JP5593722B2 - Microwave heating cooker - Google Patents

Microwave heating cooker Download PDF

Info

Publication number
JP5593722B2
JP5593722B2 JP2010028490A JP2010028490A JP5593722B2 JP 5593722 B2 JP5593722 B2 JP 5593722B2 JP 2010028490 A JP2010028490 A JP 2010028490A JP 2010028490 A JP2010028490 A JP 2010028490A JP 5593722 B2 JP5593722 B2 JP 5593722B2
Authority
JP
Japan
Prior art keywords
microwave
passage hole
tray
heating cooker
cooker according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010028490A
Other languages
Japanese (ja)
Other versions
JP2011163697A (en
Inventor
浩二 吉野
龍太 近藤
大介 細川
邦昭 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010028490A priority Critical patent/JP5593722B2/en
Publication of JP2011163697A publication Critical patent/JP2011163697A/en
Application granted granted Critical
Publication of JP5593722B2 publication Critical patent/JP5593722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • H05B6/725Rotatable antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6408Supports or covers specially adapted for use in microwave heating apparatus

Description

本発明は、被加熱物にマイクロ波を放射して誘電加熱するマイクロ波加熱調理器に関する。   The present invention relates to a microwave heating cooker that performs dielectric heating by radiating microwaves to an object to be heated.

代表的なマイクロ波加熱調理器である電子レンジは、代表的な被加熱物である食品を直接的に加熱でき、鍋や釜を準備する必要がない簡便さにより、日常生活において不可欠な調理器具になっている。近年、食器を複数個並べて加熱できるように、食品を収納する加熱室内空間の底面をフラットにした形状の加熱室を持つ製品が実用化されている。   A microwave oven, which is a typical microwave heating cooker, can directly heat food that is a typical object to be heated, and it is not necessary to prepare a pan or pot, making it an indispensable cooking tool in daily life. It has become. In recent years, products having a heating chamber having a shape in which the bottom surface of the heating chamber space for storing food is flat have been put into practical use so that a plurality of dishes can be arranged and heated.

この場合、マイクロ波を庫内に放射する放射手段は、底面のフラット面をセラミック等のマイクロ波透過材料で構成してそれよりさらに下側に配置するか、あるいは天井面側に配置するものが考えられるが、食品を効率的に加熱するためにはできるだけ食品の近くからマイクロ波を放射した方が良いので、下側に配置するものが増えてきている。   In this case, the radiating means for radiating the microwave into the cabinet may be a flat surface on the bottom made of a microwave transmitting material such as ceramic and disposed further below, or disposed on the ceiling surface side. Although it is conceivable, in order to efficiently heat the food, it is better to radiate microwaves from the vicinity of the food as much as possible.

また、加熱室内のマイクロ波を外部に漏らさないように壁面を導体で形成するなどして、加熱室全体を導体で覆うように構成されている。ただし、マイクロ波の波長に比べて微小な孔であればマイクロ波が通過できないので、風や光を通すために導体の壁面にパンチング孔を設けるなどのことが一般に知られている。   Further, the entire heating chamber is covered with a conductor by, for example, forming a wall surface with a conductor so as not to leak the microwave in the heating chamber to the outside. However, it is generally known that, for example, a punching hole is provided on the wall surface of a conductor to allow wind or light to pass through because the microwave cannot pass if the hole is smaller than the wavelength of the microwave.

また、電子レンジの多機能化に伴い、オーブン機能やグリル機能を有するものも多い。オーブン機能は、ヒータであたためた空気をファンで循環させる熱風循環あるいはコンベクションと呼ばれるもので、庫内の温度を均一に高温(例えば200℃)に維持してケーキやクッキーなどの食品をじっくりと焼き上げる機能である。   In addition, many microwave ovens have an oven function and a grill function. The oven function is called hot air circulation or convection that circulates the warmed air using a heater. The oven temperature is maintained at a high temperature (for example, 200 ° C), and foods such as cakes and cookies are carefully baked. It is a function.

この場合、食品を載せるトレイについては、庫内の温度が高くなるため耐熱性のある材料で構成しなくてはならない。材料として考えられるのは、鉄、アルミ、ステンレスなどの導体か、セラミック、耐熱ガラスなどの誘電体である。   In this case, the tray on which the food is placed must be made of a heat-resistant material because the temperature inside the box becomes high. Possible materials are conductors such as iron, aluminum and stainless steel, or dielectrics such as ceramic and heat-resistant glass.

耐熱以外の要件として機械的強度(落としたりぶつけても割れにくいこと)も必要なので、セラミックや耐熱ガラスについて機械的強度を確保するためには相当分厚く(重く)せざるをえず、結果的に熱容量が大きくなってしまう。   Since mechanical strength (being difficult to break when dropped or hit) is also required as a requirement other than heat resistance, it must be made thicker (heavy) to ensure mechanical strength for ceramics and heat-resistant glass. The heat capacity becomes large.

熱容量が大きいと、特に加熱開始直後は、食品に供給したい熱の多くがトレイにも取られてしまい、庫内全体としての温度上昇が遅くなり、加熱時間が長くかかる問題がある。よって加熱時間をできるだけ短くするためには、薄くても機械的強度があり、その結果熱容量が小さくて済む導体のトレイのほうが望ましい。   When the heat capacity is large, particularly immediately after the start of heating, much of the heat that is desired to be supplied to the food is also taken into the tray, and the temperature rise as a whole in the cabinet is delayed, and there is a problem that it takes a long heating time. Therefore, in order to shorten the heating time as much as possible, it is preferable to use a conductor tray that has a mechanical strength even if it is thin, and as a result, a heat capacity is small.

グリル機能は、ヒータのそばに食品を配置して輻射熱で表面をこんがり焼く機能で、肉や魚を焼くのに向いている方法である。ヒータはミラクロンヒータやハロゲンヒータやシーズヒータなどの管型のものやマイカヒータなどの面状のものがあり、食品の上面あるいは下面に近接させて配置することが多い。   The grill function is a function that arranges food near the heater and burns the surface with radiant heat, which is suitable for grilling meat and fish. The heater includes a tube type such as a miraclon heater, a halogen heater, and a sheathed heater, and a planar type such as a mica heater, and is often arranged close to the upper or lower surface of the food.

目的により食品の上面だけを焼くとか下面だけを焼く場合もあるが、最近では上下ともに同時に早くこんがり焼くために、前述のヒータとは別にマイクロ波吸収発熱体を用いるものが増えてきている。食品を載せるトレイの下面にマイクロ波吸収発熱体を一体化し、下側から放射されるマイクロ波を吸収して発熱する熱をトレイに伝え、トレイ自体を高温
にしてトレイからの伝導熱で食品の下側を焼き上げることができる。
Depending on the purpose, only the upper surface of the food may be baked or only the lower surface may be baked, but recently, in order to simmer and burn quickly at the same time in both the upper and lower sides, the use of a microwave-absorbing heating element in addition to the above-mentioned heater is increasing. A microwave-absorbing heating element is integrated with the bottom surface of the tray on which food is placed, absorbs the microwaves emitted from the lower side, transfers heat generated to the tray, and heats the food by the heat from the tray when the tray itself is at a high temperature. The lower side can be baked.

この方法のメリットは上面を焼くヒータとの組み合わせにある。トレイを庫内の上のほうに装着することで食品を上ヒータに近づけることができて上面を効率的に焼くことができるとともに、下面は食品に接しているトレイの熱で直接焼くことができる。   The merit of this method is in combination with a heater that burns the upper surface. By attaching the tray to the upper part of the chamber, food can be brought closer to the upper heater, the upper surface can be baked efficiently, and the lower surface can be baked directly by the heat of the tray in contact with the food .

したがって、庫内容量の大きな加熱室の場合でも、トレイを上のほうに装着すれば上面も下面も同時に近接した発熱体で焼くことができ、スピーディに焼くことができる。ここで、トレイの材質については前述のオーブン機能の説明で述べたのと同様に、耐熱、機械的強度、熱容量の関係で、加熱時間をできるだけ短くするためには導体のトレイのほうが望ましい。   Therefore, even in the case of a heating chamber having a large internal volume, if the tray is mounted on the upper side, the upper surface and the lower surface can be simultaneously baked by a heating element close to each other, and the baking can be performed quickly. Here, as described in the description of the oven function, the tray material is preferably a conductor tray in order to shorten the heating time as much as possible in terms of heat resistance, mechanical strength, and heat capacity.

