JPH11302430A - Preparation of open-cell, crosslinked foam - Google Patents

Preparation of open-cell, crosslinked foam

Info

Publication number
JPH11302430A
JPH11302430A JP10639098A JP10639098A JPH11302430A JP H11302430 A JPH11302430 A JP H11302430A JP 10639098 A JP10639098 A JP 10639098A JP 10639098 A JP10639098 A JP 10639098A JP H11302430 A JPH11302430 A JP H11302430A
Authority
JP
Japan
Prior art keywords
ethylene
crosslinked
open
crosslinking
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10639098A
Other languages
Japanese (ja)
Inventor
Kenji Iuchi
謙治 居内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP10639098A priority Critical patent/JPH11302430A/en
Publication of JPH11302430A publication Critical patent/JPH11302430A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a preparation process wherein an open-cell, crosslinked foam which comprises an olefin resin, exerts a high compression recovery, sealing property and airlightness and has a high open-cell ratio, uniform cells and a high expansion ratio, is easily obtained. SOLUTION: An open-cell and crosslinked foam is prepared by heat molding 100 pts.wt. ethylene resin with a density of from 0.840 to 0.900 g/cm<3> or an ethylene resin polymerized by using a metallocene catalyst containing a tetravalent transition metal, from 1 to 30 pts.wt. heat-decomposable blowing agent and from 0.3 to 3 pts.wt. crosslinking agent in a non-crosslinked state, then heating them under an atmospheric pressure, crosslinking and foaming them so that the maximum value of (degree of crosslinking/decomposition degree of heat-decomposable blowing agent) is 20 or smaller to obtain a crosslinked foam and communicating the cells of this crosslinked foam through mechanical deformation. Here, the dynamic viscoelasticity obtained after heat molding the above ethylene resin at a non-crosslinked state is from 2.0×10<3> to 5.0×10<3> Pa.S at 135 deg.C, 10 Hz.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は連続気泡性架橋発泡
体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an open-cell crosslinked foam.

【0002】[0002]

【従来の技術】従来、オレフィン系樹脂からなる架橋発
泡体を製造する方法としては、熱分解型発泡剤を含有す
るオレフィン系樹脂発泡性シートに架橋を施した後、熱
分解型発泡剤の分解温度以上に加熱して発泡する方法、
或いは、発泡性オレフィン系樹脂組成物を加圧下密閉金
型中で加熱して架橋を施した後、除圧して発泡する方法
が一般的である。
2. Description of the Related Art Conventionally, as a method of producing a crosslinked foam made of an olefin resin, a method of cross-linking an olefin resin foamable sheet containing a pyrolytic foaming agent and then decomposing the pyrolytic foaming agent is used. A method of foaming by heating above the temperature,
Alternatively, a method is generally used in which the expandable olefin-based resin composition is heated in a closed mold under pressure to perform crosslinking, and then depressurized to foam.

【0003】上記のような方法により製造した架橋発泡
体は、一般に気泡構造が非常に微細な独立気泡であり、
また、気泡膜が強靭なので機械的変形を加えても気泡が
ほとんど破壊せず、連続気泡性の架橋発泡体を得ること
は困難であった。そのため、従来市販されている連続気
泡性の架橋発泡体はほとんどがウレタン系樹脂からなる
ものであるが、オレフィン系樹脂はウレタン系樹脂と比
較して耐候性、耐薬品性、耐水性等に非常に優れている
ので、オレフィン系樹脂からなる連続気泡性の架橋発泡
体の製造法方が種々検討されている。
[0003] The crosslinked foam produced by the above method is generally a closed cell having a very fine cell structure.
In addition, since the cell membrane is tough, the cells hardly break even when subjected to mechanical deformation, and it has been difficult to obtain an open-cell crosslinked foam. Therefore, most of the open-celled crosslinked foams conventionally available on the market are made of urethane-based resins, but olefin-based resins have much higher weather resistance, chemical resistance and water resistance than urethane-based resins. Therefore, various methods for producing an open-celled crosslinked foam made of an olefin resin have been studied.

【0004】従来知られている連続気泡性オレフィン系
樹脂架橋発泡体を得る方法としては、例えば、澱粉等の
水溶性粉末をオレフィン系樹脂に添加して混練した後、
水溶性粉末を溶出除去する方法や、オレフィン系樹脂粉
末を焼結する方法等が挙げられるが、これらの方法で得
られる連続気泡性架橋発泡体の発泡倍率は約2〜3倍程
度であり、高発泡倍率のものが得られないといった問題
があった。
[0004] As a conventionally known method for obtaining an open-celled olefin-based resin crosslinked foam, for example, a water-soluble powder such as starch is added to an olefin-based resin and kneaded.
Examples include a method of eluting and removing a water-soluble powder, a method of sintering an olefin-based resin powder, and the like. The expansion ratio of an open-cell crosslinked foam obtained by these methods is about 2 to 3 times, There is a problem that a product having a high expansion ratio cannot be obtained.

【0005】また、特開昭57−191027号公報に
は、発泡性オレフィン系樹脂組成物を常圧下で加熱して
架橋及び発泡を同時進行的に行った後、機械的変形を加
えることにより気泡を連通する方法が示されている。該
方法によれば、圧縮回復性及びシール性に優れた連続気
泡性オレフィン系樹脂架橋発泡体が得られるが、発泡倍
率を高くすると架橋及び発泡を同時進行的に行うのが困
難になり易く、また、気泡が不均一になり易いといった
問題があった。
Japanese Patent Application Laid-Open No. 57-191027 discloses that a foamable olefin resin composition is heated under normal pressure to simultaneously perform crosslinking and foaming, followed by mechanical deformation to form bubbles. Are shown. According to this method, an open-celled olefin-based resin crosslinked foam having excellent compression recovery properties and sealing properties can be obtained.However, when the expansion ratio is increased, it becomes easy to simultaneously perform crosslinking and foaming, In addition, there is a problem that bubbles are likely to be non-uniform.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、オレ
フィン系樹脂からなり、圧縮回復性、シール性及び気密
性に優れ、かつ、連続気泡率が高く、気泡が均一で、高
発泡倍率の連続気泡性架橋発泡体が容易に得られる製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an olefin resin which has excellent compression recovery properties, sealability and airtightness, a high open cell ratio, uniform cells and a high expansion ratio. An object of the present invention is to provide a production method by which an open-celled crosslinked foam can be easily obtained.

【0007】[0007]

【課題を解決するための手段】本発明の連続気泡性架橋
発泡体の製造方法は、密度が0.840〜0.900g
/cm3 のエチレン系樹脂(以下、「エチレン系樹脂
(a)」と記す)又は四価の遷移金属を含有するメタロ
セン触媒を用いて重合したエチレン系樹脂(以下、「エ
チレン系樹脂(b)」と記す)100重量部、熱分解型
発泡剤1〜30重量部及び架橋剤0.3〜3重量部を無
架橋の状態で加熱成型した後、常圧下で加熱し、(架橋
度/熱分解型発泡剤の分解率)の最大値が20以下にな
るように架橋及び発泡して架橋発泡体とし、該架橋発泡
体の気泡を機械的変形を加えることにより連通すること
を特徴とし、かつ、前記エチレン系樹脂(a)又はエチ
レン系樹脂(b)の無架橋の状態で加熱成型した後の動
的粘弾性が、135℃、10Hzで2.0×103
5.0×103 Pa・sであることを特徴とする。
According to the present invention, there is provided a process for producing an open-cell crosslinked foam having a density of 0.840 to 0.900 g.
/ Cm 3 of an ethylene-based resin (hereinafter referred to as “ethylene-based resin (a)”) or an ethylene-based resin polymerized using a metallocene catalyst containing a tetravalent transition metal (hereinafter referred to as an “ethylene-based resin (b)”). 100 parts by weight, 1 to 30 parts by weight of a pyrolytic foaming agent and 0.3 to 3 parts by weight of a crosslinking agent are heat-molded in a non-crosslinked state, and then heated under normal pressure to obtain (crosslinking degree / heat). Cross-linking and foaming so that the maximum value of the decomposition type foaming agent) becomes 20 or less to form a cross-linked foam, and the cells of the cross-linked foam are communicated by applying mechanical deformation, and The dynamic viscoelasticity of the ethylene-based resin (a) or the ethylene-based resin (b) after heat-molding in a non-crosslinked state is 2.0 × 10 3 at 135 ° C. and 10 Hz.
It is characterized by 5.0 × 10 3 Pa · s.

