JP5590501B2 - Method for producing metal microspheres - Google Patents

Method for producing metal microspheres Download PDF

Info

Publication number
JP5590501B2
JP5590501B2 JP2010069860A JP2010069860A JP5590501B2 JP 5590501 B2 JP5590501 B2 JP 5590501B2 JP 2010069860 A JP2010069860 A JP 2010069860A JP 2010069860 A JP2010069860 A JP 2010069860A JP 5590501 B2 JP5590501 B2 JP 5590501B2
Authority
JP
Japan
Prior art keywords
metal
atmosphere
microspheres
droplets
metal microspheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010069860A
Other languages
Japanese (ja)
Other versions
JP2011026697A (en
Inventor
晋吾 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010069860A priority Critical patent/JP5590501B2/en
Publication of JP2011026697A publication Critical patent/JP2011026697A/en
Application granted granted Critical
Publication of JP5590501B2 publication Critical patent/JP5590501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、電子部品の接続端子部等に用いるCu微小球の製造方法に関するものである。   The present invention relates to a method for producing Cu microspheres used for connection terminal portions of electronic components.

近年、電子部品の実装密度の高密度化要求に対応するために、パッケージオンパッケージ(POP)やマルチチップモジュール(MCM)などの3次元高密度実装の検討が進んでいる。この問題を解決するために、はんだよりも融点が高い、たとえばCuからなるコアボールに、はんだを被覆した複合マイクロボールを用いた実装が提案されている。(特許文献1)   In recent years, in order to meet the demand for higher mounting density of electronic components, studies on three-dimensional high-density mounting such as package-on-package (POP) and multichip module (MCM) have been advanced. In order to solve this problem, mounting using a composite microball in which a core ball made of, for example, Cu having a melting point higher than that of solder is coated with solder has been proposed. (Patent Document 1)

一方、上述した複合マイクロボールのコアボールとしてのCu微小球の製造には、たとえば本出願人が特許文献2に提案するように、Cu金属粉末を熱プラズマ中に投入して溶融し、球状凝固させる、所謂熱プラズマ法が提案されている。
特許文献2には、熱プラズマ法を用いて金属微小球の表面酸化層を含む酸素含有量を50ppm以下とすることにより、電気伝導性に優れ、変形抵抗の小さい金属微小球を製造し、電気的な接続信頼性を改善した提案がなされている。この提案は、大量の金属微小球を短時間に製造するという点で優れたものである。
On the other hand, in the manufacture of Cu microspheres as the core ball of the above-described composite microball, for example, as proposed by the present applicant in Patent Document 2, Cu metal powder is put into thermal plasma and melted, and spherical solidification is performed. A so-called thermal plasma method has been proposed.
In Patent Document 2, a metal microsphere having excellent electrical conductivity and low deformation resistance is manufactured by setting the oxygen content including the surface oxide layer of the metal microsphere to 50 ppm or less using a thermal plasma method. Proposals have been made to improve general connection reliability. This proposal is excellent in that it produces a large amount of metal microspheres in a short time.

また、特許文献3には、コアボールに用いるCu微小球の製造方法として、Cuの溶湯をオリフィスから噴出して分散させてCu微小球を形成する、所謂均一液滴噴霧法が提案されている。   Patent Document 3 proposes a so-called uniform droplet spraying method in which a Cu microsphere is formed by ejecting a Cu melt from an orifice and dispersing it as a method for producing a Cu microsphere used for a core ball. .

特開平11−317416号公報JP-A-11-317416 特開2005−2428号公報JP 2005-2428 A 特開2004−137530号公報JP 2004-137530 A

上述した特許文献2あるいは特許文献3に開示される製造方法は、金属微小球の変形抵抗を下げる点では有利であるものの、金属微小球の表面平滑性の点では、Cuの凝固収縮に起因する引け巣が発生して凹みが生じるという問題があった。この金属微小球の表面に現れる凹みは、その表面にはんだめっき処理を実施する際、ボイドの発生、めっき密着不良などの問題を起こす可能性が高く、金属微小球を接続端子部として用いた電子部品を実用化する上で、電気的な接続信頼性を損なう大きな問題となる。
本発明の目的は、金属微小球の表面に生じる凹みを低減し、表面平滑性の特性を具備した金属微小球の製造方法を提供することである。
Although the manufacturing method disclosed in Patent Document 2 or Patent Document 3 described above is advantageous in reducing the deformation resistance of the metal microspheres, the surface smoothness of the metal microspheres is caused by solidification shrinkage of Cu. There was a problem that a dent occurred due to the formation of shrinkage nests. The dent appearing on the surface of the metal microsphere is highly likely to cause problems such as voids and poor plating adhesion when solder plating is applied to the surface. In putting parts into practical use, this is a major problem that impairs electrical connection reliability.
An object of the present invention is to provide a method for producing metal microspheres having reduced surface dents on the surface of the metal microspheres and having surface smoothness characteristics.

