JP5586041B2 - Manufacturing method of ceramics - Google Patents

Manufacturing method of ceramics Download PDF

Info

Publication number
JP5586041B2
JP5586041B2 JP2009193126A JP2009193126A JP5586041B2 JP 5586041 B2 JP5586041 B2 JP 5586041B2 JP 2009193126 A JP2009193126 A JP 2009193126A JP 2009193126 A JP2009193126 A JP 2009193126A JP 5586041 B2 JP5586041 B2 JP 5586041B2
Authority
JP
Japan
Prior art keywords
mass
volcanic glass
glass foam
clay
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009193126A
Other languages
Japanese (ja)
Other versions
JP2011042544A (en
Inventor
憲示 上野
俊一郎 石橋
香君 林
英雄 加藤
Original Assignee
東興パーライト工業株式会社
学校法人宇都宮学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東興パーライト工業株式会社, 学校法人宇都宮学園 filed Critical 東興パーライト工業株式会社
Priority to JP2009193126A priority Critical patent/JP5586041B2/en
Publication of JP2011042544A publication Critical patent/JP2011042544A/en
Application granted granted Critical
Publication of JP5586041B2 publication Critical patent/JP5586041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、セラミックスの製造方法に関し、特には、成形体の乾燥時間を大幅に短縮することが可能なセラミックスの製造方法に関するものである。   The present invention relates to a method for producing ceramics, and more particularly to a method for producing ceramics capable of greatly reducing the drying time of a molded body.

従来、セラミックスは、素地の調製、成形、乾燥、素焼き、施釉、本焼き、冷却の手順を経て製造されるが、セラミックス素地を成形した後の成形体の乾燥工程においては、その成形体の歪みを最小限に抑えるため、成形体の乾燥をゆっくり行い、また、焼成中の温度上昇時に起こる成形体の爆裂を回避するため、含水率が5質量%程度に低下したことを確認した上で、成形体を焼成する必要があった。また、乾燥条件は、セラミックスの形状、大きさ等を勘案した上で決定する必要があるため、経験に基づいた職人それぞれの技能に頼っているのが現状である。そして、天候任せの自然乾燥、エネルギー源を用いる強制乾燥等のあらゆる乾燥手段と技術とを用いて、セラミックスの歪み、亀裂等の欠点を最小限に抑える努力もなされている。セラミックスの大きさ、形状等の多様性や、素地厚の不均一性によっては、細心の注意を払って製造工程を進める必要があり、乾燥期間が数ヶ月に及ぶ場合もある。一般には、セラミックスの製造過程における全所要時間の70%以上が、乾燥工程に費やされる。   Conventionally, ceramics are manufactured through the procedures of preparation, molding, drying, unglazing, glazing, main baking, and cooling of the substrate, but in the drying process of the molded product after forming the ceramic substrate, distortion of the molded product is required. In order to minimize the amount of water, the molded body is slowly dried, and in order to avoid explosion of the molded body that occurs when the temperature rises during firing, after confirming that the moisture content has decreased to about 5% by mass, The molded body had to be fired. Moreover, since it is necessary to determine drying conditions in consideration of the shape, size, etc. of ceramics, the present condition depends on the skill of each craftsman based on experience. Further, efforts are made to minimize defects such as distortion and cracking of ceramics by using any drying means and technology such as natural drying depending on the weather and forced drying using an energy source. Depending on the variety of ceramics, such as size and shape, and non-uniformity of the substrate thickness, it is necessary to proceed with the manufacturing process with great care, and the drying period may be several months. Generally, 70% or more of the total time required for the ceramic manufacturing process is spent in the drying process.

そのため、製造過程における乾燥・焼成工程で起きる収縮や応力を見越して、セラミックス素地を選定することが、製品デザインを決定する上での重要な要因となるが、該選定についても、経験に基づく職人の技能に頼っているのが現状である。また、乾燥時間が短縮できる乾式工法等では、加圧を余儀なくされ、形状の制約を受けた製品デザインを開発する必要がある。   Therefore, selecting a ceramic substrate in anticipation of shrinkage and stress that occurs during the drying / firing process in the manufacturing process is an important factor in determining product design. Relying on the skills of the current situation. In addition, in the dry construction method that can shorten the drying time, it is necessary to develop a product design that is forced to be pressurized and subjected to shape constraints.

一方、セラミックスの成形工程においては、形状を賦与する手法の一つとして、顆粒又は粉末を金型やゴム型に充填し、圧力を加えて成形する手法が知られており、この手法を一般に粉末プレス成形法と呼ぶ。また、この成形法は、半乾式プレス成形と乾式プレス成形に区別される。半乾式プレス成形は、通常、素地粉末の中に粘土を含んでおり、その可塑性を導き出すために水分が10〜15%含有されている。そのため、得られる成形体は乾燥収縮が生じることになる。この成形方法は、寸法精度は劣るが、素地コストが安く、従来から低電圧、低周波用の電気磁器や、壁タイルの成形に用いられている。一方、乾式プレス成形は、粘土による可塑性に依存せず、適当な有機物の結合材や潤滑材の助けを借りて成形を行うもので、生産性が良いためセラミックスの成形法として最も広く普及している。しかしながら、乾式プレス成形では、自由な形状の制作が困難であった。   On the other hand, in the ceramic molding process, as one of the methods for imparting the shape, a method of filling granules or powder into a mold or rubber mold and molding by applying pressure is known. This is called a press molding method. Further, this molding method is classified into semi-dry press molding and dry press molding. Semi-dry press molding usually contains clay in the base powder and contains 10 to 15% of water to derive its plasticity. For this reason, the resulting molded article undergoes drying shrinkage. This forming method is inferior in dimensional accuracy but has a low base cost and has been conventionally used for forming low-voltage, low-frequency electric porcelains and wall tiles. On the other hand, dry press molding does not depend on plasticity by clay and is performed with the help of appropriate organic binders and lubricants, and is the most widely used ceramic molding method because of its high productivity. Yes. However, it has been difficult to produce a free shape by dry press molding.