【0008】本発明で使用されるエチレン系樹脂(a)
としては、例えば、直鎖状低密度ポリエチレン、低密度
ポリエチレン等が挙げられ、これらは単独で使用しても
2種以上併用してもよい。直鎖状低密度ポリエチレン
は、エチレンにエチレン以外のα−オレフィンが共重合
されたものであり、エチレン以外のα−オレフィンとし
ては、例えば、プロピレン、1−ブテン、1−ペンテ
ン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘ
プテン、1−オクテン等が挙げられ、中でも、後述する
密度範囲のエチレン系樹脂(a)が得られ易いので、1
−オクテンが好ましい。
The ethylene resin (a) used in the present invention
Examples thereof include linear low-density polyethylene and low-density polyethylene, and these may be used alone or in combination of two or more. Linear low-density polyethylene is obtained by copolymerizing ethylene with an α-olefin other than ethylene. Examples of the α-olefin other than ethylene include propylene, 1-butene, 1-pentene, and 4-methyl-. Examples thereof include 1-pentene, 1-hexene, 1-heptene, and 1-octene. Among them, ethylene resin (a) having a density range described below is easily obtained.
-Octene is preferred.

【0009】エチレン系樹脂(a)の密度は、小さくな
ると単量体からの重合自体が困難になり、大きくなると
得られる連続気泡性架橋発泡体の圧縮回復性、シール性
及び気密性が低下するので、0.840〜0.900g
/cm3 に限定され、好ましくは0.840〜0.89
0g/cm3 である。
When the density of the ethylene-based resin (a) decreases, it becomes difficult to polymerize itself from the monomer, and when the density increases, the compression recovery, sealing property, and airtightness of the obtained open-cell crosslinked foam decreases. So, 0.840-0.900g
/ Cm 3 , preferably 0.840 to 0.89
0 g / cm 3 .

【0010】エチレン系樹脂(a)を得る方法として
は、後述する四価の遷移金属を含有するメタロセン触媒
を用いて重合する方法が好ましい。
As a method for obtaining the ethylene-based resin (a), a method in which polymerization is carried out using a metallocene catalyst containing a tetravalent transition metal described later is preferable.

【0011】エチレン系樹脂(a)には、エチレン系樹
脂(a)以外のオレフィン系樹脂(以下、「オレフィン
系樹脂(a)」と記す)を配合してもよい。オレフィン
系樹脂(a)としては、従来発泡体に使用される任意の
ものが使用でき、例えば、直鎖状低密度ポリエチレン、
低密度ポリエチレン、中密度ポリエチレン、高密度ポリ
エチレン、エチレンを主成分とするエチレン−酢酸ビニ
ル共重合体、エチレンを主成分とするエチレン−エチル
アクリレート、ポリプロピレン、プロピレンを主成分と
するエチレン−プロピレン共重合体、ポリブテン、ブテ
ンを主成分とするエチレン−ブテン共重合体等が挙げら
れ、これらは単独で使用しても2種以上併用してもよ
い。尚、直鎖状低密度ポリエチレンは、エチレンにエチ
レン以外のα−オレフィンが共重合されたものであり、
エチレン以外のα−オレフィンとしては前述と同様のも
のが挙げられる。
An olefin resin other than the ethylene resin (a) (hereinafter referred to as "olefin resin (a)") may be blended with the ethylene resin (a). As the olefin-based resin (a), any of those conventionally used for foams can be used. For example, linear low-density polyethylene,
Low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer containing ethylene as a main component, ethylene-ethyl acrylate containing ethylene as a main component, polypropylene, ethylene-propylene copolymer containing propylene as a main component Examples thereof include coalesce, polybutene, and ethylene-butene copolymer containing butene as a main component, and these may be used alone or in combination of two or more. The linear low-density polyethylene is obtained by copolymerizing ethylene with an α-olefin other than ethylene,
Examples of the α-olefin other than ethylene include the same as those described above.

【0012】オレフィン系樹脂(a)の配合量は、多く
なると得られる連続気泡性架橋発泡体の圧縮回復性、シ
ール性及び気密性が低下するので、80重量%以下に限
定され、好ましくは50重量%以下である。尚、本発明
では、エチレン系樹脂(a)にオレフィン系樹脂(a)
を配合した結果、エチレン系樹脂(a)が主成分ではな
くなったものもエチレン系樹脂(a)として表わす。
The amount of the olefin-based resin (a) is limited to 80% by weight or less, and preferably 50% or less, because the larger the amount of the olefin-based resin (a), the lower the compression recovery property, sealing property and airtightness of the obtained open-cell crosslinked foam. % By weight or less. In the present invention, the ethylene resin (a) is replaced with the olefin resin (a).
Is also referred to as an ethylene-based resin (a) when the ethylene-based resin (a) is no longer the main component.

【0013】本発明で使用されるエチレン系樹脂(b)
は、四価の遷移金属を含有するメタロセン触媒を用いて
重合したものであり、例えば、直鎖状低密度ポリエチレ
ン、低密度ポリエチレン、エチレンを主成分とするエチ
レン−酢酸ビニル共重合体、エチレンを主成分とするエ
チレン−エチルアクリレート等が挙げられ、これらは単
独で使用しても2種以上併用してもよい。尚、直鎖状低
密度ポリエチレンは、エチレンにエチレン以外のα−オ
レフィンが共重合されたものであり、エチレン以外のα
−オレフィンとしては前述と同様のものが挙げられ、中
でも、後述する密度範囲のエチレン系樹脂(b)が得ら
れ易いので1−オクテンが好ましい。
The ethylene resin (b) used in the present invention
Is polymerized using a metallocene catalyst containing a tetravalent transition metal, for example, linear low-density polyethylene, low-density polyethylene, ethylene-vinyl acetate copolymer containing ethylene as a main component, ethylene Examples thereof include ethylene-ethyl acrylate as a main component, and these may be used alone or in combination of two or more. The linear low-density polyethylene is obtained by copolymerizing ethylene with an α-olefin other than ethylene.
Examples of the olefin include the same ones as described above. Among them, 1-octene is preferable because an ethylene-based resin (b) having a density range described later is easily obtained.

【0014】エチレン系樹脂(b)の密度は、小さくな
ると単量体からの重合自体が困難になり、大きくなると
得られる連続気泡性架橋発泡体の圧縮回復性、シール性
及び気密性が低下するので、0.840〜0.920g
/cm3 が好ましく、より好ましくは0.840〜0.
890g/cm3 である。
When the density of the ethylene-based resin (b) decreases, the polymerization itself from the monomer becomes difficult, and when the density increases, the compression recovery, sealing property, and airtightness of the obtained open-cell crosslinked foam decreases. So 0.840 ~ 0.920g
/ Cm 3 , more preferably 0.840-0.
It is 890 g / cm 3 .

