JP5592639B2 - Reinforcement structure and reinforcement method for existing structures - Google Patents

Reinforcement structure and reinforcement method for existing structures Download PDF

Info

Publication number
JP5592639B2
JP5592639B2 JP2009271982A JP2009271982A JP5592639B2 JP 5592639 B2 JP5592639 B2 JP 5592639B2 JP 2009271982 A JP2009271982 A JP 2009271982A JP 2009271982 A JP2009271982 A JP 2009271982A JP 5592639 B2 JP5592639 B2 JP 5592639B2
Authority
JP
Japan
Prior art keywords
toughness
adhesive
frame
reinforcing material
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009271982A
Other languages
Japanese (ja)
Other versions
JP2011111865A (en
Inventor
俊一 五十嵐
Original Assignee
構造品質保証研究所株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 構造品質保証研究所株式会社 filed Critical 構造品質保証研究所株式会社
Priority to JP2009271982A priority Critical patent/JP5592639B2/en
Publication of JP2011111865A publication Critical patent/JP2011111865A/en
Application granted granted Critical
Publication of JP5592639B2 publication Critical patent/JP5592639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、躯体側である既存コンクリート構造物を含む既存構造物と、該既存構造物を補強するために組み込まれる補強材とを接着剤を用いて接合する既存構造物の補強構造および補強方法に関する技術である。   The present invention relates to a reinforcing structure and a reinforcing method for an existing structure in which an existing structure including an existing concrete structure on the side of a casing is joined to a reinforcing material incorporated to reinforce the existing structure using an adhesive. Technology.

既存コンクリート構造物を含む既存構造物に対し事後的に補強する従来手法としては、新・増設コンクリート壁や鉄骨ブレースなどの補強材(本明細書では、これらを単に「補強材」という。)」を、既存構造物側に接合する接合手法がある。   Conventional methods for retrofitting existing structures, including existing concrete structures, include reinforcing materials such as new and expanded concrete walls and steel braces (in the present specification, these are simply referred to as “reinforcing materials”). There is a joining method to join the existing structure side.

そして、この場合における接合手法においては、既存構造物が既存コンクリート構造物であれば、アンカーを打って接合部を形成することが標準的な工法となっている。しかし、アンカー打設工事による場合には、騒音振動の発生の問題があるほか、既存コンクリート構造物内にある鉄筋、鉄骨等との干渉等に伴う施工不良発生の問題のあることも報告されている。   In the joining method in this case, if the existing structure is an existing concrete structure, it is a standard construction method to form a joint by hitting an anchor. However, in the case of anchor placement work, in addition to the problem of noise and vibration, it has also been reported that there is a problem of construction failure due to interference with reinforcing bars and steel frames in existing concrete structures. Yes.

このため、最近では、例えば下記特許文献1に開示されているように、既存構造物の柱梁フレーム(架構)と補強材である鉄骨ブレースとを高強度接着剤であるエポキシ樹脂接着剤等を用いて接合したり、下記特許文献2に開示されているように、既存コンクリート構造物の架構フレームの内周面と補強材である耐震補強枠の間に設けた隙間にエポキシ樹脂接着剤等を充填して両者を接合したりする高強度型接合手法(本明細書では、「高強度型接合工法」という。)により接合部を形成する補強構造が実用化されるに至っている。   For this reason, recently, for example, as disclosed in Patent Document 1 below, an epoxy resin adhesive or the like, which is a high-strength adhesive, is used for a column beam frame (frame) of an existing structure and a steel brace that is a reinforcing material. Or using epoxy resin adhesive or the like in the gap provided between the inner peripheral surface of the frame of the existing concrete structure and the seismic reinforcement frame as the reinforcing material, as disclosed in Patent Document 2 below. Reinforcing structures that form joints have been put to practical use by a high-strength joining method (herein referred to as “high-strength joining method”) that fills and joins them together.

特開平11−71906号公報Japanese Patent Laid-Open No. 11-71906

特開2004−137839号公報JP 2004-137839 A

しかし、従来から行われているアンカー打設工事による接合部の形成や、高強度型接合工法による接合部の形成は、その配置と仕様の設計において、補強材と既存構造物の柱梁フレームや被補強架構フレームとの間に生ずる相対変形を考慮せずに、強度計算のみを行うものであった。   However, the formation of joints by conventional anchoring work and the formation of joints by the high-strength type joint method are important in designing the layout and specifications of the reinforcing material and the column beam frame of the existing structure. Only the strength calculation was performed without considering the relative deformation occurring between the frame and the reinforced frame.

ところが、アンカーや高強度接着剤を用いたとしても、実際には、既存構造物側と補強材との間に相対変位が生じ、ここに位置する接合部内にひずみが生ずる。このような変位とひずみとを無視するか、あるいは小さく抑えようとする場合には、相当数のアンカーを打設したり、エポキシ樹脂接着剤等の高強度接着剤を大量に使用したりする必要が生ずることになる。   However, even if an anchor or a high-strength adhesive is used, in actuality, a relative displacement occurs between the existing structure side and the reinforcing material, and distortion occurs in the joint located here. When ignoring such displacement and strain or trying to keep it small, it is necessary to place a considerable number of anchors or use a large amount of high-strength adhesive such as epoxy resin adhesive. Will occur.

このため、アンカー打設工事による場合には、騒音振動の発生や既存構造物である既存コンクリート構造物内にある鉄筋、鉄骨等の埋設物との干渉等に伴う施工不良発生の問題が生ずる不都合があった。   For this reason, in the case of anchor placement work, problems such as generation of noise and vibration and problems of construction failure due to interference with rebars, steel frames and other buried objects in existing concrete structures are caused. was there.

また、上記特許文献1,2を含む前記高強度型接合工法におけるエポキシ樹脂接着剤を含む高強度接着剤の大量使用は、その溶剤や含有物質の如何によってはシックハウスになるなどして健康被害を発生させる懸念がある。   In addition, the large-scale use of high-strength adhesives including epoxy resin adhesives in the high-strength bonding methods including Patent Documents 1 and 2 described above may cause health damage by becoming a sick house depending on the solvent and contained substances. There is a concern to generate.

しかも、前記高強度型接合工法による場合は、高強度接着剤の性能と接合効果との間の因果関係が必ずしも明確であるとはいえず、その信頼性に疑義を抱く専門家も多くいるという現実がある。   Moreover, in the case of the high-strength bonding method, the causal relationship between the performance of the high-strength adhesive and the bonding effect is not necessarily clear, and there are many experts who have doubts about its reliability. There is reality.

このような状況のなかで、本発明者は、既設コンクリート構造物を含む既存構造物と補強材との間の相対変位をある程度許容しても、補強した既存構造物の復元力特性を補強設計で意図したものに収めることができさえすればよいとの考察のもとで、大量のアンカーや高強度接着剤を用いなくても十分な補強効果が得られるとの知見を得た。すなわち、通常の増設壁等の補強材は、高さが3m程度あるので、仮に5mmの相対変位が生じたとしても、これによるせん断ひずみは、5/3000=1/600=0.16%程度であるので、耐震設計上問題となる大きさではないとの結論を得た。   Under such circumstances, the present inventor reinforces the restoring force characteristics of the reinforced existing structure even if the relative displacement between the existing structure including the existing concrete structure and the reinforcing material is allowed to some extent. Based on the consideration that it is only necessary to be able to fit within the intended range, the knowledge that a sufficient reinforcing effect can be obtained without using a large amount of anchors and high-strength adhesives was obtained. That is, since the reinforcing material such as a normal additional wall has a height of about 3 m, even if a relative displacement of 5 mm occurs, the shear strain due to this is about 5/3000 = 1/600 = 0.16%. Therefore, the conclusion that it was not the size which becomes a problem in seismic design was obtained.

本発明は、本発明者の上記知見のもとで、既存構造物と補強材との間をシックハウスの原因物質を含まない高靱性接着剤で接着して靱性型接合部を形成して補強材と既存構造物とを接合する既存構造物の補強構造および補強方法を提供することを目的とする。   Based on the above knowledge of the present inventor, the present invention forms a toughness-type joint by adhering an existing structure and a reinforcing material with a high-toughness adhesive that does not contain a sick house causative substance. An object of the present invention is to provide a reinforcing structure and a reinforcing method for an existing structure that joins the existing structure and the existing structure.