一方、最近の食品について、冷凍食品を使うことが増えている。市販の冷凍食品も多く供給されるようになり、家庭でも冷凍庫を利用して食品を冷凍しておく機会が増えつつある。冷凍食品をオーブンやグリルで焼きたい場合、小さなものならそのまま焼くこともできるが、サイズが大きくなると、一度解凍してから焼くという二段階の作業となる。   On the other hand, the use of frozen foods is increasing for recent foods. Many commercial frozen foods are also being supplied, and the opportunity to freeze foods using a freezer is increasing at home. If you want to bake frozen foods in an oven or grill, you can bake them as they are, but once the size is large, it is a two-step process: thaw once and bake.

なぜなら、オーブンやグリルは周囲からの熱伝導で食品を焼くために、表面が焦げるほどに至っても内部に熱が伝わらずに凍ったままで終わる可能性がある。一方電子レンジは、マイクロ波が食品の内部にまで浸透して加熱するので、短時間で解凍するにはふさわしい調理器として一般的に知られている。   Because ovens and grills bake foods by heat conduction from the surroundings, there is a possibility that even if the surface is burnt, heat is not transmitted to the inside and it is frozen. On the other hand, a microwave oven is generally known as a cooker suitable for thawing in a short time because microwaves penetrate into the food and heat it.

したがって、冷凍食品をオーブンやグリルで焼くためには、マイクロ波を組み合わせることが考えられる。しかし前述の通り、放射手段がフラット面の下側に構成されてかつトレイが導体から成る場合、マイクロ波は導体で反射されて導体上の食品には供給できない。   Therefore, in order to bake frozen foods in an oven or grill, it is conceivable to combine microwaves. However, as described above, when the radiation means is formed below the flat surface and the tray is made of a conductor, the microwave is reflected by the conductor and cannot be supplied to the food on the conductor.

そこで、トレイに孔をあけるとか、トレイと加熱室の壁面の間に隙間を設けるなどが考えられるが、むやみに大きな孔や隙間を設けるとトレイ上の食品載置面積が狭まって上に載せる食品の量が減ってしまうので、トレイの中央部は従来のままの大きさでトレイの縁に孔を開けるとか、縁をできるだけ狭くして壁面との隙間を増やすとかの方法が望まれる。   Therefore, it is conceivable to make a hole in the tray, or to provide a gap between the tray and the wall of the heating chamber. However, if a large hole or gap is unnecessarily provided, the food placement area on the tray will be narrowed and food placed on the tray. Therefore, there is a demand for a method in which the central portion of the tray is the same size as before and a hole is made in the edge of the tray, or the edge is made as narrow as possible to increase the gap with the wall surface.

しかし、従来技術を調べても、孔や隙間を具体的にどのように構成すればマイクロ波を効率的に通過させられるかについてはあまり検討されていない。   However, even if the prior art is examined, there has not been much study on how the microwaves can be passed efficiently by specifically configuring the holes and gaps.

従来技術の中では、例えば特許文献1のように、目的が異なるものの導体のトレイの孔について記載されたものがあるので、以下にその内容を説明する。図14〜図16は特許文献1の構成図であり、図14は加熱室の概略的な斜視図、図15はトレイの一案の構成図、図16はトレイの他の案の構成図である。   Among the prior arts, for example, as disclosed in Patent Document 1, there is a description of conductor tray holes having different purposes, and the contents thereof will be described below. 14 to 16 are configuration diagrams of Patent Document 1, FIG. 14 is a schematic perspective view of a heating chamber, FIG. 15 is a configuration diagram of one tray, and FIG. 16 is a configuration diagram of another proposal of the tray. is there.

底面がフラットでは無く食品を回転させるターンテーブル方式ではあるが、導体からなるトレイ(ターンテーブル)に孔をあけてマイクロ波を通過させる方法が一部提示されている。導体のトレイ1は多数の孔を有し、トレイ1の上部にガラス皿2を装着してその上に食品3を載せるもので、マイクロ波の放射手段は加熱室4の導体からなる右壁面5に放射口6として構成されている。   Although it is a turntable system in which food is rotated instead of a flat bottom surface, a method for allowing a microwave to pass through a hole in a tray (turntable) made of a conductor has been proposed. The conductor tray 1 has a large number of holes, a glass dish 2 is mounted on the top of the tray 1 and food 3 is placed thereon, and the microwave radiation means is a right wall surface 5 made of a conductor of the heating chamber 4. It is configured as a radiation port 6.

図示しないが、放射口6には導波管を介して代表的なマイクロ波発生手段のマグネトロンが接続されており、マグネトロンから発生したマイクロ波を放射口6から庫内に放射する構成である。食品3の加熱ムラを防ぐために回転軸7を中心にトレイ1を回転させてい
るが、さらに均一に加熱するためにトレイ1にマイクロ波が通過できる通過孔を設けている。
Although not shown, a magnetron of a typical microwave generating means is connected to the radiation port 6 via a waveguide, and the microwave generated from the magnetron is radiated from the radiation port 6 into the chamber. The tray 1 is rotated around the rotating shaft 7 in order to prevent the food 3 from being heated unevenly, but a passage hole through which microwaves can pass is provided in the tray 1 for further uniform heating.

その一案が図15に示される。トレイ31は、例えば鋼板等の導電材の表面にほうろう処理を施してなり、全体の外形が円形平皿状で且つ回転方向に非均質形状(中心点に関して点対称形状)をなしている。具体的には、この回転板31は、円環状の周囲枠31a内に、複数本の縦棒31b及びそれと直交する複数本の横棒31cを一体に有する格子状に構成されている。   One proposal is shown in FIG. The tray 31 is obtained by performing enamel treatment on the surface of a conductive material such as a steel plate, and has an overall outer shape of a circular flat dish and a non-homogeneous shape (a point-symmetric shape with respect to the center point) in the rotation direction. Specifically, the rotating plate 31 is configured in a lattice shape integrally including a plurality of vertical bars 31b and a plurality of horizontal bars 31c orthogonal thereto in an annular peripheral frame 31a.

その中心部には、回転軸10(図14参照)に連結されるボス部31dが設けられている。このとき、回転板31の中央部には、縦棒31bと横棒31cとから、ほぼ正方形の通過孔32が複数個(ボス部31dを囲むように4個及びその前後に2個の計6個)形成されている。   A boss portion 31d connected to the rotating shaft 10 (see FIG. 14) is provided at the center portion. At this time, a plurality of approximately square passage holes 32 (four to surround the boss portion 31d and two in front and behind the total 6) are formed in the center of the rotating plate 31 from the vertical bar 31b and the horizontal bar 31c. Formed).

この通過孔32は、その縦横の寸法cが共にマイクロ波の波長λの1/4以上にすることでマイクロ波が通過しやすくなり、例えばそれぞれ31mmとされている。回転板31の外周寄り部分(通過孔32形成部分の図で左右部位)には、図で上下方向に長い長方形状の通過孔31eがほぼ同一寸法でいくつか形成されている。   The passage holes 32 have both vertical and horizontal dimensions c that are not less than ¼ of the wavelength λ of the microwaves, so that the microwaves can easily pass through. In the portion near the outer periphery of the rotating plate 31 (left and right portions in the drawing of the passage hole 32 formation portion), several rectangular passage holes 31e elongated in the vertical direction in the figure are formed with substantially the same dimensions.

この通過孔31eは、縦方向寸法aがλ/2以上(例えば64mm)なのでマイクロ波が通過しやすく、横方向寸法bがλ/4未満(例えば30mm)しかなくても充分にマイクロ波が通過できるとされている。図16は他の一案でトレイ41の構成を示している。   Since the longitudinal dimension a is λ / 2 or more (for example, 64 mm), the passage hole 31e can easily pass microwaves, and even if the lateral dimension b is less than λ / 4 (for example, 30 mm), the microwaves can pass sufficiently. It is supposed to be possible. FIG. 16 shows the configuration of the tray 41 as another proposal.

