JP5593906B2 - Heat pump steam generator - Google Patents

Heat pump steam generator Download PDF

Info

Publication number
JP5593906B2
JP5593906B2 JP2010161662A JP2010161662A JP5593906B2 JP 5593906 B2 JP5593906 B2 JP 5593906B2 JP 2010161662 A JP2010161662 A JP 2010161662A JP 2010161662 A JP2010161662 A JP 2010161662A JP 5593906 B2 JP5593906 B2 JP 5593906B2
Authority
JP
Japan
Prior art keywords
water
gas
steam
medium
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010161662A
Other languages
Japanese (ja)
Other versions
JP2012021747A (en
Inventor
洋一 池田
正 小松
功夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010161662A priority Critical patent/JP5593906B2/en
Publication of JP2012021747A publication Critical patent/JP2012021747A/en
Application granted granted Critical
Publication of JP5593906B2 publication Critical patent/JP5593906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、工場排水などから排熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置に関する。   The present invention relates to a heat pump type steam generator that recovers exhaust heat from factory wastewater and generates steam.

蒸気発生装置の一つとして、ヒートポンプを利用したヒートポンプ式蒸気発生装置がある。ヒートポンプ式蒸気発生装置は、工場排水など排熱を回収して蒸気を生成するものであって、燃焼系蒸気発生装置に比べて、ランニングコストが低く、COの排出量を低減できるなどのメリットがある。 As one of the steam generators, there is a heat pump steam generator using a heat pump. The heat pump steam generator recovers waste heat such as factory wastewater to generate steam, and has the advantages of lower running costs and reduced CO 2 emissions compared to combustion steam generators. There is.

特許文献1には、圧縮機の吐出側に一端が接続された冷媒管の他端が、蒸気生成用熱交換器、温水生成用熱交換器、膨張弁、熱回収器を介して前記圧縮機の吸入側に接続された冷媒回路を備え、熱回収器において外部熱源からの熱を回収し、蒸気生成用熱交換器で蒸気を生成し、温水生成用熱交換器で温水を生成するように構成されたヒートポンプ式蒸気・温水発生装置が開示されている。そして、特許文献1のヒートポンプ式蒸気・温水発生装置では、蒸気生成用熱交換器で生成した蒸気中に含まれるあるいは蒸気の凝縮により液化した水を給水用気液分離器で分離し、給水用気液分離器の気相に設けられた蒸気供給管から外部に取出している。   In Patent Document 1, the other end of the refrigerant pipe having one end connected to the discharge side of the compressor is connected to the compressor via a steam generating heat exchanger, a hot water generating heat exchanger, an expansion valve, and a heat recovery unit. The refrigerant circuit connected to the suction side of the heat recovery unit recovers heat from the external heat source in the heat recovery unit, generates steam in the heat generation heat exchanger, and generates hot water in the heat generation heat exchanger A configured heat pump steam / hot water generator is disclosed. And in the heat pump steam / hot water generator of Patent Document 1, water contained in the steam generated by the steam generating heat exchanger or liquefied by the condensation of steam is separated by the gas / liquid separator for water supply, It is taken out from the vapor supply pipe provided in the gas phase of the gas-liquid separator.

特開2007−232357号公報(請求項1、段落番号0023)JP 2007-232357 A (Claim 1, paragraph number 0023)

引用文献1に開示されたヒートポンプ式蒸気・温水発生装置は、給水用気液分離器からの出力系統が蒸気供給管のみであるので、蒸気の取出し量に応じて、供給水の導入量を調整して、給水用気液分離器内の水位を安定化させていると考えられる。このため、蒸気の取出しが行われなくなると、供給水の供給を停止する必要がある。供給水が供給されなくなると、冷媒回路(本発明のヒートポンプ循環経路に相当)からの熱エネルギーの流れがほとんどなくなるため、圧縮機などの機器類が過熱されて損傷する恐れがある。このため、蒸気の取出しを停止する際には、装置全体の運転を停止する必要があった。   In the heat pump steam / hot water generator disclosed in the cited document 1, the output system from the gas / liquid separator for feed water is only the steam supply pipe, so the amount of supply water is adjusted according to the amount of steam taken out. Therefore, it is considered that the water level in the gas-liquid separator for feed water is stabilized. For this reason, it is necessary to stop the supply of supply water when steam is not taken out. When the supply water is not supplied, the flow of thermal energy from the refrigerant circuit (corresponding to the heat pump circulation path of the present invention) is almost lost, so that devices such as a compressor may be overheated and damaged. For this reason, when stopping the extraction of steam, it was necessary to stop the operation of the entire apparatus.