本発明は、上記目的を達成すべくなされたものであり、そのうちの第1の発明(補強構造)は、既存コンクリート構造物を含む既存構造物が備える架構と該架構内に挿入配置される補強材との間に、接着強度がコンクリートのせん断強度と同程度で、界面剥離エネルギーが1N/mm〜3.5N/mmの無溶剤一液性接着剤であって、0.3〜3.5mmの相対変位を生じても接着力を保持する高靱性接着剤を用いてなる靱性型接合部を介在させて相互を接合し、局部的な応力集中による前記架構や前記補強材の破壊を避け、前記靱性型接合部全域にわたって、前記架構のせん断力を前記補強材に伝達することを可能にしたことを最も主要な特徴とする。この場合、前記靱性型接合部は、前記架構の内表面に前記高靱性接着剤を塗布した後に、前記補強材を設置して形成することが望ましい。このとき、前記補強材の外周面に確認用通孔を設けておくならば、予めくまなく前記補強材を押し付けた際に、前記高靱性接着剤が漏れ出してくることを確認できるというより望ましい構造を付与することができる。また、前記靱性型接合部は、前記補強材としての耐震壁の外周端面に配置される鋼製フレームと、該鋼製フレームと前記架構の内表面との間にシール材を介して確保される閉空間内に注入配置された前記高靱性接着剤とで形成して介在させることもできる。 The present invention has been made to achieve the above object, and a first invention (reinforcing structure) includes a frame provided in an existing structure including an existing concrete structure and a reinforcement inserted and disposed in the frame. It is a solvent-free one-component adhesive having an adhesive strength of approximately the same as the shear strength of concrete and an interfacial peel energy of 1 N / mm to 3.5 N / mm, between 0.3 and 3.5 mm. Joining each other via a tough joint that uses a high-toughness adhesive that retains adhesive strength even if relative displacement occurs , avoiding destruction of the frame and the reinforcing material due to local stress concentration, The main feature is that the shearing force of the frame can be transmitted to the reinforcing member over the entire toughness-type joint. In this case, it is preferable that the toughness-type joint portion is formed by installing the reinforcing material after applying the high-toughness adhesive to the inner surface of the frame. At this time, if a confirmation through-hole is provided on the outer peripheral surface of the reinforcing material, it is more preferable that the high-tough adhesive can be confirmed to leak when the reinforcing material is pressed all over in advance. Structure can be imparted. The toughness type joint is secured via a sealing material between a steel frame disposed on the outer peripheral end surface of the earthquake-resistant wall as the reinforcing material, and the steel frame and the inner surface of the frame. It may be interposed to form between the high toughness adhesive injected disposed within the closed space.

また、第2の発明(補強方法)は、既存コンクリート構造物を含む既存構造物の架構と該架構内に挿入配置される補強材との間に配置した接着強度がコンクリートのせん断強度と同程度で、界面剥離エネルギーが1N/mm〜3.5N/mmの無溶剤一液性接着剤であって、0.3〜3.5mmの相対変位を生じても接着力を保持する高靱性接着剤を用いて靱性型接合部を形成し、局部的な応力集中による前記架構や前記補強材の破壊を避け、前記靱性型接合部全域にわたって前記架構のせん断力を前記補強材に伝達可能とすべく、前記靱性型接合部を介して両者を接合させることを最も主要な特徴とする。この場合、前記靱性型接合部は、前記架構の内表面に前記高靱性接着剤を塗布した後に前記補強材を設置して、あるいは、前記補強材を設置した後に前記架構の内表面と前記補強材の外表面との間に前記高靱性接着剤を注入して形成することができる。また、前記靱性型接合部は、前記補強材を前記架構の内表面側にくまなく押し付けた際にその外周面に設けられている確認用通孔からの前記高靱性接着剤の漏れ出し状態を確認して形成するのが好ましい。さらに、前記靱性型接合部は、前記補強材としての耐震壁の外周端面側に配置される鋼製フレームと前記架構の内表面との間にシール材を介して閉空間を確保し、該閉空間内に前記高靱性接着剤を注入して形成することもできる。 Further, the second invention (reinforcing method) is the same as the shear strength of the concrete, in which the adhesive strength arranged between the frame of the existing structure including the existing concrete structure and the reinforcing material inserted and arranged in the frame is the same as the shear strength of the concrete. The solvent-free one-component adhesive having an interfacial peel energy of 1 N / mm to 3.5 N / mm, which retains the adhesive force even when a relative displacement of 0.3 to 3.5 mm occurs. To form a toughness-type joint, avoid destruction of the frame and the reinforcing material due to local stress concentration, and allow the shearing force of the frame to be transmitted to the reinforcing material over the entire area of the toughness-type joint The most important feature is that the two are joined through the toughness-type joint. In this case, the toughness-type joint is formed by applying the high-toughness adhesive to the inner surface of the frame and then installing the reinforcing material, or after installing the reinforcing material and the reinforcing surface. It can be formed by injecting the high-tough adhesive between the outer surface of the material. In addition, the toughness-type joint portion has a leakage state of the high-toughness adhesive from a confirmation through hole provided on the outer peripheral surface when the reinforcing material is pressed all over the inner surface side of the frame. It is preferable to confirm and form. Further, the toughness type joint portion secures a closed space via a sealing material between a steel frame disposed on the outer peripheral end face side of the earthquake-resistant wall as the reinforcing material and the inner surface of the frame, and It can also be formed by injecting the high-tough adhesive into the space.

本発明によれば、既存コンクリート構造物を含む既存構造物が備える架構と該架構内に挿入配置される補強材との間に接着強度がコンクリートのせん断強度と同程度で、界面剥離エネルギーが1N/mm〜3.5N/mmの無溶剤一液性接着剤であって、0.3〜3.5mmの相対変位を生じても接着力を保持する高靱性接着剤を用いてなる靱性型接合部を介在させて相互を接合したので、局所的な最大強度は小さいものの、最大相対変位(ひずみ)は大きくして補強材と躯体としての既存構造物との間の相対変位を適度に許容しながら力を伝達させることで、既存構造物や補強材の局部的な破壊を避けつつ境界面全体で力を伝達し、補強材の抵抗力を100%引き出すことができることになる。また、靱性型接合部は、シックハウスの原因物質を含まない高靱性接着剤を用いて形成することができるので、アンカー打設工事にみられた騒音振動の発生や既存構造物である既存コンクリート構造物内の鉄筋、鉄骨等との干渉に伴う施工不良の発生をなくすことができるほか、高強度型接合工法の場合に懸念される健康被害の発生も効果的に防止することがきる。 According to the present invention, the adhesive strength between the frame included in the existing structure including the existing concrete structure and the reinforcing material inserted and arranged in the frame is approximately the same as the shear strength of the concrete, and the interface peeling energy is 1N. / Mm to 3.5 N / mm solvent-free one-component adhesive, tough type joint using high-toughness adhesive that retains adhesive force even when a relative displacement of 0.3 to 3.5 mm occurs Although the local maximum strength is small, the maximum relative displacement (strain) is increased to allow the relative displacement between the reinforcing material and the existing structure as a frame moderately. However, by transmitting the force, the force can be transmitted across the entire boundary surface while avoiding local destruction of the existing structure and the reinforcing material, and the resistance force of the reinforcing material can be drawn out 100%. In addition, tough joints can be formed using high-toughness adhesives that do not contain sick house causative substances, so the generation of noise and vibration in anchoring construction and existing concrete structures that are existing structures. In addition to eliminating construction defects due to interference with reinforcing bars, steel frames, etc., it is also possible to effectively prevent the occurrence of health hazards that are a concern in the case of high-strength bonding methods.