この例のトレイ41は、中心部のハブ部41aと円環状の周囲枠(リム部)41bとの間をアーム部41cでつないだ形状である。このとき、前記アーム部41cは、3本が120度間隔で放射状に設けられており、従って、トレイ41は、120度回転(360度/n;n=3)したときに元の形状と同一形状となる回転対称形状をなしている。   The tray 41 in this example has a shape in which a hub portion 41a at the center and an annular peripheral frame (rim portion) 41b are connected by an arm portion 41c. At this time, three arm portions 41c are provided radially at intervals of 120 degrees, and therefore the tray 41 has the same original shape when rotated 120 degrees (360 degrees / n; n = 3). It has a rotationally symmetric shape.

このトレイ41には、アーム部41c間に、扇状の通過孔41eが形成されることになるが、この通過孔41eの最大直線寸法eが、マイクロ波の波長λの1/2以上の寸法となるように形成されており、その結果マイクロ波が透過可能とされている。   In the tray 41, a fan-shaped passage hole 41e is formed between the arm portions 41c. The maximum linear dimension e of the passage hole 41e is a dimension that is 1/2 or more of the microwave wavelength λ. As a result, microwaves can be transmitted.

以上、特許文献1に記載されているのは、マイクロ波は、孔の最長寸法がλ/4未満では通過しにくく、λ/4以上なら通過し、特にλ/2以上になると通過しやすいということである。   As described above, Patent Document 1 describes that microwaves are difficult to pass if the longest dimension of the hole is less than λ / 4, pass if it is greater than λ / 4, and pass more easily if it is greater than λ / 2. That is.

いずれの例もマイクロ波が通過可能な孔を有しているが、その目的は、回転によって孔の位置が変化することで電界分布を変化させるものである。つまり加熱ムラを防ぐためにトレイを回転させて食品の位置を変更するのに加えて、マイクロ波が通過できる通過孔を動かすことでマイクロ波の分布自体を変更させることをねらったものである。   Each example has a hole through which microwaves can pass, but the purpose is to change the electric field distribution by changing the position of the hole by rotation. That is, in addition to changing the position of the food by rotating the tray in order to prevent uneven heating, the microwave distribution itself is changed by moving a passage hole through which the microwave can pass.

特許第3901350号公報Japanese Patent No. 3901350

しかしながら、上記特許文献1に記載されるような従来のマイクロ波加熱調理器において、導体のトレイに設けた通過孔を通過したマイクロ波がどうなるかについては言及されていない。   However, in the conventional microwave heating cooker as described in Patent Document 1, there is no mention of what happens to the microwave that has passed through the passage hole provided in the conductor tray.

トレイの下側には食品も他の被加熱物も無いから、特に通過孔を通過したマイクロ波で何かを加熱することを期待するものではなく、通過孔を通過したマイクロ波が別の通過孔からトレイ上に戻っても良いし、トレイの周囲からトレイ上に戻っても良い。どのような経路でも良いから、最終的にマイクロ波がトレイ上に戻って食品3を加熱できれば良いのである。   There is no food or other object to be heated under the tray, so it is not expected to heat anything with microwaves that have passed through the passage hole. It may return to the tray from the hole, or may return to the tray from the periphery of the tray. Any route may be used, so long as the microwave finally returns to the tray and the food 3 can be heated.

一方、本発明の課題について説明する。導体のトレイがトレイとしての機能を損なわない範囲(トレイの縁に通過孔を設ける程度の方法)で、通過孔を介して導体の反対側にある食品にマイクロ波を供給し、いかに効率的に加熱するかは大きな課題であるが、特許文献1等には記載がない。   On the other hand, the problem of the present invention will be described. In the range where the tray of the conductor does not impair the function of the tray (a method of providing a passage hole at the edge of the tray), microwaves are supplied to the food on the opposite side of the conductor through the passage hole, how efficiently Although it is a big subject whether it heats, patent document 1 etc. have no description.

実際にマイクロ波が通過できる通過孔をいくつかあけて実験してみても、加熱効率が悪いことが多く、かつ通過孔の選び方によって大きくばらつくことがわかった。例えばIEC法などで測定した電子レンジの加熱効率(=被加熱物を水とした時の水の吸収電力/入力)は一般的には50%程度であることが知られているが、導体の縁にマイクロ波が通過できる通過孔を有するトレイ上に水を置くと、通過孔の選び方によって10%〜30%程度と大きくばらつくことがわかった。   Experiments with several through-holes through which microwaves can actually pass reveal that heating efficiency is often poor and varies greatly depending on how the through-holes are selected. For example, it is known that the heating efficiency of a microwave oven measured by, for example, the IEC method (= water absorption power / input when the object to be heated is water) is generally about 50%. It was found that when water is placed on a tray having a passage hole through which microwaves can pass at the edge, it varies greatly from about 10% to about 30% depending on how the passage hole is selected.

したがって本発明は、導体の縁にマイクロ波が通過できる通過孔を有するトレイを用いて、できるだけ効率的にトレイ上の被加熱物にマイクロ波を供給することを目的とする。   Accordingly, an object of the present invention is to supply microwaves to an object to be heated on a tray as efficiently as possible using a tray having a passage hole through which microwaves can pass at the edge of a conductor.

前記従来の課題を解決するために、本発明に係るマイクロ波加熱調理器は、導体で覆われた加熱室と、前記加熱室内にマイクロ波を供給する放射手段と、縁部を有し前記縁部の外周を前記加熱室の壁面と近接させて前記加熱室内に脱着可能に設けられ、前記加熱室を分割する導体製のトレイと、前記縁部に設けられマイクロ波を通過させるための通過孔とを備え、前記縁部と前記通過孔の間には、前記通過孔を通過する第一のマイクロ波と前記縁部の外周から回りこむ第二のマイクロ波が前記トレイ上で逆位相になって互いに打ち消しあうことを防ぐ遮蔽部とを備えたものである。





























In order to solve the above-described conventional problems, a microwave heating cooker according to the present invention includes a heating chamber covered with a conductor, radiating means for supplying microwaves to the heating chamber, and an edge. removably provided in the heating chamber to the outer peripheral parts in proximity with the wall surface of the heating chamber, passage for passing the tray made of conductors dividing, the provided before Kien unit microwave the heating chamber A first microwave that passes through the passage hole and a second microwave that wraps around from the outer periphery of the edge are in opposite phases on the tray. And having a shielding portion for preventing them from canceling each other out .





























上記構成により、通過孔を通過するマイクロ波と縁部の外周から回りこむマイクロ波がトレイ上で逆位相になって互いに打ち消しあうことを防ぎ、効率的にトレイ上にマイクロ波を供給することができる。   With the above configuration, it is possible to prevent the microwave passing through the passage hole and the microwave that circulates from the outer periphery of the edge from being reversed in phase on the tray and canceling each other out, and efficiently supplying the microwave onto the tray. it can.

本発明のマイクロ波加熱調理器は、通過孔を通過するマイクロ波と縁部の外周から回りこむマイクロ波がトレイ上で逆位相になって互いに打ち消しあうことを防ぎ、効率的にトレイ上にマイクロ波を供給することができる。   The microwave heating cooker according to the present invention prevents the microwave passing through the passage hole and the microwave that circulates from the outer periphery of the edge from being reversed in phase on the tray and canceling each other out efficiently. Can supply waves.