特開2007−045651号公報JP 2007-045651 A 特開2006−327908号公報JP 2006-327908 A 実用新案登録第3078409号公報Utility Model Registration No. 3078409

ところで、成形体から水分が抜ける前にそれを焼成することは、現在の技術では不可能とされていた。それは、水分を含んだ状態での成形体の焼成が、歪み、亀裂、爆裂等を引き起こすためである。その原因としては、(1)焼成に至るまでの乾燥工程で起こる収縮に起因した成形体へのストレスと、(2)不十分な乾燥状態での焼成に起因する成形体へのストレスとの二つが考えられる。従って、これらのストレスを回避するため、成形体を十分に乾燥させる必要があり、成形から焼成が完了するまでの間に、通常、一週間から一ヶ月以上の期間を費やすため、乾燥時間が全所要時間の70%以上を占めることになっていた。なお、セラミックスの製造総時間数の押し上げは、結果として納期の延長やコストの上昇を招き、競争力の低下に結びついている。   By the way, it has been impossible with the current technology to fire the molded body before moisture is removed. This is because firing of the molded body containing moisture causes distortion, cracking, explosion, and the like. The causes are (1) stress on the molded body due to shrinkage that occurs in the drying process until firing, and (2) stress on the molded body due to firing in an insufficiently dried state. One can be considered. Therefore, in order to avoid these stresses, it is necessary to dry the molded body sufficiently, and since a period of one week to one month or more is usually required between molding and firing, the entire drying time is It was supposed to account for more than 70% of the time required. Note that the increase in the total number of hours for manufacturing ceramics results in an increase in delivery time and an increase in cost, leading to a decrease in competitiveness.

他方では、歪み、亀裂、爆裂等の問題や、長期間に亘る製造時間の問題が、デザイン企画、模型製作、専門家による芸術作品制作の他、情操教育、芸術教育、ものつくり教育の一環として行われる幼児・小・中・高での美術教育、生涯学習教育等の分野において、陶磁器等のセラミックスの利用を妨げる原因ともなっている。それは、いずれの分野においても、製作された作品は唯一のものであり、貴重性、希少性のある作品となるため、亀裂、爆裂等の発生は致命傷となるからである。これらの分野における従事者の負担は大きく、特に教育の分野において情操・表現能力、感覚育成に重要な役目を果たす粘土制作の取り組みを断念するケースも多くなっている。従って、作品制作後の製品管理の負担を軽減するためにも、セラミックスの製造時間を短縮した上で、歪み、亀裂、爆裂等を回避する技術が必要である。   On the other hand, problems such as distortion, cracks, explosions, and long-term production time are part of design education, model production, art work creation by experts, as well as emotional education, art education, and manufacturing education. In the field of art education in early childhood, elementary, middle and high school, lifelong learning education, etc., it is also a cause that hinders the use of ceramics such as ceramics. This is because, in any field, the produced works are unique and valuable and scarce, so the occurrence of cracks, explosions, etc. is fatal. The burden on the workers in these fields is large, and in many cases, in the field of education, there are many cases of abandoning efforts to make clay, which plays an important role in the development of emotion, expression and sense. Therefore, in order to reduce the burden of product management after production, a technique for avoiding distortion, cracks, explosions, etc., while reducing the manufacturing time of ceramics is required.

そこで、本発明の目的は、上記従来技術の問題を解決し、歪み、亀裂、爆裂等を抑えつつ、成形体の乾燥時間を大幅に短縮することが可能なセラミックスの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a ceramic manufacturing method capable of solving the above-described problems of the prior art and greatly reducing the drying time of a molded body while suppressing distortion, cracking, explosion, and the like. is there.

本発明者らは、上記目的を達成するために鋭意検討した結果、火山ガラス発泡体が添加されたセラミックス素地からなる成形体を10〜30質量%の含水率で焼成することにより、成形体の乾燥時間を大幅に短縮した上で、歪み、亀裂、爆裂等の発生を抑制できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have baked a molded body made of a ceramic body to which a volcanic glass foam has been added at a moisture content of 10 to 30% by mass, thereby forming the molded body. The inventors have found that the occurrence of distortion, cracks, explosions, and the like can be suppressed while drastically shortening the drying time, and have completed the present invention.

即ち、本発明のセラミックスの製造方法は、
火山ガラス発泡体が添加された粘土を準備する工程と、
前記粘土を成形して、成形体とする工程と、
前記成形体を焼成して、焼結体とする工程と
を含むセラミックスの製造方法であって、
焼成前の成形体の含水率が10〜30質量%であり、
前記火山ガラス発泡体の粒子径が5mm以下であり、
前記火山ガラス発泡体の見かけ嵩密度が0.04〜0.6g/mlであることを特徴とする。
That is, the method for producing the ceramic of the present invention comprises:
Preparing a clay added with volcanic glass foam;
Molding the clay into a molded body;
A method for producing a ceramic, comprising: firing the molded body to obtain a sintered body,
The water content of the pre-fired molded body Ri 10-30% by mass,
The volcanic glass foam has a particle diameter of 5 mm or less,
The apparent bulk density of the volcanic glass foam is 0.04 to 0.6 g / ml .

本発明のセラミックスの製造方法において、前記火山ガラス発泡体としては、発泡パーライト、発泡松脂岩、発泡黒曜石、及び発泡シラスが好ましい。   In the method for producing a ceramic of the present invention, the volcanic glass foam is preferably foamed pearlite, foamed pine stone, foamed obsidian, and foamed shirasu.

本発明のセラミックスの製造方法においては、前記セラミックス素地中の火山ガラス発泡体の含有量が、固形分量で1〜40質量%であることが好ましい。   In the ceramic manufacturing method of the present invention, the content of the volcanic glass foam in the ceramic substrate is preferably 1 to 40% by mass in terms of solid content.

本発明のセラミックスの製造方法においては、成形体を焼成するまでの乾燥時間が24時間以内であることが好ましい。   In the method for producing a ceramic of the present invention, it is preferable that the drying time until the molded body is fired is within 24 hours.