しかしながら、一旦装置を完全に停止してしまうと、装置の安定化に時間を要し、需要に応じて速やかに蒸気を供給することが困難であった。   However, once the apparatus is completely stopped, it takes time to stabilize the apparatus, and it is difficult to supply steam promptly according to demand.

よって、本発明の目的は、待機運転が可能で、再び外部に蒸気を供給する際に、需要に応じて速やかに必要量の蒸気を供給することが可能なヒートポンプ式蒸気生成装置を提供することにある。   Therefore, an object of the present invention is to provide a heat pump type steam generator capable of standby operation and capable of supplying a required amount of steam quickly according to demand when supplying steam to the outside again. It is in.

上記目的を達成するため、本発明のヒートポンプ式蒸気生成装置は、
外部熱源から熱を回収して媒体を加温する排熱回収器、前記排熱回収器を通過した媒体を圧縮する圧縮機、前記圧縮機で圧縮された媒体の熱を供給水に伝熱して温水及び蒸気の気液二相流を生成する媒体凝縮器、及び前記媒体凝縮器を通過した媒体を減圧して温度を下げる膨張機を有するヒートポンプ循環経路と、
前記媒体凝縮器に前記供給水を導入する給水経路と、
前記媒体凝縮器で生成した、温水及び蒸気の気液二相流を、水蒸気と水とに分離する気液分離器と、
前記気液分離器の気相部に設けられた蒸気取出し経路と、
前記気液分離器の液相部と前記給水経路とを接続する水循環経路とを備えたヒートポンプ式蒸気生成装置であって、
前記給水経路に配置された供給水量調整手段と、
前記気液分離器の液相部に設けられた排水経路と、
前記排水経路に介装された排水用の弁とを備え、
前記蒸気取出し経路からの蒸気量が低減あるいは停止した場合、前記圧縮機の運転を予め設定された最低レベルまで下げ、前記排水用の弁を開いてヒートポンプの運転を継続する待機運転を行うように制御されていることを特徴とする。
In order to achieve the above object, the heat pump type steam generator of the present invention comprises:
An exhaust heat recovery unit that recovers heat from an external heat source and heats the medium, a compressor that compresses the medium that has passed through the exhaust heat recovery unit, and transfers the heat of the medium compressed by the compressor to supply water A heat pump circulation path having a medium condenser that generates a gas-liquid two-phase flow of hot water and steam, and an expander that depressurizes and lowers the temperature of the medium that has passed through the medium condenser;
A water supply path for introducing the supply water into the medium condenser;
A gas-liquid separator that separates the gas-liquid two-phase flow of hot water and steam generated by the medium condenser into water vapor and water;
A vapor extraction path provided in a gas phase portion of the gas-liquid separator;
A heat pump type steam generator comprising a water circulation path connecting the liquid phase part of the gas-liquid separator and the water supply path,
Water supply amount adjusting means disposed in the water supply path;
A drainage path provided in the liquid phase part of the gas-liquid separator;
A drainage valve interposed in the drainage path,
When the amount of steam from the steam extraction path is reduced or stopped, the operation of the compressor is lowered to a preset minimum level, the drain valve is opened, and the standby operation for continuing the operation of the heat pump is performed. It is controlled.

本発明のヒートポンプ式蒸気生成装置は、前記給水経路に配置された供給水量調整手段が、前記蒸気取出し経路から取り出される蒸気の流量および前記排経路から排出される排水の流量の合計に等しい流量で、前記供給水を供給するように制御されていることが好ましい。 Heat pump vapor generating apparatus of the present invention, the water supply path arranged supplied water volume adjustment means, the flow rate is equal to the sum of the flow rate of waste water discharged from the flow and the discharge water path of the steam withdrawn from the steam extraction route It is preferable that the supply water is controlled to be supplied.

本発明のヒートポンプ式蒸気生成装置は、前記気液分離器内の圧力を検出する圧力計を更に備え、前記排水用の弁は、前記圧力計の検出値が設定値以上で開き、前記圧力計の検出値が設定値以下で閉じるように制御されていることが好ましい。   The heat pump type steam generator according to the present invention further includes a pressure gauge for detecting the pressure in the gas-liquid separator, and the drain valve opens the detected value of the pressure gauge at a set value or more, and the pressure gauge It is preferable that the detection value is controlled so as to close when the value is equal to or less than the set value.

本発明のヒートポンプ式蒸気生成装置は、蒸気の取出しを停止あるいは低減させた場合であっても、装置全体を停止させずに待機運転を行うことができる。このため、再び蒸気の需要が増加した場合であっても、需要に対して速やかに対応できる。   The heat pump steam generating apparatus of the present invention can perform standby operation without stopping the entire apparatus even when the extraction of steam is stopped or reduced. For this reason, even if the demand for steam increases again, it is possible to respond quickly to the demand.