本発明の第一の実施の形態に係るマイクロ波加熱調理器である電子レンジの内部構造とマイクロ波の流れを示す斜視図The perspective view which shows the internal structure of the microwave oven which is a microwave heating cooker which concerns on 1st embodiment of this invention, and the flow of a microwave 図1の電子レンジの正面断面図Front sectional view of the microwave oven of FIG. 図2の電子レンジのA−A断面及外部構成を示す図The figure which shows the AA cross section and external structure of the microwave oven of FIG. 図1の電子レンジのトレイと放射手段の位置関係を示す説明図Explanatory drawing which shows the positional relationship of the tray and radiation | emission means of the microwave oven of FIG. 図1の電子レンジの二つの通過孔を通過したマイクロ波の位相を示す特性図The characteristic figure which shows the phase of the microwave which passed two passage holes of the microwave oven of FIG. 図1の電子レンジの他のマイクロ波の流れを示す斜視図The perspective view which shows the other microwave flow of the microwave oven of FIG. 本発明の第二の実施の形態に係るマイクロ波加熱調理器である電子レンジの正面断面図Front sectional drawing of the microwave oven which is a microwave heating cooking appliance which concerns on 2nd embodiment of this invention 図7の電子レンジのA−A断面及外部構成を示す図The figure which shows the AA cross section and external structure of the microwave oven of FIG. 図7の電子レンジのトレイと放射手段の位置関係を示す説明図Explanatory drawing which shows the positional relationship of the tray and radiation | emission means of the microwave oven of FIG. 図9のトレイのB−B断面図BB cross section of the tray of FIG. 本発明の第三の実施の形態に係るトレイの円形状の通過孔の構成図The block diagram of the circular passage hole of the tray which concerns on 3rd embodiment of this invention 本発明の第四の実施の形態に係るトレイの多角形の通過孔の構成図The block diagram of the polygonal passage hole of the tray which concerns on 4th embodiment of this invention 本発明の第五の実施の形態に係るトレイのコーナー部の通過孔の構成図The block diagram of the passage hole of the corner part of the tray which concerns on 5th embodiment of this invention 従来のマイクロ波加熱調理器である電子レンジの内部構造を示す斜視図The perspective view which shows the internal structure of the microwave oven which is the conventional microwave heating cooker 図14の電子レンジのトレイの一案の構成図FIG. 14 is a block diagram of a draft of the microwave oven tray of FIG. 図14の電子レンジのトレイの他の案の構成図14 is a configuration diagram of another plan of the tray of the microwave oven of FIG.

(実施の形態1)
以下に、図1〜図6を参照して、本発明の実施の形態に係るマイクロ波加熱調理器について電子レンジを例として説明する。
(Embodiment 1)
Below, with reference to FIGS. 1-6, the microwave oven is demonstrated about the microwave heating cooker which concerns on embodiment of this invention as an example.

図1は正面上方から庫内を見た斜視図であり電子レンジの内部構造とマイクロ波の流れを示す図、図2は正面から見た断面図、図3は図2のA−A断面図、図4はトレイを真上から見た図でトレイと放射手段との位置関係を示す説明図、図5は二つの通過孔を通過したマイクロ波の位相を示す特性図、図6は図1とは異なるマイクロ波の流れを示す図である。   FIG. 1 is a perspective view of the interior as viewed from the front, showing the internal structure of the microwave oven and the flow of microwaves, FIG. 2 is a cross-sectional view seen from the front, and FIG. 3 is a cross-sectional view taken along the line AA in FIG. 4 is a diagram of the tray viewed from directly above, illustrating the positional relationship between the tray and the radiation means, FIG. 5 is a characteristic diagram illustrating the phase of the microwaves that have passed through the two passage holes, and FIG. It is a figure which shows the flow of a different microwave.

加熱室51は前方を除いて導体の壁面で一体化されており、前方はドア52の内部の導体53が対向しているので、加熱室全体が導体に覆われている。加熱室内にマイクロ波を供給する放射手段54は、セラミックやガラスなどの誘電体からなるプレート55よりも下方にあり、使用者が庫内を見たときにはプレート55によって底面がフラットに見えている。   The heating chamber 51 is integrated with the wall surface of the conductor except for the front. Since the conductor 53 inside the door 52 faces the front, the entire heating chamber is covered with the conductor. The radiating means 54 for supplying microwaves into the heating chamber is below the plate 55 made of a dielectric material such as ceramic or glass, and when the user looks inside the chamber, the plate 55 makes the bottom surface look flat.

放射手段54は、代表的なマイクロ波発生手段のマグネトロン56が放射したマイクロ波を、導波管57を介して加熱室底面に導き、加熱室底面に配置された回転アンテナ58を通じて、庫内にマイクロ波を放射している。   The radiating means 54 guides the microwave radiated from the magnetron 56 as a typical microwave generating means to the bottom surface of the heating chamber via the waveguide 57, and enters the inside through the rotating antenna 58 disposed on the bottom surface of the heating chamber. Microwaves are radiated.

マイクロ波を攪拌する回転体として代表的な回転アンテナ58は、特定の方向(図の場合は矢線方向)にマイクロ波の放射指向性を有するもので、設定手段59の設定内容に基づき、制御手段60が駆動手段61を制御して、回転アンテナの向きを自在に制御するものである。回転させたり所定の向きで停止させたりすることが可能である。制御手段60はコンベクション62のヒータ63とファン64も制御する。   A rotating antenna 58, which is a typical rotating body that stirs microwaves, has microwave radiation directivity in a specific direction (in the direction of the arrow in the figure), and is controlled based on the setting contents of the setting means 59. The means 60 controls the driving means 61 to freely control the direction of the rotating antenna. It can be rotated or stopped in a predetermined orientation. The control means 60 also controls the heater 63 and the fan 64 of the convection 62.

トレイ65は導体製で表面をホーロー加工したもので、周囲に一段高い縁部66を有し、マイクロ波が通過するスリット形状の通過孔67を有している。ここで空気中のマイクロ波の波長λはλ=C/fで表され、Cは光の速度(3.0×10の8乗[m/s])、fは周波数(電子レンジでは約2.45[GHz])のため、波長λは約120mmである。スリット形状は長さを波長の1/2の略90%の55mmとし、幅を波長の1/4未満の6mm程度としている。   The tray 65 is made of a conductor and has a hollow surface. The tray 65 has a peripheral edge 66 that is one step higher, and has a slit-shaped passage hole 67 through which microwaves pass. Here, the wavelength λ of the microwave in the air is expressed as λ = C / f, C is the speed of light (3.0 × 10 8 [m / s]), and f is the frequency (about 2 in the microwave oven). .45 [GHz]), the wavelength λ is about 120 mm. The slit shape has a length of 55 mm, which is approximately 90% of ½ of the wavelength, and a width of about 6 mm which is less than ¼ of the wavelength.

トレイ65を加熱室51に装着する場合、被加熱物の食品68をトレイ65に載せ、トレイ65ごと加熱室壁面のレール69A、69B、69Cのいずれかに載せるもので、図2図3では中段のレール69Bに装着している。これにより、トレイ65の外周70が導体からなる加熱室51壁面およびドア52の導体53と近接することになり、加熱室51をトレイ65で上下に分割したようになる。   When the tray 65 is mounted in the heating chamber 51, the food 68 to be heated is placed on the tray 65, and the tray 65 is placed on one of the rails 69A, 69B, 69C on the heating chamber wall surface. It is attached to the rail 69B. As a result, the outer periphery 70 of the tray 65 comes close to the wall surface of the heating chamber 51 made of a conductor and the conductor 53 of the door 52, and the heating chamber 51 is divided up and down by the tray 65.

加熱室51壁面はフッ素加工されており、トレイ65の表面のホーローと壁面の表面の
フッ素によりトレイ65の導体と壁面導体とは絶縁されているので、わずかながらマイクロ波が通過することができる。通過孔67と外周70との間隔は35mmでマイクロ波の波長の1/4の30mmより大きくしている。
The wall surface of the heating chamber 51 is processed with fluorine, and since the conductor of the tray 65 and the wall surface conductor are insulated by the enamel on the surface of the tray 65 and the fluorine on the surface of the wall surface, a slight amount of microwave can pass therethrough. The interval between the passage hole 67 and the outer periphery 70 is 35 mm and is larger than 30 mm, which is 1/4 of the wavelength of the microwave.

以下、通過孔67と外周70の間の導体部分を便宜上、遮蔽部71と呼ぶことにする。   Hereinafter, the conductor portion between the passage hole 67 and the outer periphery 70 will be referred to as a shielding portion 71 for convenience.

放射手段の回転アンテナは庫内の特に左右の中央に配置されており、図4のようにトレイ65の通過孔67は縁部66の手前の一辺にのみ配置されている。   The rotating antenna of the radiating means is arranged at the center of the left and right in the cabinet, and the passage hole 67 of the tray 65 is arranged only on one side before the edge 66 as shown in FIG.