本発明によれば、火山ガラス発泡体が添加されたセラミックス素地からなる成形体を10〜30質量%の含水率で焼成することにより、成形体の乾燥時間を大幅に短縮できると共に、歪み、亀裂、爆裂等の発生を抑えることが可能なセラミックスの製造方法を提供することができる。   According to the present invention, by firing a molded body made of a ceramic substrate to which a volcanic glass foam is added at a water content of 10 to 30% by mass, the drying time of the molded body can be greatly shortened, and distortion and cracking can be achieved. Further, it is possible to provide a method for producing ceramics capable of suppressing the occurrence of explosion or the like.

以下に、本発明のセラミックスの製造方法を詳細に説明する。本発明の製造方法においては、まず、火山ガラス発泡体が添加されたセラミックス素地を準備する。ここで、セラミックス素地とは、セラミックス原料を調製したものである。また、該セラミックス原料としては、特に限定されず、陶磁器、タイル、煉瓦、瓦、セメント等のセラミックス製品全般に利用される粘土をいずれも使用できる。該粘土は、カオリナイト、アロフェン、モンモリロナイト、セリサイト、クロライト等の各種粘土鉱物と水分とからなり、例えば、陶土等が挙げられる。なお、瀬戸、信楽、益子等の粘土の産地や、黄土、赤土、白土等の粘土の種類の違いにかかわらず、火山ガラス発泡体を粘土に添加すれば、亀裂、歪み、破壊(例えば、爆裂)等の発生が激減するという効果が得られる。   Below, the manufacturing method of the ceramic of this invention is demonstrated in detail. In the production method of the present invention, first, a ceramic substrate to which a volcanic glass foam is added is prepared. Here, the ceramic substrate is prepared from a ceramic raw material. In addition, the ceramic raw material is not particularly limited, and any clay used in general ceramic products such as ceramics, tiles, bricks, tiles, and cements can be used. The clay is composed of various clay minerals such as kaolinite, allophane, montmorillonite, sericite, chlorite and moisture, and examples thereof include porcelain clay. Regardless of the type of clay, such as Seto, Shigaraki, Mashiko, or the type of clay, such as loess, red, white, etc. ) And the like are drastically reduced.

本発明の製造方法においては、例えば、上記粘土に、火山ガラス発泡体を配合して、混練することにより、火山ガラス発泡体が添加されたセラミックス素地を調製することができる。ここで、混練方法としては、例えば、湿粘土に火山ガラス発泡体を混ぜ入れて均一になるように土練機等を使用して混練する手法を採用してもよいし、手による混練を採用することもできる。また、粘土と火山ガラス発泡体とを粉体の状態で均質に攪拌混合してから、混水し、セラミックス素地を調製することもできる。   In the production method of the present invention, for example, a ceramic substrate to which a volcanic glass foam is added can be prepared by blending and kneading a volcanic glass foam with the clay. Here, as a kneading method, for example, a method of mixing a volcanic glass foam into wet clay and kneading using a kneader or the like so as to be uniform may be employed, or manual kneading is employed. You can also Alternatively, the ceramic body can be prepared by mixing the clay and the volcanic glass foam in a powder state with uniform stirring and mixing, and then mixing the water.

本発明の製造方法において、火山ガラス発泡体は、火山ガラス粉砕物を加熱発泡させることで製造でき、具体的には、発泡パーライト、発泡松脂岩、発泡黒曜石、発泡シラス等が挙げられる。これら火山ガラス発泡体は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。また、火山ガラスとは、酸性の溶岩が地上又は地下において海水若しくは湖水又は地下水と接触することで急冷固化し、ガラス質の火成岩となった物の総称をいう。一般には、火成岩となった時点で、火成岩中に含まれる結合水が2質量%以下であるものを黒曜石、2質量%を超え且つ5質量%未満のものをパーライト(真珠岩)、5質量%以上のものを松脂岩として分類されており、結合水の含量の違いにより、性状・物性が共に異なる火山ガラスとなる。なお、火山ガラス発泡体をセラミックス原料に添加する場合、火山ガラス発泡体に水分を軽く湿る程度含ませることで、セラミックス原料との混合が容易になり、また、発塵を抑制することもできる。   In the production method of the present invention, the volcanic glass foam can be produced by heating and foaming a crushed volcanic glass, and specific examples include foamed pearlite, foamed pine stone, foamed obsidian, and foamed shirasu. These volcanic glass foams may be used alone or in combination of two or more. In addition, volcanic glass is a generic term for objects in which acidic lava is rapidly cooled and solidified by contact with seawater, lake water or groundwater on the ground or underground to become glassy igneous rock. In general, when it becomes igneous rock, obsidian with 2% or less of bound water contained in igneous rock, pearlite with more than 2% and less than 5% by weight, 5% by weight The above is classified as pine sebite, and it becomes a volcanic glass with different properties and physical properties due to the difference in bound water content. In addition, when adding a volcanic glass foam to a ceramic raw material, mixing with the ceramic raw material can be facilitated and dust generation can be suppressed by adding the water to the volcanic glass foam so that it is lightly moistened. .

また、上記火山ガラス発泡体の粒子径は、5mm以下が好ましく、1mm以下が更に好ましい。火山ガラス発泡体の粒子径が5mmを超えると、作業性を低下させることがあり、また、亀裂等の原因となる場合もある。なお、火山ガラス発泡体の粒子径は、乾式篩いにより測定される。   The particle diameter of the volcanic glass foam is preferably 5 mm or less, and more preferably 1 mm or less. When the particle diameter of the volcanic glass foam exceeds 5 mm, workability may be deteriorated, and cracks may be caused. The particle diameter of the volcanic glass foam is measured by a dry sieve.