本発明のヒートポンプ式蒸気生成装置の概略構成図である。It is a schematic block diagram of the heat pump type | formula steam generator of this invention. 本発明のヒートポンプ式蒸気生成装置の制御ブロック図である。It is a control block diagram of the heat pump type steam generator of the present invention.

図1は、本発明のヒートポンプ式蒸気生成装置の概略図である。
図1に示すように、このヒートポンプ式蒸気生成装置は、第1排熱回収器1の出口側から伸びた配管L1が、圧縮機2、媒体凝縮器3、媒体冷却器4、膨張機5の順に経由して、第1排熱回収器1の入り口側に接続したヒートポンプ循環経路20を備える。
FIG. 1 is a schematic view of a heat pump type steam generator of the present invention.
As shown in FIG. 1, in this heat pump type steam generator, a pipe L <b> 1 extending from the outlet side of the first exhaust heat recovery unit 1 includes a compressor 2, a medium condenser 3, a medium cooler 4, and an expander 5. A heat pump circulation path 20 connected to the entrance side of the first exhaust heat recovery device 1 is provided in order.

ヒートポンプ循環経路20では、媒体(以下、ヒートポンプ媒体という)が循環流通しており、ヒートポンプ媒体を介して外部熱源から送られてくる熱媒体(この実施形態では、熱媒体として排温水を使用している)の熱を回収するとともに、給水源から送られてくる供給水にヒートポンプ媒体の熱を伝熱して蒸気を生成するように構成されている。   In the heat pump circulation path 20, a medium (hereinafter referred to as a heat pump medium) circulates and circulates, and a heat medium (in this embodiment, waste water is used as a heat medium sent from an external heat source via the heat pump medium. The heat of the heat pump medium is transferred to the supply water sent from the water supply source to generate steam.

ヒートポンプ媒体としては、臨界温度が高く、地球温暖化係数が低く、オゾン破壊係数の低いものが好ましく用いられる。このような媒体としては、R245fa、ハイドロフルオロエーテル系媒体、自然媒体であるペンタン等が好ましく用いることができる。   As the heat pump medium, a medium having a high critical temperature, a low global warming potential, and a low ozone depletion potential is preferably used. As such a medium, R245fa, a hydrofluoroether medium, pentane which is a natural medium, or the like can be preferably used.

外部熱源から伸びた、排温水が流通する配管L2は、第1排熱回収器1、第2排熱回収器6の順に経由して系外に接続している。   A pipe L2 extending from the external heat source and through which the exhaust hot water flows is connected to the outside of the system through the first exhaust heat recovery device 1 and the second exhaust heat recovery device 6 in this order.

給水源から伸びた、供給水が流通する配管L3は、給水ポンプP1、第2排熱回収器6、媒体冷却器4、媒体凝縮器3の順に経由して、気液分離器7の気相部に接続している。   The pipe L3 extending from the water supply source and through which the supply water flows passes through the water supply pump P1, the second exhaust heat recovery device 6, the medium cooler 4, and the medium condenser 3 in this order, and the gas phase of the gas-liquid separator 7 Connected to the department.

気液分離器7は、気相部に、蒸気流量計31を介装した蒸気取出し用の配管L4が設けられている。また、液相部に、系外の排水系へと伸びる開閉弁V1を介装した配管L5と、媒体冷却器4と媒体凝縮器3との間の配管L3aに接続する配管L6が設けられている。また、気液分離器7内には、気相部の圧力を検出する圧力計32と貯留された温水の水位を検出する水位計33が設けられている。   The gas-liquid separator 7 is provided with a steam extraction pipe L4 with a steam flow meter 31 interposed in the gas phase portion. Further, a pipe L5 provided with an on-off valve V1 extending to a drainage system outside the system and a pipe L6 connected to a pipe L3a between the medium cooler 4 and the medium condenser 3 are provided in the liquid phase part. Yes. The gas-liquid separator 7 is provided with a pressure gauge 32 for detecting the pressure in the gas phase portion and a water level gauge 33 for detecting the water level of the stored hot water.

配管L3aの配管L6との接続部よりも下流側には、送液ポンプP2が配置されている。   A liquid feed pump P2 is disposed on the downstream side of the connection portion between the pipe L3a and the pipe L6.

次に、本発明のヒートポンプ式蒸気生成装置の定常運転時における動作について、熱の流れに沿って、図2の制御ブロック図も参照して説明する。   Next, the operation at the time of steady operation of the heat pump steam generator of the present invention will be described along the flow of heat with reference to the control block diagram of FIG.