【0015】エチレン系樹脂(b)にはエチレン系樹脂
(b)以外のオレフィン系樹脂(以下、「オレフィン系
樹脂(b)」と記す)を配合してもよい。オレフィン系
樹脂(b)としては、従来発泡体に使用される任意のも
のが使用でき、例えば、直鎖状低密度ポリエチレン、低
密度ポリエチレン、中密度ポリエチレン、高密度ポリエ
チレン、エチレンを主成分とするエチレン−酢酸ビニル
共重合体、エチレンを主成分とするエチレン−エチルア
クリレート、ポリプロピレン、プロピレンを主成分とす
るエチレン−プロピレン共重合体、ポリブテン、ブテン
を主成分とするエチレン−ブテン共重合体等が挙げら
れ、これらは単独で使用しても2種以上併用してもよ
い。尚、直鎖状低密度ポリエチレンは、エチレンにエチ
レン以外のα−オレフィンが共重合されたものであり、
エチレン以外のα−オレフィンとしては前述と同様のも
のが挙げられる。
An olefin resin other than the ethylene resin (b) (hereinafter referred to as "olefin resin (b)") may be blended with the ethylene resin (b). As the olefin-based resin (b), any resin conventionally used for foams can be used. For example, linear low-density polyethylene, low-density polyethylene, medium-density polyethylene, high-density polyethylene, and ethylene as the main component Ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate mainly composed of ethylene, polypropylene, ethylene-propylene copolymer mainly composed of propylene, polybutene, ethylene-butene copolymer mainly composed of butene, etc. These may be used alone or in combination of two or more. The linear low-density polyethylene is obtained by copolymerizing ethylene with an α-olefin other than ethylene,
Examples of the α-olefin other than ethylene include the same as those described above.

【0016】上記オレフィン系樹脂(b)の配合量は、
多くなると得られる連続気泡性架橋発泡体の圧縮回復
性、シール性及び気密性が低下するので、80重量%以
下に限定され、好ましくは50重量%以下、より好まし
くは35重量%以下である。尚、本発明では、エチレン
系樹脂(b)にオレフィン系樹脂(b)を配合した結
果、エチレン系樹脂(b)が主成分ではなくなったもの
もエチレン系樹脂(b)として表わす。
The amount of the olefin resin (b) is as follows:
When the content increases, the compression recovery property, sealing property and airtightness of the obtained open-celled crosslinked foam decrease, so the content is limited to 80% by weight or less, preferably 50% by weight or less, more preferably 35% by weight or less. In the present invention, an ethylene-based resin (b) in which the ethylene-based resin (b) is no longer a main component as a result of blending the olefin-based resin (b) with the ethylene-based resin (b) is also referred to as an ethylene-based resin (b).

【0017】以下に、上述した四価の遷移金属を含有す
るメタロセン触媒を用いて重合を行う方法を詳しく説明
する。一般にメタロセン化合物とは、遷移金属をπ電子
系の不飽和化合物で挟んだ構造の化合物であり、本発明
ではチタン、ジルコニウム、ハフニウム、ニッケル、パ
ラジウム、白金等の四価の遷移金属に少なくとも1つの
シクロペンタジエニル環又はその類縁体がリガンド(配
位子)として存在する化合物を使用する。
Hereinafter, a method of performing polymerization using the above-described metallocene catalyst containing a tetravalent transition metal will be described in detail. In general, a metallocene compound is a compound having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds. In the present invention, at least one of tetravalent transition metals such as titanium, zirconium, hafnium, nickel, palladium, and platinum is used. A compound in which a cyclopentadienyl ring or an analog thereof is present as a ligand (ligand) is used.

【0018】リガンドとしては、シクロペンタジエニル
環以外には、例えば、シクロペンタジエニルオリゴマー
環、インデニル環、炭化水素基や置換炭化水素基或いは
炭化水素一置換メタロイド基により置換されたシクロペ
ンタジエニル環又はインデニル環等が挙げられる。この
ようなリガンド以外にも、例えば、塩素又は臭素の一価
のアニオン又は二価のアニオンキレート、炭化水素基、
アルコキシド、アリールアルコキシド、アリールオキシ
ド、アミド、アリールアミド、ホスフィド、アリールホ
スフィド等が遷移金属に配位結合されていてもよい。
As the ligand, other than the cyclopentadienyl ring, for example, a cyclopentadienyl oligomer ring, an indenyl ring, a cyclopentadienyl group substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon monosubstituted metalloid group. An enyl ring or an indenyl ring is exemplified. In addition to such ligands, for example, a monovalent anion or divalent anion chelate of chlorine or bromine, a hydrocarbon group,
Alkoxides, arylalkoxides, aryloxides, amides, arylamides, phosphides, arylphosphides and the like may be coordinated to the transition metal.

【0019】上記シクロペンタジエニル環及びインデニ
ル環が置換される炭化水素基としては、例えば、メチル
基、エチル基、プロピル基、ブチル基、イソブチル基、
アミル基、イソアミル基、ヘキシル基、2‐エチルヘキ
シル基、ヘプチル基、オクチル基、ノニル基、デシル
基、セチル基、フェニル基等が挙げられる。
Examples of the hydrocarbon group in which the cyclopentadienyl ring and the indenyl ring are substituted include a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, and the like.
Examples thereof include an amyl group, an isoamyl group, a hexyl group, a 2-ethylhexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a cetyl group, and a phenyl group.

【0020】このようなメタロセン化合物として具体的
には、例えば、シクロペンタジエニルチタニウムトリス
(ジメチルアミド)、メチルシクロペンタジエニルチタ
ニウムトリス(ジメチルアミド)、ビス(シクロペンタ
ジエニル)チタニウムジクロリド、ジメチルシリルテト
ラメチルシクロペンタジエニル‐t‐ブチルアミドジル
コニウムジクロリド、ジメチルシリルテトラメチルシク
ロペンタジエニル‐t‐ブチルアミドハフニウムジクロ
リド、ジメチルシリルテトラメチルシクロペンタジエニ
ル‐p‐n‐ブチルフェニルアミドジルコニウムクロリ
ド、メチルフェニルシリルテトラメチルシクロペンタジ
エニル‐t‐ブチルアミドハフニウムジクロリド、イン
デニルチタニウムトリス(ジメチルアミド)、インデニ
ルチタニウムトリス(ジエチルアミド)、インデニルチ
タニウムトリス(ジ‐n‐プロピルアミド)、インデニ
ルチタニウムビス(ジ‐n‐ブチルアミド)(ジ‐n‐
プロピルアミド)等が挙げられる。
Specific examples of such a metallocene compound include, for example, cyclopentadienyltitanium tris (dimethylamide), methylcyclopentadienyltitanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl Silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride, dimethylsilyltetramethylcyclopentadienyl-t-butylamidohafnium dichloride, dimethylsilyltetramethylcyclopentadienyl-pn-butylphenylamidozirconium chloride, Methylphenylsilyltetramethylcyclopentadienyl-t-butylamidohafnium dichloride, indenyl titanium tris (dimethylamide), indenyl titanium tri (Diethylamide), indenyl titanium tris (di -n- propyl amide), indenyl titanium bis (di -n- butylamide) (di -n-
Propylamide) and the like.

【0021】上記メタロセン化合物は、金属の種類や配
位子の構造を変え、特定の共触媒と組み合わせることに
よりエチレン系樹脂の重合の際に触媒として働く。具体
的には、重合はメタロセン化合物に共触媒としてメチル
アルミノキサン(MAO)、ホウ素化合物等を添加した
系で行われる。メタロセン化合物に対する共触媒の使用
割合は通常10〜1,000,000モル倍、好ましく
は50〜5,000モル倍である。
The metallocene compound functions as a catalyst when the ethylene resin is polymerized by changing the type of metal or the structure of the ligand and combining it with a specific cocatalyst. Specifically, polymerization is performed in a system in which methylaluminoxane (MAO), a boron compound, or the like is added as a cocatalyst to a metallocene compound. The usage ratio of the cocatalyst to the metallocene compound is usually 10 to 1,000,000 times, preferably 50 to 5,000 times.

【0022】重合条件については特に制限はなく、例え
ば、不活性媒体を用いる溶液重合法、不活性媒体が実質
的に存在しない塊状重合法、気相重合法等が採用でき
る。重合温度は−100℃〜300℃、重合圧力は常圧
〜100kg/cm2 で行うのが一般的である。
The polymerization conditions are not particularly limited, and examples thereof include a solution polymerization method using an inert medium, a bulk polymerization method in which substantially no inert medium is present, and a gas phase polymerization method. Generally, the polymerization temperature is from -100 ° C to 300 ° C, and the polymerization pressure is from normal pressure to 100 kg / cm 2 .