本発明者は、金属微小球の表面凹みの問題を検討し、金属微小球製造時において、Cu液滴が球状凝固する雰囲気中の酸素濃度を所定の範囲に調整する構成を採用することで、金属微小球の表面凹みが低減でき、表面平滑性を大きく改善できることを見出し本発明に到達した。   The present inventor examines the problem of the surface dent of the metal microsphere, and adopts a configuration that adjusts the oxygen concentration in the atmosphere in which the Cu droplet is solidified into a predetermined range at the time of manufacturing the metal microsphere, The inventors have found that the surface dents of metal microspheres can be reduced and the surface smoothness can be greatly improved, and the present invention has been achieved.

すなわち本発明は、Cu液滴を、酸素:10〜800体積ppm、残部不活性ガス雰囲気で球状凝固させる金属微小球の製造方法である。
また、前記酸素は、120〜800体積ppmであることが好ましい。
また、前記酸素は、200〜760体積ppmであることが好ましい。
また、前記不活性ガスは、アルゴンであることが好ましい。
また、前記不活性ガスは、窒素であることが好ましい。
また、前記Cu液滴は、圧力と振動を付与したCu溶湯をオリフィスより滴下して形成することが好ましい。
That is, the present invention is a method for producing metal microspheres in which Cu droplets are spherically solidified in an atmosphere of oxygen: 10 to 800 ppm by volume and the remaining inert gas.
Moreover, it is preferable that the said oxygen is 120-800 volume ppm.
Moreover, it is preferable that the said oxygen is 200-760 volume ppm.
The inert gas is preferably argon.
The inert gas is preferably nitrogen.
The Cu droplet is preferably formed by dropping a molten Cu imparted with pressure and vibration from an orifice.

本発明によれば、金属微小球の表面凹みを低減させ、表面平滑性を飛躍的に改善することができ、金属微小球を接続端子として用いた電子部品の実用化にとって欠くことのできない技術となる。   According to the present invention, the surface dent of the metal microsphere can be reduced, the surface smoothness can be remarkably improved, and the technology indispensable for the practical use of the electronic component using the metal microsphere as the connection terminal. Become.

本発明の金属微小球の製造方法に適用する製造装置の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing apparatus applied to the manufacturing method of the metal microsphere of this invention. 本発明を用いて製作した金属微小球の外観の一例を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows an example of the external appearance of the metal microsphere manufactured using this invention. 本発明を用いて製作した金属微小球の外観の別の例を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows another example of the external appearance of the metal microsphere manufactured using this invention. 本発明を用いて製作した金属微小球の外観の別の例を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows another example of the external appearance of the metal microsphere manufactured using this invention. 本発明を用いて製作した金属微小球の外観の別の例を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows another example of the external appearance of the metal microsphere manufactured using this invention. 比較例として製作した金属微小球の外観を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the external appearance of the metal microsphere produced as a comparative example.

上述したように、本発明の重要な特徴は、金属微小球の製造時において、Cu液滴が球状凝固する雰囲気中の酸素濃度を所定の範囲に調整する構成を採用したことにある。   As described above, an important feature of the present invention is that a configuration in which the oxygen concentration in the atmosphere in which the Cu droplets are spherically solidified is adjusted to a predetermined range when the metal microspheres are manufactured.