(排温水)
工場排水系等の外部熱源から送られる排温水は、配管L2を流通し、第1排熱回収器1、第2排熱回収器6の順に通過して系外へと送られる。
第1排熱回収器1では、排温水の熱を、配管L1を流通するヒートポンプ媒体に伝熱してヒートポンプ媒体を加温する。
第2排熱回収器6では、ヒートポンプ媒体を加温後の排温水の余熱を、配管L3を流通する供給水に伝熱して供給水を一次予備加熱する。
(Waste water)
Waste heat water sent from an external heat source such as a factory waste water system flows through the pipe L2, passes through the first waste heat recovery device 1 and the second waste heat recovery device 6 in this order, and is sent out of the system.
In the 1st waste heat recovery device 1, the heat of waste water is transmitted to the heat pump medium which distribute | circulates the piping L1, and a heat pump medium is heated.
In the second exhaust heat recovery device 6, the remaining heat of the exhaust water after heating the heat pump medium is transferred to the supply water flowing through the pipe L <b> 3 to primarily heat the supply water.

(ヒートポンプ媒体)
第1排熱回収器1にて、排温水との熱交換により加温されたヒートポンプ媒体は、圧縮機2にて所定の圧力まで圧縮して高温高圧媒体とする。この高温高圧媒体は、媒体凝縮器3、媒体冷却器4の順に通過して、配管L3を流通する供給水との熱交換に利用される。
(Heat pump medium)
The heat pump medium heated in the first exhaust heat recovery device 1 by heat exchange with the exhaust hot water is compressed to a predetermined pressure by the compressor 2 to obtain a high-temperature and high-pressure medium. This high-temperature and high-pressure medium passes through the medium condenser 3 and the medium cooler 4 in this order, and is used for heat exchange with the supply water flowing through the pipe L3.

圧縮機2は、図2の制御ブロック図に示すように、圧縮機コントローラ41で気液分離器7の圧力計32の測定値と、気液分離器7の圧力設定値(本実施形態では、200kPa・abs(温度で120℃に相当)である)とを比較補償して出力される回転数指令値に基いて制御される。圧力計32の測定値が気液分離器7の圧力設定値よりも小さいときは回転数上げ、圧力計32の測定値が気液分離器7の圧力設定値よりも大きいときは回転数を下げる制御が行われる。圧縮機2の回転数の上限及び下限は、上下限リミッター42により制御され、圧縮機コントローラ41から、上限を超える回転数の指令信号が出力された場合は、予め設定した上限の回転数を圧縮機2に出力し、下限を下回る回転数の指令信号が出力された場合は、予め設定した下限の回転数を圧縮機2に出力する。   As shown in the control block diagram of FIG. 2, the compressor 2 uses the compressor controller 41 to measure the pressure gauge 32 of the gas-liquid separator 7 and the pressure setting value of the gas-liquid separator 7 (in this embodiment, 200 kPa · abs (corresponding to a temperature of 120 ° C.) is controlled based on the rotational speed command value that is output after being compensated for. When the measured value of the pressure gauge 32 is smaller than the pressure set value of the gas-liquid separator 7, the rotational speed is increased, and when the measured value of the pressure gauge 32 is larger than the pressure set value of the gas-liquid separator 7, the rotational speed is decreased. Control is performed. The upper and lower limits of the rotational speed of the compressor 2 are controlled by the upper and lower limiter 42. When a command signal of the rotational speed exceeding the upper limit is output from the compressor controller 41, the rotational speed at the preset upper limit is compressed. When a command signal with a rotational speed lower than the lower limit is output to the machine 2, the lower limit rotational speed set in advance is output to the compressor 2.

媒体凝縮器3では、高温高圧媒体(ヒートポンプ媒体)の熱を、配管L3を流通する被加熱水(後述する二次予備加熱された供給水と、配管L6から送られてくる気液分離器7内の温水との混合水)に伝熱して温水及び蒸気の気液二相流を生成する。   In the medium condenser 3, the heat of the high-temperature and high-pressure medium (heat pump medium) is supplied to the heated water (secondary preheated supply water described later) and the gas-liquid separator 7 sent from the pipe L6. Heat and water (mixed water with the warm water inside) to generate a gas-liquid two-phase flow of warm water and steam.

媒体冷却器4では、第1媒体凝縮器3を通過後のヒートポンプ媒体の余熱を、前述した排温水との熱交換により一次予備加熱された、配管L3を通る供給水に伝熱して二次予備加熱する。   In the medium cooler 4, the residual heat of the heat pump medium after passing through the first medium condenser 3 is transferred to the supply water passing through the pipe L <b> 3, which has been preliminarily heated by heat exchange with the above-described exhaust hot water, so as to be a secondary reserve. Heat.