更に、上記火山ガラス発泡体の見かけ嵩密度は、0.04〜0.6g/mlの範囲が好ましい。火山ガラス発泡体の見かけ嵩密度が上記特定した範囲内であれば、本発明の目的を達成した上で、更に製造されるセラミックスの軽量化を達成することも可能である。該見かけ嵩密度が0.04g/ml未満では、ガラス発泡体自体の強度が不足し、粘土との混練時に発泡構造が破壊されることがあり、一方、0.6g/mlを超えると、発泡構造が不十分となる。なお、火山ガラス発泡体の見かけ嵩密度は、JIS A5007に準拠した単位容積質量測定法により測定できる。   Furthermore, the apparent bulk density of the volcanic glass foam is preferably in the range of 0.04 to 0.6 g / ml. If the apparent bulk density of the volcanic glass foam is within the above-specified range, it is possible to achieve further weight reduction of the ceramics to be manufactured while achieving the object of the present invention. If the apparent bulk density is less than 0.04 g / ml, the strength of the glass foam itself may be insufficient, and the foam structure may be destroyed when kneaded with clay. It becomes insufficient. The apparent bulk density of the volcanic glass foam can be measured by a unit volume mass measurement method based on JIS A5007.

本発明の製造方法において、火山ガラス発泡体を含有するセラミックス素地中に占める該火山ガラス発泡体の含有量は、固形分量で1〜40質量%の範囲が好ましく、5〜30質量%の範囲が更に好ましい。上記火山ガラス発泡体の含有量が固形分量で1〜40質量%の範囲内であれば、水分が所定量残存したままの成形体を焼成させることができ、これにより、製造過程中の乾燥時間を極めて大幅に短縮し、更には乾燥に関わる燃料コストの大幅な削減につながる。また、該火山ガラス発泡体の固形分量での含有量が1質量%未満では、生産性及びコストに対する向上効果が十分に得られないことがあり、一方、40質量%を超えると、作業性を低下させることがある。なお、セラミックス素地中には、粘土にもともと含まれている水分の他、成形効率を向上させるために追加の水分を加えることもあるため、該水分を除いた固形分量を基準として火山ガラス発泡体の含有量を決定している。ここで、該水分を除いた固形分量は、例えば、105℃で2時間乾燥し、乾燥後の試料量から求められる。   In the production method of the present invention, the content of the volcanic glass foam in the ceramic substrate containing the volcanic glass foam is preferably in the range of 1 to 40% by mass, and in the range of 5 to 30% by mass in terms of solid content. Further preferred. If the content of the above volcanic glass foam is in the range of 1 to 40% by mass in terms of solid content, the molded body with a predetermined amount of moisture remaining can be fired, thereby allowing drying time during the manufacturing process. Is significantly shortened, and further, the fuel cost for drying is greatly reduced. In addition, if the content of the volcanic glass foam in the solid content is less than 1% by mass, the improvement effect on productivity and cost may not be sufficiently obtained. May decrease. In addition to the moisture originally contained in the clay, additional moisture may be added to the ceramic substrate to improve the molding efficiency. Therefore, the volcanic glass foam is based on the solid content excluding the moisture. The content of is determined. Here, the solid content amount excluding the moisture is obtained from, for example, the sample amount after drying for 2 hours at 105 ° C.

次に、本発明の製造方法においては、上記火山ガラス発泡体が添加されたセラミックス素地を成形して、成形体とする。なお、該セラミックス素地を成形するには、特に制限されず、既知の方法を利用することができる。例えば、ロクロ成形、ハンドビルド成形、板成形、型成形等の成形方法が挙げられる。ここで、本発明の製造方法においては、焼成前の成形体の含水率が10〜30質量%の範囲であることを要し、10〜25質量%の範囲であることが好ましい。焼成前の成形体とは、焼成工程に移行する前の成形体である。火山ガラス発泡体含有セラミックス素地の成形体の含水率を10〜30質量%の範囲に調整することで、乾燥時間を大幅に短縮することができ、更には、それによって亀裂、歪み、破壊(例えば、爆裂)等の問題が発生することもない。その結果、セラミックスの生産性や製造コストを大幅に改善することになる。加えて、乾燥工程や焼成工程での歪みが抑制されるため、最終製品の寸法をほぼ正確に予測でき、それにより、製品設計が容易となる。また、本発明によれば、乾燥時間を大幅に短縮することができるため、乾燥等による成形体の形状の制約がなくなり、セラミックス産業界や美術芸術界における様々な製品デザインの創作が期待できるようになる。   Next, in the manufacturing method of the present invention, the ceramic body to which the above-mentioned volcanic glass foam is added is formed into a formed body. In addition, in order to shape | mold this ceramic base, it does not restrict | limit in particular, A known method can be utilized. For example, molding methods such as roll molding, hand build molding, plate molding, mold molding and the like can be mentioned. Here, in the manufacturing method of this invention, it is required that the moisture content of the molded object before baking is the range of 10-30 mass%, and it is preferable that it is the range of 10-25 mass%. The molded body before firing is a molded body before shifting to the firing step. By adjusting the moisture content of the compact of the ceramic body containing the volcanic glass foam to a range of 10 to 30% by mass, the drying time can be greatly shortened, and further, cracking, distortion, and destruction (for example, , Explosion) and other problems do not occur. As a result, the productivity and manufacturing cost of ceramics are greatly improved. In addition, since distortion in the drying process and firing process is suppressed, the dimensions of the final product can be predicted almost accurately, thereby facilitating product design. In addition, according to the present invention, the drying time can be greatly shortened, so that there is no restriction on the shape of the molded body due to drying or the like, and creation of various product designs in the ceramics industry and the art and art world can be expected. become.

ここで、焼成前の成形体の含水率が10質量%未満では、乾燥時間の短縮を達成できないか、又はセラミックス素地中に含まれる水分量が低すぎで作業性を著しく低下させることになる。一方、焼成前の成形体の含水率が30質量%を超えると、セラミックス素地の成形が著しく困難になる。また、本発明の製造方法によれば、成形体の乾燥を行わずに焼成工程に移行することが可能であるが、乾燥工程を設けてもよく、この場合、セラミックス素地を成形してからその成形体を焼成するまでの乾燥時間は24時間以内が好ましく、5時間以内が更に好ましい。   Here, if the moisture content of the molded body before firing is less than 10% by mass, the drying time cannot be shortened, or the amount of moisture contained in the ceramic substrate is too low, and the workability is significantly reduced. On the other hand, if the moisture content of the green body before firing exceeds 30% by mass, it becomes extremely difficult to mold the ceramic body. Further, according to the production method of the present invention, it is possible to shift to the firing step without drying the formed body, but a drying step may be provided. In this case, after forming the ceramic base, The drying time until the molded body is fired is preferably within 24 hours, and more preferably within 5 hours.