本発明におけるCu液滴が球状凝固する雰囲気中の酸素濃度は、10〜800体積ppmである。酸素濃度が10体積ppmより低い場合、Cu液滴の凝固収縮時の引け巣により、金属微小球の表面に顕著な凹みが現れる。この表面に現れる凹みは、金属微小球の表面にはんだめっき処理を実施する際、ボイドの発生、めっき密着不良などの問題を起こす原因となる。
また、金属微小球毎の結晶粒サイズにばらつきが生じると、金属微小球毎の機械的特性(強さ、硬さ、靭性など)のばらつきが懸念される。酸素濃度が120体積ppmより低いときには、金属微小球毎の結晶粒サイズにばらつきが生じる場合があり、大きな結晶粒から構成される金属微小球と、小さな結晶粒から構成される金属微小球が混在する場合がある。このため、金属微小球毎の結晶粒サイズのばらつきを低減し、結晶粒サイズを均一微細化するためには、酸素濃度は120体積ppm以上が好ましい。より好ましくは、200体積ppm以上である。
In the present invention, the oxygen concentration in the atmosphere in which the Cu droplet is solidified spherically is 10 to 800 ppm by volume. When the oxygen concentration is lower than 10 ppm by volume, a noticeable dent appears on the surface of the metal microsphere due to the shrinkage nest at the time of solidification shrinkage of the Cu droplet. The dents appearing on the surface cause problems such as generation of voids and poor plating adhesion when solder plating is performed on the surface of the metal microspheres.
In addition, when the crystal grain size varies for each metal microsphere, there is concern about variations in mechanical properties (strength, hardness, toughness, etc.) for each metal microsphere. When the oxygen concentration is lower than 120 ppm by volume, the crystal size of each metal microsphere may vary, and metal microspheres composed of large crystal grains and metal microspheres composed of small crystal grains are mixed. There is a case. For this reason, the oxygen concentration is preferably 120 ppm by volume or more in order to reduce the variation in crystal grain size for each metal microsphere and make the crystal grain size uniform. More preferably, it is 200 ppm by volume or more.

一方、酸素濃度が800体積ppmを超えると、Cu液滴が球状凝固する際、液滴の表面全体が酸化膜で厚く覆われて自由表面でなくなるため、Cu液滴が持つ表面張力により真球になる作用が損なわれ、良好な真球度を持つ金属微小球が得られなくなる。したがって、本発明ではCu液滴が球状凝固する雰囲気中の酸素濃度を10〜800体積ppmに調整することで、金属微小球表面の凹みを抑制し、良好な真球度を持つ金属微小球が得られる。また、好ましい酸素濃度は、120〜800体積ppmであり、より好ましくは200〜760体積ppmである。   On the other hand, when the oxygen concentration exceeds 800 ppm by volume, when the Cu droplet is solidified spherically, the entire surface of the droplet is thickly covered with an oxide film and is not a free surface. Thus, metal microspheres having good sphericity cannot be obtained. Therefore, in the present invention, by adjusting the oxygen concentration in the atmosphere in which the Cu droplets are spherically solidified to 10 to 800 ppm by volume, dents on the surface of the metal microspheres are suppressed, and metal microspheres having good sphericity are obtained. can get. Moreover, preferable oxygen concentration is 120-800 volume ppm, More preferably, it is 200-760 volume ppm.

また、本発明では、Cu液滴が球状凝固する雰囲気中における酸素以外の残部ガスを不活性ガスとする。本発明でいう不活性ガスの種類は、アルゴン等の希ガスや窒素をいい、これらを単体もしくは混合して用いることが好ましい。これにより、Cu液滴の表面酸化を抑制することができ、良好な真球度を持つ金属微小球を得ることが可能となる。本発明でいう不活性ガス以外のガスは、雰囲気中の汚染や酸素と反応する可能性があるため、好ましくない。   In the present invention, the remaining gas other than oxygen in the atmosphere in which Cu droplets are spherically solidified is an inert gas. The kind of the inert gas referred to in the present invention is a rare gas such as argon or nitrogen, and these are preferably used alone or in combination. Thereby, surface oxidation of Cu droplets can be suppressed, and metal microspheres having good sphericity can be obtained. Gases other than the inert gas referred to in the present invention are not preferable because they may react with contamination in the atmosphere and oxygen.

本発明では、Cu溶湯に圧力と振動を付与してオリフィスより滴下して形成したCu液滴を凝固させることが好ましい。Cu溶湯を蓄えた坩堝底面にオリフィスを配置し、坩堝内部のCu溶湯に圧力と振動を付与することにより、Cu溶湯をオリフィスの孔を通して坩堝下部に位置する酸素を適量含有したガス雰囲気内に安定して噴出することができ、所望の体積を持つCu液滴を形成することが可能となる。   In the present invention, it is preferable to solidify Cu droplets formed by applying pressure and vibration to the molten Cu and dropping from the orifice. By placing an orifice on the bottom of the crucible where the molten Cu is stored and applying pressure and vibration to the molten Cu inside the crucible, the molten Cu is stabilized in a gas atmosphere containing an appropriate amount of oxygen located at the bottom of the crucible through the hole in the orifice. Thus, Cu droplets having a desired volume can be formed.