【0023】本発明では、上記エチレン系樹脂(a)又
はエチレン系樹脂(b)に熱分解型発泡剤及び架橋剤を
添加してニーダーミキサー等で溶融混練し、プレス等の
従来公知の任意の方法により、無架橋の状態に保持しな
がら所望の形状に加熱成型する。所望の形状に加熱成型
した後に、常圧下で熱分解型発泡剤の分解開始温度以
上、かつ、架橋剤の分解開始温度以上に加熱して、(架
橋度/熱分解型発泡剤の分解率)の最大値が20以下に
なるように架橋及び発泡して架橋発泡体とし、得られた
架橋発泡体の気泡を機械的変形を加えることにより連通
する。
In the present invention, a pyrolytic foaming agent and a crosslinking agent are added to the ethylene-based resin (a) or the ethylene-based resin (b), and the mixture is melt-kneaded by a kneader mixer or the like, and is pressurized or any other known one. According to the method, the mixture is heated and molded into a desired shape while maintaining a non-crosslinked state. After being heat-molded into a desired shape, it is heated under normal pressure to a temperature equal to or higher than the decomposition start temperature of the thermal decomposition type foaming agent and to a temperature equal to or higher than the decomposition start temperature of the cross-linking agent. Is crosslinked and foamed so that the maximum value is 20 or less, to form a crosslinked foam, and the cells of the obtained crosslinked foam are communicated by applying mechanical deformation.

【0024】上記熱分解型発泡剤は、分解開始温度が低
くなると発泡性が低下し、高くなると異常気泡等が生じ
易くなるので、分解開始温度がエチレン系樹脂(a)又
はエチレン系樹脂(b)の融点(DSCでのピーク温
度)よりも20℃以上高いものが好ましく、20〜15
0℃高いものがより好ましい。また、分解終了温度が低
くなると発泡性が低下し、高くなると発泡が未完全に終
わることが多くなるので、分解終了温度が150〜21
0℃であるものが好ましい。このような熱分解型発泡剤
としては、例えば、アゾジカルボンアミド(分解開始温
度=約200℃、分解終了温度=約210℃)、N,
N’−ジニトロソペンタメチレンテトラミン(分解開始
温度=約200℃、分解終了温度=約205℃)、4,
4’−オキシビスベンゼンスルホニルヒドラジド(分解
開始温度=約155℃、分解終了温度=約160℃)等
が挙げられ、これらは単独で使用しても2種以上併用し
てもよい。中でも、発生ガスの量、取り扱いの安全性等
が優れているのでアゾジカルボンアミドが好ましい。熱
分解型発泡剤の添加量は、少なくなると所望の発泡倍率
が得られず、多くなると(架橋度/熱分解型発泡剤の分
解率)の最大値が20を越え易くなるので、エチレン系
樹脂(a)又はエチレン系樹脂(b)100重量部に対
し、1〜30重量部に限定され、所望の発泡倍率に応じ
て適宜調整してよい。
The thermal decomposition type foaming agent has a low decomposition initiation temperature, the foaming property is reduced, and the higher the decomposition initiation temperature, the more likely it is to generate abnormal bubbles. Therefore, the decomposition initiation temperature of the ethylene-based resin (a) or ethylene-based resin (b) is low. ) Is preferably 20 ° C. or more higher than the melting point (peak temperature in DSC) of 20 to 15
Those that are 0 ° C. higher are more preferred. Further, when the decomposition end temperature is low, the foaming property is reduced, and when the decomposition end temperature is high, foaming is often not completely completed.
Those at 0 ° C. are preferred. Examples of such a thermal decomposition type foaming agent include azodicarbonamide (decomposition start temperature = about 200 ° C., decomposition end temperature = about 210 ° C.), N,
N′-dinitrosopentamethylenetetramine (decomposition start temperature = about 200 ° C., decomposition end temperature = about 205 ° C.), 4,
4′-oxybisbenzenesulfonyl hydrazide (decomposition start temperature = about 155 ° C., decomposition end temperature = about 160 ° C.) and the like may be used alone or in combination of two or more. Among them, azodicarbonamide is preferable because the amount of generated gas, safety in handling, and the like are excellent. If the amount of the thermal decomposition type foaming agent is too small, a desired expansion ratio cannot be obtained, and if it is large, the maximum value of (degree of crosslinking / decomposition rate of the thermal decomposition type foaming agent) tends to exceed 20, so that the ethylene resin It is limited to 1 to 30 parts by weight based on 100 parts by weight of (a) or the ethylene-based resin (b), and may be appropriately adjusted according to a desired expansion ratio.

【0025】また、熱分解型発泡剤の分解温度、分解速
度等を調節するために、発泡助剤を添加するのが好まし
い。発泡助剤としては、従来公知の任意のものが使用で
き、例えば、酸化亜鉛、尿素又はその誘導体、ステアリ
ン酸マグネシウムなどのステアリン酸塩等が挙げられ、
これらは単独で使用しても2種以上併用してもよく、所
望の発泡倍率、気泡形状等に応じて組み合わせ及び添加
量を適宜調整する。
It is preferable to add a foaming aid in order to adjust the decomposition temperature, decomposition rate, etc. of the pyrolytic foaming agent. As the foaming auxiliary, any conventionally known one can be used, and examples thereof include zinc oxide, urea or a derivative thereof, and a stearate such as magnesium stearate.
These may be used alone or in combination of two or more. The combination and the amount of addition are appropriately adjusted according to the desired expansion ratio, cell shape, and the like.

【0026】上記架橋剤は、分解速度が速くなると、
(架橋度/熱分解型発泡剤の分解率)の最大値が20を
越え易くなり、遅くなると上記熱分解型発泡剤の分解率
が高くなった際にガス抜けが生じ、気泡が不均一になる
ので、1分間半減温度(以下、「半減温度」と記す)が
150〜190℃のものが好ましい。このような架橋剤
としては、例えば、ジクミルペルオキシド(半減温度=
約171℃)、1,1−ジ(t−ブチルペルオキシ)−
3,3,5−トリメチルシクロヘキサン(半減温度=約
151℃)、α,α’−ビス(t−ブチルペルオキシイ
ソプロピル)ベンゼン(半減温度=約182℃)、t−
ブチルペルオキシクメン(半減温度=約178℃)等が
挙げられる。架橋剤の添加量は、少なくなると所望の架
橋度が得られず、多くなると(架橋度/熱分解型発泡剤
の分解率)の最大値が20を越え易くなるので、エチレ
ン系樹脂(a)又はエチレン系樹脂(b)100重量部
に対し、0.3〜3重量部に限定され、 所望の架橋度に
応じて適宜調整してよい。
When the decomposition rate of the crosslinking agent is increased,
The maximum value of (crosslinking degree / decomposition rate of the thermal decomposition type foaming agent) easily exceeds 20, and when it is slow, when the decomposition rate of the thermal decomposition type foaming agent becomes high, outgassing occurs and bubbles become uneven. Therefore, it is preferable that the half-life temperature for one minute (hereinafter, referred to as “half-life temperature”) is 150 to 190 ° C. As such a crosslinking agent, for example, dicumyl peroxide (half-life temperature =
About 171 ° C), 1,1-di (t-butylperoxy)-
3,3,5-trimethylcyclohexane (half temperature = about 151 ° C.), α, α′-bis (t-butylperoxyisopropyl) benzene (half temperature = about 182 ° C.), t-
Butyl peroxycumene (half temperature = about 178 ° C.) and the like. If the amount of the crosslinking agent is too small, a desired degree of crosslinking cannot be obtained, and if the amount is too large, the maximum value of (degree of crosslinking / decomposition rate of the thermal decomposition type foaming agent) tends to exceed 20, so that the ethylene resin (a) Alternatively, the amount is limited to 0.3 to 3 parts by weight based on 100 parts by weight of the ethylene-based resin (b), and may be appropriately adjusted according to a desired degree of crosslinking.