媒体冷却器4を通過したヒートポンプ媒体は、膨張機5にて所定圧力まで膨張して温度を下げ、第1排熱回収器1に再び導入して、配管L2を流通する排温水の熱回収に用いられる。   The heat pump medium that has passed through the medium cooler 4 is expanded to a predetermined pressure by the expander 5 to lower the temperature, and is reintroduced into the first exhaust heat recovery device 1 to recover heat from the exhaust hot water flowing through the pipe L2. Used.

(供給水)
給水源から給水ポンプP1で供給される供給水は、供給水の質量流量Q1が、配管L4から取出される蒸気の質量流量Q2及び配管L5からの排水流量Q3との合計量(Q2+Q3)となるように制御される。具体的には、図2の制御ブロック図に示すように、まず、気液分離器7の圧力計32の計測値と開閉弁V1のバルブ容量係数に基いて、配管L5からの排水流量(ブローダウン流量)計算値がブローダウン流量計算器43によって出力される。また、配管L4に設けられた蒸気流量計31により蒸気流量計測値が出力される。また、気液分離器7の水位計33の計測値と、気液分離器7の水位設定値が水位補償器44に入力され、流量補正値が出力される。そして、上記ブローダウン流量計算値、蒸気流量計測値および流量補正値の和が、流量指令値として流量調節器45、46に入力される。流量調節器45では、給水ポンプP1の特性(回転数と流量との関係)に基づいて、流量指令値に対応する回転数指令値を給水ポンプP1に出力して、給水ポンプP1が制御される。なお、流量調節器46では、後述する送液ポンプP2の制御を行う。
(Supply water)
In the supply water supplied from the water supply source by the water supply pump P1, the mass flow rate Q1 of the supply water is the total amount (Q2 + Q3) of the mass flow rate Q2 of the steam taken out from the pipe L4 and the drainage flow rate Q3 from the pipe L5. To be controlled. Specifically, as shown in the control block diagram of FIG. 2, first, based on the measured value of the pressure gauge 32 of the gas-liquid separator 7 and the valve capacity coefficient of the on-off valve V1, the flow rate of drainage (blow-off) from the pipe L5. (Down flow rate) The calculated value is output by the blow down flow rate calculator 43. Further, the steam flow rate measurement value is output by the steam flow meter 31 provided in the pipe L4. Further, the measurement value of the water level gauge 33 of the gas-liquid separator 7 and the water level setting value of the gas-liquid separator 7 are input to the water level compensator 44, and the flow rate correction value is output. Then, the sum of the blowdown flow rate calculation value, the steam flow rate measurement value, and the flow rate correction value is input to the flow rate controllers 45 and 46 as a flow rate command value. The flow rate regulator 45 outputs a rotation speed command value corresponding to the flow rate command value to the water supply pump P1 based on the characteristics of the water supply pump P1 (relationship between the rotation speed and the flow rate), thereby controlling the water supply pump P1. . The flow controller 46 controls a liquid feed pump P2, which will be described later.

次に、供給水は、前述したように第2排熱回収器6、媒体冷却器4でそれぞれ予備加熱される。
予備加熱された供給水は、配管L6から送られてくる、気液分離器7内の温水(以下、循環水という)と合流して、循環水と供給水との混合水が形成され、媒体凝縮器3に送液される。媒体凝縮器3に導入された混合水は、前述したように高温高圧媒体(ヒートポンプ媒体)の熱を回収し、温水及び蒸気の気液二相流を生成して、送液ポンプP2を駆動して気液分離器7に送られる。なお、送液ポンプP2は、流量調節器46にて、供給水の流量指令値に対し定数Kを乗じた値を送液ポンプ流量とし、送液ポンプP2の特性(回転数と流量との関係)に基づいて、送液ポンプ流量指令値に対応する回転数指令値を送液ポンプP2に出力して、送液ポンプP2が制御される。
Next, the feed water is preheated by the second exhaust heat recovery unit 6 and the medium cooler 4 as described above.
The preheated supply water is combined with warm water (hereinafter referred to as circulating water) in the gas-liquid separator 7 sent from the pipe L6 to form a mixed water of the circulating water and the supply water. The solution is sent to the condenser 3. The mixed water introduced into the medium condenser 3 recovers the heat of the high-temperature and high-pressure medium (heat pump medium) as described above, generates a gas-liquid two-phase flow of hot water and steam, and drives the liquid feed pump P2. To the gas-liquid separator 7. In the liquid feed pump P2, the flow rate regulator 46 multiplies the flow rate command value of the supplied water by a constant K as the liquid feed pump flow rate, and the characteristics of the liquid feed pump P2 (relationship between the rotational speed and the flow rate) ), The rotational speed command value corresponding to the liquid feed pump flow rate command value is output to the liquid feed pump P2, and the liquid feed pump P2 is controlled.