また、本発明でCu溶湯に振動を付与する場合は、Cu溶湯のオリフィス通過方向への縦振動が好ましい。Cu溶湯に縦振動を付与することで、一定体積のCu液滴を連続して滴下することが可能となる。また、本発明は、オリフィスの孔径、Cu溶湯を滴下させるガス圧力、Cu溶湯に付与する縦振動の振動数をそれぞれ適宜選定することにより、より均一な直径の金属微小球を量産的に得ることが可能となる。   Moreover, when giving a vibration to Cu molten metal by this invention, the longitudinal vibration to the orifice passage direction of Cu molten metal is preferable. By applying longitudinal vibration to the molten Cu, it is possible to continuously drop a certain volume of Cu droplets. In addition, according to the present invention, metal microspheres having a more uniform diameter can be mass-produced by appropriately selecting the orifice hole diameter, the gas pressure for dropping the Cu molten metal, and the frequency of the longitudinal vibration applied to the Cu molten metal. Is possible.

本発明の金属微小球の製造方法の一例を図1に基づいて説明する。図1において、加熱ユニット5を用いて坩堝1内で溶解したCu溶湯6は、坩堝用ガス7により発生させた坩堝1内の圧力と、凝固雰囲気8の圧力の差圧によりオリフィス9を通って凝固チャンバ3内に噴出し、Cu溶湯からなるジェットを形成する。Cu溶湯がオリフィス9を通過する前に、振動部材10を用いてCu溶湯にオリフィス通過方向への縦振動を付与することで、前記Cu溶湯からなるジェットは層流から脈流に変遷する。脈流として生じたくびれは、Cu溶湯が持つ表面張力の作用により発達し、最終的に一つのCu液滴11として、Cu溶湯に付与した縦振動の振動数に応じた周期で分断される。分断されたCu液滴11は、凝固チャンバ3内を落下しながら、自身が持つ表面張力の作用により球状化した後凝固し、金属微小球4として回収缶13に回収される。   An example of the manufacturing method of the metal microsphere of this invention is demonstrated based on FIG. In FIG. 1, the molten Cu 6 melted in the crucible 1 using the heating unit 5 passes through the orifice 9 due to the differential pressure between the pressure in the crucible 1 generated by the crucible gas 7 and the pressure in the solidified atmosphere 8. Jets into the solidification chamber 3 to form a jet made of molten Cu. Before the molten Cu passes through the orifice 9, the vibrating member 10 is used to impart longitudinal vibration to the molten Cu in the direction of passing the orifice, whereby the jet made of the molten Cu changes from laminar flow to pulsating flow. The constriction produced as a pulsating flow develops due to the action of the surface tension of the molten Cu, and finally is divided into a single Cu droplet 11 at a period corresponding to the frequency of the longitudinal vibration applied to the molten Cu. The divided Cu droplet 11 falls into the solidification chamber 3 while being spheroidized by the action of its own surface tension and then solidified, and is collected in the collection can 13 as metal microspheres 4.

本発明では、ガス雰囲気内をCu液滴が落下し、球状凝固して金属微小球が得られる。Cu液滴が完全に凝固する前に互いに衝突すると、複数の液滴からなる体積を持つ凝集球や、球形が連なった異形球が発生する。この衝突を避けるため、Cu液滴に電荷を与えて互いに反発させ、分散した状態で落下させても良い。また、ファンによる風力、ガス注入による噴出圧力によりCu液滴を分散させ、衝突を回避しても良い。   In the present invention, Cu droplets fall in the gas atmosphere and solidify spherically to obtain metal microspheres. When the Cu droplets collide with each other before being completely solidified, agglomerated spheres having a volume composed of a plurality of droplets and deformed spheres having a series of spherical shapes are generated. To avoid this collision, the Cu droplets may be repelled by being charged and dropped in a dispersed state. Further, the collision of the Cu droplets may be avoided by dispersing the Cu droplets by the wind force generated by the fan or the jet pressure generated by gas injection.

Cu液滴が球状凝固するガス雰囲気の圧力については、大気圧が妥当であるが、大気圧プラス0.2MPaからマイナス0.05MPaの範囲で適宜調整することが好ましい。ガス雰囲気の圧力が大気圧プラス0.2MPaを超えると、このような圧力に耐え得る凝固チャンバが必要となり、装置重量の増大、装置製作コストの増大を招くため、大気圧プラス0.2MPa以下が好ましい。   As for the pressure of the gas atmosphere in which Cu droplets solidify spherically, atmospheric pressure is appropriate, but it is preferable to appropriately adjust in the range of atmospheric pressure plus 0.2 MPa to minus 0.05 MPa. If the pressure of the gas atmosphere exceeds atmospheric pressure plus 0.2 MPa, a coagulation chamber that can withstand such pressure is required, leading to an increase in the weight of the apparatus and an increase in the cost of manufacturing the apparatus. preferable.