【0027】さらに、架橋助剤を添加するのが、上記エ
チレン系樹脂の動的粘弾性が後述する範囲になり易いの
で好ましい。架橋助剤としては多官能モノマーが使用さ
れ、例えば、トリアリルイソシアヌレート、ジビニルベ
ンゼン、トリメチロールプロパントリ(メタ)アクリレ
ート、1,6−ヘキサンジオールジ(メタ)アクリレー
ト、1,9−ノナンジオールジ(メタ)アクリレート、
1,10−デカンジオール(メタ)アクリレート、トリ
メリット酸トリアリルエステル、エチルビニルベンゼ
ン、フタル酸ジアリルエステル等が挙げられ、これらは
単独で使用しても2種以上併用してもよい。中でも、樹
脂との親和性が優れているのでトリアリルイソシアヌレ
ートが好ましい。架橋助剤の添加量は、少なくなると架
橋度が上がらず、熱分解型発泡剤の分解率が高くなった
際にガス抜けが生じて気泡が不均一になり、多くなると
架橋が必要以上に進行し、得られる連続気泡性架橋発泡
体の連続気泡率が低下するので、エチレン系樹脂(a)
又はエチレン系樹脂(b)100重量部に対し、0.3
〜5重量部が好ましく、 所望の架橋度に応じて適宜調整
してよい。
Further, it is preferable to add a crosslinking aid because the dynamic viscoelasticity of the ethylene resin tends to be in the range described later. As the crosslinking assistant, a polyfunctional monomer is used. For example, triallyl isocyanurate, divinylbenzene, trimethylolpropane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (Meth) acrylate,
Examples thereof include 1,10-decanediol (meth) acrylate, triallylic acid triallyl ester, ethylvinylbenzene, and diallyl phthalate, and these may be used alone or in combination of two or more. Among them, triallyl isocyanurate is preferred because of its excellent affinity with the resin. When the amount of the crosslinking aid is small, the degree of crosslinking does not increase, and when the decomposition rate of the thermal decomposition type foaming agent increases, gas escape occurs and bubbles become non-uniform, and when the amount increases, crosslinking proceeds more than necessary. Since the open cell ratio of the obtained open-cell crosslinked foam decreases, the ethylene-based resin (a)
Or 0.3 parts by weight based on 100 parts by weight of the ethylene resin (b).
It is preferably from 5 to 5 parts by weight, and may be appropriately adjusted according to a desired degree of crosslinking.

【0028】上記無架橋の状態で所望の形状に加熱成型
する際の温度及び時間は、使用する樹脂、架橋剤等によ
り異なるが、例えば、架橋剤としてジクミルペルオキシ
ドを使用した場合は130〜140℃で10〜30分程
度が適当である。
The temperature and time for heat-molding into a desired shape in the above-mentioned non-crosslinked state differ depending on the resin used, the crosslinking agent and the like. For example, when dicumyl peroxide is used as the crosslinking agent, it is 130 to 140. About 10 to 30 minutes at a suitable temperature.

【0029】加熱成型する工程において架橋が生じた場
合には、(架橋度/熱分解型発泡剤の分解率)の最大値
が20を越え、後の工程で機械的変形を加えて気泡を連
通しても、連続気泡率が極めて低いものしか得られな
い。また、該工程を行わない場合は樹脂の粘度調整が行
われず、得られる連続気泡性架橋発泡体の連続気泡率及
び圧縮回復性が低下する。尚、本発明でいう無架橋の状
態とは架橋度が0%の状態である。
When cross-linking occurs in the step of heat molding, the maximum value of (degree of cross-linking / decomposition rate of the thermal decomposition type foaming agent) exceeds 20, and bubbles are communicated by applying mechanical deformation in a later step. However, only those having an extremely low open cell ratio can be obtained. In addition, when this step is not performed, the viscosity of the resin is not adjusted, and the open cell ratio and the compression recovery of the obtained open cell crosslinked foam are reduced. The non-crosslinked state in the present invention is a state in which the degree of crosslinking is 0%.

【0030】本発明でいう架橋度は以下の方法により測
定された値である。まず、任意の時点での発泡体を厚さ
方向に精密に約100mg秤取し、120℃のキシレン
100ml中に24時間浸した後、200メッシュのス
テンレス製金網でろ過し、金網上の不溶解分を真空乾燥
する。次に、不溶解分の重量を精密に秤量し、架橋度を
以下の式により百分率で算出する。 架橋度(%)=(不溶解分の重量(mg)/秤取した発
泡体の重量(mg))×100
The degree of crosslinking in the present invention is a value measured by the following method. First, about 100 mg of the foam at any time is precisely weighed in the thickness direction, immersed in 100 ml of xylene at 120 ° C. for 24 hours, and then filtered through a 200-mesh stainless steel wire mesh, and the insoluble material on the wire mesh is removed. Vacuum dry the minute. Next, the weight of the insoluble portion is precisely weighed, and the degree of crosslinking is calculated as a percentage by the following equation. Degree of crosslinking (%) = (weight of insoluble matter (mg) / weight of weighed foam (mg)) × 100

【0031】無架橋の状態で所望の形状に加熱成型した
後の上記エチレン系樹脂(a)又はエチレン系樹脂
(b)は、その動的粘弾性が、小さくなると発泡時に気
泡の形状が保たれず、異常気泡等が発生し、大きくなる
と発泡時に気泡が成長せず、高発泡倍率のものが得られ
ないので、135℃、10Hzで2.0×103 〜5.
0×103 Pa・sに限定される。
When the dynamic viscoelasticity of the ethylene-based resin (a) or the ethylene-based resin (b) after being heat-molded into a desired shape in a non-crosslinked state is reduced, the shape of the bubbles is maintained during foaming. However, if the size is large, the bubbles do not grow during foaming and a high expansion ratio cannot be obtained. Therefore, at 135 ° C. and 10 Hz, 2.0 × 10 3 -5.
It is limited to 0 × 10 3 Pa · s.

【0032】本発明でいう動的粘弾性は、動的粘弾性の
測定器(レオメトリックスサイエンティフックエフイー
社製、型式「RMS800」)により、直径25mmの
パラレルプレートにて測定した値である。
The dynamic viscoelasticity referred to in the present invention is a value measured by a dynamic viscoelasticity measuring instrument (manufactured by Rheometrics Scientific FFE, model “RMS800”) on a parallel plate having a diameter of 25 mm. .

【0033】次に、架橋及び発泡を行うが、 該工程の任
意の時点での(架橋度/熱分解型発泡剤の分解率)が、
大きくなると得られる架橋発泡体に機械的変形を加えて
も気泡が連通せず、連続気泡性架橋発泡体が得られない
ので、その最大値が20以下に限定される。
Next, crosslinking and foaming are carried out. At any point in the process, (degree of crosslinking / decomposition rate of the thermally decomposable foaming agent) is
When the size is increased, even if mechanical deformation is applied to the obtained crosslinked foam, the cells do not communicate, and an open-cell crosslinked foam cannot be obtained. Therefore, the maximum value is limited to 20 or less.

【0034】上記熱分解型発泡剤の分解率は、得られた
架橋発泡体の発泡倍率に対する、架橋度を測定した時点
での発泡倍率の比を百分率で示した値であり、以下の式
により算出する。 分解率(%)=(測定した発泡倍率/得られた架橋発泡
体の発泡倍率)×100 尚、発泡倍率は、電子比重計(ミラージュ社製、商品名
「ED120T」)を用いて測定した密度(g/cc)
の逆数である。
The decomposition rate of the above-mentioned pyrolytic foaming agent is a ratio of the expansion ratio at the time of measuring the degree of cross-linking to the expansion ratio of the obtained cross-linked foam, expressed as a percentage. calculate. Decomposition rate (%) = (expanded expansion ratio / expanded expansion ratio of obtained crosslinked foam) × 100 The expansion ratio is a density measured using an electronic hydrometer (trade name “ED120T” manufactured by Mirage Co., Ltd.). (G / cc)
Is the reciprocal of

【0035】架橋及び発泡を行う際の温度及び時間は、
使用する樹脂、熱分解型発泡剤、架橋剤等により異なる
が、通常は150〜200℃で、10〜90分が好まし
い。
The temperature and time for crosslinking and foaming are as follows:
Although it depends on the resin used, the thermal decomposition type foaming agent, the cross-linking agent, and the like, it is usually preferable that the temperature is 150 to 200 ° C. and the time is 10 to 90 minutes.