既存構築物の架構に補強材を挿入した状態で、地震等の外乱の作用により、架構と補強材とが水平方向にせん断力を受けてせん断変形が生じた状態を模式的に示す図。The figure which shows typically the state which shear deformation generate | occur | produced in the state which inserted the reinforcement material in the frame of the existing structure, and the frame and the reinforcement material received the shear force in the horizontal direction by the effect | action of disturbances, such as an earthquake. 外乱を受ける前の状態を図1に対応させて模式的に示す図。The figure which shows typically the state before receiving a disturbance corresponding to FIG. 図1における円形枠ア部分の拡大図。The enlarged view of the circular frame part in FIG. (a)は、図1における円形枠イ部分の拡大図を、(b)は、図1における円形枠ウ部分の拡大図をそれぞれ示す。(A) is an enlarged view of the circular frame portion in FIG. 1, and (b) is an enlarged view of the circular frame portion in FIG. 補強材のない場合、高強度接着剤で接合して強度型接合部を設けた場合、および高靱性接着剤で接合して靱性型接合部を設けた場合のそれぞれにつき、その復元力特性である架構に作用するせん断力の合力と架構上部と下部の相対変位との関係を示す説明図。せん断力の合力は、図1では平行四辺形ABCDの外側周囲に描かれた右向き矢印で示した辺ABに作用するせん断力と、同じく辺ADと辺BCに作用する右向きの引張力と圧縮力の合計であり、架構上部と下部の相対変位とは、辺ABと辺DCの水平方向の相対変位で、同図中に変位と表示した矢印の長さである。Restoring force characteristics when there is no reinforcement, when a high-strength adhesive is used to provide a strength-type joint, and when a high-tough adhesive is used to provide a tough-type joint Explanatory drawing which shows the relationship between the resultant force of the shear force which acts on a frame, and the relative displacement of a frame upper part and a lower part. In FIG. 1, the resultant shear force includes a shear force acting on the side AB indicated by a right-pointing arrow drawn around the outside of the parallelogram ABCD, and a rightward tensile force and compressive force acting on the side AD and side BC. The relative displacement between the upper part and the lower part of the frame is the relative displacement in the horizontal direction between the side AB and the side DC, and is the length of the arrow indicated as displacement in the figure. 本発明の高靱性接着剤を用いてなる靱性型接合部とエポキシ樹脂接着剤等の高強度接着剤を用いてなる強度型接合部との接合力と、相対変位(ひずみ)との関係を模式的に示した図。Schematic representation of the relationship between the relative displacement (strain) and the bonding force between a tough mold joint using the high tough adhesive of the present invention and a strong mold joint using a high strength adhesive such as an epoxy resin adhesive Figure shown. (a)は、高靱性接着剤を用いて靱性型接合部を形成してなるセグメント組立タイプの耐震壁の立面方向での概要につき、鉄筋コンクリート造建物の梁、柱および床で画された空間に耐震壁を新設する場合を模式的に示す図であり、(b)は、(a)における楕円形囲枠カ部分の横断面構造の拡大図。(A) is a space defined by beams, columns, and floors of a reinforced concrete building with respect to an outline in the elevation direction of a seismic wall of a segment assembly type formed by forming a tough type joint using a high tough adhesive. It is a figure which shows typically the case where a seismic wall is newly installed in (b), and (b) is an enlarged view of the cross-sectional structure of the oval enclosure frame part in (a). 図7(a)における円形枠エ部分もしくは円形枠オ部分についての靱性型接合部の一例を示す拡大詳細図。FIG. 8 is an enlarged detail view showing an example of a toughness-type joint portion for a circular frame portion or a circular frame portion in FIG. 図7(a)における円形枠エ部分もしくは円形枠オ部分についての靱性型接合部の他例を示す拡大詳細図。FIG. 8 is an enlarged detail view showing another example of the toughness-type joint portion for the circular frame portion or the circular frame portion in FIG. 靱性型接合部の他の詳細例を模式的に示す説明図。Explanatory drawing which shows the other detailed example of a toughness type junction part typically.

本発明は、高靱性接着剤を用いて既存コンクリート構造物を含む既存構造物と補強材とを接合することを要旨とする。ここでいう高靱性接着剤とは、被着体間に数ミリ程度の有限な相対変位を生じた状態でも接着力を保持する、例えばポリウレタン系無溶剤一液性接着剤などをいい、その性能は、接着強度と界面剥離エネルギーとで表される。   The gist of the present invention is to join an existing structure including an existing concrete structure and a reinforcing material using a high-toughness adhesive. The high-toughness adhesive here refers to, for example, a polyurethane-based solvent-free one-part adhesive that retains adhesive force even when a finite relative displacement of several millimeters is generated between adherends. Is represented by adhesive strength and interfacial debonding energy.

この場合、界面剥離エネルギーとは、単位面積の接着剤を剥離させるときに必要な仕事量を意味し、接着強度とは、単位面積の接着剤が発揮する最大抵抗力を意味する。これら界面剥離エネルギーと接着強度とは、被接着体である既設構造物と補強材との材質および表面の状態に応じて変化する。また、界面剥離エネルギーと接着強度とは、接着剤を剥離させる力と変位の方向とに依存して変わるが、特に断らない場合には、接着面に平行に力を加えた場合の値をいうこととする。   In this case, the interfacial peeling energy means the work required when peeling the adhesive of the unit area, and the adhesive strength means the maximum resistance force exerted by the adhesive of the unit area. The interfacial peeling energy and the adhesive strength vary depending on the material and surface state of the existing structure and the reinforcing material that are adherends. Further, the interfacial peeling energy and the adhesive strength change depending on the force for peeling the adhesive and the direction of the displacement, but unless otherwise specified, the values when the force is applied parallel to the adhesive surface. I will do it.

図1は、既存構築物11の架構(梁柱等の構造要素からなるフレーム)12に補強材21を挿入した状態で、地震等の外乱の作用により、架構12と補強材21とが水平方向にせん断力を受けてせん断変形が生じた状態を模式的に示した図である。同図によれば、図中に太線で描示されている平行四辺形ABCDは、既存構築物11と架構12の内表面12aとの境界線として示され、細線で描示されている平行四辺形A’B’C’D’は、補強材21の外形線として示されている。例えば、図1において辺ADと辺BCとを柱の側面とし、辺ABを梁の下面とし、辺CDを床面とするならば、平行四辺形A’B’C’D’は、これに内蔵させて設置した増設コンクリート壁や枠付きブレースなどが相当する。   FIG. 1 shows a state in which the frame 12 and the reinforcing material 21 are horizontally moved by the action of a disturbance such as an earthquake in a state in which the reinforcing material 21 is inserted into the frame (frame made of structural elements such as beam pillars) 12 of the existing structure 11. It is the figure which showed typically the state which received the shear force and the shear deformation | transformation produced. According to the figure, the parallelogram ABCD depicted by a thick line in the figure is shown as a boundary line between the existing structure 11 and the inner surface 12a of the frame 12, and the parallelogram depicted by a thin line. A′B′C′D ′ is shown as the outline of the reinforcing member 21. For example, in FIG. 1, if the side AD and the side BC are the side surfaces of the column, the side AB is the bottom surface of the beam, and the side CD is the floor surface, the parallelogram A'B'C'D ' This is equivalent to a built-in concrete wall or a brace with a frame.

図2は、外乱を受ける前の状態を図1に対応させて模式的に示した図であり、長方形A’B’C’D’は、長方形ABCDの内側にわずかな隙間を設けた状態となって相似形を呈している。この隙間は、実際に存在するものではなく、この部分に靱性型接合部がある。図1は、図2の状態にあったものが外乱を受けて平行四辺形に変形し、かつ、互いに相対変位を生じた状態を示している。   FIG. 2 is a diagram schematically showing a state before receiving a disturbance corresponding to FIG. 1, and the rectangle A′B′C′D ′ is a state in which a slight gap is provided inside the rectangle ABCD. It has become a similar shape. This gap does not actually exist, and there is a tough joint in this part. FIG. 1 shows a state in which those in the state of FIG. 2 are deformed into parallelograms due to disturbance and are relatively displaced from each other.

このとき、せん断力は、図1に示すように太線矢印で辺AB方向と辺CD方向に平行に作用することになる。これに応じて生ずるせん断力と圧縮、引張力は、図1の平行四辺形A’B’C’D’の内側に描いた太線矢印で示すように、補強材21に作用することになる。なお、図1における平行四辺形ABCDには、構造物の自重などによる圧縮、引張力が作用するが、その図示は省略してある。 At this time, the shearing force acts in parallel with the side AB direction and the side CD direction with thick arrows as shown in FIG. The shearing force, compression force, and tensile force generated in response to this act on the reinforcing member 21 as indicated by the thick arrows drawn inside the parallelogram A′B′C′D ′ in FIG. In addition, although the compression and tension | tensile_strength by the dead weight of a structure act on the parallelogram ABCD in FIG. 1, the illustration is abbreviate | omitted.

図3は、図1における円形枠ア部分の拡大図であり、架構12の内表面12aと補強材21の外表面21aとの間の相対変位δに応じて高靱性接着剤32を用いてなる靱性型接合部31にはせん断ひずみが生じている。なお、図1に示した架構12に作用するせん断力は、架構12の内表面12aを介して高靱性接着剤32の接着力τと釣り合っている。   FIG. 3 is an enlarged view of the circular frame portion in FIG. 1, and is formed by using a tough adhesive 32 according to the relative displacement δ between the inner surface 12 a of the frame 12 and the outer surface 21 a of the reinforcing member 21. A shear strain is generated in the toughness-type joint 31. Note that the shearing force acting on the frame 12 shown in FIG. 1 is balanced with the adhesive force τ of the high-toughness adhesive 32 via the inner surface 12a of the frame 12.

