JP5585524B2 - Assembled battery and manufacturing method of assembled battery - Google Patents

Assembled battery and manufacturing method of assembled battery Download PDF

Info

Publication number
JP5585524B2
JP5585524B2 JP2011098840A JP2011098840A JP5585524B2 JP 5585524 B2 JP5585524 B2 JP 5585524B2 JP 2011098840 A JP2011098840 A JP 2011098840A JP 2011098840 A JP2011098840 A JP 2011098840A JP 5585524 B2 JP5585524 B2 JP 5585524B2
Authority
JP
Japan
Prior art keywords
spacer
power generation
assembled battery
region
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011098840A
Other languages
Japanese (ja)
Other versions
JP2012230837A (en
Inventor
圭一郎 小林
寛 浜口
智子 岩谷
敏也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011098840A priority Critical patent/JP5585524B2/en
Publication of JP2012230837A publication Critical patent/JP2012230837A/en
Application granted granted Critical
Publication of JP5585524B2 publication Critical patent/JP5585524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は,複数の電池を組み合わせてなる組電池および組電池の製造方法に関する。さらに詳細には,各電池を拘束する構造を有する組電池および組電池の製造方法に関するものである。   The present invention relates to an assembled battery formed by combining a plurality of batteries and a method for manufacturing the assembled battery. More specifically, the present invention relates to an assembled battery having a structure for restraining each battery and a method for manufacturing the assembled battery.

近年,リチウムイオン電池等の非水電解液型の二次電池は,携帯型PCや携帯電話を始めとする電子機器のみならず,ハイブリッド車や電気自動車の電源として注目されている。このような二次電池は,発電要素を金属製のケースに収容し,例えばケースの内側に絶縁フィルムを貼付してケースと発電要素とを絶縁している。   In recent years, non-aqueous electrolyte secondary batteries such as lithium ion batteries have attracted attention as power sources not only for electronic devices such as portable PCs and mobile phones, but also for hybrid vehicles and electric vehicles. In such a secondary battery, the power generation element is housed in a metal case, and an insulating film is attached to the inside of the case to insulate the case from the power generation element.

二次電池のケースの形状としては,円筒状,矩形状と様々な形状のものが実用化されている。このうち,矩形状の角型ケースは,他の形状のケースよりもスペース効率が高く,小型化の要請に応えるものとして広く利用されている。   As the shape of the secondary battery case, various shapes such as a cylindrical shape and a rectangular shape have been put into practical use. Among these, the rectangular rectangular case has a higher space efficiency than other cases, and is widely used to meet the demand for miniaturization.

発電要素は,正極と負極とがセパレータを介して積層あるいは巻回され,各要素間を電解液で充填する構成を有している。二次電池の発電要素は,例えば初期充電時の正極の膨張や運転環境下での振動によって,電極間の距離が変動し易い。電極間の距離が変動すると,電解液中に気泡等が入り易くなり,電池性能を劣化させる傾向にある。   The power generation element has a configuration in which a positive electrode and a negative electrode are stacked or wound via a separator, and a space between the elements is filled with an electrolytic solution. In the power generation element of the secondary battery, for example, the distance between the electrodes is likely to fluctuate due to expansion of the positive electrode during initial charging or vibration in the operating environment. When the distance between the electrodes fluctuates, bubbles and the like are likely to enter the electrolytic solution, which tends to deteriorate the battery performance.

発電要素の電極間を一定に保つ技術としては,例えば特許文献1に開示されている技術がある。特許文献1の組電池では,複数の角型単電池を扁平面同士が対向するように重ねて配置し,それら角型単電池の周囲を拘束板およびビーム部材によって纏めて拘束している。また,隣り合う角型単電池間には,放熱板として機能するスペーサが組み込まれている。   As a technique for keeping the gap between the electrodes of the power generation element constant, there is a technique disclosed in Patent Document 1, for example. In the assembled battery of Patent Document 1, a plurality of prismatic cells are arranged so that the flat surfaces are opposed to each other, and the periphery of the prismatic cells is collectively restrained by a restraining plate and a beam member. In addition, a spacer functioning as a heat sink is incorporated between adjacent rectangular cells.