【0036】該架橋及び発泡工程において、上記エチレ
ン系樹脂(a)又はエチレン系樹脂(b)の動的粘弾性
が、小さくなると気泡の形状が保たれず、異常気泡等が
発生し、大きくなると気泡が成長せず、高発泡倍率のも
のが得られないので、架橋度30%時の動的粘弾性が、
175℃、1Hzで1.0×104 〜5.0×104
a・sであるのが好ましい。
In the crosslinking and foaming steps, when the dynamic viscoelasticity of the ethylene resin (a) or the ethylene resin (b) is reduced, the shape of the bubbles is not maintained, and abnormal bubbles are generated. Since the cells do not grow and a foam having a high expansion ratio cannot be obtained, the dynamic viscoelasticity at a crosslinking degree of 30% is
1.0 × 10 4 to 5.0 × 10 4 P at 175 ° C., 1 Hz
a · s is preferred.

【0037】よって、本発明において、樹脂成分として
は、上述した無架橋の状態で加熱成型した後の動的粘弾
性が135℃、10Hzで2.0×103 〜5.0×1
3Pa・sであり、かつ、架橋度30%時の動的粘弾
性が175℃、1Hzで1.0×104 〜5.0×10
4 Pa・sであるエチレン系樹脂(a)又はエチレン系
樹脂(b)を使用するのが、より好ましい。
Therefore, in the present invention, the resin component has a dynamic viscoelasticity after heat molding in a non-crosslinked state at 135 ° C. and 2.0 × 10 3 to 5.0 × 1 at 10 Hz.
0 3 a Pa · s, and the dynamic viscoelasticity 175 ° C. when crosslinking degree 30%, 1.0 × 10 4 in 1 Hz to 5.0 × 10
It is more preferable to use an ethylene-based resin (a) or an ethylene-based resin (b) having a pressure of 4 Pa · s.

【0038】上記方法により得られる架橋発泡体は独立
気泡を有するものであるが、機械的変形を加えることに
より気泡を連通し、本発明の連続気泡性架橋発泡体が得
られる。
Although the crosslinked foam obtained by the above method has closed cells, the cells are communicated by applying mechanical deformation to obtain the open-cell crosslinked foam of the present invention.

【0039】機械的変形を加える方法としては、従来公
知の任意の方法が採用されてよく、例えば、等速で回転
する2本のロール間に架橋発泡体を通し、架橋発泡体厚
さの1〜10%程度の厚さに圧縮する方法が挙げられ
る。機械的変形は1回加えるだけでもよく、複数回繰返
して加えてもよい。
As a method of applying mechanical deformation, any conventionally known method may be employed. For example, a crosslinked foam is passed between two rolls rotating at a constant speed, and the thickness of the crosslinked foam is set to 1 And a method of compressing to a thickness of about 10%. The mechanical deformation may be applied only once or may be applied a plurality of times.

【0040】尚、本発明の製造方法では、物性を損なわ
ない範囲で必要に応じて抗菌剤、難燃剤、消臭剤、顔料
等の添加剤を添加してもよい。
In the production method of the present invention, additives such as an antibacterial agent, a flame retardant, a deodorant, a pigment and the like may be added as needed as long as the physical properties are not impaired.

【0041】[0041]

【発明の実施の形態】以下に実施例を挙げて本発明の態
様を更に詳しく説明するが、本発明はこれら実施例のみ
に限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0042】[0042]

【実施例】実施例及び比較例では以下に示した樹脂を使
用した。LLDPE1;四価の遷移金属を含有するメタ
ロセン触媒を用いて重合した、密度が0.870g/c
3 、融点が60℃の、1−オクテンが共重合された直
鎖状低密度ポリエチレン(ダウ・ケミカル社製、商品名
「EG8200」)LLDPE2:四価の遷移金属を含
有するメタロセン触媒を用いて重合した、密度が0.9
02g/cm3 、融点が98℃の、1−オクテンが共重
合された直鎖状低密度ポリエチレン(ダウ・ケミカル社
製、「商品名FW1650」)
EXAMPLES In Examples and Comparative Examples, the following resins were used. LLDPE1: polymerized using a metallocene catalyst containing a tetravalent transition metal, having a density of 0.870 g / c
m 3 , linear low-density polyethylene copolymerized with 1-octene having a melting point of 60 ° C. (trade name “EG8200” manufactured by Dow Chemical Company) LLDPE2: using a metallocene catalyst containing a tetravalent transition metal Polymerized to a density of 0.9
Linear low-density polyethylene copolymerized with 1-octene having a melting point of 98 ° C. and a melting point of 98 g / cm 3 (manufactured by Dow Chemical Company, trade name: FW1650)

【0043】LDPE1:密度が0.895g/c
3 、融点が113℃の低密度ポリエチレン(住友化学
社製、商品名「EUL400」) LDPE2;密度が0.918g/cm3 、融点が10
6℃の低密度ポリエチレン(住友化学社製、商品名「G
807」) LDPE3:密度が0.920g/cm3 、融点が11
8℃の低密度ポリエチレン(三菱化学社製、商品名「L
E520H」) LDPE4:密度が0.932g/cm3 、融点が12
0℃の低密度ポリエチレン(住友化学社製、商品名「F
203−0」)
LDPE1: density of 0.895 g / c
m 3 , low-density polyethylene having a melting point of 113 ° C. (manufactured by Sumitomo Chemical Co., Ltd., trade name “EUL400”) LDPE2; density: 0.918 g / cm 3 , melting point: 10
6 ° C low-density polyethylene (manufactured by Sumitomo Chemical Co., Ltd., trade name “G
807 ") LDPE3: density 0.920 g / cm 3 , melting point 11
8 ° C low-density polyethylene (Mitsubishi Chemical Corporation, trade name “L
E520H ”) LDPE4: density of 0.932 g / cm 3 , melting point of 12
0 ° C low-density polyethylene (Sumitomo Chemical Co., trade name “F
203-0 ")

【0044】EVA1:酢酸ビニル含有量が15重量
%、融点が93℃のエチレン−酢酸ビニル共重合体(住
友化学社製、商品名「H2021」) EVA2:酢酸ビニル含有量が20重量%、融点が83
℃のエチレン−酢酸ビニル共重合体(東ソー社製、商品
名「ウルトラセン2233」)
EVA1: an ethylene-vinyl acetate copolymer having a vinyl acetate content of 15% by weight and a melting point of 93 ° C. (trade name “H2021” manufactured by Sumitomo Chemical Co., Ltd.) EVA2: a vinyl acetate content of 20% by weight, melting point Is 83
° C ethylene-vinyl acetate copolymer (trade name “Ultracene 2233” manufactured by Tosoh Corporation)