また、ガス雰囲気の圧力が大気圧マイナス0.05MPaより低いと、Cu液滴を冷却凝固させるために必要な不活性ガスの分子が不足し、凝固には長い凝固チャンバが必要となり、装置重量の増大、装置製作コストの増大を招くため、大気圧マイナス0.05MPa以上が好ましい。   In addition, if the pressure of the gas atmosphere is lower than atmospheric pressure minus 0.05 MPa, the inert gas molecules necessary for cooling and solidifying the Cu droplets are insufficient, and a long solidification chamber is required for solidification. An atmospheric pressure minus 0.05 MPa or more is preferable because it causes an increase in apparatus manufacturing cost.

図1は、本発明の金属微小球の製造方法に適用する製造装置の一例を示す断面模式図である。
図1の製造装置を用いて、純度が99.99質量%以上のCu片を坩堝1内に投入し、加熱ユニット5を用いて坩堝1内で溶解したCu溶湯6を、坩堝用ガス7により発生させた坩堝1内の圧力と凝固雰囲気8の圧力の差圧によりオリフィス9から凝固チャンバ3内に噴出させた。このとき、Cu溶湯6がオリフィス9を通過する前に、振動部材10を用いてCu溶湯6にオリフィス9通過方向への縦振動を付与してCu液滴11を滴下した。
そして、ガス置換装置2により凝固チャンバ3内の凝固雰囲気を調整し、目標直径が200μmの金属微小球4を以下に示す製造条件で作製した。このとき、オリフィス9より滴下して形成されたCu液滴11を、ファン12により風力を与えて分散させながら凝固チャンバ3内を落下させ、自身が持つ表面張力の作用により球状化・凝固した金属微小球4を回収缶13に回収した。
FIG. 1 is a schematic cross-sectional view showing an example of a manufacturing apparatus applied to the method for manufacturing metal microspheres of the present invention.
Using the manufacturing apparatus of FIG. 1, a Cu piece having a purity of 99.99% by mass or more is charged into the crucible 1, and the molten Cu 6 melted in the crucible 1 using the heating unit 5 is added to the crucible gas 7. The generated pressure in the crucible 1 and the pressure in the coagulation atmosphere 8 were jetted from the orifice 9 into the coagulation chamber 3. At this time, before the Cu melt 6 passed through the orifice 9, the vibration member 10 was used to apply longitudinal vibration in the direction of passage of the orifice 9 to the Cu melt 6 to drop the Cu droplet 11.
And the solidification atmosphere in the solidification chamber 3 was adjusted with the gas displacement apparatus 2, and the metal microsphere 4 with a target diameter of 200 micrometers was produced on the manufacturing conditions shown below. At this time, the Cu droplet 11 formed by dropping from the orifice 9 is dropped in the coagulation chamber 3 while being dispersed by applying wind force from the fan 12, and is spheroidized and solidified by the action of its own surface tension. The microspheres 4 were collected in the collection can 13.

(製造条件)
Cu金属片投入重量:400g
凝固雰囲気:アルゴン
凝固雰囲気の酸素濃度:239体積ppm
凝固雰囲気の圧力:大気圧プラス0.02MPa
坩堝内の圧力:大気圧プラス0.2MPa
坩堝内の温度:1300℃
(Production conditions)
Cu metal piece input weight: 400 g
Solidification atmosphere: Argon Oxygen concentration in solidification atmosphere: 239 ppm by volume
Solidification atmosphere pressure: atmospheric pressure plus 0.02 MPa
Pressure in the crucible: atmospheric pressure plus 0.2 MPa
Temperature in crucible: 1300 ° C

図2に、上述の製造条件により得られた金属微小球について、走査型電子顕微鏡を用いてその表面の状態を観察した写真を示す。   FIG. 2 shows a photograph of the surface state of the metal microspheres obtained under the above-described manufacturing conditions using a scanning electron microscope.

実施例1と同様の製造装置を用いて、目標直径が200μmの金属微小球を以下に示す製造条件で作製した。   Using the same production apparatus as in Example 1, metal microspheres having a target diameter of 200 μm were produced under the production conditions shown below.