本実施の形態では、回転アンテナ58の指向性の強い向きを図4のように通過孔67に向けたときに効率が上がるように回転アンテナ58や導波管57などの最適化を行ってマッチングさせている。   In the present embodiment, matching is performed by optimizing the rotating antenna 58, the waveguide 57, etc. so that the efficiency increases when the direction in which the rotating antenna 58 has a strong directivity is directed to the passage hole 67 as shown in FIG. I am letting.

以上の構成により、本実施の形態のマイクロ波加熱調理器は、導体で覆われた加熱室51と、前記加熱室51内にマイクロ波を供給する放射手段54と、縁部66を有し前記縁部66の外周70を前記加熱室51の壁面と近接させて前記加熱室内に脱着可能に設けられ、前記加熱室51を分割する導体製のトレイ65と、前記縁部66の外周70から前記マイクロ波の波長の1/4より大きな間隔をあけて前記縁部66に設けられ、マイクロ波を通過させるための通過孔67とを備えている。   With the above configuration, the microwave heating cooker of the present embodiment includes the heating chamber 51 covered with a conductor, the radiating means 54 for supplying the microwave into the heating chamber 51, and the edge 66. An outer periphery 70 of the edge portion 66 is provided so as to be detachable from the heating chamber 51 in the vicinity of the wall surface of the heating chamber 51. The conductor tray 65 that divides the heating chamber 51 and the outer periphery 70 of the edge portion 66 The edge portion 66 is provided with an interval larger than ¼ of the wavelength of the microwave, and a passage hole 67 for allowing the microwave to pass therethrough is provided.

放射手段の回転アンテナ58から放射されたマイクロ波は、通過孔67だけでなく、縁部66の外周70と加熱室51壁面が近接しているものの絶縁コーティングされているため、その間も通過してトレイ65の上方に伝送される。   The microwave radiated from the rotating antenna 58 of the radiating means is not only the passage hole 67 but also the outer periphery 70 of the edge 66 and the wall surface of the heating chamber 51 are close to each other. It is transmitted above the tray 65.

このとき、通過孔67と外周70間の距離が近いとあまり伝送されず、ある程度より距離が離れると伝送されやすいことがわかった。トレイ65上に水を置いたときの加熱効率で言えば、距離が近いと10%しかなかったものが、距離を離すと30%まで改善した。これは、波長λの1/4程度の距離を境に変化することが原因ではないかと考えられる。   At this time, it was found that when the distance between the passage hole 67 and the outer periphery 70 is short, the transmission is not so much, and when the distance is more than a certain distance, the transmission is easy. Speaking of the heating efficiency when water was placed on the tray 65, it was only 10% when the distance was short, but improved to 30% when the distance was increased. This is considered to be caused by a change at a distance of about ¼ of the wavelength λ.

この理由について考察する。図5のように、マイクロ波は正弦波であり、波長λは前述の通り120mm程度である。特定の位置αについて考えると時間的に振幅が増減するだけであるが、伝送方向に対して位置をずらすと振幅は同じでも位相が変化する。例えば半波長(λ/2)離れた位置βだと完全に位相が逆になり、一波長(λ)離れた位置γだと同位相である。これは距離が離れても、波長の関数として繰り返される。   Consider the reason. As shown in FIG. 5, the microwave is a sine wave, and the wavelength λ is about 120 mm as described above. Considering a specific position α, the amplitude only increases or decreases in time, but if the position is shifted with respect to the transmission direction, the phase changes even if the amplitude is the same. For example, the phase is completely reversed at a position β separated by a half wavelength (λ / 2), and the phase is the same at a position γ separated by one wavelength (λ). This is repeated as a function of wavelength, even at distances.

これを図1に当てはめてみる。放射手段54から放射されたマイクロ波が左の壁面とトレイ65との隙間の直前で二つに分かれて矢線72と矢線73になったとして、ポイント74でのマイクロ波の位相に注目すると、矢線72のマイクロ波のポイント74での位相を基準(位相0度、図5のαに相当)とすると、矢線73のマイクロ波は通過孔67までの距離を往復するために位相がずれるが、もし通過孔67までの距離がちょうどλ/4の場合は往復でλ/2のずれとなり、即ち位相90度、図5のβに相当する。   This is applied to FIG. When the microwave radiated from the radiating means 54 is divided into two in front of the gap between the left wall surface and the tray 65 and becomes an arrow line 72 and an arrow line 73, when attention is paid to the phase of the microwave at the point 74 When the phase at the point 74 of the microwave of the arrow 72 is a reference (phase 0 degree, corresponding to α in FIG. 5), the microwave of the arrow 73 reciprocates the distance to the passage hole 67, and thus the phase However, if the distance to the passage hole 67 is exactly λ / 4, a reciprocal shift of λ / 2 occurs, that is, the phase is 90 degrees, which corresponds to β in FIG.

このとき、ポイント74では矢線72と矢線73のマイクロ波が重なり合うので逆位相の正弦波の合成となり両者の振幅が同じ場合は完全に合成波の振幅が0となる。つまりマイクロ波が伝送されないのである。   At this time, since the microwaves of the arrow line 72 and the arrow line 73 overlap at the point 74, the sine waves having opposite phases are combined, and when both amplitudes are the same, the amplitude of the combined wave is completely zero. That is, microwaves are not transmitted.

通過孔67までの距離がもっと短い場合については、一瞬そうならないように思われるが、実は通過孔67がある程度の大きさがあるために通過孔のどこを通るかによって、距離がλ/4になることが充分に起こり、マイクロ波が伝送されない場合が起こりうる。   When the distance to the passage hole 67 is shorter, it seems that it does not happen for a moment, but since the passage hole 67 has a certain size, the distance becomes λ / 4 depending on where the passage hole passes. This can happen enough and the microwaves may not be transmitted.

一方、本実施の形態のように、構成上、通過孔67までの距離をλ/4より離して配置すれば、少なくとも図5のαとβの関係にはならず、マイクロ波が打ち消されて伝送されないようなことは起こらない。   On the other hand, if the distance to the passage hole 67 is arranged apart from λ / 4 as in the present embodiment, at least the relationship between α and β in FIG. 5 does not occur and the microwave is canceled out. Nothing happens that is not transmitted.

厳密にはもっと距離を離した場合、往復の距離が3×λ/2、5×λ/2など、λ/2の奇数倍となれば打ち消されることも可能性としては考えられるが、マイクロ波はいろいろな方向に拡散すると言われており、遠く離れた通過孔に向かったマイクロ波がユーターンしてもとの位置に戻ってくる割合は極めて少ないと考えられ、つまり最も近接した条件(往復距離λ/2)のみを除去すれば充分に効率が改善するのではないかと考えられる。   Strictly speaking, when the distance is further increased, the round trip distance may be canceled if it becomes an odd multiple of λ / 2, such as 3 × λ / 2, 5 × λ / 2, etc. Is said to diffuse in various directions, and it is thought that the rate at which microwaves directed to distant passage holes return to their original positions is extremely small, that is, the closest condition (round trip distance) It is thought that if only λ / 2) is removed, the efficiency is sufficiently improved.

ちなみに、図6は図1とは逆に右の通過孔67を基準に考えた図であるが、同様のことが起こり、つまり隙間と通過孔の片方からの通過が阻害される関係にあれば他方からの通過も阻害されることになる。   Incidentally, FIG. 6 is a diagram in which the right passage hole 67 is considered as a reference contrary to FIG. 1, but the same thing occurs, that is, if the gap and the passage from one of the passage holes are obstructed. The passage from the other side is also inhibited.

以上により、トレイ65の外周70よりマイクロ波の波長の1/4より大きな間隔をあけて通過孔67を配置することで、壁面と外周の間の隙間を通過するマイクロ波と通過孔67を通過するマイクロ波がトレイ65上で逆位相になって互いに打ち消しあうことを防ぎ、効率的にトレイ65上にマイクロ波を供給することができる。   As described above, the passage hole 67 is arranged at a distance larger than ¼ of the wavelength of the microwave from the outer periphery 70 of the tray 65, so that the microwave passing through the gap between the wall surface and the outer periphery passes through the passage hole 67. Therefore, it is possible to prevent the microwaves that are in reverse phase on the tray 65 from canceling each other and efficiently supply the microwaves onto the tray 65.