また、図4(a)は、図1における円形枠イ部分の拡大図を、図4(b)は、図1における円形枠ウ部分の拡大図をそれぞれ示す。これらの図によれば、架構12の内表面12aと補強材21の外表面21aとの間の相対変位δに応じて高靱性接着剤32を用いてなる靱性型接合部31に圧縮あるいは引張ひずみとせん断ひずみが生じている。実際の既存構造物と補強材とでは、例えば図1と図3とに示す辺AB自体が曲線状に変形するなど、図1、図3および図4(a),(b)に示す状態よりも高次の変形やひずみが生じる。また、もとの形状も曲線、凹凸などがあり、複雑である。しかし、耐震設計等構造物の設計で問題になる既存構造物やその要素の復元力特性(荷重と変形の関係)を考える上では、図1に模式的に示す変形モードが基本となる。   4A shows an enlarged view of the circular frame portion in FIG. 1, and FIG. 4B shows an enlarged view of the circular frame portion in FIG. According to these figures, a compressive or tensile strain is applied to the toughness type joint portion 31 using the high toughness adhesive 32 in accordance with the relative displacement δ between the inner surface 12a of the frame 12 and the outer surface 21a of the reinforcing member 21. And shear strain. In the actual existing structure and the reinforcing material, for example, the side AB itself shown in FIGS. 1 and 3 is deformed into a curved shape, and the state shown in FIGS. 1, 3, and 4 (a), (b). High-order deformation and distortion occur. In addition, the original shape is complicated with curves and irregularities. However, in considering the restoring force characteristics (relationship between load and deformation) of an existing structure and its elements that are problematic in the design of structures such as seismic design, the deformation mode schematically shown in FIG. 1 is fundamental.

すなわち、図1および図3,図4(a),(b)からも明らかなように、高靱性接着剤32を用いてなる靱性型接合部31は、有限なせん断ひずみと圧縮あるいは引張ひずみとを生じた状態で、これに応じて接着力を負担できれば、架構21側に分布するせん断力は、架構12の内表面12aの全域を通じて、すべて補強材21に伝達される。換言すれば、補強材21の抵抗力がすべて架構12側に伝達されて補強効果が発揮されることになる。高強度型接合工法を適用した従来の強度型接合部による場合には、局部的に大きなせん断力を伝達しようとするため、伝達される力にむらが生じ、局部的な応力集中と破壊とを招く結果、補強効果も限られたものになる。   That is, as is clear from FIGS. 1, 3, 4 (a) and 4 (b), the toughness type joint portion 31 using the high toughness adhesive 32 has a finite shear strain and compression or tensile strain. If the adhesive force can be borne in accordance with this, the shearing force distributed on the frame 21 side is all transmitted to the reinforcing member 21 through the entire inner surface 12a of the frame 12. In other words, all the resistance force of the reinforcing member 21 is transmitted to the frame 12 side, and the reinforcing effect is exhibited. In the case of a conventional strength type joint that applies a high strength type joint method, a large shear force is transmitted locally, resulting in unevenness in the transmitted force, and local stress concentration and destruction. As a result, the reinforcing effect is also limited.

一方、図5は、補強材21のない場合と、高強度接着剤あるいはアンカーボルト等を用いて接合して強度型接合部35を設けた場合と、高靱性接着剤32で接合して靱性型接合部31を設けた場合とにつき、それぞれの復元力特性、すなわち、架構12に作用するせん断力と変位との関係を示す説明図である。図5に縦軸として示されるせん断力は、図1において、架構12内に分布するせん断力として平行四辺形ABCDの外側に描かれた水平右向き方向(あるいは水平左向き方向)の矢印として表される力の合力に、図5に横軸として示される変位は、図1の左上方に細線矢印でそれぞれ示されているものに、それぞれ対応している。   On the other hand, FIG. 5 shows a case where the reinforcing material 21 is not provided, a case where a high-strength adhesive or anchor bolt or the like is used to provide a strength-type joint portion 35, and a case where a high-tough adhesive 32 is used to join the tough mold. It is explanatory drawing which shows the relationship between each restoring force characteristic, ie, the shear force which acts on the frame 12, and a displacement about the case where the junction part 31 is provided. The shearing force shown as the vertical axis in FIG. 5 is represented as an arrow in the horizontal rightward direction (or horizontal leftward direction) drawn outside the parallelogram ABCD as a shearing force distributed in the frame 12 in FIG. The displacement shown as the horizontal axis in FIG. 5 corresponds to the force indicated by the thin line arrows in the upper left of FIG.

図5において太線グラフ41は、本発明を適用した靱性型接合部31による場合を、破線グラフ42は、アンカーボルトを大量に打設する等の強度型接合部35による場合を、細線グラフ43は、補強材21のない場合をそれぞれ示す。   In FIG. 5, the thick line graph 41 is based on the case of the tough type joint 31 to which the present invention is applied, the broken line graph 42 is based on the case of the strength type joint 35 where a large amount of anchor bolts are driven, and the thin line graph 43 is The case where there is no reinforcing material 21 is shown.

図5によれば、補強材21のない場合(細線グラフ43)は、本発明が適用された靱性型接合部31による場合(太線グラフ41)と、従来の高強度型接合工法が適用された強度型接合部35による場合(破線グラフ42)とに比べ、抵抗力が小さくなっているので、下側にくるグラフとなっている。また、強度型接合部35による場合(破線グラフ42)には、補強材21なしに比べ、強度型接合部35の局部的な応力集中によるせん断力伝達により、補強材21が変位の小さい段階から抵抗するので、変位の増加に応じてせん断力が急激に立ち上がるものの、最大せん断力に達すると強度型接合部35の内部や図1に示す周囲の既存構造物(既設コンクリート構造物)11、あるいは補強材21が局部破壊を起こして強度が著しく低下することが判明する。一方、本発明を適用した場合には、靱性型接合部31が適度に変形しながら補強材21の抵抗力を図1に示すように、靱性型接合部31の全体で既存構造物(既設コンクリート構造物)11側に伝達するので、強度型接合部35にみられたような局部破壊の発生を避けながら補強材21の抵抗力を100%引き出し、強度型接合部35に比べて大きな変形までせん断力を保持させることができることが判明する。さらに、最大せん断力も強度型接合部を用いた場合よりも向上させ得ることが判明する。   According to FIG. 5, when the reinforcing material 21 is not provided (thin line graph 43), the case of using the tough type joining portion 31 to which the present invention is applied (thick line graph 41) and the conventional high strength type joining method are applied. Compared with the case using the strength-type joint portion 35 (broken line graph 42), the resistance is small, so the graph is on the lower side. Further, in the case of using the strength type joint 35 (broken line graph 42), the reinforcing material 21 starts from a stage where the displacement is small due to shear force transmission due to local stress concentration of the strength type joint 35 compared to the case without the reinforcing material 21. Since the resistance increases, the shear force suddenly rises as the displacement increases. However, when the maximum shear force is reached, the existing existing structure (existing concrete structure) 11 inside the strength-type joint 35 and the surrounding area shown in FIG. It turns out that the reinforcing material 21 causes local destruction and the strength is significantly reduced. On the other hand, when the present invention is applied, the existing structure (existing concrete) in the entire toughness-type joint 31 as shown in FIG. (Structure) Since it is transmitted to the 11 side, 100% of the resistance of the reinforcing material 21 is drawn out while avoiding the occurrence of local destruction as seen in the strength type joint 35, and even a large deformation compared to the strength type joint 35 It turns out that the shear force can be maintained. Furthermore, it is found that the maximum shear force can be improved as compared with the case where the strength type joint is used.

高靱性接着剤32を用いてなる靱性型接合部31の所要性能は、接合力(靱性型接合部31に作用する応力度)と相対変位、あるいは、これを靱性型接合部31の高さで除したひずみとの関係で表すことができる。   The required performance of the toughness-type joint portion 31 using the high-toughness adhesive 32 is the joining force (stress acting on the toughness-type joint portion 31) and relative displacement, or this is the height of the toughness-type joint portion 31. It can be expressed by the relationship with the divided strain.