(製造条件)
Cu金属片投入重量:509g
凝固雰囲気:アルゴン
凝固雰囲気の酸素濃度:656体積ppm
凝固雰囲気の圧力:大気圧プラス0.01MPa
坩堝内の圧力:大気圧プラス0.2MPa
坩堝内の温度:1330℃
(Production conditions)
Cu metal piece input weight: 509 g
Solidification atmosphere: Argon Oxygen concentration in solidification atmosphere: 656 volume ppm
Solidification atmosphere pressure: atmospheric pressure plus 0.01 MPa
Pressure in the crucible: atmospheric pressure plus 0.2 MPa
Temperature in crucible: 1330 ° C

図3に、上述の製造条件により得られた金属微小球について、走査型電子顕微鏡を用いてその表面の状態を観察した写真を示す。   FIG. 3 shows a photograph of the surface state of the metal microspheres obtained under the manufacturing conditions described above, using a scanning electron microscope.

実施例1と同様の製造装置を用いて、目標直径が200μmの金属微小球を以下に示す製造条件で作製した。   Using the same production apparatus as in Example 1, metal microspheres having a target diameter of 200 μm were produced under the production conditions shown below.

(製造条件)
Cu金属片投入重量:2700g
凝固雰囲気:アルゴン
凝固雰囲気の酸素濃度:15、50、120、200、240、310体積ppm
凝固雰囲気の圧力:大気圧プラス0.01MPa
坩堝内の圧力:大気圧プラス0.2MPa
坩堝内の温度:1250℃
(Production conditions)
Cu metal piece input weight: 2700 g
Solidification atmosphere: Argon Oxygen concentration in solidification atmosphere: 15, 50, 120, 200, 240, 310 volume ppm
Solidification atmosphere pressure: atmospheric pressure plus 0.01 MPa
Pressure in the crucible: atmospheric pressure plus 0.2 MPa
Temperature in crucible: 1250 ° C

図4に、上述の製造条件により得られた金属微小球について、走査型電子顕微鏡を用いてその表面の状態を観察した写真を示す。   FIG. 4 shows a photograph of the surface state of the metal microspheres obtained under the manufacturing conditions described above, using a scanning electron microscope.

実施例1と同様の製造装置を用いて、目標直径が200μmの金属微小球を以下に示す製造条件で作製した。   Using the same production apparatus as in Example 1, metal microspheres having a target diameter of 200 μm were produced under the production conditions shown below.

(製造条件)
Cu金属片投入重量:2000g
凝固雰囲気:窒素
凝固雰囲気の酸素濃度:16、51体積ppm
凝固雰囲気の圧力:大気圧プラス0.02MPa
坩堝内の圧力:大気圧プラス0.1MPa
坩堝内の温度:1250℃
(Production conditions)
Cu metal piece input weight: 2000 g
Solidification atmosphere: Nitrogen Oxygen concentration in solidification atmosphere: 16, 51 volume ppm
Solidification atmosphere pressure: atmospheric pressure plus 0.02 MPa
Pressure in the crucible: atmospheric pressure plus 0.1 MPa
Temperature in crucible: 1250 ° C

図5に、上述の製造条件により得られた金属微小球について、走査型電子顕微鏡を用いてその表面の状態を観察した写真を示す。   FIG. 5 shows a photograph of the surface state of the metal microspheres obtained under the manufacturing conditions described above, using a scanning electron microscope.

比較例Comparative example

比較例として、実施例1と同様の製造装置を用いて、凝固雰囲気の酸素濃度を本発明の範囲より低く設定して目標直径が200μmの金属微小球を以下に示す製造条件で作製した。   As a comparative example, using the same production apparatus as in Example 1, metal microspheres having a target diameter of 200 μm were produced under the production conditions shown below, with the oxygen concentration in the solidification atmosphere set lower than the range of the present invention.

(製造条件)
Cu金属片投入重量:482g
凝固雰囲気:アルゴン
凝固雰囲気の酸素濃度:7体積ppm
凝固雰囲気の圧力:大気圧プラス0.01MPa
坩堝内の圧力:大気圧プラス0.2MPa
坩堝内の温度:1330℃
(Production conditions)
Cu metal piece input weight: 482 g
Solidification atmosphere: Argon Oxygen concentration in solidification atmosphere: 7 ppm by volume
Solidification atmosphere pressure: atmospheric pressure plus 0.01 MPa
Pressure in the crucible: atmospheric pressure plus 0.2 MPa
Temperature in crucible: 1330 ° C

図6に、上述の製造条件により得られた金属微小球について、走査型電子顕微鏡を用いてその表面の状態を観察した写真を示す。   FIG. 6 shows a photograph of the surface state of the metal microspheres obtained under the manufacturing conditions described above, using a scanning electron microscope.