本実施の形態では、通過孔67の最長部分の長さを波長の1/4以上とすることでトレイ65上にマイクロ波を供給しているが、特に通過孔67は略スリット形状とし、最長部分の長さを波長の1/2の略90%の55mm、幅を波長の1/4未満の6mmとしている。マイクロ波の通過のためには波長の1/4以上で特に波長の1/2以上が望ましいと思われていたが、波長の1/2の略90%以上であれば充分供給できるとわかった。   In the present embodiment, the microwave is supplied onto the tray 65 by setting the length of the longest portion of the passage hole 67 to ¼ or more of the wavelength. In particular, the passage hole 67 has a substantially slit shape and has the longest length. The length of the portion is 55 mm which is approximately 90% of ½ of the wavelength, and the width is 6 mm which is less than ¼ of the wavelength. In order to pass microwaves, it was thought that ¼ or more of the wavelength and particularly ½ or more of the wavelength was desirable, but it was found that sufficient supply was possible if it was about 90% or more of ½ of the wavelength. .

特定の方向にマイクロ波の放射指向性を有する回転体の回転アンテナ58と、前記回転アンテナ58の停止や回転を制御する制御手段60を有する構成としたので、目的に応じて適切に加熱できる。   Since the rotating antenna 58 of the rotating body having microwave radiation directivity in a specific direction and the control means 60 for controlling the stop and rotation of the rotating antenna 58 are provided, heating can be appropriately performed according to the purpose.

例えば、通常のあたためなどを行うときは、トレイ65も装着されないので、回転アンテナ58を回転させて均一に加熱するが、オーブン調理のときはトレイ65を装着するので、回転アンテナ58を通過孔に向けて停止させる、というような制御が可能である。   For example, since the tray 65 is not mounted when performing normal warming or the like, the rotating antenna 58 is rotated and heated uniformly. However, when the oven is cooked, the tray 65 is mounted, so the rotating antenna 58 is used as a passage hole. It is possible to perform control such as stopping the vehicle.

特に、回転アンテナ58の回転の途中に放射指向性の強い向き75が通過孔67を向くとき(図4)に停止または減速させるよう制御すれば、この向きで効率が上がるように(通過孔67からのマイクロ波の伝送が増えるように)回転アンテナ58や導波管57などの最適化を行ってマッチングさせているので、確実に効率が上がる。   In particular, if the direction 75 having a strong radiation directivity is directed to the passage hole 67 during the rotation of the rotary antenna 58 (FIG. 4), it is controlled so as to be stopped or decelerated (the passage hole 67). Since the rotation antenna 58, the waveguide 57, and the like are optimized and matched (so that the transmission of microwaves from is increased), the efficiency is surely increased.

通過孔67の最長部分を放射手段に向けて配置する構成としており、通過孔67の幅が狭くても伝送されるマイクロ波を効果的に通過させることができる。   The longest portion of the passage hole 67 is arranged toward the radiating means, and the transmitted microwave can be effectively passed even if the width of the passage hole 67 is narrow.

縁部66の外周70と加熱室51の壁面をそれぞれ絶縁コーティングすることで両者の間に絶縁体を介在させ、外周70と前記壁面の間をマイクロ波が通過できる構成とした。もちろんコーティングは一方だけすれば良いかもしれない。   The outer periphery 70 of the edge portion 66 and the wall surface of the heating chamber 51 are respectively subjected to an insulating coating so that an insulator is interposed between them, and microwaves can pass between the outer periphery 70 and the wall surface. Of course, only one side of the coating may be necessary.

(実施の形態2)
図7〜図10を参照して、本発明の実施の形態2に係るマイクロ波加熱調理器について電子レンジを例として説明する。
(Embodiment 2)
With reference to FIGS. 7-10, the microwave heating cooker which concerns on Embodiment 2 of this invention is demonstrated using a microwave oven as an example.

図7は正面から見た断面図、図8は図7のA−A断面図、図9はトレイを真上から見た
図でトレイと放射手段との位置関係を示す説明図、図10は図9のトレイのB−B断面図である。
7 is a cross-sectional view seen from the front, FIG. 8 is a cross-sectional view taken along the line AA of FIG. 7, FIG. 9 is a view seen from directly above the tray, and is an explanatory view showing the positional relationship between the tray and the radiating means. It is BB sectional drawing of the tray of FIG.

本実施の形態が実施の形態1と異なるのは、まずオーブン機能の代わりにグリル機能を持たせるために、庫内天面に三本の管状ヒータ76A、76B、76Cを配置していることである。制御手段60は管状ヒータ76A、76B、76Cの通電も制御する。   The present embodiment is different from the first embodiment in that three tubular heaters 76A, 76B, and 76C are arranged on the top surface of the interior in order to provide a grill function instead of the oven function. is there. The control means 60 also controls energization of the tubular heaters 76A, 76B, and 76C.

グリル機能を良くするために上段のレール69Aにトレイ77を装着して、管状ヒータ76A、76B、76Cに近づけて食品68の上面をスピーディに焼き上げる。   In order to improve the grill function, the tray 77 is attached to the upper rail 69A, and the upper surface of the food 68 is quickly baked close to the tubular heaters 76A, 76B, 76C.

一方、食品の下面を焼くために、トレイ77の下面にマイクロ波吸収発熱体78を一体化している。通過孔79A、79Bは左右の縁部の対向する二辺に配置し、通過孔79A、79BをふさぐようにPPSなどの誘電体からなるカバー80を有する。   On the other hand, in order to bake the lower surface of the food, a microwave absorption heating element 78 is integrated with the lower surface of the tray 77. The passage holes 79A and 79B are disposed on two opposite sides of the left and right edges, and have a cover 80 made of a dielectric material such as PPS so as to close the passage holes 79A and 79B.

カバー80は、通過孔79A、79Bの端面が露出しないようにする安全性向上の効果だけでなく、誘電体は絶縁体と等しいのでトレイ77と加熱室51の壁面との間に介在して両者の隙間(絶縁距離)を増やす効果と、同時に、通過孔を通過するマイクロ波の波長を圧縮する効果がある。   The cover 80 not only has the effect of improving the safety so that the end surfaces of the passage holes 79A and 79B are not exposed, but the dielectric is equivalent to the insulator, so that the cover 80 is interposed between the tray 77 and the wall surface of the heating chamber 51. This has the effect of increasing the gap (insulating distance) and simultaneously compressing the wavelength of the microwave passing through the passage hole.

前述の通り、空気中のマイクロ波の波長λはλ=C/fであるが、比誘電率εの誘電体中のマイクロ波の波長λは空気中の波長をλ0とするとλ=λ0/√εに圧縮されるのである。   As described above, the wavelength λ of the microwave in the air is λ = C / f, but the wavelength λ of the microwave in the dielectric having the relative permittivity ε is λ = λ0 / √ where the wavelength in the air is λ0. It is compressed to ε.

したがって、カバー80の比誘電率を例えば2とすると、マイクロ波が通過できる通過孔の最小寸法はλ0/(4√2)以上となり、空気中では30mm以上だったものが、21mm以上でも良くなる。そのため、本実施の形態では通過孔79A、79Bの最長寸法を28mmに選んでいる。   Therefore, when the relative dielectric constant of the cover 80 is, for example, 2, the minimum dimension of the passage hole through which the microwave can pass is λ0 / (4√2) or more, and in air, the minimum dimension is 30 mm or more, but 21 mm or more is acceptable. . Therefore, in this embodiment, the longest dimension of the passage holes 79A and 79B is selected to be 28 mm.

以上のように本発明によれば、通過孔79A、79Bに比誘電率εの誘電体カバー80を有し、前記通過孔79A、79Bの最長部分の長さを波長の1/(4√ε)以上とすることで、トレイ77上にマイクロ波を供給することができる。   As described above, according to the present invention, the through holes 79A and 79B have the dielectric cover 80 having the relative dielectric constant ε, and the length of the longest portion of the through holes 79A and 79B is 1 / (4√ε ) By the above, microwaves can be supplied onto the tray 77.

また、通過孔79A、79Bの最長部分を放射手段に向けて配置する構成としており、通過孔79A、79Bの幅が狭くても伝送されるマイクロ波を効果的に通過させることができる。   In addition, the longest portions of the passage holes 79A and 79B are arranged toward the radiating means, and the transmitted microwaves can be effectively passed even if the widths of the passage holes 79A and 79B are narrow.