特開2008−108457号公報JP 2008-108457 A

しかしながら,前記した従来の技術には,次のような問題があった。すなわち,複数の角型単電池を列置する組電池の場合,ハイレートでの充放電の前後で,電池ケースにかかる面圧にばらつきが生じる。具体的には,電池ケースの扁平面内の領域のうち,単電池の列置方向から見て,電池ケースの扁平面内の発電要素と重なる領域を発電領域とすると,その発電領域内において,中央部では面圧が上昇する傾向にある。一方で,発電領域内の端部では面圧が下降する傾向にある。この面圧のばらつきは,電池性能を劣化させる要因となる。例えば,端部の面圧が中央部よりも低下することで,発電要素内の電解液が中央部から端部に移動し易くなり,その結果として電解液が発電要素外に漏出してしまう。   However, the conventional technique described above has the following problems. That is, in the case of an assembled battery in which a plurality of prismatic cells are arranged in a row, the surface pressure applied to the battery case varies before and after charging and discharging at a high rate. Specifically, of the regions in the flat surface of the battery case, when the region overlapping with the power generation elements in the flat surface of the battery case as seen from the direction in which the cells are arranged is defined as the power generation region, In the central part, the surface pressure tends to increase. On the other hand, the surface pressure tends to decrease at the end in the power generation region. This variation in surface pressure is a factor that degrades battery performance. For example, when the surface pressure at the end portion is lower than that at the central portion, the electrolytic solution in the power generation element easily moves from the central portion to the end portion, and as a result, the electrolytic solution leaks out of the power generation element.

特許文献1に開示されているようなスペーサは,単電池単体の膨張量を抑える意味では効果がある。しかし,上述のスペーサは,扁平面全体を均等に荷重するため,扁平面内での部分的な面圧の上昇には対応困難である。そのため,電池性能の劣化を抑制しきれないこともある。   The spacer as disclosed in Patent Document 1 is effective in terms of suppressing the expansion amount of the single cell unit. However, since the above-mentioned spacer uniformly loads the entire flat surface, it is difficult to cope with a partial increase in surface pressure within the flat surface. For this reason, deterioration of battery performance may not be suppressed.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,ハイレートでの充放電後における電池性能の劣化を確実に抑制する組電池および組電池の製造方法を提供することにある。   The present invention has been made to solve the above-described problems of the prior art. That is, the problem is to provide an assembled battery and a method of manufacturing the assembled battery that reliably suppress deterioration of battery performance after charging and discharging at a high rate.

この課題の解決を目的としてなされた組電池は,発電要素と,前記発電要素を収容する角型ケースと,前記発電要素の一方の端部と接合する正極集電端子と,前記発電要素の他方の端部と接合する負極集電端子とを有する二次電池を複数有し,隣り合う前記二次電池を,前記角型ケースの扁平面同士を対向させて列置する組電池であって,列置された複数の前記二次電池を纏めて拘束し,各二次電池を前記二次電池の列置方向に荷重する拘束部材と,前記二次電池の前記角型ケースの一方の扁平面である第1面と接し,前記第1面内の領域のうち,前記列置方向から見て,前記発電要素と重なる領域である発電領域内であり,前記発電領域の前記正極集電端子側の端部を含み,前記発電領域の中央部を含まない領域である第1領域を荷重する第1スペーサと,前記第1面と接し,前記第1面内の領域のうち,前記列置方向から見て,前記発電領域内であり,前記発電領域の前記負極集電端子側の端部を含み,前記発電領域の中央部を含まない領域である第2領域を荷重する第2スペーサとを備え,前記第1スペーサおよび前記第2スペーサは,前記二次電池について行われた充放電試験にて面圧が低下した範囲を荷重し,前記試験にて面圧が低下しなかった範囲を荷重しないことを特徴としている。 An assembled battery made for the purpose of solving this problem includes a power generation element, a rectangular case that accommodates the power generation element, a positive current collector terminal that is joined to one end of the power generation element, and the other of the power generation elements. A plurality of secondary batteries having a negative electrode current collector terminal joined to an end of the battery, and the adjacent secondary batteries are arranged side by side with the flat surfaces of the square cases facing each other, A plurality of the secondary batteries arranged in a row are restrained together, a restraining member that loads each secondary battery in the row direction of the secondary batteries, and one flat surface of the square case of the secondary battery Is in the power generation region that is in contact with the first surface, and overlaps with the power generation element in the region in the first surface when viewed from the row direction, and on the positive current collector terminal side of the power generation region The first region, which is the region including the end of the power generation region and not including the central portion of the power generation region, is loaded. One spacer is in contact with the first surface, and the region within the first surface is within the power generation region as viewed from the row direction, and the end of the power generation region on the negative current collector terminal side is And a second spacer that loads a second region that does not include a central portion of the power generation region, and the first spacer and the second spacer are used for a charge / discharge test performed on the secondary battery. It is characterized in that the range in which the surface pressure is reduced is loaded and the range in which the surface pressure is not reduced in the test is not loaded .