図6は、本発明の高靱性接着剤32を用いてなる靱性型接合部31とエポキシ樹脂接着剤等の高強度接着剤を用いた強度型接合部35との接合力と相対変位(ひずみ)との関係を模式的に示した図であり、例えば図3および図4に示した接着力τと相対変位δとの関係に相当する。靱性型接合部31は、高強度型接合部35に比べて最大強度(τmax2)は小さいものの、最大相対変位(ひずみ)δmax2は大きい。強度型接着剤の材料試験では、接着強度τmax1が、被着体の強度を超えることがよしとされており、コンクリートのせん断強度より大きな接着強度を有する。これが、架構12や補強材21の応力集中と局部破壊とを生む原因である。一方、本発明に用いる高靱性接着剤32の接着強度τmax2は、コンクリートのせん断強度程度の大きさであるので、コンクリートが局部破壊を生じる前に、高靱性接着剤32が局部的に剥離をし、破壊を避けることができる。この特徴により、補強材21と既存構造物(既設コンクリート構造物)11との間の相対変位を適度に許容しながら、力を伝達するので、既存構造物(既設コンクリート構造物)11や補強材21の局部的な破壊を避け、境界面全体で力を伝達し、補強材21の抵抗力を100%引き出すことができることになる。   FIG. 6 shows the bonding force and relative displacement (strain) between a toughness type joint 31 using the high toughness adhesive 32 of the present invention and a strength type joint 35 using a high strength adhesive such as an epoxy resin adhesive. Is a diagram schematically showing the relationship between the adhesive force τ and the relative displacement δ shown in FIGS. 3 and 4, for example. The toughness-type joint portion 31 has a maximum relative displacement (strain) δmax2 that is large, although the maximum strength (τmax2) is smaller than that of the high-strength-type joint portion 35. In the material test of the strength type adhesive, it is said that the adhesive strength τmax1 exceeds the strength of the adherend, and has an adhesive strength larger than the shear strength of concrete. This is the cause of stress concentration and local destruction of the frame 12 and the reinforcing material 21. On the other hand, the adhesive strength τmax2 of the high-toughness adhesive 32 used in the present invention is about the magnitude of the shear strength of concrete, so the high-toughness adhesive 32 peels off locally before the concrete causes local failure. Can avoid destruction. Due to this feature, the force is transmitted while allowing a relative displacement between the reinforcing member 21 and the existing structure (existing concrete structure) 11 appropriately, so that the existing structure (existing concrete structure) 11 and the reinforcing material are transmitted. Thus, it is possible to avoid the 21 local destruction, transmit the force across the entire boundary surface, and draw out the resistance force of the reinforcing member 21 100%.

靱性型接合部31の形成を可能にする高靱性接着剤32の性能は、接着強度と最大相対変位(ひずみ)とで表すこともできるし、接着強度と界面剥離エネルギーとで表すこともできる。界面剥離エネルギーは、図6に平行な縦細線列の面領域36として示されているように接合力相対変位関係における0次モーメント(曲線の下方面積)であり、単位はN/mmである。その詳細については、本発明者の著書「建築物のSRF工法設計施工指針と解説(ISBN4-902105-11-X)」に記載されている。文献によれば、エポキシ樹脂等の強度型接着剤の接着強度は、7N/mm〜10N/mm程度、界面剥離エネルギーは、1N/mm〜2N/mm程度である。最大変位は、概ね界面剥離エネルギーを接着強度で除した値になるので、0.1mmから0.3mm程度しかない計算になる。コンクリートと炭素繊維が被着体である場合のエポキシ樹脂接着剤のせん断試験では、0.2mm程度の最大変位となることが確認されている。一方、本発明の高靱性接着剤32として用いるポリウレタン系無溶剤の「SRF20(本願出願人の製品、以下、同じ)」の試験結果では、接着強度は、1N/mm〜3N/mm程度、界面剥離エネルギーは、1N/mm〜3.5N/mmである。したがって、最大変位は、概ね0.3mm〜3.5mmと計算され、エポキシ樹脂等の強度型接着剤の3〜10倍程度となる。さらに、高靱性接着剤32では、一部が剥離しても、被着体を傷めることが少ないので、周囲の剥離してない部分が接着力を負担し続ける効果があり、最大変位はさらに大きくなる。コンクリートとポリエステル製の高延性材を被着体とした試験では、10mmの最大変位を生じても接着力を保持することが確認されている。 The performance of the high-toughness adhesive 32 that enables the formation of the toughness-type joint portion 31 can be expressed by the adhesive strength and the maximum relative displacement (strain), and can also be expressed by the adhesive strength and the interfacial peel energy. The interfacial debonding energy is the 0th-order moment (the area under the curve) in the bonding force relative displacement relationship, as indicated by the plane region 36 of the vertical thin line parallel to FIG. 6, and the unit is N / mm. The details are described in the book of the present inventor “SRF construction method design and construction guideline and explanation (ISBN4-902105-11-X) of a building”. According to the literature, the adhesive strength of a strong adhesive such as an epoxy resin is about 7 N / mm 2 to 10 N / mm 2 , and the interfacial peel energy is about 1 N / mm to 2 N / mm. Since the maximum displacement is approximately the value obtained by dividing the interfacial debonding energy by the adhesive strength, the calculation is only about 0.1 to 0.3 mm. In a shear test of an epoxy resin adhesive when concrete and carbon fiber are adherends, it has been confirmed that the maximum displacement is about 0.2 mm. On the other hand, high toughness adhesive polyurethane solventless used as 32 of the present invention "SRF20 (applicant products, hereinafter the same)" in the test results of the adhesive strength, 1N / mm 2 ~3N / mm 2 approximately The interface peeling energy is 1 N / mm to 3.5 N / mm. Therefore, the maximum displacement is generally calculated as 0.3 mm to 3.5 mm, which is about 3 to 10 times that of a strong adhesive such as epoxy resin. Furthermore, in the high-tough adhesive 32, even if a part of the adhesive is peeled off, the adherend is less likely to be damaged. Therefore, there is an effect that the surrounding non-peeled part continues to bear the adhesive force, and the maximum displacement is further increased Become. In a test using adherends of concrete and polyester high ductility material, it has been confirmed that the adhesive force is maintained even when a maximum displacement of 10 mm occurs.

図7(a)は、高靱性接着剤32を用いて靱性型接合部31を形成してなるセグメント組立タイプの耐震壁の立面方向での概要を示すものであり、鉄筋コンクリート造建物にあって架構12を形成しているの梁13、柱14および床15で画された空間内に耐震壁22を新設する場合を模式的に示した図である。また、図7(b)は、図7(a)における楕円形囲枠カ部分の横断面構造を示す拡大図である。さらに、図8および図9は、図7(a)における円形枠エ部分もしくは円形枠オ部分の具体的な構造につき、パターン分けして示す拡大詳細図であり、そのうちの図8は、高延性材38を用いた場合の靱性型接合部31の詳細を、図9は、異形鉄筋24を用いた場合の靱性型接合部31の詳細をそれぞれ示す。   Fig.7 (a) shows the outline in the elevation direction of the seismic wall of the segment assembly type formed by forming the toughness type | mold joint part 31 using the high toughness adhesive agent 32, and is in a reinforced concrete structure building. It is the figure which showed typically the case where the earthquake-resistant wall 22 is newly installed in the space demarcated by the beam 13, the pillar 14, and the floor 15 which form the frame 12. FIG. Moreover, FIG.7 (b) is an enlarged view which shows the cross-sectional structure of the elliptical enclosure frame part in Fig.7 (a). Further, FIGS. 8 and 9 are enlarged detailed views showing the specific structure of the circular frame portion or the circular frame portion in FIG. 7 (a) by dividing into patterns, among which FIG. 8 shows high ductility. FIG. 9 shows details of the toughness type joint 31 when the deformed reinforcing bar 24 is used, and FIG. 9 shows details of the toughness type joint 31 when the material 38 is used.

耐震壁22は、図7(a)中に太線で示した架構(囲枠部分)12の内表面12aとの間に靱性型接合部31を形成して設置する。該靱性型接合部31の内側は、図7(b)および図9に示されているように、プレキャストコンクリートブロック23、異形鉄筋24、および充填モルタル25からなる補強材21として形成された耐震壁22である。プレキャストコンクリートブロック23は、立面視サイズで横長さが200mm、縦長さが100mmで、充填モルタル24を含めた断面積に対する強度がコンクリートと同等となるように製作されたものが用いられている。プレキャストコンクリートブロック23の幅(奥行き長さ)は、100mm〜400mm程度まで各種サイズのものを用意する。異形鉄筋24は、D13mm以上のものが用いられ、プレキャストコンクリートブロック23の内部に予め設けられている空洞と端部の切欠きとを通して縦横に設置し、図9に示すように靱性型接合部31を構成している鋼製フレーム33に図示しないリブプレート等を用いて溶接する。   The seismic wall 22 is installed by forming a toughness-type joint 31 between the inner surface 12a of the frame (enclosed frame portion) 12 indicated by a thick line in FIG. As shown in FIGS. 7B and 9, the inside of the toughness-type joint 31 is a seismic wall formed as a reinforcing material 21 composed of a precast concrete block 23, a deformed reinforcing bar 24, and a filling mortar 25. 22. The precast concrete block 23 is an elevational size having a horizontal length of 200 mm and a vertical length of 100 mm, and is manufactured so that the strength with respect to the cross-sectional area including the filling mortar 24 is equal to that of concrete. As the width (depth length) of the precast concrete block 23, various sizes of about 100 mm to 400 mm are prepared. The deformed reinforcing bars 24 having a diameter of D13 mm or more are used, and are installed vertically and horizontally through a cavity and an end notch provided in advance in the precast concrete block 23. As shown in FIG. Is welded to the steel frame 33 constituting the structure using a rib plate (not shown).