図2から図5に示すように、本発明を適用した金属微小球においては、比較例である図6に対し、金属微小球の表面に現れる凹みが大幅に低減されている。したがって、本発明の金属微小球の製造方法を適用することにより、金属微小球の表面に生じる凹みを低減し、表面平滑性の特性を具備した金属微小球を作製することが可能である。
また、図4中の試料番号4から6は、酸素濃度が200体積ppm以上の凝固雰囲気で製造された金属微小球であり、試料番号1から3と比較すると、金属微小球毎の結晶粒サイズのばらつきが低減され、結晶粒サイズも均一微細化されており、より好ましい表面形態を有していることが確認できた。
このように、表面平滑性の特性を具備した金属微小球は、その表面にはんだめっき処理を実施する際、ボイドの発生、めっき密着不良などの問題を起こす可能性を低減でき、金属微小球を接続端子部として用いた電子部品を実用化する上で、電気的な接続信頼性を大いに向上することが可能となる。
As shown in FIGS. 2 to 5, in the metal microsphere to which the present invention is applied, the dent appearing on the surface of the metal microsphere is greatly reduced compared to FIG. 6 which is a comparative example. Therefore, by applying the method for producing metal microspheres of the present invention, it is possible to reduce the dents generated on the surface of the metal microspheres and to produce metal microspheres having surface smoothness characteristics.
Sample numbers 4 to 6 in FIG. 4 are metal microspheres manufactured in a solidified atmosphere with an oxygen concentration of 200 ppm by volume or more. Compared with sample numbers 1 to 3, the crystal grain size for each metal microsphere is shown in FIG. It was confirmed that the variation in the thickness was reduced, the crystal grain size was uniformly refined, and the surface morphology was more favorable.
Thus, metal microspheres with surface smoothness characteristics can reduce the possibility of problems such as voids and poor plating adhesion when solder plating is applied to the surface. The electrical connection reliability can be greatly improved when the electronic component used as the connection terminal portion is put into practical use.

Cu液滴が球状凝固する雰囲気中の酸素濃度を所定の範囲に調整する構成を採用することで、表面平滑性を大きく改善した本発明の金属微小球の製造方法は、電子部品の接続端子部に適した金属微小球を提供するものであり、配線基板の多層化や接続端子部の微小化において、電気的な接続信頼性、多層化後の配線基板における寸法精度を向上することが可能となる。
また、金属液滴をガス雰囲気で球状凝固させる金属球の製造方法において、球状凝固する雰囲気中の酸素濃度を調整することによって、表面平滑性に優れたCu以外の金属球の製造にも適用できる。
By adopting a configuration in which the oxygen concentration in the atmosphere in which the Cu droplets are spherically solidified is adjusted to a predetermined range, the method for producing the metal microspheres of the present invention, in which the surface smoothness is greatly improved, Metal microspheres suitable for use in electrical wiring, and it is possible to improve the electrical connection reliability and the dimensional accuracy in the multilayered wiring board when the wiring board is multi-layered and the connection terminal part is miniaturized. Become.
In addition, in the method for producing a metal sphere in which metal droplets are spherically solidified in a gas atmosphere, the method can be applied to the production of metal spheres other than Cu having excellent surface smoothness by adjusting the oxygen concentration in the atmosphere to be spherically solidified. .

1.坩堝、2.ガス置換装置、3.凝固チャンバ、4.金属微小球、5.加熱ユニット、6.Cu溶湯、7.坩堝用ガス、8.凝固雰囲気、9.オリフィス、10.振動部材、11.Cu液滴、12.ファン、13.回収缶   1. Crucible, 2. 2. gas displacement device; Coagulation chamber; 4. 4. metal microspheres; 5. heating unit; 6. Cu melt, Gas for crucible, 8. 8. solidification atmosphere; Orifice, 10. 10. vibration member; Cu droplet, 12. Fan, 13. Collection can

Claims (5)

圧力と振動を付与したCu溶湯をオリフィスより滴下して形成したCu液滴を、酸素:200〜800体積ppm、残部不活性ガス雰囲気で球状凝固させることを特徴とする金属微小球の製造方法。 A method for producing metal microspheres, characterized in that Cu droplets formed by dropping Cu molten metal imparted with pressure and vibration from an orifice are spherically solidified in an atmosphere of oxygen: 200 to 800 volume ppm and the balance inert gas. 前記酸素は、200〜760体積ppmであることを特徴とする請求項1に記載の金属微小球の製造方法。   The said oxygen is 200-760 volume ppm, The manufacturing method of the metal microsphere of Claim 1 characterized by the above-mentioned. 前記不活性ガスは、アルゴンであることを特徴とする請求項1または請求項2に記載の金属微小球の製造方法。 The method for producing metal microspheres according to claim 1 or 2, wherein the inert gas is argon. 前記不活性ガスは、窒素であることを特徴とする請求項1または請求項2に記載の金属微小球の製造方法。 The method for producing metal microspheres according to claim 1 or 2, wherein the inert gas is nitrogen. Cu液滴に風力を与えて分散させながら球状凝固させることを特徴とする請求項1ないし請求項4のいずれかに記載の金属微小球の製造方法。The method for producing metal microspheres according to any one of claims 1 to 4, wherein the Cu droplets are spherically solidified while being dispersed by applying wind force to the Cu droplets.
JP2010069860A 2009-06-30 2010-03-25 Method for producing metal microspheres Active JP5590501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069860A JP5590501B2 (en) 2009-06-30 2010-03-25 Method for producing metal microspheres