気液分離器7では、温水及び蒸気の気液二相流を蒸気と温水とに分離する。そして、気液分離器7の気相部に貯留された蒸気は、外部の需要に応じて配管L4から取出される。また、気液分離器7の液相部に貯留された温水は、配管L6を通して配管L3a内を流通する供給水と混合して循環利用される。   In the gas-liquid separator 7, the gas-liquid two-phase flow of hot water and steam is separated into steam and hot water. And the vapor | steam stored in the gaseous-phase part of the gas-liquid separator 7 is taken out from the piping L4 according to an external demand. Further, the hot water stored in the liquid phase part of the gas-liquid separator 7 is mixed with the supply water flowing through the pipe L3a through the pipe L6 and circulated and used.

気液分離器7の液相部に接続された配管L5に設けられた開閉弁V1は、循環水系統の塩分の濃縮防止を目的としてブローダウンするために、定期的又は一時的に開閉制御を行うほか、次のように、気液分離器7内の圧力および水位に基づく開閉制御が行われる。   The on-off valve V1 provided in the pipe L5 connected to the liquid phase part of the gas-liquid separator 7 is periodically or temporarily controlled to blow down for the purpose of preventing the concentration of salt in the circulating water system. In addition, the opening / closing control based on the pressure and the water level in the gas-liquid separator 7 is performed as follows.

すなわち、図2に示すように、開閉設定器47は、気液分離器7の圧力計32の計測値が、予め設定した上限値(本実施形態では、270kPa・abs(130℃相当)である)以上の場合に開の信号を開閉選択器49に出力し、予め設定した下限値(本実施形態では、230kPa・abs(125℃相当)である)以下の場合に閉の信号を開閉選択器49に出力すると共に、開閉設定器48は、気液分離器7の水位計33の計測値が、予め設定した上限値(本実施形態では、65%以上である)の場合に開の信号を開閉選択器49に出力し、予め設定した下限値(本実施形態では、60%以下である)の場合に閉の信号を開閉選択器49に出力する。そして、開閉選択器49では、開閉設定器47及び開閉設定器48から入力された両信号の少なくとも一方が開の場合は、開信号を開閉指令値として開閉弁V1に与え、両信号のいずれもが閉の場合は閉信号を開閉指令値として開閉弁V1に与える。   That is, as shown in FIG. 2, in the open / close setting device 47, the measured value of the pressure gauge 32 of the gas-liquid separator 7 is a preset upper limit value (in this embodiment, 270 kPa · abs (corresponding to 130 ° C.)). ) In the above case, an open signal is output to the open / close selector 49, and in the case of a preset lower limit value (230 kPa · abs (corresponding to 125 ° C.) in this embodiment), the close signal is output to the open / close selector 49, and the open / close setting device 48 outputs an open signal when the measured value of the water level gauge 33 of the gas-liquid separator 7 is a preset upper limit value (65% or more in the present embodiment). The signal is output to the open / close selector 49, and a close signal is output to the open / close selector 49 in the case of a preset lower limit value (60% or less in the present embodiment). In the open / close selector 49, when at least one of both signals inputted from the open / close setter 47 and the open / close setter 48 is open, the open signal is given to the open / close valve V1 as an open / close command value, When is closed, a close signal is given to the open / close valve V1 as an open / close command value.

(待機運転)
次に待機運転時の動作を説明する。
蒸気の需要が少なくなると、気液分離器7の圧力計32の計測値が上昇し、圧縮機コントローラ41の出力は、上下限リミッター42で制限された回転数指令値の下限値を圧縮機2に与え、回転数を最低レベルまで低下させて、媒体凝縮器3でのヒートポンプ媒体から循環水への伝熱量を低下させる。
(Standby operation)
Next, the operation during standby operation will be described.
When the demand for steam decreases, the measured value of the pressure gauge 32 of the gas-liquid separator 7 increases, and the output of the compressor controller 41 sets the lower limit value of the rotational speed command value limited by the upper / lower limiter 42 to the compressor 2. And the rotational speed is lowered to the lowest level to reduce the amount of heat transfer from the heat pump medium to the circulating water in the medium condenser 3.