本発明の組電池は,角型ケースを有する複数の二次電池(単電池)を列置したものであり,拘束部材がこれらの二次電池を纏めて拘束し,列置方向に荷重している。組電池を構成する二次電池の,一方の扁平面には,2つのスペーサ(第1スペーサと第2スペーサ)が接しており,拘束部材による荷重に伴って,スペーサがその扁平面を押圧する。具体的に,第1スペーサは,扁平面のうち,発電領域内の正極集電端子側の端部を含む第1領域を押圧し,第2スペーサは,扁平面のうち,発電領域内の負極集電端子側の端部を含む第2領域を押圧する。   The assembled battery of the present invention is a battery in which a plurality of secondary batteries (unit cells) having a square case are arranged in a row, and a restraining member collectively restrains these secondary batteries and loads them in the row direction. Yes. Two spacers (first spacer and second spacer) are in contact with one flat surface of the secondary battery constituting the assembled battery, and the spacer presses the flat surface in accordance with the load of the restraining member. . Specifically, the first spacer presses the first region including the end on the positive electrode current collecting terminal side in the power generation region in the flat surface, and the second spacer includes the negative electrode in the power generation region in the flat surface. The second region including the end portion on the current collecting terminal side is pressed.

すなわち,本発明の組電池では,二次電池間に挟まれた第1スペーサおよび第2スペーサが,角型ケースの扁平面のうち,発電領域の端部を含む領域であって中央部を含まない領域を荷重する。これにより,扁平面を荷重する領域と荷重しない領域とが設けられる。さらに,第1スペーサと第2スペーサとは別体であることから,スペーサ個々に位置調整が可能であり,二次電池個々にスペーサを適切に配置できる。そのため,二次電池個々に寸法誤差や組付誤差があったとしてもスペーサの位置を微調整できる。その結果,角型ケースの扁平面内の面圧が均一に近づき,電池性能の劣化を確実に抑制することが期待できる。   That is, in the assembled battery of the present invention, the first spacer and the second spacer sandwiched between the secondary batteries are regions including the end portion of the power generation region in the flat surface of the square case and include the central portion. Load no area. Thereby, the area | region which loads a flat surface and the area | region which does not load are provided. Furthermore, since the first spacer and the second spacer are separate, the position of each spacer can be adjusted, and the spacer can be appropriately arranged for each secondary battery. Therefore, even if there is a dimensional error or an assembly error for each secondary battery, the position of the spacer can be finely adjusted. As a result, it can be expected that the surface pressure in the flat surface of the square case approaches uniformly, and the deterioration of the battery performance is surely suppressed.

また,本発明の組電池は,隣り合う前記二次電池の間に位置し,一方の面が一方の二次電池の扁平面を荷重する前記第1スペーサおよび前記第2スペーサと接し,他方の面が他方の二次電池の扁平面と接する介在部材を備えるとよい。この構成により,第1スペーサおよび第2スペーサと接するのは一方の二次電池の扁平面だけになる。そのため,これらのスペーサによる荷重について,他方の二次電池の面圧への悪影響を回避できる。   The assembled battery of the present invention is located between the adjacent secondary batteries, and one surface is in contact with the first spacer and the second spacer that load the flat surface of one secondary battery, and the other It is preferable to provide an interposition member whose surface is in contact with the flat surface of the other secondary battery. With this configuration, only the flat surface of one secondary battery is in contact with the first spacer and the second spacer. Therefore, adverse effects on the surface pressure of the other secondary battery can be avoided with respect to the load caused by these spacers.

また,前記第1スペーサおよび前記第2スペーサは,平板状のプレート部材が前記列置方向に複数枚重なってなるとよい。この構成によれば,スペーサの列置方向の厚さ調整,すなわち空隙の大きさ調整や面圧の大きさ調整が可能になる。   The first spacer and the second spacer may be formed by overlapping a plurality of flat plate members in the arrangement direction. According to this configuration, it is possible to adjust the thickness of the spacers in the arrangement direction, that is, to adjust the size of the air gap and the size of the surface pressure.

また,前記第1スペーサおよび前記第2スペーサは,直方体のブロック部材が前記列置方向に直交する方向に複数個重なってなるとよい。この構成によれば,スペーサが荷重する領域の範囲調整が可能になる。   The first spacer and the second spacer may be formed by overlapping a plurality of rectangular parallelepiped block members in a direction perpendicular to the arrangement direction. According to this configuration, it is possible to adjust the range of the region loaded by the spacer.

また,本発明の組電池の製造方法は,発電要素と,前記発電要素を収容する角型ケースと,前記発電要素の一方の端部と接合する正極集電端子と,前記発電要素の他方の端部と
接合する負極集電端子とを有する二次電池を複数有し,隣り合う前記二次電池を,前記角型ケースの扁平面同士を対向させて列置する組電池の製造方法であって,前記組電池を構成する各二次電池について充放電試験を行い,前記充放電試験前の面圧と前記充放電試験後の面圧とを取得する取得ステップと,前記取得ステップにて取得した面圧に基づいて,各二次電池について,前記角型ケースの扁平面内で面圧が低下する場所を特定する特定ステップと,前記特定ステップの後,前記二次電池の一方の扁平面に,前記特定ステップにて特定した場所を荷重するスペーサを配置し,前記特定ステップにて特定されなかった場所にはスペーサを配置しない配置ステップとを含むことを特徴としている。
The assembled battery manufacturing method of the present invention includes a power generation element, a rectangular case that houses the power generation element, a positive current collector terminal that is joined to one end of the power generation element, and the other of the power generation elements. A method of manufacturing an assembled battery, comprising a plurality of secondary batteries each having a negative electrode current collector terminal joined to an end, and the adjacent secondary batteries arranged in a row with the flat surfaces of the square cases facing each other. The acquisition step of performing a charge / discharge test on each secondary battery constituting the assembled battery and acquiring the surface pressure before the charge / discharge test and the surface pressure after the charge / discharge test, and acquiring at the acquisition step For each secondary battery based on the measured surface pressure, a specifying step for specifying a place where the surface pressure decreases in the flat surface of the square case, and after the specifying step, one flat surface of the secondary battery The space for loading the location specified in the specific step is Place the sub, in places that are not identified in the identifying step is characterized in that it comprises an arrangement step that does not place the spacer.

すなわち,本発明の組電池の製造方法では,充放電試験を行う前後の面圧を取得し,試験前後での面圧の変化具合から,角型ケースの扁平面内の面圧が低下する場所を特定する。充放電試験としては,大電流の充電あるいは放電が行われればよく,例えば20C以上のレートで試験を行う。そして,その面圧が低下する場所にスペーサを配置する。この構成によれば,面圧の低下場所を確認してスペーサを配置するため,その場所を適切に荷重できる。また,二次電池について,寸法誤差や組付誤差があったとしても,個々の二次電池について面圧の低下場所を特定していることから,二次電池個々に適切に荷重できる。その結果,角型ケースの扁平面内の面圧が均一に近づき,電池性能の劣化を確実に抑制することが期待できる。   That is, in the method for manufacturing an assembled battery according to the present invention, the surface pressure before and after the charge / discharge test is obtained, and the surface pressure in the flat surface of the square case decreases due to the change in the surface pressure before and after the test. Is identified. As the charge / discharge test, it is only necessary to charge or discharge a large current. For example, the test is performed at a rate of 20 C or more. And a spacer is arrange | positioned in the place where the surface pressure falls. According to this configuration, since the spacer is arranged after confirming the place where the surface pressure is reduced, the place can be appropriately loaded. In addition, even if there are dimensional errors and assembly errors for the secondary battery, the location where the surface pressure is reduced is specified for each secondary battery, so that the secondary battery can be appropriately loaded. As a result, it can be expected that the surface pressure in the flat surface of the square case approaches uniformly, and the deterioration of the battery performance is surely suppressed.

また,前記配置ステップでは,隣り合う前記二次電池の間に,一方の面が一方の二次電池の扁平面を荷重する前記スペーサと接し,他方の面が他方の二次電池の扁平面と接する介在部材を配置するとよい。スペーサを配置した,隣り合う2つの二次電池間に介在部材を配置することで,スペーサと接するのは一方の二次電池の扁平面だけになる。そのため,スペーサによる荷重について,他方の二次電池の面圧への悪影響を回避できる。   Further, in the arranging step, between the adjacent secondary batteries, one surface is in contact with the spacer that loads a flat surface of one secondary battery, and the other surface is a flat surface of the other secondary battery. It is good to arrange the interposition member which touches. By arranging an interposition member between two adjacent secondary batteries in which a spacer is arranged, only the flat surface of one secondary battery is in contact with the spacer. Therefore, an adverse effect on the surface pressure of the other secondary battery can be avoided with respect to the load by the spacer.

また,前記配置ステップでは,前記面圧取得ステップにて取得した試験前の面圧と試験後の面圧との変化量に基づいて,前記スペーサの,前記二次電池の列置方向の厚さを調整するとよい。この構成によれば,スペーサの列置方向の厚さ調整,すなわち空隙の大きさ調整や面圧の大きさ調整が可能になる。   In the arranging step, the thickness of the spacers in the arrangement direction of the secondary batteries is determined based on the amount of change between the pre-test surface pressure and the post-test surface pressure acquired in the surface pressure acquisition step. It is good to adjust. According to this configuration, it is possible to adjust the thickness of the spacers in the arrangement direction, that is, to adjust the size of the air gap and the size of the surface pressure.

また,前記配置ステップでは,前記特定ステップにて特定した場所の範囲に基づいて,前記スペーサの,前記二次電池の列置方向と直交する方向の大きさを調整するとよい。この構成によれば,スペーサが荷重する領域の範囲調整が可能になる。   In the arranging step, the size of the spacer in the direction orthogonal to the arrangement direction of the secondary batteries may be adjusted based on the range of the place specified in the specifying step. According to this configuration, it is possible to adjust the range of the region loaded by the spacer.

本発明によれば,ハイレートでの充放電後における電池性能の劣化を確実に抑制する組電池および組電池の製造方法が実現される。   ADVANTAGE OF THE INVENTION According to this invention, the assembled battery and the manufacturing method of an assembled battery which suppress reliably deterioration of the battery performance after charging / discharging at a high rate are implement | achieved.

実施の形態にかかるリチウムイオン単電池の構成を示す斜視透視図である。It is a perspective perspective view which shows the structure of the lithium ion single battery concerning embodiment. 図1に示したリチウムイオン単電池を複数組み合わせてなるリチウムイオン組電池の構成を示す図である。It is a figure which shows the structure of the lithium ion assembled battery formed by combining multiple lithium ion single batteries shown in FIG. リチウムイオン単電池の一方の扁平面に位置するスペーサの配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the spacer located in one flat surface of a lithium ion single battery. リチウムイオン単電池の他方の扁平面に位置する冷却プレートの配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the cooling plate located in the other flat surface of a lithium ion single battery. 図2に示したリチウムイオン組電池の製造手順を示すフローチャートである。It is a flowchart which shows the manufacture procedure of the lithium ion assembled battery shown in FIG. ハイレート試験時の面圧分布を示すグラフである。It is a graph which shows the surface pressure distribution at the time of a high rate test. 列置方向に列置されたスペーサの例を示す図である。It is a figure which shows the example of the spacer arranged in the row direction. 幅方向に並置されたスペーサの例を示す図である。It is a figure which shows the example of the spacer juxtaposed in the width direction.

以下,本発明にかかる組電池を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。なお,以下の形態では,ハイブリッド自動車に車載されるリチウムイオン組電池に本発明を適用する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying an assembled battery according to the present invention will be described below in detail with reference to the accompanying drawings. In the following embodiment, the present invention is applied to a lithium ion assembled battery mounted on a hybrid vehicle.

[リチウムイオン電池の構成]
始めに,リチウムイオン組電池を構成するリチウムイオン単電池100について,図1を参照しつつ説明する。
[Configuration of lithium-ion battery]
First, a lithium ion unit cell 100 constituting a lithium ion assembled battery will be described with reference to FIG.

本形態のリチウムイオン単電池100は,図1に示すように,発電要素60と,発電要素60を収容し,リチウムイオン単電池100の外殻を形成する角型の外装部50とを有する密閉角型の二次電池である。図1は,外装部50を透視した状態を示している。以下の説明では,説明の便宜上,外装部50の幅方向(図1中のX方向)を「幅方向」,外装部50の高さ方向(図1中のY方向)を「高さ方向」,外装部50の奥行き方向(図1中のZ方向)を「列置方向」とする。 As shown in FIG. 1, the lithium ion unit cell 100 according to the present embodiment includes a power generation element 60 and a sealed outer casing 50 that houses the power generation element 60 and forms an outer shell of the lithium ion unit cell 100. This is a prismatic secondary battery. FIG. 1 shows a state in which the exterior portion 50 is seen through. In the following description, for convenience of description, the width direction "width direction" (X direction in FIG. 1) of the exterior unit 50, the height direction of the exterior portion 50 (Y direction in FIG. 1) the "height direction" The depth direction of the exterior portion 50 (the Z direction in FIG. 1) is defined as the “row placement direction”.

外装部50は,容器となる電池ケース10と,電池ケース10の開口部を封止する封口蓋20とを有している。電池ケース10は,アルミニウム,アルミニウム合金,めっき鋼板,ステンレス鋼板等の金属材からなる。封口蓋20は,アルミニウム,めっき鋼板,ステンレス鋼板等の金属材からなる。電池ケース10や封口蓋20に利用する金属材は,成形が容易であって,剛性があるものであればよい。外装部50の内側全面には,不図示の絶縁フィルムが貼付されている。   The exterior portion 50 includes a battery case 10 serving as a container and a sealing lid 20 that seals an opening of the battery case 10. The battery case 10 is made of a metal material such as aluminum, an aluminum alloy, a plated steel plate, or a stainless steel plate. The sealing lid 20 is made of a metal material such as aluminum, a plated steel plate, or a stainless steel plate. The metal material used for the battery case 10 and the sealing lid 20 may be any material that can be easily molded and has rigidity. An insulating film (not shown) is attached to the entire inner surface of the exterior portion 50.

電池ケース10は,有底矩形の箱体,すなわち上面が開口した直方体をなしている。電池ケース10は,発電要素60を収納しており,矩形板状の封口蓋20にてその開口部を塞ぐことによって発電要素60を密封をしている。具体的に,外装部50は,電池ケース10と封口蓋20とがレーザ溶接によって一体となっている。   The battery case 10 is a bottomed rectangular box, that is, a rectangular parallelepiped having an upper surface opened. The battery case 10 houses the power generation element 60 and seals the power generation element 60 by closing the opening with a rectangular plate-shaped sealing lid 20. Specifically, in the exterior part 50, the battery case 10 and the sealing lid 20 are integrated by laser welding.

封口蓋20には,封口蓋20を貫通し,封口蓋20から外装部50の外側に向けて突出する正極集電端子31および負極集電端子32が取り付けられている。正極集電端子31の封口蓋20への取り付け箇所には,樹脂製の絶縁部材33が介在し,正極集電端子31と封口蓋20とを絶縁している。同様に,負極集電端子32の封口蓋20への取り付け箇所には,樹脂製の絶縁部材34が介在し,負極集電端子32と封口蓋20とを絶縁している。また,封口蓋20には,矩形板状の安全弁23も溶接されている。安全弁23は,封口蓋20を貫通する注液孔を封止しており,その注液孔から電解液が注入される。   A positive electrode collector terminal 31 and a negative electrode collector terminal 32 are attached to the sealing lid 20 so as to penetrate the sealing lid 20 and protrude from the sealing lid 20 toward the outside of the exterior portion 50. An insulating member 33 made of resin is interposed at a position where the positive current collecting terminal 31 is attached to the sealing lid 20 to insulate the positive current collecting terminal 31 from the sealing lid 20. Similarly, an insulating member 34 made of resin is interposed at a location where the negative electrode current collecting terminal 32 is attached to the sealing lid 20 to insulate the negative electrode current collecting terminal 32 from the sealing lid 20. A rectangular plate-shaped safety valve 23 is also welded to the sealing lid 20. The safety valve 23 seals a liquid injection hole that penetrates the sealing lid 20, and an electrolytic solution is injected from the liquid injection hole.

発電要素60は,帯状の正極板61と,同じく帯状の負極板62とを,ポリエチレンからなるセパレータを挟んで捲回し,扁平状にしたものである。正極板61は,アルミ箔の両面に不図示の正極活物質層を担持している。この正極活物質層には,例えば,正極活物質のニッケル酸リチウム(LiNiO2 ),導電剤のアセチレンブラック,および結着剤のポリテトラフルオロエチレン(PTFE),カルボキシルメチルセルロース(CMC)が含まれる。また,負極板62は,銅箔の両面に不図示の負極活物質層を担持している。この負極活物質層には,例えば,グラファイトおよび結着剤が含まれる。また,不図示の電解液は,エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを,体積比でEC:EMC=3:7に調整した混合有機溶媒に,溶質として6フッ化リン酸リチウム(LiPF6 )を添加し,リチウムイオンを1mol/lの濃度とした有機電解液である。なお,正極板61,正極活物質層,負極板62,負極活物質層,電解液に利用される物質は一例であり,一般的にリチウムイオン電池に利用されるものを適宜選択すればよい。 The power generation element 60 is obtained by winding a belt-like positive electrode plate 61 and a belt-like negative electrode plate 62 with a separator made of polyethylene interposed therebetween to make it flat. The positive electrode plate 61 carries a positive electrode active material layer (not shown) on both surfaces of an aluminum foil. The positive electrode active material layer includes, for example, lithium nickel oxide (LiNiO 2 ) as a positive electrode active material, acetylene black as a conductive agent, and polytetrafluoroethylene (PTFE) and carboxymethyl cellulose (CMC) as a binder. The negative electrode plate 62 carries a negative electrode active material layer (not shown) on both sides of the copper foil. This negative electrode active material layer contains, for example, graphite and a binder. The electrolyte solution (not shown) is lithium hexafluorophosphate as a solute in a mixed organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are adjusted to a volume ratio of EC: EMC = 3: 7. (LiPF 6 ) is added, and the organic electrolyte has a lithium ion concentration of 1 mol / l. The materials used for the positive electrode plate 61, the positive electrode active material layer, the negative electrode plate 62, the negative electrode active material layer, and the electrolytic solution are merely examples, and materials generally used for lithium ion batteries may be appropriately selected.

正極板61は,クランク状に屈曲した板状の正極集電端子31と接合され,負極板62は,同じくクランク状に屈曲した板状の負極集電端子32と接合されている。具体的に,正極集電端子31は,発電要素60の幅方向の一方の端部に露出する正極板61と接合している。一方,負極集電端子32は,発電要素60の幅方向の他方の端部に露出する負極板62と接合している。なお,本形態では,発電要素60中の幅方向の中心位置を「中心位置60P」とする。   The positive electrode plate 61 is joined to a plate-like positive electrode current collecting terminal 31 bent in a crank shape, and the negative electrode plate 62 is joined to a plate-like negative electrode current collecting terminal 32 also bent in a crank shape. Specifically, the positive electrode current collecting terminal 31 is joined to the positive electrode plate 61 exposed at one end in the width direction of the power generation element 60. On the other hand, the negative electrode current collecting terminal 32 is joined to the negative electrode plate 62 exposed at the other end in the width direction of the power generation element 60. In the present embodiment, the center position in the width direction in the power generation element 60 is referred to as “center position 60P”.

[リチウムイオン組電池の構成]
続いて,図1に示したリチウムイオン単電池100を複数個組み合わせてなるリチウムイオン組電池200を,図2を参照しつつ説明する。図2は,リチウムイオン組電池200を高さ方向(図1中のY方向)から見た図である。
[Configuration of lithium-ion battery pack]
Next, a lithium ion assembled battery 200 formed by combining a plurality of lithium ion single cells 100 shown in FIG. 1 will be described with reference to FIG. FIG. 2 is a view of the lithium ion assembled battery 200 as viewed from the height direction (Y direction in FIG. 1).

リチウムイオン組電池200は,複数のリチウムイオン単電池100と,リチウムイオン組電池の列置方向(図2中のZ方向)の両端部に位置する一対のエンドプレート71,72と,リチウムイオン単電池100の一方の扁平面と接するスペーサ81,82と,隣り合うリチウムイオン単電池100,100間に挟まれた冷却プレート83とを有している。   The lithium ion assembled battery 200 includes a plurality of lithium ion single batteries 100, a pair of end plates 71 and 72 positioned at both ends of the arrangement direction of lithium ion assembled batteries (Z direction in FIG. 2), and lithium ion single batteries. Spacers 81 and 82 in contact with one flat surface of the battery 100 and a cooling plate 83 sandwiched between adjacent lithium ion cells 100 and 100 are included.