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009155586 2009-06-30
JP2009155586 2009-06-30
JP2010069860A JP5590501B2 (en) 2009-06-30 2010-03-25 Method for producing metal microspheres

Publications (2)

Publication Number Publication Date
JP2011026697A JP2011026697A (en) 2011-02-10
JP5590501B2 true JP5590501B2 (en) 2014-09-17

Family

ID=43635755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069860A Active JP5590501B2 (en) 2009-06-30 2010-03-25 Method for producing metal microspheres

Country Status (1)

Country Link
JP (1) JP5590501B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190113515A (en) 2018-03-27 2019-10-08 히다찌긴조꾸가부시끼가이사 Manufacturing method of metal particle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179912A (en) * 1993-12-22 1995-07-18 Minerva Kiki Kk Production of globular metallic grain
JP2002317211A (en) * 2001-04-18 2002-10-31 Fukuda Metal Foil & Powder Co Ltd Method for producing metallic ball
TW577780B (en) * 2001-07-26 2004-03-01 Ind Des Poudres Spheriques Device for producing spherical balls
JP4148521B2 (en) * 2004-06-15 2008-09-10 三井金属鉱業株式会社 Spherical fine copper powder and method for producing spherical fine copper powder
JP4227084B2 (en) * 2004-08-11 2009-02-18 三井金属鉱業株式会社 Apparatus for producing spherical fine copper powder by rotating disk method and method for producing spherical fine copper powder by rotating disk method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190113515A (en) 2018-03-27 2019-10-08 히다찌긴조꾸가부시끼가이사 Manufacturing method of metal particle
TWI680195B (en) * 2018-03-27 2019-12-21 日商日立金屬股份有限公司 Method for producing metal particle

Also Published As

Publication number Publication date
JP2011026697A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
CN101351295B (en) Solder foams, nano-porous solders, foamed-solder bumps in chip packages, methods of assembling same, and systems containing same
KR101334156B1 (en) Fabrication method of amorphous alloy powder using gas atomization
CN104668807B (en) Spherical low-melting-point brazing filler metal powder manufacturing method
TWI597241B (en) Metal particle and method for producing the same, coated metal particle, metal powder
Xiong et al. Experimental investigation on the height deviation of bumps printed by solder jet technology
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
Dai et al. One-step fabrication of Al/Sn-Bi core–shell spheres via phase separation
JP2020026573A (en) Magnesium alloy powder
JP3891346B2 (en) Fine copper ball and method for producing fine copper ball
JP5590501B2 (en) Method for producing metal microspheres
KR101308828B1 (en) Method for producing fine metal ball
CN113560587A (en) BGA tin ball smelting and rapid forming method
CN106583727A (en) Additive manufacturing method for metal-based particle reinforced member
JP2010123681A (en) Metal ball for wiring substrate
JP2001226706A (en) Apparatus for manufacturing fine metallic ball
JP2001267730A (en) Solder ball
JP2005046882A (en) Solder alloy, solder ball, and solder joined body
CN110355376B (en) Method for preparing aluminum or aluminum alloy powder by exciting aluminum-salt mixed melt through ultrasonic waves
CN113969367A (en) Aluminum-lithium alloy material, aluminum-lithium alloy component and preparation method of aluminum-lithium alloy component
Oguchi et al. Flaky amorphous powders in Fe-, Co-and Al-based systems prepared by a two-stage quenching technique
CN102528057B (en) The manufacture method of metallic microspheres
JP5688715B2 (en) Metal sphere forming jig, metal sphere forming method using the same, and metal sphere obtained by this forming method
JP2001226705A (en) Method for manufacturing fine metallic ball and apparatus for manufacturing fine metallic ball
JP2018178225A (en) Manufacturing method of magnesium alloy
JP2004276086A (en) Tin-zinc solder ball and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5590501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140720

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250