図10は、靱性型接合部の詳細例を模式的に示す説明図である。同図には、図2に平行四辺形ABCDとして示されている架構12の内表面12aの一部と、架構12の内表面12aと対向する位置関係のもとで図2に平行四辺形A’B’C’D’として示されている補強材21の外周面21aの一部とが示されている。同図によれば、靱性型接合部31は、架構12の内表面12aであるコンクリートの梁の下面および柱の側面に、高靱性接着剤32であるポリウレタン系のSRF20を塗布して、補強材21であるH型鋼26の外周面26aを接着して形成されている。SRF20は、適度の粘性があり、上向き面や側面に塗布した状態で、塗膜を形成することができ、かつ、0.5mm〜10mm程度の厚さであれば、フリク(凹凸や段差があって平滑でない状態)があっても、設計強度と界面剥離エネルギーとを発揮することができるので、躯体表面の凹凸がこの程度までであれば、直接塗布して被膜を形成し、その後に、鉄骨、プレキャストブロック等の補強材を接着することができる。例えば、予めくまなく高靱性接着剤32を塗布した躯体表面である架構12の内表面12aに、補強材21であるH型鋼26の外周面26aを押し付けて、その一端32a側と他端32b側とから高靱性接着剤32が膨れだしてくることを確認すればよい。また、補強材21の幅が大きい場合には、図10にも示されているように、直径5mm〜10mm程度の確認用通孔27を、補強材21の長手方向に適宜の間隔で開けておき、これらの確認用通孔27からも高靱性接着剤32が膨れだすことで、該高靱性接着剤32が補強材21であるH型鋼26の外周面26aと躯体表面である架構12の内表面12aとの間に行き渡っていることを確認することができる。この施工法は、高靱性接着剤32が適度な粘性を有し、かつ、一液性であることから、硬化速度がエポキシ樹脂などの強度型接着剤より遅いことにより可能となったものである。「SRF20」は、湿気硬化型であり、常温で2時間程度あれば、施工をやり直すこともできる程度にしか硬化しない。8時間程度で、設計強度の50%程度が、24時間程度で80%程度が発現する。なお、硬化速度は、湿度と温度とによって変化するが、硬化促進剤等の配合を変えることで、施工性を確保すべく制御することができる。さらに、補強材であるH型鋼を図2の辺A’B’、辺B’C’、辺C’D’、辺D’A’の各辺あるいは、これ以下に分割してボルト等で接合することで、接着を容易化することができる。以上のように、図8及び図9に示すような接合部用の鋼製フレーム33、シール材34を省略して、躯体表面と補強材との間に高靱性接着剤32による靱性型接合部31を形成することができる。   FIG. 10 is an explanatory view schematically showing a detailed example of a toughness-type joint. FIG. 2 shows a parallelogram A shown in FIG. 2 under the positional relationship facing a part of the inner surface 12a of the frame 12 shown as a parallelogram ABCD in FIG. 2 and the inner surface 12a of the frame 12. A part of the outer peripheral surface 21a of the reinforcing member 21 shown as 'B'C'D' is shown. According to the figure, the toughness type joint portion 31 is formed by applying polyurethane-based SRF20, which is a high-toughness adhesive 32, to the lower surface of the concrete beam, which is the inner surface 12a of the frame 12, and the side surface of the column. The outer peripheral surface 26a of the H-shaped steel 26, which is 21, is formed by bonding. The SRF 20 has moderate viscosity, can form a coating film in a state of being applied to the upward surface or the side surface, and has a thickness of about 0.5 mm to 10 mm. Even if it is not smooth, the design strength and the interfacial debonding energy can be exhibited. Therefore, if the unevenness on the surface of the housing is up to this level, it is directly applied to form a film, and then the steel frame A reinforcing material such as a precast block can be adhered. For example, the outer peripheral surface 26a of the H-shaped steel 26 that is the reinforcing member 21 is pressed against the inner surface 12a of the frame 12, which is the surface of the frame to which the high-tough adhesive 32 is applied in advance, and the one end 32a side and the other end 32b side thereof From this, it can be confirmed that the high tough adhesive 32 starts to swell. Further, when the width of the reinforcing member 21 is large, as shown in FIG. 10, confirmation through holes 27 having a diameter of about 5 mm to 10 mm are opened at appropriate intervals in the longitudinal direction of the reinforcing member 21. Further, the high toughness adhesive 32 swells from these through holes 27 for confirmation, so that the high toughness adhesive 32 is inside the frame 12 which is the outer peripheral surface 26a of the H-shaped steel 26 which is the reinforcing material 21 and the frame surface. It can be confirmed that it has spread between the surface 12a. This construction method is possible because the high-tough adhesive 32 has an appropriate viscosity and is a one-component type, so that the curing rate is slower than that of a strong adhesive such as an epoxy resin. . “SRF20” is a moisture-curing type and, if it is at room temperature for about 2 hours, it is cured only to such an extent that the construction can be repeated. In about 8 hours, about 50% of the design strength appears, and in about 24 hours, about 80% appears. In addition, although a cure rate changes with humidity and temperature, it can control in order to ensure workability | operativity by changing mixing | blending of a hardening accelerator etc. Further, the H-shaped steel, which is a reinforcing material, is divided into sides A′B ′, side B′C ′, side C′D ′, side D′ A ′ in FIG. By doing so, adhesion can be facilitated. As described above, the steel frame 33 and the sealing material 34 for the joint as shown in FIG. 8 and FIG. 9 are omitted, and the tough type joint portion by the high toughness adhesive 32 is provided between the housing surface and the reinforcing material. 31 can be formed.

また、異形鉄筋24を省略して図8に示すように高延性材38をプレキャストコンクリートブロック23の表面に縦横に接着剤SRF20によって貼り付ける方法もある。この場合、高延性材38は、図8に示されているように鋼製フレーム33を巻き込んで設置されることになる。   Further, there is also a method in which the deformed reinforcing bar 24 is omitted and the high ductility material 38 is adhered to the surface of the precast concrete block 23 by the adhesive SRF20 as shown in FIG. In this case, the high ductility material 38 is installed by entraining the steel frame 33 as shown in FIG.

図8および図9に示すように、靱性型接合部31は、既存構造物11における架構12の内表面12aと補強材21の好適例である耐震壁22の外周端面22aとの間にあって、高靱性接着剤32、シール材34および鋼製フレーム33により形成するのが望ましい。耐震壁22は、引張力を負担する異形鉄筋24、あるいは、この代わりの高延性材38と、圧縮力を負担するプレキャストコンクリートブロック23および充填モルタル25から構成されている。鋼製フレーム33は、接着力を補強材21である耐震壁22に伝達する。高靱性接着剤32は、躯体である既存構造物11側の変形に応じてひずみを生じ、このひずみを補強材21側に伝達することで、該補強材21が躯体としての既存構造物11側の変形に抵抗し、変形エネルギーを吸収することで、既存構造物11の耐震性を向上させる効果を発揮する。図9に示す異形鉄筋24の代わりに図8に示す高延性材38を用いる方法については、先述の「建築物のSRF工法設計施工指針と解説(ISBN4-902105-11-X)」に記載されている。   As shown in FIG. 8 and FIG. 9, the toughness type joint portion 31 is located between the inner surface 12 a of the frame 12 in the existing structure 11 and the outer peripheral end surface 22 a of the earthquake-resistant wall 22 which is a preferred example of the reinforcing member 21. It is desirable to form with the tough adhesive 32, the sealing material 34, and the steel frame 33. The seismic wall 22 includes a deformed reinforcing bar 24 that bears a tensile force, or a high ductility material 38 instead, a precast concrete block 23 that bears a compressive force, and a filling mortar 25. The steel frame 33 transmits the adhesive force to the earthquake resistant wall 22 that is the reinforcing material 21. The tough adhesive 32 generates strain according to the deformation on the existing structure 11 side which is a casing, and transmits the strain to the reinforcing material 21 side so that the reinforcing material 21 is on the existing structure 11 side as the casing. By resisting the deformation and absorbing the deformation energy, the effect of improving the earthquake resistance of the existing structure 11 is exhibited. The method of using the high ductility material 38 shown in FIG. 8 in place of the deformed reinforcing bar 24 shown in FIG. 9 is described in the above-mentioned “SRF construction design guidelines and explanation (ISBN4-902105-11-X) of the building”. ing.