【0045】(実施例1〜3)表1に示した所定量の樹
脂成分(LLDPE1及び2、LDPE1〜4並びにE
VA1及び2)、アゾジカルボンアミド、ジクミルペル
オキシド、トリアリルイソシアヌレート及び酸化亜鉛を
ニーダーミキサーにより110℃で溶融混練した後、縦
30cm×横30cm×深さ5cmの凹部を有する金型
内に導入し、該凹部を別の平滑面を有する金型にて密閉
し、135℃で25分間加熱して成型した。成型後の架
橋度は0%であり、樹脂成分の135℃、10Hzでの
動的粘弾性は、表1に示した通りであった。さらに、1
75℃のオーブン中で60分間加熱して架橋及び発泡
し、架橋発泡体を得た。該加熱工程での(架橋度/熱分
解型発泡剤の分解率)の最大値は20以下であり、得ら
れた架橋発泡体は独立気泡性であった。尚、樹脂成分を
2mmのシートに成形し、該シートに加速電圧750k
vの電子線を3.5Mrad照射して架橋度30%にな
るように架橋した際の175℃、1Hzでの動的粘弾性
は、表1に示した通りであった。
(Examples 1 to 3) The resin components (LLDPEs 1 and 2, LDPEs 1 to 4 and E
VA1 and 2), azodicarbonamide, dicumyl peroxide, triallyl isocyanurate and zinc oxide are melt-kneaded at 110 ° C. by a kneader mixer, and then introduced into a mold having a concave portion of 30 cm long × 30 cm wide × 5 cm deep. Then, the concave portion was sealed with another mold having a smooth surface, and heated at 135 ° C. for 25 minutes to mold. The degree of crosslinking after molding was 0%, and the dynamic viscoelasticity of the resin component at 135 ° C. and 10 Hz was as shown in Table 1. In addition, 1
It was crosslinked and foamed by heating in an oven at 75 ° C. for 60 minutes to obtain a crosslinked foam. The maximum value of (degree of crosslinking / decomposition rate of the thermal decomposition type foaming agent) in the heating step was 20 or less, and the obtained crosslinked foam was closed cell. The resin component was molded into a 2 mm sheet, and the sheet was accelerated at an acceleration voltage of 750 k.
The dynamic viscoelasticity at 175 ° C. and 1 Hz when cross-linking was performed by irradiating 3.5 Mrad with an electron beam of v so that the degree of cross-linking became 30% was as shown in Table 1.

【0046】次に、得られた架橋発泡体を厚さ5cmに
スライスし、回転速度5rpm、直径100mmの2本
の等速ロールを用いて厚さ2mmに圧縮して気泡を連通
し、連続気泡性架橋発泡体を得た。得られた連続気泡性
架橋発泡体の発泡倍率及び連続気泡率は表1に示した通
りであった。
Next, the obtained cross-linked foam was sliced to a thickness of 5 cm, compressed to 2 mm in thickness by using two constant-speed rolls having a rotation speed of 5 rpm and a diameter of 100 mm, and air bubbles were communicated. A crosslinked foam was obtained. The expansion ratio and open cell ratio of the obtained open-cell crosslinked foam were as shown in Table 1.

【0047】尚、本発明でいう連続気泡率は、ASTM
D 1940 62Tに準拠して測定した独立気泡率
から、以下の式により算出した。 連続気泡率(%)=100−独立気泡率(%)
The open cell ratio referred to in the present invention is ASTM.
It was calculated from the closed cell rate measured according to D 1940 62T by the following formula. Open cell rate (%) = 100-Closed cell rate (%)

【0048】(比較例1)表1に示した所定量の樹脂成
分(LLDPE1及び2、LDPE1〜4並びにEVA
1及び2)、アゾジカルボンアミド、ジクミルペルオキ
シド、トリアリルイソシアヌレート及び酸化亜鉛を実施
例1と同様にして成型した。成型後の架橋度は0%であ
り、樹脂成分の135℃、10Hzでの動的粘弾性は、
表1に示した通りであった。さらに、実施例1と同様に
加熱して架橋及び発泡を行い、架橋発泡体を得た。該加
熱工程での(架橋度/熱分解型発泡剤の分解率)の最大
値は20以下であり、得られた架橋発泡体は独立気泡性
であったが、発泡倍率が4倍程度のものしか得られなか
った。尚、樹脂成分を実施例1と同様に架橋度30%に
なるように架橋した際の175℃、1Hzでの動的粘弾
性は、表1に示した通りであった。
Comparative Example 1 A predetermined amount of resin components (LLDPE1 and LLDPE2, LDPE1 to LDPE4 and EVA) shown in Table 1
1 and 2), azodicarbonamide, dicumyl peroxide, triallyl isocyanurate and zinc oxide were molded in the same manner as in Example 1. The degree of crosslinking after molding is 0%, and the dynamic viscoelasticity of the resin component at 135 ° C. and 10 Hz is as follows:
As shown in Table 1. Further, heating and crosslinking were carried out in the same manner as in Example 1 to obtain a crosslinked foam. The maximum value of (degree of crosslinking / decomposition rate of the thermal decomposition type foaming agent) in the heating step was 20 or less, and the obtained crosslinked foam was closed-celled, but had an expansion ratio of about 4 times. I could only get it. The dynamic viscoelasticity at 175 ° C. and 1 Hz when the resin component was crosslinked so as to have a degree of crosslinking of 30% as in Example 1 was as shown in Table 1.

【0049】(比較例2、3)表1に示した所定量の樹
脂成分(LLDPE1及び2、LDPE1〜4並びにE
VA1及び2)、アゾジカルボンアミド、ジクミルペル
オキシド、トリアリルイソシアヌレート及び酸化亜鉛を
実施例1と同様にして成型した。成型後の架橋度は0%
であり、樹脂成分の135℃、10Hzでの動的粘弾性
は、表1に示した通りであった。さらに、実施例1と同
様に架橋及び発泡を行ったが、気泡が極めて不均一にな
り、架橋発泡体は得られなかった。尚、樹脂成分を実施
例1と同様に架橋度30%になるように架橋した際の1
75℃、1Hzでの動的粘弾性は、表1に示した通りで
あった。
Comparative Examples 2 and 3 A predetermined amount of resin components (LLDPE1 and LLDPE1, LDPE1 to LDPE4,
VA1 and 2), azodicarbonamide, dicumyl peroxide, triallyl isocyanurate and zinc oxide were molded in the same manner as in Example 1. Crosslinking degree after molding is 0%
The dynamic viscoelasticity of the resin component at 135 ° C. and 10 Hz was as shown in Table 1. Further, cross-linking and foaming were performed in the same manner as in Example 1, but the cells became extremely uneven, and a cross-linked foam was not obtained. In addition, when the resin component was crosslinked so as to have a degree of crosslinking of 30% as in Example 1, 1
The dynamic viscoelasticity at 75 ° C. and 1 Hz was as shown in Table 1.

【0050】(圧縮回復性の評価)実施例で得られた連
続気泡性架橋発泡体の厚さをロール圧縮から10日後に
測定し、ロール圧縮前の厚さ(5cm)に対する厚さ回
復率を以下の式により算出し、その値を表1に示した。 厚さ回復率(%)=(10日後の厚さ(cm)/ロール
圧縮前の厚さ(cm))×100
(Evaluation of Compression Recovery Property) The thickness of the open-cell crosslinked foam obtained in the examples was measured 10 days after the roll compression, and the thickness recovery rate with respect to the thickness (5 cm) before the roll compression was determined. It was calculated by the following equation, and the value is shown in Table 1. Thickness recovery rate (%) = (thickness after 10 days (cm) / thickness before roll compression (cm)) × 100

