなり、JIS K6767に規定される引張強さと、JIS K6767に規定される25mmあたりの平均セル数との積として得られる第1の値が4.5以上である独立気泡架橋ポリオレフィン系樹脂発泡体を用い、
前記圧縮処理を複数回繰り返し行う圧縮工程を有し、
該圧縮工程において、前記ロールの周速比と圧縮率との積を圧縮処理毎に算出し、それを総和した値を第2の値としたとき、前記第2の値を前記第1の値で除した値として得られる第3の値が100〜290の範囲であることを特徴とする連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法。
A method for producing an open cell cross-linked polyolefin resin foam by allowing a closed cell cross-linked polyolefin resin foam to pass through two rolls rotating in different directions and compressing the air bubbles to communicate with each other Because
As a product of the tensile strength specified in JIS K6767 and the average number of cells per 25 mm specified in JIS K6767. Using a closed cell crosslinked polyolefin resin foam having a first value of 4.5 or more obtained,
A compression step of repeating the compression process a plurality of times,
In the compression step, when the product of the peripheral speed ratio of the roll and the compression ratio is calculated for each compression process, and the sum of the calculated values is the second value, the second value is the first value. A method for producing an open-cell crosslinked polyolefin resin foam, wherein the third value obtained as a value divided by 100 is in the range of 100 to 290.
前記第3の値が105〜280の範囲であることを特徴とする請求項1に記載の連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法。 The method for producing an open-cell crosslinked polyolefin resin foam according to claim 1, wherein the third value is in the range of 105 to 280. 前記第1の値が4.5〜21.0の範囲であり、前記第2の値が620〜4800の範囲であることを特徴とする請求項1又は請求項2に記載の連続気泡架橋ポリオレフィン系樹脂発泡体の製造方法。 The open-cell cross-linked polyolefin according to claim 1 or 2, wherein the first value is in the range of 4.5 to 21.0, and the second value is in the range of 620 to 4800. Of producing a resin-based resin foam.
JP2010258891A 2010-11-19 2010-11-19 Method for producing open cell cross-linked polyolefin resin foam Active JP5596509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010258891A JP5596509B2 (en) 2010-11-19 2010-11-19 Method for producing open cell cross-linked polyolefin resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010258891A JP5596509B2 (en) 2010-11-19 2010-11-19 Method for producing open cell cross-linked polyolefin resin foam

Publications (2)

Publication Number Publication Date
JP2012107161A JP2012107161A (en) 2012-06-07
JP5596509B2 true JP5596509B2 (en) 2014-09-24

Family

ID=46493122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258891A Active JP5596509B2 (en) 2010-11-19 2010-11-19 Method for producing open cell cross-linked polyolefin resin foam

Country Status (1)

Country Link
JP (1) JP5596509B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103665421B (en) * 2012-08-31 2016-04-27 积水化成品工业株式会社 Polyolefin-based resins thin layer foam sheet and manufacture method thereof and purposes
CN110746634B (en) * 2019-11-29 2022-04-19 常州市顺祥新材料科技股份有限公司 Preparation method of open-closed cell foam material with water permeable and sound absorption functions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49996B1 (en) * 1970-04-20 1974-01-10
JP4237883B2 (en) * 1999-07-28 2009-03-11 積水化学工業株式会社 Method for producing cross-linked olefin resin open cell foam
JP2004063481A (en) * 2002-07-24 2004-02-26 Sekisui Chem Co Ltd Conductive foamed material
WO2006043570A1 (en) * 2004-10-18 2006-04-27 Sekisui Chemical Co., Ltd. Method for producing polyolefin based resin crosslinked foamed sheet and polyolefin based resin crosslinked foamed sheet

Also Published As

Publication number Publication date
JP2012107161A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP4696074B2 (en) Method for producing polyolefin resin cross-linked foam sheet and polyolefin resin cross-linked foam sheet
CN107353469B (en) Open-cell chemical crosslinking polyolefin foam material and preparation method thereof
JP2019081903A (en) Polyolefin resin foam sheet and adhesive tape
CN101808807B (en) Stretched thermoplastic resin foam sheet and process for production of the same
JPH0465441A (en) Foaming cross-linked polyolefin resin composition
JP5596509B2 (en) Method for producing open cell cross-linked polyolefin resin foam
JP2004323842A (en) Crosslinked polyolefin resin foamed sheet and pressure-sensitive adhesive tape
JP5294129B2 (en) Metallocene-ethylenepropylene diene copolymer rubber-based open cell body and method for producing the same
EP3845584A1 (en) High-elasticity extruded foam composition
KR102139975B1 (en) Thermoplastic Elastomer Composition For Reducing Floor Impact Sound And Foamed Articles Therefrom
JP2009074014A (en) Rubber foam and its production method
KR101588233B1 (en) Rubber foam insulation with high insulation effect
JP6483534B2 (en) Foam composition and foam
JP2023184718A (en) Resin molding
JP4585345B2 (en) Styrene butadiene based soft resin cross-linked foam
JP2009214372A (en) Polypropylene resin laminated foam sheet and its molding
KR20100072965A (en) Composite of sponge foam for midsole having excellent adhesionproperties and menufacturing method thereof and method for bonding sponge foam with plasma treatment
KR20190022271A (en) Foam for interior metirial of device
JPH11302430A (en) Preparation of open-cell, crosslinked foam
JP2011189674A (en) Laminated sheet
Sipaut et al. The effect of different peroxide on LDPE foam properties in the presence of polyfunctional monomers
JP2002317067A (en) Vibration-dumping crosslinked resin foam and method for producing the same
JP7377047B2 (en) Polyolefin resin foam sheet and manufacturing method thereof
JP6318570B2 (en) Polyolefin resin foam film and laminated film
JPH11348064A (en) Manufacture of crosslinked open cell foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent or registration of utility model

Ref document number: 5596509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250