次に、本発明の製造方法においては、上記成形体を焼成して、焼結体とする。なお、成形体を焼成するには、特に制限されず、既知の方法を利用することができる。例えば、素焼き、本焼き等の複数の焼成工程により段階的に焼成させる手法、昇温条件下で焼成させる手法等が挙げられる。   Next, in the manufacturing method of this invention, the said molded object is baked and it is set as a sintered compact. In addition, in order to bake a molded object, it does not restrict | limit in particular, A known method can be utilized. For example, a method of firing in a stepwise manner by a plurality of firing processes such as unbaking and main firing, a method of firing under temperature rising conditions, and the like can be given.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。なお、粘土及び火山ガラス発泡体に使用する質量部の表記は、水分を除いた状態での質量部を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. In addition, the description of the mass part used for clay and a volcanic glass foam means the mass part in the state except the water | moisture content.

<レンガ状>
なお、レンガの形状は、厚みのある塊状であり、一般に、水分が抜けるのに自然乾燥で1ヶ月以上は必要とされている。
(実施例1)
信楽産の粘土70質量部に、火山ガラス発泡体[発泡パーライト,最大粒子径1mm,見かけ嵩密度0.5g/ml]30質量部を加えて、均一に分散するように攪拌し、その全体量(100質量部)に対して水を25質量部加え、混練し、セラミックス素地(混練物)を調製した。その混練物を、素地厚6cm、幅21cm、深さ10cmの塊状に成形し、20℃で12時間放置した。このときの成形体中の残留水分は18.5質量%であった。該成形体を電気炉内にて温度1100℃、1200℃及び1300℃(昇温速度100℃/時間)の条件下で焼成し、焼結体を得た。上記の方法を繰り返し、焼結体を複数製造したが、いずれの場合においても、亀裂・歪みは観察されず、また、焼成中に破壊されることもなかった。
<Brick shape>
In addition, the shape of a brick is a thick lump, and generally it is required for one month or more by natural drying for moisture to escape.
Example 1
Add 70 parts by mass of clay from Shigaraki to 30 parts by mass of volcanic glass foam (foamed pearlite, maximum particle size 1 mm, apparent bulk density 0.5 g / ml), and stir to disperse uniformly. 100 parts by mass of water was added to 25 parts by mass of water and kneaded to prepare a ceramic substrate (kneaded product). The kneaded product was formed into a lump with a substrate thickness of 6 cm, a width of 21 cm, and a depth of 10 cm, and left at 20 ° C. for 12 hours. The residual moisture in the molded body at this time was 18.5% by mass. The formed body was fired in an electric furnace under the conditions of temperatures of 1100 ° C., 1200 ° C. and 1300 ° C. (temperature increase rate: 100 ° C./hour) to obtain a sintered body. The above method was repeated to produce a plurality of sintered bodies, but in any case, no cracks / strains were observed, and there was no destruction during firing.

(比較例1−1)
信楽産の粘土70質量部と火山ガラス発泡体30質量部とを、信楽産の粘土100質量部のみに変更した以外は、実施例1と同様にして、焼結体を製造した。ここで、20℃で12時間放置(乾燥)したときの成形体中の残留水分は18.5質量%であった。得られた焼結体には、大きな亀裂が入ったり、破壊が生じており、その形状を保つことができなかった。
(Comparative Example 1-1)
A sintered body was produced in the same manner as in Example 1 except that 70 parts by mass of Shigaraki clay and 30 parts by mass of volcanic glass foam were changed to only 100 parts by mass of Shigaraki clay. Here, the residual moisture in the molded article when left (dried) at 20 ° C. for 12 hours was 18.5% by mass. The obtained sintered body had large cracks or fractures, and the shape could not be maintained.

(比較例1−2)
20℃で12時間の乾燥工程を、20℃で20日間の乾燥工程に変更した以外は、比較例1−1と同様にして、焼結体を製造した。ここで、20℃で20日間放置(乾燥)したときの成形体中の残留水分は5質量%であった。しかしながら、得られた焼結体には、比較例1−1と同様に、大きな亀裂が入ったり、破壊が生じており、その形状を保つことはできなかった。
(Comparative Example 1-2)
A sintered body was produced in the same manner as Comparative Example 1-1 except that the drying process at 20 ° C. for 12 hours was changed to a drying process at 20 ° C. for 20 days. Here, the residual moisture in the molded article when it was allowed to stand (dry) at 20 ° C. for 20 days was 5 mass%. However, as in Comparative Example 1-1, the obtained sintered body had large cracks or fractures, and the shape could not be maintained.

<タイル状>
(実施例2)
信楽産の粘土70質量部に、火山ガラス発泡体[発泡パーライト,最大粒子径1mm,見かけ嵩密度0.5g/ml]30質量部を加えて、均一に分散するように攪拌し、その全体量(100質量部)に対して水を25質量部加え、混練し、セラミックス素地(混練物)を調製した。その混練物を、素地厚1.5cm、幅15cm、深さ15cmの塊状に成形し、20℃で12時間放置した。このときの成形体中の残留水分は18質量%であった。該成形体を電気炉内にて温度1100℃、1200℃及び1300℃(昇温速度100℃/時間)の条件下で焼成し、焼結体を得た。上記の方法を繰り返し、焼結体を複数製造したが、いずれの場合においても、亀裂・歪みは観察されず、また、焼成中に破壊されることもなかった。
<Tile shape>
(Example 2)
Add 70 parts by mass of clay from Shigaraki to 30 parts by mass of volcanic glass foam (foamed pearlite, maximum particle size 1 mm, apparent bulk density 0.5 g / ml), and stir to disperse uniformly. 100 parts by mass of water was added to 25 parts by mass of water and kneaded to prepare a ceramic substrate (kneaded product). The kneaded product was formed into a lump with a substrate thickness of 1.5 cm, a width of 15 cm, and a depth of 15 cm, and left at 20 ° C. for 12 hours. The residual moisture in the molded body at this time was 18% by mass. The formed body was fired in an electric furnace under the conditions of temperatures of 1100 ° C., 1200 ° C. and 1300 ° C. (temperature increase rate: 100 ° C./hour) to obtain a sintered body. The above method was repeated to produce a plurality of sintered bodies, but in any case, no cracks / strains were observed, and there was no destruction during firing.