【0051】(外観の評価)実施例において、ロール圧
縮直後の連続気泡性架橋発泡体の両面を目視で観察し、
表面に発泡ムラ等の外観不良が見られなかった場合を
○、外観不良が見られた場合を×として、結果を表1に
示した。
(Evaluation of Appearance) In the examples, both sides of the open-cell crosslinked foam immediately after roll compression were visually observed,
The results are shown in Table 1, in which the case where no appearance defect such as uneven foaming was observed on the surface was evaluated as ○, and the case where the appearance defect was observed was evaluated as ×.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【発明の効果】請求項1記載の発明は、上述したような
構成であるので、圧縮回復性、シール性及び気密性に優
れ、かつ、連続気泡率が高く、高発泡倍率の連続気泡性
架橋発泡体が容易に得られる。また、請求項2記載の発
明は、架橋発泡中或いは後の動的粘弾性が特定の範囲に
あるので、発泡工程で気泡を良好に保持でき、気泡が均
一で高発泡倍率の架橋発泡体が容易に得られる。
According to the first aspect of the present invention, since it has the above-described structure, it has excellent compression recovery, sealing properties and airtightness, a high open cell ratio, and a high open-cell open-cell crosslinkability. A foam is easily obtained. In addition, since the dynamic viscoelasticity during or after cross-linking foaming is within a specific range, the cross-linked foam having good foam retention in the foaming step and uniform foam and high expansion ratio can be obtained. Obtained easily.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 密度が0.840〜0.900g/cm
3 のエチレン系樹脂又は四価の遷移金属を含有するメタ
ロセン触媒を用いて重合したエチレン系樹脂100重量
部、熱分解型発泡剤1〜30重量部及び架橋剤0.3〜
3重量部を無架橋の状態で加熱成型した後、常圧下で加
熱し、(架橋度/熱分解型発泡剤の分解率)の最大値が
20以下になるように架橋及び発泡して架橋発泡体と
し、該架橋発泡体の気泡を機械的変形を加えることによ
り連通する連続気泡性架橋発泡体の製造方法であり、 前
記エチレン系樹脂の、無架橋の状態で加熱成型した後の
動的粘弾性が、135℃、10Hzで2.0×103
5.0×103 Pa・sであることを特徴とする連続気
泡性架橋発泡体の製造方法。
(1) a density of 0.840 to 0.900 g / cm;
100 parts by weight of an ethylene-based resin polymerized using a metallocene catalyst containing an ethylene-based resin or a tetravalent transition metal of 3 , 100 to 30 parts by weight of a pyrolytic foaming agent, and 0.3 to 0.3 parts of a crosslinking agent
3 parts by weight are heat-molded in a non-crosslinked state, and then heated under normal pressure, crosslinked and foamed so that the maximum value of (crosslinking degree / decomposition rate of the thermal decomposition type foaming agent) becomes 20 or less, crosslinked foaming. A method for producing an open-celled cross-linked foam which is made into a body and communicates by applying mechanical deformation to the cells of the cross-linked foam, wherein the dynamic viscosity of the ethylene resin after being heat-molded in a non-cross-linked state. Elasticity is 2.0 × 10 3 at 135 ° C. and 10 Hz
A method for producing an open-cell crosslinked foam having a viscosity of 5.0 × 10 3 Pa · s.
【請求項2】 エチレン系樹脂の、架橋度30%時の動
的粘弾性が、175℃、1Hzで1.0×104 〜5.
0×104 Pa・sであることを特徴とする請求項1記
載の連続気泡性架橋発泡体の製造方法。
2. The dynamic viscoelasticity of the ethylene-based resin at a crosslinking degree of 30% is 175 ° C. and 1.0 × 10 4 to 5 at 1 Hz.
The method for producing an open-cell crosslinked foam according to claim 1, wherein the pressure is 0 × 10 4 Pa · s.
JP10639098A 1998-04-16 1998-04-16 Preparation of open-cell, crosslinked foam Withdrawn JPH11302430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10639098A JPH11302430A (en) 1998-04-16 1998-04-16 Preparation of open-cell, crosslinked foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10639098A JPH11302430A (en) 1998-04-16 1998-04-16 Preparation of open-cell, crosslinked foam

Publications (1)

Publication Number Publication Date
JPH11302430A true JPH11302430A (en) 1999-11-02

Family

ID=14432378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10639098A Withdrawn JPH11302430A (en) 1998-04-16 1998-04-16 Preparation of open-cell, crosslinked foam

Country Status (1)

Country Link
JP (1) JPH11302430A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052246A1 (en) * 2003-11-20 2005-06-09 Shaw Industries Group, Inc. Carpet structure with plastomeric foam backing
JP2006095777A (en) * 2004-09-28 2006-04-13 Dainippon Printing Co Ltd Manufacturing method of foamed wallpaper
JP2006097161A (en) * 2004-09-28 2006-04-13 Dainippon Printing Co Ltd Method for producing foamed wallpaper
WO2006127080A1 (en) * 2005-05-25 2006-11-30 Shaw Industries Group Carpet structure with improved plastomeric foam backing
JP2012031219A (en) * 2010-07-27 2012-02-16 Sanwa Kako Co Ltd Crosslinked polyolefin open-cellular body with excellent recyclability, method of manufacturing the same, and shock-absorbing material for mask
US9051683B2 (en) 1997-02-28 2015-06-09 Columbia Insurance Company Carpet, carpet backings and methods
US9376769B2 (en) 1997-02-28 2016-06-28 Columbia Insurance Company Homogeneously branched ethylene polymer carpet backsizing compositions

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051683B2 (en) 1997-02-28 2015-06-09 Columbia Insurance Company Carpet, carpet backings and methods
US9376769B2 (en) 1997-02-28 2016-06-28 Columbia Insurance Company Homogeneously branched ethylene polymer carpet backsizing compositions
WO2005052246A1 (en) * 2003-11-20 2005-06-09 Shaw Industries Group, Inc. Carpet structure with plastomeric foam backing
EP2586910A1 (en) * 2003-11-20 2013-05-01 Shaw Industries Group, Inc. Carpet structure with plastomeric foam backing
JP2006095777A (en) * 2004-09-28 2006-04-13 Dainippon Printing Co Ltd Manufacturing method of foamed wallpaper
JP2006097161A (en) * 2004-09-28 2006-04-13 Dainippon Printing Co Ltd Method for producing foamed wallpaper
JP4524599B2 (en) * 2004-09-28 2010-08-18 大日本印刷株式会社 Method for producing foam wallpaper
WO2006127080A1 (en) * 2005-05-25 2006-11-30 Shaw Industries Group Carpet structure with improved plastomeric foam backing
CN104278541A (en) * 2005-05-25 2015-01-14 肖氏工业集团公司 Carpet structure with improved plastomeric foam backing
JP2012031219A (en) * 2010-07-27 2012-02-16 Sanwa Kako Co Ltd Crosslinked polyolefin open-cellular body with excellent recyclability, method of manufacturing the same, and shock-absorbing material for mask

Similar Documents

Publication Publication Date Title
US5387620A (en) Cross-linked ethylenic polymer foam structures and process for making
JP4578407B2 (en) Method for producing cross-linked polyolefin resin foam sheet
EP3202830B1 (en) Polyolefin resin foam sheet and adhesive tape
US5288762A (en) Cross-linked ethylenic polymer foam structures and process for making
EP0689562B1 (en) Process for making ethylenic polymer foam structures
EP3202831B1 (en) Polyolefin resin foam sheet and adhesive tape
EP3385315B1 (en) Polyolefin resin foam sheet and adhesive tape
JP2004323842A (en) Crosslinked polyolefin resin foamed sheet and pressure-sensitive adhesive tape
JP2013053177A (en) Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material
EP3357958B1 (en) Polyolefin resin foamed sheet and adhesive tape
JPH11302430A (en) Preparation of open-cell, crosslinked foam
JP2001139713A (en) Polyethylene-based resin crosslinked foam
JP3921749B2 (en) Expandable polyolefin resin composition and molded article thereof
JPH11348064A (en) Manufacture of crosslinked open cell foam
JPH11140211A (en) Production of open cell cross-linked foam
JPH07188442A (en) Polyethylene resin foam
JP2023501875A (en) Silane Crosslinked Ethylene/α-Olefin Block Copolymer Bead Foam
JPH09157601A (en) Base material for tacky adhesive type
JPH09324063A (en) Cross-linked polyethylene resin foam and its production
JP2013124300A (en) Polyethylene-based resin composition for non-crosslinked foaming
JPH11116720A (en) Crosslinked ethylene resin foam and medical tape base made from the foam
JP7377047B2 (en) Polyolefin resin foam sheet and manufacturing method thereof
JP4344251B2 (en) Method for producing cross-linked polyolefin resin foam sheet
JP3615848B2 (en) Cutting material that can be cut and its manufacturing method
JP3963455B2 (en) Cross-linked polyethylene resin foam and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050317

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051228