用いられる高靱性接着剤32は、ポリウレタン系無溶剤の一液性接着剤、例えば「SRF30(本願出願人の製品、以下、同じ)」」あるいは「SRF20」を好適に用いることができる。「SRF30」の界面剥離エネルギーの製品規格値(製品検査における3σ管理値)は、1.5N/mm、接着強度の製品規格値は、1.5N/mmである。また、粘度の製品管理値は、70,000〜120,000mpa・s・/25℃である。また、「SRF20」の界面剥離エネルギーの製品規格値(製品検査における3σ管理値)は、1.0N/mm、接着強度の製品規格値は、1.0N/mmである。また、粘度の製品管理値は、55,000〜95,000mpa・s・/25℃である。このような高靱性接着剤32は、図8および図9に示すように、鋼製フレーム33と既存構造物11を構成している架構12の内表面12aとの間にシール材34により仕切られた厚さ(図示例では縦幅)を10mm程度の閉空間35内に注入することで設置される。あるいは、高靱性接着剤32は、図10に示すように、架構12の内表面12aと補強材21の外周面21aとの間0.5mm〜10mm程度の厚さに設置される。従来、高強度型接合工法に用いられていたエポキシ樹脂接着剤は、接着強度は7N/mm〜10N/mmと大きいが、靱性に関する製品検査と管理とは行われていない。 As the tough adhesive 32 used, a polyurethane-based solvent-free one-component adhesive, for example, “SRF30 (product of the present applicant, the same applies hereinafter)” or “SRF20” can be preferably used. The product standard value (3σ control value in product inspection) of the interface peeling energy of “SRF30” is 1.5 N / mm, and the product standard value of adhesive strength is 1.5 N / mm 2 . Moreover, the product control value of a viscosity is 70,000-120,000 mpa * s * / 25 degreeC. The product standard value (3σ control value in product inspection) of the interfacial peel energy of “SRF20” is 1.0 N / mm, and the product standard value of adhesive strength is 1.0 N / mm 2 . Moreover, the product management value of a viscosity is 55,000-95,000 mpa * s * / 25 degreeC. As shown in FIGS. 8 and 9, such a high-tough adhesive 32 is partitioned by a sealing material 34 between the steel frame 33 and the inner surface 12 a of the frame 12 constituting the existing structure 11. It is installed by injecting into a closed space 35 having a thickness (vertical width in the illustrated example) of about 10 mm. Alternatively, as shown in FIG. 10, the high-tough adhesive 32 is installed between the inner surface 12 a of the frame 12 and the outer peripheral surface 21 a of the reinforcing member 21 to a thickness of about 0.5 mm to 10 mm. Conventionally, epoxy resin adhesives used in high-strength bonding methods have a high adhesive strength of 7 N / mm 2 to 10 N / mm 2 , but product inspection and management related to toughness have not been performed.

一方、本発明に用いる高靱性接着剤32は、強度と界面剥離エネルギーの両方を製品規格値とし、これらを管理している。これにより、図6に示すような接合部の相対変位と接合力との関係を管理することができる。これをもって図1に示すように、架構12の変形に対する補強材21の抵抗力を補強材21と架構12との境界面に設置した接合部全体で架構12に伝達し、図5に太線で示すような復元力(せん断力と変位との関係)の取得を担保可能としている。   On the other hand, the tough adhesive 32 used in the present invention manages both strength and interface peeling energy as product standard values. Thereby, the relationship between the relative displacement of the joint as shown in FIG. 6 and the joining force can be managed. As shown in FIG. 1, the resistance force of the reinforcing member 21 against the deformation of the frame 12 is transmitted to the frame 12 through the entire joint portion installed at the boundary surface between the reinforcing member 21 and the frame 12, and is indicated by a thick line in FIG. 5. Such restoration force (relationship between shear force and displacement) can be secured.

以上は、既存構造物11が既存コンクリート構造物である場合を例に説明したものであるが、本発明が適用される既存構造物11は、既存コンクリート構造物以外の耐震補強を要する適宜の構造物であってよく、また、補強材21も耐震壁22以外の所要の補強効果を有する適宜構造のもので構成することができる。   The above is an example in which the existing structure 11 is an existing concrete structure, but the existing structure 11 to which the present invention is applied is an appropriate structure that requires seismic reinforcement other than the existing concrete structure. In addition, the reinforcing member 21 can also be configured with an appropriate structure having a required reinforcing effect other than the seismic wall 22.

以上を総括すれば、本発明を適用することにより、既存コンクリート構造物を含む既存構造物11が備える架構12と該架構12内に挿入配置される補強材21との間に高靱性接着剤32を用いてなる靱性型接合部31を介在させて相互を接合したので、最大強度は小さいものの、最大相対変位(ひずみ)は大きくして補強材21と躯体としての既存構造物11との間の相対変位を適度に許容しながら力を伝達させることで、既存構造物11や補強材21の局部的な破壊を避けつつ境界面全体で力を伝達し、補強材21の抵抗力を100%引き出すことができるという優れた効果を得ることができる。また、靱性型接合部31は、シックハウスの原因物質を含まない高靱性接着剤32を用いて形成することができるので、アンカー打設工事にみられた騒音振動の発生や既存構造物である既存コンクリート構造物内の鉄筋、鉄骨等との干渉に伴う施工不良の発生をなくすことができるほか、高強度型接合工法の場合に懸念される健康被害の発生も効果的に防止することができる。   In summary, by applying the present invention, the high-toughness adhesive 32 is provided between the frame 12 provided in the existing structure 11 including the existing concrete structure and the reinforcing member 21 inserted and arranged in the frame 12. Since the toughness-type joint portion 31 is used to join each other, the maximum strength is small, but the maximum relative displacement (strain) is increased to increase the strength between the reinforcing member 21 and the existing structure 11 as the casing. By transmitting the force while allowing the relative displacement appropriately, the force is transmitted over the entire boundary surface while avoiding local destruction of the existing structure 11 and the reinforcing material 21, and the resistance force of the reinforcing material 21 is pulled out 100%. It is possible to obtain an excellent effect of being able to. In addition, since the toughness-type joint portion 31 can be formed using a high-toughness adhesive 32 that does not include a causative substance of sick house, the occurrence of noise vibrations observed in anchor placement work and existing structures that are existing structures In addition to eliminating construction defects due to interference with reinforcing bars, steel frames, etc. in concrete structures, it is also possible to effectively prevent the occurrence of health damage that is a concern in the case of high-strength bonding methods.

11 既存構造物
12 架構
12a 内表面
13 梁
14 柱
15 床
21 補強材
21a 外表面
22 耐震壁
22a 外周端面
23 プレキャストコンクリートブロック
24 異形鉄筋
25 充填モルタル
26 H型鋼
26a 外周面
27 確認用通孔
31 靱性型接合部
32 高靱性接着剤
32a一端
32b 他端
33 鋼製フレーム
34 シール材
35 閉空間
36 面領域
38 高延性材
41 太線グラフ
42 破線グラフ
43 細線グラフ
DESCRIPTION OF SYMBOLS 11 Existing structure 12 Frame 12a Inner surface 13 Beam 14 Column 15 Floor 21 Reinforcement material 21a Outer surface 22 Earthquake resistant wall 22a Outer peripheral surface 23 Precast concrete block 24 Deformed bar 25 Filling mortar 26 H-shaped steel 26a Outer surface 27 Confirmation hole 31 Toughness Mold joint 32 High tough adhesive 32a one end 32b other end 33 steel frame 34 sealing material 35 closed space 36 surface area 38 high ductility material 41 thick line graph 42 broken line graph 43 thin line graph

Claims (8)