(比較例2)
信楽産の粘土70質量部と火山ガラス発泡体30質量部とを、信楽産の粘土100質量部のみに変更した以外は、実施例2と同様にして、焼結体を製造した。ここで、20℃で12時間放置(乾燥)したときの成形体中の残留水分は18質量%であった。成形体が焼成中に爆裂したため、得られた焼結体は、径が5mm〜2cmの小塊であり、窯全体に飛散していた。
(Comparative Example 2)
A sintered body was produced in the same manner as in Example 2 except that 70 parts by mass of Shigaraki clay and 30 parts by mass of volcanic glass foam were changed to only 100 parts by mass of Shigaraki clay. Here, the residual moisture in the molded article when left (dried) at 20 ° C. for 12 hours was 18% by mass. Since the molded body exploded during firing, the obtained sintered body was a small lump having a diameter of 5 mm to 2 cm and was scattered throughout the kiln.

<ロクロ成形>
(実施例3)
信楽産赤土粘土60質量部及び益子産白土粘土40質量部に、火山ガラス発泡体[発泡パーライト,最大粒子径1mm,見かけ嵩密度0.5g/ml]8質量部を加えて、均一に分散するように混練し、その全体量(108質量部)に対して水を25質量部加え、混練し、セラミックス素地(混練物)を調製した。その混練物をロクロ成形し、素地厚0.5cm、高さ13cm、直径10cmの形状のマグカップ(成形体)を制作した。該マグカップの高台削りを行った後、20℃で5時間放置し、窯入れした。窯入れ時のマグカップ中の残留水分は18質量%であった。該マグカップを17.5時間で温度1250℃まで焼成した。得られた焼結体には、亀裂や歪みが観察されず、また、焼成中に破壊されることもなかった。
<Rocking molding>
(Example 3)
Add 8 parts by mass of volcanic glass foam (foamed pearlite, maximum particle size of 1 mm, apparent bulk density of 0.5 g / ml) to 60 parts by mass of red clay from Shigaraki and 40 parts by mass of clay from Mashiko. Then, 25 parts by mass of water was added to the total amount (108 parts by mass) and kneaded to prepare a ceramic substrate (kneaded product). The kneaded product was subjected to loft molding to produce a mug (molded body) having a base thickness of 0.5 cm, a height of 13 cm, and a diameter of 10 cm. The mug was cut at a high height and then left at 20 ° C. for 5 hours and placed in a kiln. The residual moisture in the mug at the time of putting in the kiln was 18% by mass. The mug was baked to a temperature of 1250 ° C. in 17.5 hours. The obtained sintered body was not observed to be cracked or distorted, and was not destroyed during firing.

(比較例3−1)
信楽産赤土粘土60質量部、益子産白土粘土40質量部及び火山ガラス発泡体8質量部を、信楽産赤土粘土108質量部のみに変更した以外は、実施例3と同様にして、焼結体を製造した。ここで、窯入れ時のマグカップ中の残留水分は18質量%であった。得られた焼結体には、亀裂が入り、一部に歪みが観察された。
(Comparative Example 3-1)
Sintered body in the same manner as in Example 3, except that 60 parts by weight of Shigaraki red clay, 40 parts by weight of Mashiko white clay, and 8 parts by weight of volcanic glass foam were changed to 108 parts by weight of Shigaraki red clay. Manufactured. Here, the residual moisture in the mug at the time of putting in the kiln was 18% by mass. The obtained sintered body was cracked and some distortion was observed.

(比較例3−2)
高台削り後の乾燥工程を20℃で5時間から20℃で4日間に変更した以外は、比較例3−1と同様にして、焼結体を製造した。ここで、窯入れ時のマグカップ中の残留水分は4質量%であった。なお、成形体が十分に乾燥されたため、得られた焼結体には、亀裂や歪みが観察されなかった。
(Comparative Example 3-2)
A sintered body was produced in the same manner as in Comparative Example 3-1, except that the drying process after cutting the high ridge was changed from 5 hours at 20 ° C to 4 days at 20 ° C. Here, the residual moisture in the mug at the time of putting in the kiln was 4% by mass. In addition, since a molded object was fully dried, the crack and distortion were not observed in the obtained sintered compact.

<ハンドビルド成形>
(実施例4)
信楽産赤土粘土100質量部に、火山ガラス発泡体[発泡パーライト,最大粒子径1mm,見かけ嵩密度0.5g/ml]6質量部を加えて、均一に分散するように混練し、その全体量(106質量部)に対して水を25質量部加え、混練し、セラミックス素地(混練物)を調製した。その混練物をハンドビルド成形し、素地厚0.8cm、高さ90cm、幅50cm、奥行き45cmの形状の成形体を制作した。20℃で24時間乾燥した。このときの成形体中の水分は22質量%であった。該成形体を30時間で1250℃まで焼成した。得られた焼結体には、亀裂や歪みが観察されず、また、焼成中に破壊されることもなかった。
<Hand build molding>
Example 4
Add 6 parts by mass of volcanic glass foam (foamed pearlite, maximum particle diameter of 1 mm, apparent bulk density of 0.5 g / ml) to 100 parts by mass of red clay from Shigaraki, and knead to disperse uniformly. A ceramic substrate (kneaded material) was prepared by adding 25 parts by mass of water to (106 parts by mass) and kneading. The kneaded product was hand-build molded to produce a molded body with a base thickness of 0.8 cm, height of 90 cm, width of 50 cm, and depth of 45 cm. Dry at 20 ° C. for 24 hours. The water content in the molded body at this time was 22% by mass. The molded body was fired to 1250 ° C. in 30 hours. The obtained sintered body was not observed to be cracked or distorted, and was not destroyed during firing.