気液分離器7の圧力計32の計測値が、開閉設定器47の上限値(270kPa・abs)に到達すると、開閉設定器47からの開信号により、開閉弁V1が開き、配管L5からのブローダウンにより熱を放出すると共に、これに伴いブローダウン流量相当の供給水が供給されるので、気液分離器7内の温度及び圧力が低下する。   When the measured value of the pressure gauge 32 of the gas-liquid separator 7 reaches the upper limit value (270 kPa · abs) of the open / close setter 47, the open / close valve V1 is opened by the open signal from the open / close setter 47, and from the pipe L5 While heat is released by blowdown, supply water corresponding to the blowdown flow rate is supplied accordingly, so that the temperature and pressure in the gas-liquid separator 7 are lowered.

このように、本発明によれば、蒸気の需要が少なくなり、配管L4からの蒸気の供給を停止あるいは低減している間も、ヒートポンプ媒体から供給される熱と配管L5から放出される熱をバランスさせながら、ヒートポンプの待機運転を行うことができる。
このため、再び蒸気の需要が増加した場合であっても、需要に対して速やかに対応できる。
Thus, according to the present invention, the demand for steam is reduced, and the heat supplied from the heat pump medium and the heat released from the pipe L5 are reduced while the supply of steam from the pipe L4 is stopped or reduced. A heat pump standby operation can be performed while balancing.
For this reason, even if the demand for steam increases again, it is possible to respond quickly to the demand.

1:第1排熱回収器
2:圧縮機
3:媒体凝縮器
4:媒体冷却器
5:膨張機
6:第2排熱回収器
7:気液分離器
20:ヒートポンプ循環経路
31:蒸気流量計
32:圧力計
33:水位計
41:圧縮機コントローラ
42:上下限リミッター
43:ブローダウン流量計算器
44:水位補償器
45、46:流量調節器
47、48:開閉設定器
49:開閉選択器
L1〜L6:配管
P1:供給ポンプ
P2:送液ポンプ
V1:開閉弁
1: First exhaust heat recovery unit 2: Compressor 3: Medium condenser 4: Medium cooler 5: Expander 6: Second exhaust heat recovery unit 7: Gas-liquid separator 20: Heat pump circulation path 31: Steam flow meter 32: Pressure gauge 33: Water level gauge 41: Compressor controller 42: Upper / lower limit limiter 43: Blowdown flow rate calculator 44: Water level compensator 45, 46: Flow rate regulator 47, 48: Open / close setter 49: Open / close selector L1 L6: Piping P1: Supply pump P2: Liquid feed pump V1: On-off valve

Claims (3)

外部熱源から熱を回収して媒体を加温する排熱回収器、前記排熱回収器を通過した媒体を圧縮する圧縮機、前記圧縮機で圧縮された媒体の熱を供給水に伝熱して温水及び蒸気の気液二相流を生成する媒体凝縮器、及び前記媒体凝縮器を通過した媒体を減圧して温度を下げる膨張機を有するヒートポンプ循環経路と、
前記媒体凝縮器に前記供給水を導入する給水経路と、
前記媒体凝縮器で生成した、温水及び蒸気の気液二相流を、水蒸気と水とに分離する気液分離器と、
前記気液分離器の気相部に設けられた蒸気取出し経路と、
前記気液分離器の液相部と前記給水経路とを接続する水循環経路とを備えたヒートポンプ式蒸気生成装置であって、
前記給水経路に配置された供給水量調整手段と、
前記気液分離器の液相部に設けられた排水経路と、
前記排水経路に介装された排水用の弁とを備え、
前記蒸気取出し経路からの蒸気量が低減あるいは停止した場合、前記圧縮機の運転を予め設定された最低レベルまで下げ、前記排水用の弁を開いてヒートポンプの運転を継続する待機運転を行うように制御されていることを特徴とするヒートポンプ式蒸気生成装置。
An exhaust heat recovery unit that recovers heat from an external heat source and heats the medium, a compressor that compresses the medium that has passed through the exhaust heat recovery unit, and transfers the heat of the medium compressed by the compressor to supply water A heat pump circulation path having a medium condenser that generates a gas-liquid two-phase flow of hot water and steam, and an expander that depressurizes and lowers the temperature of the medium that has passed through the medium condenser;
A water supply path for introducing the supply water into the medium condenser;
A gas-liquid separator that separates the gas-liquid two-phase flow of hot water and steam generated by the medium condenser into water vapor and water;
A vapor extraction path provided in a gas phase portion of the gas-liquid separator;
A heat pump type steam generator comprising a water circulation path connecting the liquid phase part of the gas-liquid separator and the water supply path,
Water supply amount adjusting means disposed in the water supply path;
A drainage path provided in the liquid phase part of the gas-liquid separator;
A drainage valve interposed in the drainage path,
When the amount of steam from the steam extraction path is reduced or stopped, the operation of the compressor is lowered to a preset minimum level, the drain valve is opened, and the standby operation for continuing the operation of the heat pump is performed. A heat pump type steam generator characterized by being controlled.
前記給水経路に配置された供給水量調整手段が、前記蒸気取出し経路から取り出される蒸気の流量および前記排経路から排出される排水の流量の合計に等しい流量で、前記供給水を供給するように制御されている請求項1に記載のヒートポンプ式蒸気生成装置。 As the water supply path arranged supplied water volume adjustment means, a flow rate equal to the sum of the flow rate of waste water discharged from the flow and the discharge water path of the steam withdrawn from the steam extraction route, supplying the feed water The heat pump type steam generator according to claim 1, which is controlled. 前記気液分離器内の圧力を検出する圧力計を更に備え、
前記排水用の弁は、前記圧力計の検出値が設定値以上で開き、前記圧力計の検出値が設定値以下で閉じるように制御されている請求項1又は2に記載のヒートポンプ式蒸気生成装置。
A pressure gauge for detecting the pressure in the gas-liquid separator;
3. The heat pump steam generation according to claim 1, wherein the valve for drainage is controlled so that a detected value of the pressure gauge is opened at a set value or more and a detected value of the pressure gauge is closed at a set value or less. apparatus.
JP2010161662A 2010-07-16 2010-07-16 Heat pump steam generator Expired - Fee Related JP5593906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010161662A JP5593906B2 (en) 2010-07-16 2010-07-16 Heat pump steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161662A JP5593906B2 (en) 2010-07-16 2010-07-16 Heat pump steam generator