既存コンクリート構造物を含む既存構造物が備える架構と該架構内に挿入配置される補強材との間に、接着強度がコンクリートのせん断強度と同程度で、界面剥離エネルギーが1N/mm〜3.5N/mmの無溶剤一液性接着剤であって、0.3〜3.5mmの相対変位を生じても接着力を保持する高靱性接着剤を用いてなる靱性型接合部を介在させて相互を接合し、局部的な応力集中による前記架構や前記補強材の破壊を避け、前記靱性型接合部全域にわたって、前記架構のせん断力を前記補強材に伝達することを可能にしたことを特徴とする既存構造物の補強構造。 Between the frame included in the existing structure including the existing concrete structure and the reinforcing material inserted and arranged in the frame, the adhesive strength is approximately the same as the shear strength of the concrete, and the interfacial debonding energy is 1 N / mm-3. 5N / mm solvent-free one-part adhesive , interposing a toughness-type joint using a high-toughness adhesive that retains adhesive strength even if a relative displacement of 0.3 to 3.5 mm occurs. Joining each other, avoiding destruction of the frame and the reinforcing material due to local stress concentration, and allowing the shearing force of the frame to be transmitted to the reinforcing material over the entire toughness type bonded portion Reinforcing structure of existing structures. 前記靱性型接合部は、前記補強材の外周面側に設けた確認用通孔を介して前記高靱性接着剤の漏れ出し状態の確認を可能に形成して介在させた請求項1に記載の既存構造物の補強構造。 The said toughness type | mold junction part was formed so that confirmation of the leakage state of the said high toughness adhesive could be confirmed through the through-hole for confirmation provided in the outer peripheral surface side of the said reinforcing material, and interposed. Reinforcement structure for existing structures. 前記靱性型接合部は、前記補強材としての耐震壁の外周端面に配置される鋼製フレームと、該鋼製フレームと前記架構の内表面との間にシール材を介して確保される閉空間内に注入配置された前記高靱性接着剤とで形成して介在させた請求項1に記載の既存構造物の補強構造。 The toughness-type joint is a closed space secured via a sealing material between a steel frame disposed on the outer peripheral end surface of the earthquake-resistant wall as the reinforcing material, and the steel frame and the inner surface of the frame The reinforcement structure of the existing structure of Claim 1 formed and interposed with the said high toughness adhesive agent inject | poured and arrange | positioned in the inside. 既存コンクリート構造物を含む既存構造物の架構と該架構内に挿入配置される補強材との間に配置した接着強度がコンクリートのせん断強度と同程度で、界面剥離エネルギーが1N/mm〜3.5N/mmの無溶剤一液性接着剤であって、0.3〜3.5mmの相対変位を生じても接着力を保持する高靱性接着剤を用いて靱性型接合部を形成し、局部的な応力集中による前記架構や前記補強材の破壊を避け、前記靱性型接合部全域にわたって前記架構のせん断力を前記補強材に伝達可能とすべく、前記靱性型接合部を介して両者を接合させることを特徴とする既存構造物の補強方法。 The adhesive strength arranged between the frame of the existing structure including the existing concrete structure and the reinforcing material inserted and arranged in the frame is about the same as the shear strength of the concrete, and the interfacial debonding energy is 1 N / mm-3. 5N / mm solvent-free one-component adhesive , forming a tough-type joint using a high-toughness adhesive that retains adhesive force even when a relative displacement of 0.3 to 3.5 mm occurs , and locally In order to avoid the destruction of the frame and the reinforcing material due to the stress concentration and to transmit the shearing force of the frame to the reinforcing material over the entire area of the toughness type joint, the two are joined via the toughness type joint. A method for reinforcing an existing structure, characterized in that 前記架構の内表面に前記高靱性接着剤を塗布した後に、前記補強材を設置して前記靱性型接合部を形成する請求項4に記載の既存構造物の補強方法。 The method for reinforcing an existing structure according to claim 4, wherein after applying the high-toughness adhesive to the inner surface of the frame, the reinforcing material is installed to form the toughness-type joint. 前記靱性型接合部は、前記補強材を前記架構の内表面側にくまなく押し付けた際にその外周面に設けられている確認用通孔からの前記高靱性接着剤の漏れ出し状態を確認して形成する請求項5に記載の既存構造物の補強方法The toughness-type joint confirms the leakage state of the high-toughness adhesive from the confirmation through-hole provided on the outer peripheral surface when the reinforcing material is pressed all the way to the inner surface side of the frame. The method for reinforcing an existing structure according to claim 5 formed by : 前記架構内に前記補強材を設置した後に、前記架構の内表面と前記補強材の外表面との間に前記高靱性接着剤を注入して前記靱性型接合部を形成する請求項4に記載の既存構造物の補強方法。 The said toughness type | mold joint part is formed by inject | pouring the said high toughness adhesive agent between the inner surface of the said structure, and the outer surface of the said reinforcement material, after installing the said reinforcing material in the said structure. Reinforcement method for existing structures. 前記補強材としての耐震壁の外周端面側に配置される鋼製フレームと前記架構の内表面との間にシール材を介して閉空間を確保し、該閉空間内に前記高靱性接着剤を注入して前記靱性型接合部を形成する請求項4に記載の既存構造物の補強方法。 A closed space is secured via a sealing material between a steel frame disposed on the outer peripheral end face side of the earthquake resistant wall as the reinforcing material and the inner surface of the frame, and the high-toughness adhesive is placed in the closed space. The method for reinforcing an existing structure according to claim 4, wherein the toughness-type joint is formed by pouring.
JP2009271982A 2009-11-30 2009-11-30 Reinforcement structure and reinforcement method for existing structures Active JP5592639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009271982A JP5592639B2 (en) 2009-11-30 2009-11-30 Reinforcement structure and reinforcement method for existing structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009271982A JP5592639B2 (en) 2009-11-30 2009-11-30 Reinforcement structure and reinforcement method for existing structures

Publications (2)

Publication Number Publication Date
JP2011111865A JP2011111865A (en) 2011-06-09
JP5592639B2 true JP5592639B2 (en) 2014-09-17

Family

ID=44234410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009271982A Active JP5592639B2 (en) 2009-11-30 2009-11-30 Reinforcement structure and reinforcement method for existing structures

Country Status (1)

Country Link
JP (1) JP5592639B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016079327A (en) * 2014-10-20 2016-05-16 構造品質保証研究所株式会社 High-toughness adhesive, method for reinforcing member of structure using the same, earthquake-resistant member of structure, earthquake-resistant structure, and method for designing structure
JP6430583B1 (en) * 2017-05-15 2018-11-28 トーヨーポリマー株式会社 Polyurethane adhesive composition for concrete reinforcement and concrete structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844386B2 (en) * 1997-08-28 2006-11-08 株式会社竹中工務店 Steel brace expansion method for seismic reinforcement
JP3627184B2 (en) * 2002-04-18 2005-03-09 株式会社竹中工務店 Wooden earthquake resistant wall with deformation absorbing layer
JP4279739B2 (en) * 2004-07-29 2009-06-17 株式会社竹中工務店 Seismic retrofitting methods and walls for existing buildings
JP4549209B2 (en) * 2005-03-18 2010-09-22 横浜市 Seismic reinforcement method for existing structures
JP4759301B2 (en) * 2005-04-01 2011-08-31 大成建設株式会社 Seismic reinforcement method for buildings

Also Published As

Publication number Publication date
JP2011111865A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
Mukherjee et al. FRPC reinforced concrete beam-column joints under cyclic excitation
JP5592639B2 (en) Reinforcement structure and reinforcement method for existing structures
JP3689840B2 (en) Seismic reinforcement method for existing structure foundation
JP2005023726A (en) Joining structure of beam and floor slab and joining method for beam and floor slab
JP2013087540A (en) Out-frame reinforcing method and reinforcing structure therefor
Nechevska et al. Rehabilitation of RC buildings in seismically active regions using traditional and innovative materials
JP4269729B2 (en) Seismic wall
JP4603506B2 (en) Repair structure of concrete structure, vibration control device and repair method
JP4012063B2 (en) Seismic reinforcement structure and reinforcement method using framed steel brace
JP2016079327A (en) High-toughness adhesive, method for reinforcing member of structure using the same, earthquake-resistant member of structure, earthquake-resistant structure, and method for designing structure
JP6172501B2 (en) Seismic reinforcement structure and seismic reinforcement method
JP5582885B2 (en) Junction structure
JP2008063816A (en) Aseismatic reinforcing structure and aseismatic reinforcement construction method
JP2005248651A (en) Earthquake resistant reinforcing structure
JP3851563B2 (en) Frame reinforcement structure and its construction method
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
JP5346572B2 (en) Installation method of seismic isolation devices for existing buildings
Nye et al. Bidirectional GFRP-composite connections between precast concrete wall panels under simulated seismic load
JP3158412U (en) Seismic reinforcement structure by framed steel brace
JP6435115B2 (en) Prestressed member manufacturing method
CN110629685B (en) Method for reinforcing concrete structure based on gradient relaxation prestress
JP6632276B2 (en) Anchoring method of anchoring muscle
JP2019210686A (en) Method for reinforcing rc member and reinforcement structure
JP5166134B2 (en) Installation structure of ultra-high-strength fiber reinforced concrete plates in concrete structures
JP5525884B2 (en) Reinforcement joint structure and method for constructing the joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5592639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250