(比較例4−1)
信楽産赤土粘土100質量部及び火山ガラス発泡体6質量部を、信楽産赤土粘土106質量部のみに変更した以外は、実施例4と同様にして、焼結体を製造した。ここで、20℃で24時間乾燥したときの成形体中の水分は18質量%であった。得られた焼結体には、大きな亀裂が入り、一部に歪みが観察された。
(Comparative Example 4-1)
A sintered body was produced in the same manner as in Example 4 except that 100 parts by mass of Shigaraki red clay and 6 parts by mass of volcanic glass foam were changed to only 106 parts by mass of Shigaraki red clay. Here, the moisture in the molded article when dried at 20 ° C. for 24 hours was 18% by mass. The obtained sintered body had large cracks and some strains were observed.

(比較例4−2)
20℃で24時間の乾燥工程を、20℃で21日間の乾燥工程に変更した以外は、比較例4−1と同様にして、焼結体を製造した。ここで、20℃で21日間乾燥したときの成形体中の水分は4質量%であった。しかしながら、得られた焼結体は、一部に亀裂が観察された。
(Comparative Example 4-2)
A sintered body was produced in the same manner as in Comparative Example 4-1, except that the drying process at 20 ° C. for 24 hours was changed to a drying process at 20 ° C. for 21 days. Here, the moisture in the molded article when dried at 20 ° C. for 21 days was 4% by mass. However, some cracks were observed in the obtained sintered body.

<セラローラによる板状成形>
(実施例5)
益子産赤土粘土100質量部に、火山ガラス発泡体[発泡パーライト,最大粒子径1mm,見かけ嵩密度0.5g/ml]8質量部を加えて、均一に分散するように混練し、その全体量(108質量部)に対して水を25質量部加え、混練し、セラミックス素地(混練物)を調製した。その混練物をセラローラで板状に成形し、更に貼り合わせ成形を行い、素地厚2cm及び高さ60cmの円筒(成形体)を制作した。これを20℃で24時間乾燥したところ、成形体中の水分は22質量%であった。該円筒を24時間で1100℃まで焼成した。得られた焼結体には、亀裂や歪みが観察されず、また、焼成中に破壊されることもなかった。
<Plate-shaped molding with Ceraroller>
(Example 5)
Add 8 parts by mass of volcanic glass foam (foamed pearlite, maximum particle diameter of 1 mm, apparent bulk density of 0.5 g / ml) to 100 parts by mass of red clay from Mashiko, and knead to disperse uniformly. 25 parts by mass of water was added to (108 parts by mass) and kneaded to prepare a ceramic substrate (kneaded product). The kneaded product was formed into a plate shape with a Cera roller, and bonded and formed to produce a cylinder (molded body) having a base thickness of 2 cm and a height of 60 cm. When this was dried at 20 ° C. for 24 hours, the water content in the molded body was 22% by mass. The cylinder was fired to 1100 ° C. in 24 hours. The obtained sintered body was not observed to be cracked or distorted, and was not destroyed during firing.

(比較例5−1)
益子産赤土粘土100質量部及び火山ガラス発泡体8質量部を、益子産赤土粘土108質量部のみに変更した以外は、実施例5と同様にして、焼結体を製造した。ここで、20℃で24時間乾燥したときの成形体中の水分は22質量%であった。得られた焼結体には、大きな亀裂が入り、一部が破壊されていた。
(Comparative Example 5-1)
A sintered body was produced in the same manner as in Example 5 except that 100 parts by mass of Mashiko red clay and 8 parts by mass of volcanic glass foam were changed to only 108 parts by mass of Mashiko red clay. Here, the moisture in the molded article when dried at 20 ° C. for 24 hours was 22% by mass. The obtained sintered body had large cracks and was partially destroyed.

(比較例5−2)
20℃で24時間の乾燥工程を、20℃で16日間の乾燥工程に変更した以外は、比較例5−1と同様にして、焼結体を製造した。ここで、20℃で16日間乾燥したときの成形体中の水分は7質量%であった。しかしながら、得られた焼結体には、一部に亀裂が入り、歪みも観察された。
(Comparative Example 5-2)
A sintered body was produced in the same manner as in Comparative Example 5-1, except that the drying process at 20 ° C for 24 hours was changed to a drying process at 20 ° C for 16 days. Here, the moisture in the molded article when dried at 20 ° C. for 16 days was 7% by mass. However, the obtained sintered body was partially cracked and strain was also observed.

実施例1〜5では、様々な形状の成形体を制作したにもかかわらず、いずれの場合においても、一定値以上の水分を含んだままの状態で成形体を焼成することができた。これにより、成形体の乾燥時間を大幅に短縮できることが分かる。また、粘土の産地や種類、又は成形方法にも左右されず、火山ガラス発泡体を添加さえしていれば、一定値以上の水分を含んだままの状態で成形体を焼成できることが分かる。更に、粘土の一部を火山ガラス発泡体に代えることで、セラミックス製品の軽量化を行うことができる。   In Examples 1 to 5, although the molded bodies having various shapes were produced, in any case, the molded bodies could be fired in a state of containing moisture of a certain value or more. Thereby, it turns out that the drying time of a molded object can be shortened significantly. Moreover, it turns out that it can be baked in the state which contained the water | moisture content of a fixed value or more, if only the volcanic glass foam was added, without being influenced by the production place and kind of a clay, or a shaping | molding method. Furthermore, the ceramic product can be reduced in weight by replacing part of the clay with a volcanic glass foam.

本発明のセラミックスの製造方法は、陶磁器、タイル、煉瓦、瓦、セメント等のセラミックス製品全般の製造方法に利用することができる。   The method for producing ceramics of the present invention can be used for a method for producing ceramic products such as ceramics, tiles, bricks, tiles, and cements.

Claims (4)

火山ガラス発泡体が添加された粘土を準備する工程と、
前記粘土を成形して、成形体とする工程と、
前記成形体を焼成して、焼結体とする工程と
を含むセラミックスの製造方法であって、
焼成前の成形体の含水率が10〜30質量%であり、
前記火山ガラス発泡体の粒子径が5mm以下であり、
前記火山ガラス発泡体の見かけ嵩密度が0.04〜0.6g/mlであることを特徴とするセラミックスの製造方法。
Preparing a clay added with volcanic glass foam;
Molding the clay into a molded body;
A method for producing a ceramic, comprising: firing the molded body to obtain a sintered body,
The water content of the pre-fired molded body Ri 10-30% by mass,
The volcanic glass foam has a particle diameter of 5 mm or less,
An apparent bulk density of the volcanic glass foam is 0.04 to 0.6 g / ml .
前記火山ガラス発泡体が、発泡パーライト、発泡松脂岩、発泡黒曜石、及び発泡シラスよりなる群から選択される少なくとも一種類であることを特徴とする請求項1に記載のセラミックスの製造方法。   2. The method for producing ceramics according to claim 1, wherein the volcanic glass foam is at least one selected from the group consisting of foamed pearlite, foamed sebaceous rock, foamed obsidian, and foamed shirasu. 粘土中の火山ガラス発泡体の含有量が、固形分量で1〜40質量%であることを特徴とする請求項1に記載のセラミックスの製造方法。 Content of the volcanic glass foam in clay is 1-40 mass% in solid content, The manufacturing method of the ceramics of Claim 1 characterized by the above-mentioned. 成形体を焼成するまでの乾燥時間が24時間以内であることを特徴とする請求項1に記載のセラミックスの製造方法。   2. The method for producing a ceramic according to claim 1, wherein a drying time until the compact is fired is within 24 hours.
JP2009193126A 2009-08-24 2009-08-24 Manufacturing method of ceramics Active JP5586041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193126A JP5586041B2 (en) 2009-08-24 2009-08-24 Manufacturing method of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193126A JP5586041B2 (en) 2009-08-24 2009-08-24 Manufacturing method of ceramics

Publications (2)

Publication Number Publication Date
JP2011042544A JP2011042544A (en) 2011-03-03
JP5586041B2 true JP5586041B2 (en) 2014-09-10

Family

ID=43830270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193126A Active JP5586041B2 (en) 2009-08-24 2009-08-24 Manufacturing method of ceramics

Country Status (1)

Country Link
JP (1) JP5586041B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187091A (en) * 2016-07-25 2016-12-07 安庆惠嘉新型建材有限公司 A kind of high-efficiency insulated sound insulation ceramic material and preparation method thereof
CN112759364A (en) * 2020-12-25 2021-05-07 山东晟世达科技有限公司 Foamed ceramic prepared by using perlite tailings as base material and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149155A (en) * 1979-05-07 1980-11-20 Takashi Ishikawa Inorganic lightweight panel
JPS6298592A (en) * 1985-10-24 1987-05-08 太洋特殊硝子株式会社 Tray for microwave oven
JPH04119952A (en) * 1990-09-11 1992-04-21 Nippon Jiryoku Senko Kk Production of artificial light aggregate
JPH075349B2 (en) * 1990-11-26 1995-01-25 丸美陶料株式会社 Method for manufacturing ceramic sintered products using anti-fire stone
JP2673396B2 (en) * 1991-09-30 1997-11-05 瀬戸製土株式会社 Manufacturing method of ceramics
JPH07206508A (en) * 1994-01-20 1995-08-08 Marui Toryo:Kk Clay for ceramic having light weight and high strength and its production
JPH09255383A (en) * 1996-03-21 1997-09-30 Nippon Cement Co Ltd Production of super lightweight aggregate
JP4448565B2 (en) * 1997-08-01 2010-04-14 小田建設株式会社 Porous lightweight ceramic product and manufacturing method thereof
JP2002167288A (en) * 2000-11-30 2002-06-11 Nippon Mesaraito Kogyo Kk Method of manufacturing artificial lightweight aggregate
JP2006117450A (en) * 2004-10-20 2006-05-11 Miyazaki Takasago Kogyo Kk Method of producing high water-absorbing, water-permeable and water-retentive brick, and high water-absorbing, water-permeable and water-retentive brick
JP2006327908A (en) * 2005-05-30 2006-12-07 Yamatake Corp Pottery and body for pottery

Also Published As

Publication number Publication date
JP2011042544A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
Sobrosa et al. Development of refractory ceramics from residual silica derived from rice husk ash
JP5661303B2 (en) Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain
CN106187082B (en) A kind of preparation method of the sanitary ceramics of the reinforcing agent containing green body
CN106187238A (en) Bauxite composite refractory brick and its preparation method and application
CN101792328A (en) Preparation method of porous slurry blank
CN104961436A (en) Method for increasing sintering rate of Nixing pottery large utensil
CN110395968B (en) Heat-resisting magnesia pot
CN111302763A (en) Ceramic product like fatty jade white and preparation method thereof
CN103383192A (en) Method for producing sagger product by waste saggers
CN103588508A (en) Low-temperature crack yellow glaze ceramic product and preparation method thereof
JP5586041B2 (en) Manufacturing method of ceramics
CN106854083A (en) A kind of cement kiln Alkali resistant brick and preparation method thereof
CN106495676A (en) A kind of preparation method of tempered glass heating furnace with quartz-ceramics hollow roll rod
CN107721435A (en) Ceramic made of waste old ceramics material and preparation method thereof
CN104211412B (en) Coal injection pipe preformed bricks and production method
CN104446365A (en) Water permeable brick
CN104003364B (en) A kind of Idiotype Bone China material containing synthesis bone meal and preparation method thereof
KR101278261B1 (en) Method manufacturing of loess forming matter and forming matter composition
US1761108A (en) Method for the manufacture of cellular building materials
KR100835533B1 (en) A light loess brick and method of manufacturing thereof
CN101367657A (en) Semi-silicon fire resistive material product and method of manufacturing the same
CN110818384B (en) Preparation method of biscuit firing plate
CN109279881A (en) A kind of ejection plate kiln bottom brick integrated molding method
CN108455917A (en) A kind of novel glass brick and preparation method thereof
Inuwa Potters Kiln Bricks: Using Manual Brick Making Machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5586041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250