また、縁部の外形を略長方形状とし、複数の通過孔79A、79Bは前記縁部66の対向する二辺に配置する構成としたので、トレイ77の左右を間違えて装着しても通過孔79A、79Bの位置が変わらないので、入れ間違いによる問題が起こらない。   Further, the outer shape of the edge portion is substantially rectangular, and the plurality of passage holes 79A and 79B are arranged on the two opposite sides of the edge portion 66. Since the positions of 79A and 79B do not change, there is no problem due to incorrect insertion.

回転の途中に放射指向性の強い向き75が通過孔79A、79Bを向くときに停止または減速させるよう制御し、あらかじめこの向きで効率が上がるように(両方の通過孔79A、79Bからのマイクロ波の伝送が増えるように)回転アンテナ58や導波管57などの最適化を行ってマッチングさせていれば、確実に効率が上がる。   Control is made to stop or decelerate when the direction 75 with strong radiation directivity faces the passage holes 79A and 79B during the rotation, so that the efficiency is increased in this direction in advance (the microwaves from both passage holes 79A and 79B). If the rotation antenna 58, the waveguide 57, and the like are optimized and matched, the efficiency is surely increased.

特に、回転の途中に放射指向性の強い向き75が複数の通過孔79A、79Bを向くときに順次停止または減速させるよう制御すれば、トレイ77上のマイクロ波の分布も左右対称となることが予測され、一箇所だけの時よりも分布改善の効果が期待できる。   In particular, if the direction 75 having a strong radiation directivity is controlled to stop or decelerate sequentially when the direction 75 having a strong radiation directivity faces the plurality of passage holes 79A and 79B during the rotation, the microwave distribution on the tray 77 may be symmetrical. It is predicted and the effect of distribution improvement can be expected compared with the case of only one place.

特に、本実施の形態においては、回転アンテナ58の向きにより、マイクロ波をマイク
ロ波吸収発熱体78に集中させる第一のモードと、マイクロ波を通過孔79A、79B上に伝送させる第二のモードを有する。例えば、回転アンテナが図9のように通過孔79A、79Bを向くときには第二のモード、図9とは異なり図の上向きや下向きのときには第一のモードとなるように回転アンテナ58や導波管57などを最適化すれば実現可能である。
In particular, in the present embodiment, the first mode in which the microwave is concentrated on the microwave absorption heating element 78 and the second mode in which the microwave is transmitted to the passage holes 79A and 79B depending on the direction of the rotating antenna 58. Have For example, as shown in FIG. 9, the rotating antenna 58 and the waveguide are in the second mode when the rotating antenna faces the passage holes 79A and 79B, and unlike the case in FIG. This can be achieved by optimizing 57 and the like.

食品が冷凍品の場合は、まず第二のモードでマイクロ波による解凍を行い、ある程度食品が解凍された後は第一のモードに切り替えて底面から焼き上げるような制御が可能である。このように制御することで、短時間でおいしいグリル調理ができる。   When the food is a frozen product, it is possible to control by first thawing with microwaves in the second mode, switching to the first mode after the food has been thawed to some extent, and baking from the bottom. By controlling in this way, delicious grill cooking can be performed in a short time.

また、通過孔の最長部分を外周70と平行に配置する構成としたので、外周70と通過孔79A、79Bとの距離を一定に保つことができ、安定してマイクロ波をトレイ上に供給できる。
縁部の外周70に絶縁体のカバーを装着したので確実に隙間を広く確保できる。
なお加熱室の壁面側に絶縁体を装着する構成も考えられる。
Further, since the longest portion of the passage hole is arranged in parallel with the outer periphery 70, the distance between the outer periphery 70 and the passage holes 79A and 79B can be kept constant, and the microwave can be stably supplied onto the tray. .
Since an insulating cover is attached to the outer periphery 70 of the edge, a wide gap can be ensured reliably.
A configuration in which an insulator is attached to the wall surface of the heating chamber is also conceivable.

なお図10のようにトレイ77の外周70をカーリングすることで、通過孔79Bと外周70の距離は、上側と比べて下側が長くなるとも考えられる。ここを考慮することで、もう少し距離を短くできる可能性がある。   Note that, by curling the outer periphery 70 of the tray 77 as shown in FIG. 10, it is considered that the distance between the passage hole 79B and the outer periphery 70 is longer on the lower side than on the upper side. Considering this, there is a possibility that the distance can be shortened a little more.

(実施の形態3)
図11は、本発明の第三の実施の形態に係るトレイの円形状の通過孔81の構成図である。通過孔81は略円形状とし、直径を波長の1/4以上の35mmとしている。円形の場合は、どの方向からきたマイクロ波も同等に通過させることができる。楕円なら長径が波長の1/4以上となるように構成すれば通過可能である。
(Embodiment 3)
FIG. 11 is a configuration diagram of the circular passage hole 81 of the tray according to the third embodiment of the present invention. The passage hole 81 is substantially circular and has a diameter of 35 mm, which is 1/4 or more of the wavelength. In the case of a circle, microwaves from any direction can be passed through equally. If it is an ellipse, it can pass if it is configured so that the major axis is ¼ or more of the wavelength.

(実施の形態4)
図12は、本発明の第四の実施の形態に係るトレイの多角形の通過孔82の構成図である。通過孔82は略8角形とし、最長の対辺の距離を波長の1/4以上の40mmとしている。
(Embodiment 4)
FIG. 12 is a configuration diagram of the polygonal passage hole 82 of the tray according to the fourth embodiment of the present invention. The passage hole 82 is substantially octagonal, and the distance between the longest opposite sides is 40 mm, which is 1/4 or more of the wavelength.

(実施の形態5)
図13は、本発明の第五の実施の形態に係るトレイのコーナー部83の通過孔84の構成図である。通過孔84は前記縁部66のコーナー部83のRに沿うように径と配置を選ぶことでどこから見ても外周と通過孔までの距離を一定にできるので、きわめて効率的にトレイ上にマイクロ波を供給できる。
(Embodiment 5)
FIG. 13 is a configuration diagram of the passage hole 84 of the corner portion 83 of the tray according to the fifth embodiment of the present invention. By selecting the diameter and arrangement of the passage hole 84 along the R of the corner portion 83 of the edge portion 66, the distance between the outer periphery and the passage hole can be made constant from any point of view. Can supply waves.

以上、本発明について実施の形態について詳細に説明したが、複数の通過孔間の導体部分(遮蔽部73)には通過できない程度の孔があってもよい。   As mentioned above, although embodiment was described in detail about this invention, the hole of the grade which cannot pass may be in the conductor part (shielding part 73) between several through-holes.

さらに、食品をトレイの上とトレイの下に配置して上下の二段同時調理をしても良く、複数の通過孔の場合は形状が同じでなくて異なったものを組み合わせても良い。   Furthermore, food may be placed on the tray and below the tray for simultaneous upper and lower two-stage cooking, and in the case of a plurality of passage holes, different shapes may be combined.

複数の通過孔の場合の複数とは2つとは限らず、多数あっても良いが、外周と通過孔の間隔のすべてを波長の1/4より大きくするべきである。   In the case of a plurality of through holes, the number of the plurality of through holes is not limited to two, and there may be many.

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な変更や修正を加えることができることは、当業者にとって明らかである。   Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.

本発明は、解凍と連動してヒータ加熱を行う電子レンジ等のマイクロ波加熱装置に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a microwave heating apparatus such as a microwave oven that performs heater heating in conjunction with thawing.