Publications (2)

Publication Number Publication Date
JP2012021747A JP2012021747A (en) 2012-02-02
JP5593906B2 true JP5593906B2 (en) 2014-09-24

Family

ID=45776162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161662A Expired - Fee Related JP5593906B2 (en) 2010-07-16 2010-07-16 Heat pump steam generator

Country Status (1)

Country Link
JP (1) JP5593906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160142907A (en) 2015-06-03 2016-12-14 한국에너지기술연구원 A Heat Pump System for Providing Highly Heated Steam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161105A (en) * 2016-03-07 2017-09-14 富士電機株式会社 Heat pump type steam generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035063B2 (en) * 2003-01-29 2008-01-16 松下電器産業株式会社 Heat pump water heater
JP4972421B2 (en) * 2006-02-01 2012-07-11 関西電力株式会社 Heat pump steam / hot water generator
JP4636200B2 (en) * 2008-09-17 2011-02-23 三浦工業株式会社 Water supply control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160142907A (en) 2015-06-03 2016-12-14 한국에너지기술연구원 A Heat Pump System for Providing Highly Heated Steam

Also Published As

Publication number Publication date
JP2012021747A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5786449B2 (en) Heat pump steam generator
JP5593902B2 (en) Heat pump steam generator
KR101789873B1 (en) Energy recovery device and compression device, and energy recovery method
RU2467250C2 (en) Operating method of combined-cycle turbine plant, and combined-cycle turbine plant designed for that purpose
KR20170124991A (en) Thermal energy recovery device and control method
JP5691844B2 (en) Heat pump steam generator
CN105386803B (en) Low-grade waste heat power generation system capable of achieving gas-liquid hybrid recycling and control method
JP5725913B2 (en) Combined cycle plant
JP4794254B2 (en) Steam turbine plant and operation method thereof
JP2009293871A (en) Start bypass system in steam power generation facility and its operating method
JP5593906B2 (en) Heat pump steam generator
JP2017161105A (en) Heat pump type steam generator
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JP2011242018A (en) Heat pump steam generator
BR112021012941A2 (en) CONTROL METHOD AND ARRANGEMENT FOR USE IN HEAT RECOVERY FROM RESIDUAL GAS AND HEAT RECOVERY SYSTEM
JP4893218B2 (en) Heat pump system for hot water supply
KR101237450B1 (en) Heat pump system for generating steam using waste heated water
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
JP2011208875A (en) Hydraulic test method of high-pressure water supply system in power generation facility
JP6344210B2 (en) Operation method of heat pump steam generator and heat pump steam generator
JP6677063B2 (en) Heat recovery system
KR101701786B1 (en) Plant control apparatus and combined cycle power plant
JP2002156493A (en) Site heat supply equipment of nuclear power station
KR102010145B1 (en) Supercritical CO2 Power generation plant
CN112567110B (en) Control device for power generation facility, control method for power generation facility, control program for power generation facility, and power generation facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5593906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees