JP5589056B2 - Contact element for conductively connecting the anode and interconnector of a high temperature fuel cell - Google Patents

Contact element for conductively connecting the anode and interconnector of a high temperature fuel cell Download PDF

Info

Publication number
JP5589056B2
JP5589056B2 JP2012501128A JP2012501128A JP5589056B2 JP 5589056 B2 JP5589056 B2 JP 5589056B2 JP 2012501128 A JP2012501128 A JP 2012501128A JP 2012501128 A JP2012501128 A JP 2012501128A JP 5589056 B2 JP5589056 B2 JP 5589056B2
Authority
JP
Japan
Prior art keywords
contact
partial
contact element
interconnector
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012501128A
Other languages
Japanese (ja)
Other versions
JP2012521618A (en
Inventor
ウェシュケ,ウルフ
クスネゾフ,ミハイルス
Original Assignee
プランゼー エスエー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プランゼー エスエー filed Critical プランゼー エスエー
Publication of JP2012521618A publication Critical patent/JP2012521618A/en
Application granted granted Critical
Publication of JP5589056B2 publication Critical patent/JP5589056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、高温型燃料電池の陽極とインターコネクタとを導電的に接続する接触要素に関する。高温型燃料電池では、個々の燃料電池を結合させてスタックとし、その際にそれらを相互に導電的に接続することを常に行う。このために、バイポーラプレートとも呼ばれるインターコネクタを、個々の燃料電池の電極同士の間に配置する。従って、ある燃料電池の一電極からその隣の燃料電池の反対極の電極へと電流を流すことができる。   The present invention relates to a contact element that conductively connects an anode and an interconnector of a high-temperature fuel cell. In a high-temperature fuel cell, individual fuel cells are combined to form a stack, in which case they are always electrically connected to each other. For this purpose, an interconnector, also called a bipolar plate, is arranged between the electrodes of the individual fuel cells. Therefore, a current can flow from one electrode of a certain fuel cell to the opposite electrode of the adjacent fuel cell.

しかし、燃料又は酸化剤を電極に移動させる必要があるため、透過性又は有孔性である必要があり、これが導電性に影響する。   However, since it is necessary to move the fuel or oxidant to the electrode, it must be permeable or porous, which affects conductivity.

従って、これまでは電極とそれぞれ配置したインターコネクタとの間において、様々な構成の電流コネクタを使用してきた。この例としては、ファイバで形成した網状組織又は電流コネクタがある(独国特許出願公開第10232093(A1)号)。   Therefore, so far, various configurations of current connectors have been used between the electrodes and the respective interconnectors. An example of this is a network or current connector made of fiber (German Patent Application No. 10232093 (A1)).

高温型燃料電池の場合には、燃料電池の動作温度が高いために、一般的に熱膨張という更なる問題を考慮しなければならない。このことから、通例として燃料電池の全ての個々の本質的要素の材料、即ち電極とインターコネクタの材料、そして一部には電流コネクタの材料を選択する際に、固体電解質の熱膨張率を考慮する。この際には、わずかな差のみ許容すべきである。   In the case of a high-temperature fuel cell, since the operating temperature of the fuel cell is high, the further problem of thermal expansion must generally be considered. For this reason, the coefficient of thermal expansion of the solid electrolyte is usually taken into account when selecting the materials of all the individual essential elements of the fuel cell, i.e. the electrode and interconnector material, and in part the current connector material. To do. In this case, only slight differences should be allowed.

陽極とこれに関連するインターコネクタとの間に導電的接続を提供する電流コネクタは、ニッケルで製造するのが通例である。ただし、ニッケルは熱膨張率がかなり大きい。高温型燃料電池を動作温度から室温に冷却すると、陽極との接触において長さが不足する。これにより陰極のセラミック接触に引っ張り歪みが生じ、接触が絶たれるおそれがある。このことで電気損失が生じ、達成できる電力が減少する。   Current connectors that provide a conductive connection between the anode and the associated interconnector are typically made of nickel. However, nickel has a considerably high coefficient of thermal expansion. When the high temperature fuel cell is cooled from the operating temperature to room temperature, the length in contact with the anode is insufficient. This can cause tensile strain on the ceramic contact of the cathode, which can break the contact. This causes electrical losses and reduces the power that can be achieved.

陽極とインターコネクタとの間で、このようにニッケルで形成する導電接続の厚みを減少することについても、機械的歪みと製造公差をニッケルの延性で補償しなければならず、適切ではない。   This reduction in the thickness of the conductive connection formed of nickel between the anode and the interconnector is also not appropriate because the mechanical strain and manufacturing tolerances must be compensated for by the ductility of nickel.

陽極とインターコネクタとの間に網目状又は繊維状構造を用いて接点を形成することにおいて、燃料電池の動作中に局所的に変形が生じることで、導電性の高まったスポット、いわゆる「ホットスポット」が生じる。その部分にはより多くの電流が流れる。   In forming a contact using a mesh or fiber structure between the anode and the interconnector, a spot having increased conductivity due to local deformation during the operation of the fuel cell, a so-called “hot spot” Is generated. More current flows through that part.

このプロセスにおいて、これらの位置の接触が妨げられると、必然的に導電性が低下し、電気抵抗が増す。このことは、少なくとも陽極とインターコネクタとの間でこのように局所に限定的に多くの電流を流すことができる時間に、このような電流コネクタにはかかる接点が存在しないため、電源を切った従来の燃料電池を再始動させることに特に不利益な影響を及ぼす。   In this process, if contact at these locations is hindered, inevitably the conductivity decreases and the electrical resistance increases. This means that there is no such contact in such a current connector, at least in such a time that a limited amount of current can flow locally between the anode and the interconnector, so the power is turned off. It has a particularly detrimental effect on restarting conventional fuel cells.

独国特許出願公開第10232093(A1)号German Patent Application No. 10232093 (A1)

従って本発明の目的は、高温型燃料電池の陽極とこれに関連するインターコネクタとの間に長期間にわたって安定した、より信頼性の高い導電接続を達成することである。   Accordingly, it is an object of the present invention to achieve a stable, more reliable conductive connection over a long period of time between the anode of a high temperature fuel cell and its associated interconnector.

本発明によれば、この目的は請求項1の特徴を有する接触要素によって達成される。本発明の有利な実施形態と更なる展開は、従属請求項に記載する技術的特徴を用いて達成できる。   According to the invention, this object is achieved by a contact element having the features of claim 1. Advantageous embodiments and further developments of the invention can be achieved with the technical features described in the dependent claims.

本発明による接触要素は、2つの領域からなる導電性の部分要素で形成する。この点に関して、一方の部分要素は陽極と接触し、他方の部分要素は各インターコネクタと接触する。部分要素には燃料が接触要素を通過できる孔を形成するため、接触要素は透過性である。両部分要素は、相互に異なる熱膨張率を有する材料で形成する。   The contact element according to the invention is formed by a conductive subelement consisting of two regions. In this regard, one subelement contacts the anode and the other subelement contacts each interconnector. The contact elements are permeable because the partial elements form holes through which fuel can pass through the contact elements. Both subelements are formed of materials having different coefficients of thermal expansion.

部分要素、そして全体としての接触要素も有孔性である。   The subelements and the contact elements as a whole are also porous.

接触要素は、2つより多くの部分要素で形成してもよい。このプロセスでも同様に熱膨張率を考慮する。   The contact element may be formed of more than two subelements. In this process as well, the coefficient of thermal expansion is considered.

熱膨張率が異なることにより、温度が変化すると変形が生じる。接触要素に圧縮歪みが生じることにより、導電的接触を安定化することができる。圧縮歪みは、接触要素の表面に分布した形で発生する。これにより、陽極とインターコネクタとの間の有効な表面上のより多くの場所に分布した形で電流を流すことができる。   Due to the different coefficients of thermal expansion, deformation occurs when the temperature changes. By causing compressive strain in the contact element, the conductive contact can be stabilized. The compressive strain occurs in a distributed manner on the surface of the contact element. This allows current to flow in more distributed locations on the effective surface between the anode and interconnector.

変形すると、接触要素の表面上にピークとトラフを分布させることができる。この点に関して、トラフは孔の位置にあることが好ましい。高温型燃料電池の動作温度から冷却すると接触要素が変形するが、陽極側に押される領域とインターコネクト側に押される領域を作り出すことに、これを利用することができる。これにより、電気接触を改善できる。   When deformed, peaks and troughs can be distributed on the surface of the contact element. In this regard, the trough is preferably at the hole. Although the contact element is deformed when cooled from the operating temperature of the high temperature fuel cell, it can be used to create a region pushed to the anode side and a region pushed to the interconnect side. Thereby, electrical contact can be improved.

この効果はすべての更なる温度変化でも利用できる。   This effect can be used for all further temperature changes.

2つの部分要素を形成する材料の熱膨張率は、膨張量の差が少なくとも1ppm/Kとなるよう離れた値とすべきである。少なくとも700℃から高温型燃料電池の動作温度までの温度範囲において、これを維持すべきである。   The coefficients of thermal expansion of the materials forming the two subelements should be separated so that the difference in expansion is at least 1 ppm / K. This should be maintained at a temperature range of at least 700 ° C. to the operating temperature of the high temperature fuel cell.

部分要素に形成する孔は、接触要素が燃料に対して透過性であるように、また一方の部分要素における各孔が他方の部分要素の各孔と連通するように配置すべきである。   The holes formed in the subelement should be arranged so that the contact element is permeable to the fuel and that each hole in one subelement communicates with each hole in the other subelement.

部分要素の材料を選択する際、そしてそれらの寸法を決定する際には、高温型燃料電池の動作温度未満の少なくとも100Kの温度で、2つの部分要素のサイズが同等となる又は同等となることができるよう考慮することができる。   When selecting sub-element materials and determining their dimensions, the size of the two sub-elements should be equal or equivalent at a temperature of at least 100K below the operating temperature of the high temperature fuel cell. Can be considered.

部分要素の表面の形状とサイズを決定する際には、高温型燃料電池の動作温度未満の少なくとも100Kの温度において、周囲に形成した外縁要素と部分要素の外縁部が接触するように、有利に決定することができる。ただし、すでに室温でこの状態となるようにしてもよい。   When determining the shape and size of the surface of the sub-element, it is advantageous that the outer edge element formed in the periphery contacts the outer edge of the sub-element at a temperature of at least 100 K, which is less than the operating temperature of the high temperature fuel cell. Can be determined. However, this state may already be achieved at room temperature.

ただし、接触要素の部分要素の外縁部は、単独で若しくは周囲に前もって印を作成して外縁要素に固定するようにしてもよい、及び/又は、部分要素同士をその外縁部において互いに接続するようにしてもよい。   However, the outer edges of the subelements of the contact element may be secured to the outer edge elements alone or in advance around the perimeter and / or the subelements may be connected to each other at their outer edges. It may be.

本発明で有利に使用できる変形を、これらの方法によって温度変化時に接触要素の表面上で行うことができる。   Deformations that can be advantageously used in the present invention can be performed on the surface of the contact element during these temperature changes by these methods.

本発明による接触要素は柔軟に変形可能であると共に気体に対して透過性とすべきである。このために、部分要素を柔軟に変形可能で透過性のフィルムで形成することができる。   The contact element according to the invention should be flexible and permeable to gases. For this purpose, the partial elements can be made of a transparent film that can be deformed flexibly.

この点に関して、部分要素はそれぞれ、ニッケル、銅、鉄、コバルトから選択した異なる金属で、又はその合金で形成することができる。   In this regard, each subelement can be formed of a different metal selected from nickel, copper, iron, cobalt, or an alloy thereof.

接触要素の全体の厚さは最大で2mmとすべきである。   The total thickness of the contact element should be at most 2 mm.

本発明による接触要素の2つの部分要素の厚さは異なっていてもよい。この点に関して、それぞれの熱膨張率、機械的特性(例えば柔軟性)、及びそれぞれの導電性を考慮することができる。   The thickness of the two partial elements of the contact element according to the invention may be different. In this regard, the respective coefficient of thermal expansion, mechanical properties (eg, flexibility), and respective conductivity can be considered.

部分要素の孔は、陽極表面及び/又はインターコネクタ表面の20%から90%、好ましくは40%から60%として、十分な燃料交換が行われ導電性を高く維持できることを保証すべきである。   Sub-element holes should be 20% to 90%, preferably 40% to 60% of the anode and / or interconnector surfaces to ensure that sufficient fuel changes can be made to maintain high conductivity.

孔は互いに規則的且つ等間隔となるよう配置し、各々の寸法及び形状を同等なものとすべきであるが、これは少なくとも中心領域において適用すべきである。孔は外縁部においては任意に異なるようにしてもよく、又は孔を全く設けないようにしてもよい。   The holes should be regularly and evenly spaced from each other and their dimensions and shapes should be equivalent, but this should apply at least in the central region. The holes may be arbitrarily different at the outer edge, or no holes may be provided.

接触要素の陽極と対向する側には熱膨張率の大きい部分要素を配置し、接触要素のインターコネクタに対向する側には熱膨張率の小さい部分要素を配置すべきである。   A partial element having a high coefficient of thermal expansion should be arranged on the side of the contact element facing the anode, and a partial element having a low coefficient of thermal expansion should be arranged on the side of the contact element facing the interconnector.

以下の例により本発明をより詳細に説明する。   The following examples explain the invention in more detail.

本発明による接触要素を備えた高温型燃料電池の断面図である。1 is a cross-sectional view of a high temperature fuel cell with a contact element according to the present invention. 本発明による接触要素の一例の部分要素を示す図である。FIG. 4 shows a partial element of an example of a contact element according to the invention.

高温型燃料電池の断面図を図1に示す。この点に関して、インターコネクタ3上に接触要素1をインターコネクタと陽極2の間に配置する。陽極2の上には固体電解質4と陰極5を配置する。   A cross-sectional view of the high-temperature fuel cell is shown in FIG. In this regard, a contact element 1 is arranged on the interconnector 3 between the interconnector and the anode 2. A solid electrolyte 4 and a cathode 5 are disposed on the anode 2.

本例では、2つの部分要素1.1と1.2が接触要素1を形成する。この点に関して、インターコネクタ側に配置する部分要素1.1は純銅(20℃でα=16.5*10−3−1)で形成し、その厚さは290μmである。陽極側に配置する第2の部分要素1.2は、120μm厚さの純ニッケル(20℃でα=13.0*10−3−1)の薄いフィルムで形成する。 In this example, the two partial elements 1.1 and 1.2 form the contact element 1. In this regard, the partial element 1.1 arranged on the interconnector side is made of pure copper (α = 16.5 * 10 −3 K −1 at 20 ° C.) and has a thickness of 290 μm. The second partial element 1.2 arranged on the anode side is formed of a thin film of pure nickel (α = 13.0 * 10 −3 K −1 at 20 ° C.) having a thickness of 120 μm.

1 接触要素
1.1、1.2 部分要素
2 陽極
3 インターコネクタ
4 固体電解質
5 陰極
1 Contact Element 1.1, 1.2 Partial Element 2 Anode 3 Interconnector 4 Solid Electrolyte 5 Cathode

Claims (12)

高温型燃料電池の陽極とインターコネクタとを導電的に接続する、前記陽極とインターコネクタとの間に配置した接触要素であって、
前記接触要素を2つの領域からなる導電性の部分要素で形成し、一方の部分要素が前記陽極と接触し、他方の部分要素が前記インターコネクタと接触し、
前記一方の部分要素と前記他方の部分要素の各々に孔を形成し、
前記一方の部分要素と前記他方の部分要素を、相互に異なる熱膨張率を有する材料で形成すること、
を特徴とする接触要素。
A contact element disposed between the anode and the interconnector for conductively connecting the anode and the interconnector of the high-temperature fuel cell,
The contact element is formed of a conductive sub-element comprising two regions, one sub-element is in contact with the anode, the other sub-element is in contact with the interconnector;
Hole is formed on each of the other part element and the one of the partial elements,
Forming the one partial element and the other partial element with materials having different coefficients of thermal expansion;
Contact element characterized by.
前記一方の部分要素に形成した前記孔と前記他方の部分要素に形成した前記孔を、前記接触要素が燃料に対して透過性となるよう配置すること、を特徴とする請求項1に記載の接触要素。 The hole formed in the one partial element and the hole formed in the other partial element are arranged so that the contact element is permeable to fuel. Contact element. 前記一方の部分要素と前記他方の部分要素が、前記高温型燃料電池の動作温度よりも少なくとも100K低い温度において同等のサイズとなること、を特徴とする、請求項1又は2に記載の接触要素。 The contact element according to claim 1, wherein the one partial element and the other partial element have the same size at a temperature that is at least 100 K lower than an operating temperature of the high-temperature fuel cell. . 前記高温型燃料電池の前記動作温度よりも少なくとも100K低い温度において、前記一方の部分要素の外縁部と前記他方の部分要素の外縁部が、周囲に形成した外縁要素と接触すること、を特徴とする請求項1から3のいずれか一項に記載の接触要素。 In at least 100K lower temperature than the operating temperature of the high temperature fuel cell, the outer edge of the outer edge and the other partial element of the one part element, and wherein, be in contact with the outer edge elements formed around The contact element according to any one of claims 1 to 3. 前記接触要素の前記一方の部分要素の前記外縁部の周囲と前記他方の部分要素の前記外縁部の周囲を外縁要素に固定する、及び/又は、前記一方の部分要素と前記他方の部分要素同士を少なくともそれらの外縁部で相互に接続させること、を特徴とする請求項4に記載の接触要素。 The periphery of the outer edge of the one partial element of the contact element and the periphery of the outer edge of the other partial element are fixed to the outer edge element, and / or the one partial element and the other partial element The contact elements according to claim 4 , characterized in that they are interconnected at least at their outer edges. 前記接触要素が柔軟に変形可能であること、を特徴とする請求項1から5のいずれか一項に記載の接触要素。   The contact element according to claim 1, wherein the contact element is flexibly deformable. 前記一方の部分要素と前記他方の部分要素が柔軟に変形可能な有孔フィルムであること、を特徴とする請求項1から6のいずれか一項に記載の接触要素。 The contact element according to any one of claims 1 to 6, wherein the one partial element and the other partial element are perforated films that can be flexibly deformed. ニッケル、銅、鉄、及びコバルトから選択した金属、又はこれら金属の合金で前記一方の部分要素と前記他方の部分要素を形成すること、を特徴とする請求項1から7のいずれか一項に記載の接触要素。 The one partial element and the other partial element are formed of a metal selected from nickel, copper, iron, and cobalt, or an alloy of these metals, according to any one of claims 1 to 7. The described contact element. 前記一方の部分要素と前記他方の部分要素の厚さが異なること、を特徴とする請求項1から8のいずれか一項に記載の接触要素。   The contact element according to claim 1, wherein the one partial element and the other partial element have different thicknesses. 前記一方の部分要素の前記孔と前記他方の部分要素の前記孔が、前記陽極の表面及び/又はインターコネクタの表面の20%から90%を占めること、を特徴とする請求項1から9のいずれか一項に記載の接触要素。 The hole of the hole and the other part element of the one part element, occupy 90% to 20% of the surface and / or the interconnector surface of the anode, from claim 1, wherein the 9 Contact element according to any one of the preceding claims. 前記孔を互いに規則的且つ等間隔となるよう配置し、前記孔の寸法及び形状が同等であること、を特徴とする請求項1から10のいずれか一項に記載の接触要素。 Contact element according to claim 1, any one of 10 the holes are arranged so as to be regularly and equidistantly to each other, that dimensions and shape of the holes is equal, and wherein. 前記陽極側に配置した前記一方の部分要素が、前記インターコネクタに面する側に配置した前記他方の部分要素より大きい熱膨張率を有すること、を特徴とする請求項1から11のいずれか一項に記載の接触要素。   The one partial element arranged on the anode side has a thermal expansion coefficient larger than that of the other partial element arranged on the side facing the interconnector. Contact element according to paragraph.
JP2012501128A 2009-03-26 2010-02-26 Contact element for conductively connecting the anode and interconnector of a high temperature fuel cell Active JP5589056B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009015794A DE102009015794B3 (en) 2009-03-26 2009-03-26 Contact element for an electrically conductive connection between an anode and an interconnector of a high-temperature fuel cell
DE102009015794.8 2009-03-26
PCT/DE2010/000236 WO2010108466A1 (en) 2009-03-26 2010-02-26 Contact element for an electrically conductive connection between an anode and an interconnector of a high-temperature fuel cell

Publications (2)

Publication Number Publication Date
JP2012521618A JP2012521618A (en) 2012-09-13
JP5589056B2 true JP5589056B2 (en) 2014-09-10

Family

ID=42227601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012501128A Active JP5589056B2 (en) 2009-03-26 2010-02-26 Contact element for conductively connecting the anode and interconnector of a high temperature fuel cell

Country Status (9)

Country Link
US (1) US8828623B2 (en)
EP (1) EP2412050B8 (en)
JP (1) JP5589056B2 (en)
KR (1) KR101737539B1 (en)
CN (1) CN102365777B (en)
DE (1) DE102009015794B3 (en)
DK (1) DK2412050T3 (en)
TW (1) TWI495180B (en)
WO (1) WO2010108466A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367068B1 (en) * 2011-12-28 2014-02-25 삼성전기주식회사 Bimetal current collecting contact member and fuel cell apparatus with the same
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
CN110085873B (en) 2018-01-26 2021-09-10 财团法人工业技术研究院 Cathode layer and membrane electrode assembly of solid oxide fuel cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092446A (en) * 1996-09-13 1998-04-10 Fuji Electric Corp Res & Dev Ltd Solid electrolyte type fuel cell
AU4390600A (en) * 1999-03-26 2000-10-16 Siemens Aktiengesellschaft High-temperature fuel cell
JP4663137B2 (en) 2001-01-30 2011-03-30 京セラ株式会社 Fuel cell
JP4683742B2 (en) 2001-02-27 2011-05-18 京セラ株式会社 Fuel cell
US6632554B2 (en) 2001-04-10 2003-10-14 Hybrid Power Generation Systems, Llc High performance cathodes for solid oxide fuel cells
DE10232093A1 (en) * 2002-07-15 2004-02-05 Bayerische Motoren Werke Ag Process for joining single fuel cells to form a fuel cell block or stack comprises using a contact layer made from fibers
US7892698B2 (en) * 2003-07-18 2011-02-22 Versa Power Systems, Ltd. Electrically conductive fuel cell contact material
JP4949834B2 (en) 2003-07-18 2012-06-13 ヴァーサ パワー システムズ リミテッド Fuel cell stack
EP2259373A1 (en) 2004-06-10 2010-12-08 Technical University of Denmark Solid oxide fuel cell
US20060024547A1 (en) * 2004-07-27 2006-02-02 David Waldbillig Anode supported sofc with an electrode multifunctional layer
EP1844517B1 (en) 2005-02-02 2010-04-21 Technical University of Denmark A method for producing a reversible solid oxid fuel cell
CN100513619C (en) 2007-12-19 2009-07-15 吉林化工学院 Ferritic stainless steel containing rare earth element yttrium for solid-oxide fuel battery

Also Published As

Publication number Publication date
US20120135336A1 (en) 2012-05-31
CN102365777B (en) 2014-12-31
EP2412050B8 (en) 2013-12-18
CN102365777A (en) 2012-02-29
TW201044676A (en) 2010-12-16
DK2412050T3 (en) 2014-02-03
DE102009015794B3 (en) 2010-07-22
TWI495180B (en) 2015-08-01
KR101737539B1 (en) 2017-05-18
JP2012521618A (en) 2012-09-13
EP2412050B1 (en) 2013-10-30
KR20110139705A (en) 2011-12-29
US8828623B2 (en) 2014-09-09
EP2412050A1 (en) 2012-02-01
WO2010108466A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
EP3016193B1 (en) Solid oxide fuel cell stack
US10714782B2 (en) Cell stack device, module, and module housing device
JP2008510288A (en) SOFC stack concept
JP5236294B2 (en) Interconnector for high-temperature fuel cells
JP5589056B2 (en) Contact element for conductively connecting the anode and interconnector of a high temperature fuel cell
JP2009099480A (en) Fuel cell
US8153327B2 (en) Interconnector for high temperature fuel cells
JP2008078148A (en) Fuel cell
JP6850187B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP5711927B2 (en) Solid oxide fuel cell
KR101856330B1 (en) Structure of fuel cell
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
US8697307B2 (en) Solid oxide fuel cell stack
JP5846936B2 (en) Fuel cell
JP6777669B2 (en) How to operate the electrochemical reaction cell stack and the electrochemical reaction system
JP6773472B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
KR20150075442A (en) Metallic current collector for solid oxide fuel cell and solid oxide fuel cell comprising the same
JP7324983B2 (en) INTERCONNECTOR MEMBER AND METHOD FOR MANUFACTURING INTERCONNECTOR MEMBER
JP7042783B2 (en) Electrochemical reaction cell stack
JP2012243630A (en) Fuel cell
JP6083426B2 (en) Fuel cell separator
JP2020042980A (en) Fuel cell
KR101171604B1 (en) Method for coating protective layer on surface of metal bipolar plate with gas flow channel for planar solid oxide fuel cell
JP2002184433A (en) Solid electrolyte fuel cell and its stacked structure
JP2018174039A (en) Electrochemical reaction unit and electrochemical reaction cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131121

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5589056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250