51 加熱室
54 放射手段
58 回転アンテナ
60 制御手段
65、77 トレイ
66 縁部
67、79a、79b、81、82、84 通過孔
70 外周
75 放射指向性の強い向き
80a、80b カバー(誘電体、絶縁体)
51 Heating chamber 54 Radiating means 58 Rotating antenna 60 Control means 65, 77 Tray 66 Edge 67, 79a, 79b, 81, 82, 84 Passing hole 70 Outer circumference 75 Direction with strong radiation directivity 80a, 80b Cover (dielectric, insulation) body)

Claims (13)

導体で覆われた加熱室と、
前記加熱室内にマイクロ波を供給する放射手段と、
縁部を有し前記縁部の外周を前記加熱室の壁面と近接させて前記加熱室内に脱着可能に設けられ、前記加熱室を分割する導体製のトレイと
記縁部に設けられマイクロ波を通過させるための通過孔とを備え
前記縁部と前記通過孔の間には、前記通過孔を通過する第一のマイクロ波と前記縁部の外周から回りこむ第二のマイクロ波が前記トレイ上で逆位相になって互いに打ち消しあうことを防ぐ遮蔽部とを備えたマイクロ波加熱調理器。
A heating chamber covered with a conductor;
Radiation means for supplying microwaves into the heating chamber;
A conductive tray that divides the heating chamber, and has an edge, and is provided detachably in the heating chamber with the outer periphery of the edge close to the wall surface of the heating chamber ;
And a passage hole for passing the provided before Kien portion microwaves,
Between the edge and the passage hole, the first microwave passing through the passage hole and the second microwave that wraps around from the outer periphery of the edge are opposite in phase on the tray and cancel each other out. A microwave heating cooker with a shielding part to prevent this .
通過孔の最長部分の長さを波長の1/4以上とした請求項1に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 1, wherein the length of the longest portion of the passage hole is ¼ or more of the wavelength. 通過孔は略スリット形状とし、最長部分の長さを波長の1/2の略90%以上、幅を波長の1/4未満とした請求項2に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 2, wherein the passage hole has a substantially slit shape, wherein the length of the longest portion is approximately 90% or more of ½ of the wavelength and the width is less than ¼ of the wavelength. 通過孔は略円形状とし、直径を波長の1/4以上とした請求項2に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 2, wherein the passage hole has a substantially circular shape and has a diameter of ¼ or more of the wavelength. 通過孔は略多角形とし、最長の対辺の距離を波長の1/4以上とした請求項2に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 2, wherein the passage hole is substantially polygonal, and the distance between the longest opposite side is ¼ or more of the wavelength. 通過孔に比誘電率εの誘電体を有し、前記通過孔の最長部分の長さを波長の1/(4√ε)以上とした請求項1に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 1, wherein the passage hole has a dielectric having a dielectric constant ε, and the length of the longest portion of the passage hole is 1 / (4√ε) or more of the wavelength. 通過孔の最長部分を放射手段に向けて配置する構成とした請求項1に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 1, wherein the longest portion of the passage hole is arranged facing the radiation means. 通過孔の最長部分を外周と平行に配置する構成とした請求項1に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 1, wherein the longest portion of the passage hole is arranged in parallel with the outer periphery. 放射手段は特定の方向にマイクロ波の放射指向性を有する回転体と、前記回転体の停止や回転を制御する制御手段を有する構成とした請求項1に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 1, wherein the radiating means includes a rotating body having a microwave radiation directivity in a specific direction and a control means for controlling stop and rotation of the rotating body. 制御手段は、回転体の回転の途中に放射指向性の強い向きが通過孔を向くときに停止または減速させるよう制御する請求項9に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 9, wherein the control means controls to stop or decelerate when the direction of strong radiation directivity faces the passage hole during the rotation of the rotating body. 縁部の外周と加熱室の壁面の間に絶縁体を介在させ、前記外周と前記壁面の間をマイクロ波が通過できる構成とした請求項1に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 1, wherein an insulator is interposed between the outer periphery of the edge and the wall surface of the heating chamber so that microwaves can pass between the outer periphery and the wall surface. 縁部の外周あるいは加熱室の壁面の少なくとも一方を絶縁コーティングする構成とした請求項11に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 11, wherein at least one of the outer periphery of the edge and the wall surface of the heating chamber is subjected to an insulating coating. 縁部の外周あるいは加熱室の壁面の少なくとも一方に絶縁体を装着する構成とした請求項11に記載のマイクロ波加熱調理器。 The microwave heating cooker according to claim 11, wherein an insulator is attached to at least one of the outer periphery of the edge or the wall surface of the heating chamber.
JP2010028490A 2010-02-12 2010-02-12 Microwave heating cooker Active JP5593722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010028490A JP5593722B2 (en) 2010-02-12 2010-02-12 Microwave heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010028490A JP5593722B2 (en) 2010-02-12 2010-02-12 Microwave heating cooker

Publications (2)

Publication Number Publication Date
JP2011163697A JP2011163697A (en) 2011-08-25
JP5593722B2 true JP5593722B2 (en) 2014-09-24

Family

ID=44594595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010028490A Active JP5593722B2 (en) 2010-02-12 2010-02-12 Microwave heating cooker

Country Status (1)

Country Link
JP (1) JP5593722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105333470A (en) * 2015-12-15 2016-02-17 镇江市京口润明微波器械厂 Support frame for micro-wave oven

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160403A (en) 2012-02-02 2013-08-19 Sharp Corp Heating cooker

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119426A (en) * 1980-02-22 1981-09-19 Sanyo Electric Co Ltd Microwave oven
JPS59167306U (en) * 1983-04-21 1984-11-09 株式会社東芝 High frequency heating device
US4695693A (en) * 1986-10-02 1987-09-22 General Electric Company Triangular antenna array for microwave oven
JPH01155123A (en) * 1987-12-10 1989-06-19 Toshiba Corp High frequency heating device
US5234526A (en) * 1991-05-24 1993-08-10 Lam Research Corporation Window for microwave plasma processing device
JPH0640710U (en) * 1992-11-05 1994-05-31 三洋電機株式会社 High frequency heating cooker
JPH11307239A (en) * 1998-04-16 1999-11-05 Hitachi Hometec Ltd High frequency heating device
JP2000337642A (en) * 1999-05-28 2000-12-08 Matsushita Electric Ind Co Ltd Microwave oven with heater
JP2002050466A (en) * 2000-08-07 2002-02-15 Sharp Corp Cooker and electromagnetic heating device
JP2002243157A (en) * 2001-02-19 2002-08-28 Sanyo Electric Co Ltd Cooker
JP2004239501A (en) * 2003-02-05 2004-08-26 Matsushita Electric Ind Co Ltd Grill for combined microwave and heater device
JP4194482B2 (en) * 2003-12-08 2008-12-10 東洋アルミエコープロダクツ株式会社 Cooking aid for microwave oven and method of heating food using the same
JP2006112722A (en) * 2004-10-15 2006-04-27 Matsushita Electric Ind Co Ltd High frequency heater
JP2007225186A (en) * 2006-02-23 2007-09-06 Matsushita Electric Ind Co Ltd High frequency cooking heater
JP5116260B2 (en) * 2006-06-19 2013-01-09 パナソニック株式会社 High frequency heating device
JP4629089B2 (en) * 2007-12-13 2011-02-09 パナソニック株式会社 Cooker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105333470A (en) * 2015-12-15 2016-02-17 镇江市京口润明微波器械厂 Support frame for micro-wave oven

Also Published As

Publication number Publication date
JP2011163697A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5116260B2 (en) High frequency heating device
JP6004281B2 (en) Microwave heating device
TWI663364B (en) a system for cooking at least one food
JP5310741B2 (en) Microwave heating cooker
JP5884093B2 (en) Microwave heating device
WO2009084169A1 (en) Cooking device
US20160150602A1 (en) Microwave heating element
CN108471906A (en) For thawing, reheating and/or the device and method of cooking food
JP5593722B2 (en) Microwave heating cooker
JP5600956B2 (en) Microwave heating cooker
JP5467330B2 (en) Microwave heating device
JP2008166090A (en) Microwave heating device
JP5957680B2 (en) Microwave heating device
EP2738474B1 (en) Microwave heating device
JP5492646B2 (en) Induction heating cooker
JP3063643B2 (en) Heating equipment
JP2016110729A (en) Heating cooker
JP2011192442A (en) High-frequency heating cooker
WO2022044719A1 (en) High frequency heating cooker
EP3343111B1 (en) Cooking apparatus, control method therefor and double plate
JP2017146053A (en) Heating cooker
JP2011204542A (en) High frequency cooking device
JP2004360963A (en) High-frequency heating cooker with heater
JP2011204427A (en) High-frequency heating device
JP2001182947A (en) Heating cooking appliance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R151 Written notification of patent or utility model registration

Ref document number: 5593722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151