リチウムイオン単電池100は,図2に示すように,扁平面同士を対向させ,列置方向に並んで配置される。ここでは,一方のリチウムイオン単電池100の正極集電端子31と他方のリチウムイオン単電池100の負極集電端子32とが向き合うように配置される。そして,一方のリチウムイオン単電池100の正極集電端子31と他方のリチウムイオン単電池100の負極集電端子32とがバスバー91によって電気的に接続される。これにより,リチウムイオン組電池200を構成する全てのリチウムイオン単電池100が直列に接続される。なお,リチウムイオン単電池100の数は,要求出力等によって適宜決定される。また,電気的に並列に接続されたリチウムイオン単電池100を組み合わせてもよい。   As shown in FIG. 2, the lithium ion unit cells 100 are arranged side by side in the row direction with the flat surfaces facing each other. Here, it arrange | positions so that the positive electrode current collection terminal 31 of one lithium ion single cell 100 and the negative electrode current collection terminal 32 of the other lithium ion single cell 100 may face each other. Then, the positive electrode current collecting terminal 31 of one lithium ion unit cell 100 and the negative electrode current collecting terminal 32 of the other lithium ion unit cell 100 are electrically connected by a bus bar 91. Thereby, all the lithium ion single batteries 100 which comprise the lithium ion assembled battery 200 are connected in series. In addition, the number of the lithium ion single cells 100 is appropriately determined depending on the required output. Moreover, you may combine the lithium ion cell 100 electrically connected in parallel.

エンドプレート71,72には,列置方向に延び,各リチウムイオン単電池100の側面に沿って配置された拘束バンド73が取り付けられている。拘束バンド73は,エンドプレート71,72に締め付けられながら固定されることで,エンドプレート71,72に対して拘束力Fを与える。拘束力Fは,エンドプレート71,72が互いに近づく方向に発生する力であり,エンドプレート71,72に挟まれた各リチウムイオン単電池100を列置方向に拘束する力となる。このエンドプレート71,72および拘束バンド73からなる拘束部材により,エンドプレート71,72間に挟まれたリチウムイオン単電池100は,列置方向に荷重される。   A restraining band 73 is attached to the end plates 71 and 72 so as to extend in the row direction and is disposed along the side surface of each lithium ion unit cell 100. The restraint band 73 applies a restraining force F to the end plates 71 and 72 by being fixed to the end plates 71 and 72 while being fastened. The restraining force F is a force that is generated in a direction in which the end plates 71 and 72 approach each other, and is a force that restrains the lithium ion cells 100 sandwiched between the end plates 71 and 72 in the row direction. The lithium ion cells 100 sandwiched between the end plates 71 and 72 are loaded in the row direction by the restraining member including the end plates 71 and 72 and the restraining band 73.

スペーサ81,82は,それぞれ別体であり,リチウムイオン単電池100の一方の扁平面と密接する。スペーサ81,82には,アルミ等の高熱伝導性を有する金属や,ポリプロピレン等の軽量で硬質な合成樹脂が適用できる。スペーサ81,82は,拘束バンド73による拘束力Fを受け,密接するリチウムイオン単電池100の扁平面を荷重する。スペーサ81,82と密接するリチウムイオン単電池100の電池ケース10は,上述の荷重により,スペーサ81,82との密接箇所が内側に凹まされる。この電池ケース10の凹みは,電池ケース10内の発電要素60を押圧し,電池ケース10内での発電要素60のがたつきを抑制する。   The spacers 81 and 82 are separate bodies and are in close contact with one flat surface of the lithium ion unit cell 100. The spacers 81 and 82 can be made of a metal having high thermal conductivity such as aluminum or a light and hard synthetic resin such as polypropylene. The spacers 81 and 82 receive the restraining force F from the restraining band 73 and load the flat surface of the lithium ion unit cell 100 that is in close contact. In the battery case 10 of the lithium ion unit cell 100 that is in close contact with the spacers 81 and 82, the close portions with the spacers 81 and 82 are recessed inward due to the load described above. The recess of the battery case 10 presses the power generation element 60 in the battery case 10 and suppresses rattling of the power generation element 60 in the battery case 10.

また,スペーサ81は,リチウムイオン単電池100の扁平面の幅方向の正極集電端子31側の領域に密接する。一方,スペーサ82は,リチウムイオン単電池100の扁平面の幅方向の負極集電端子32側の領域に密接する。   The spacer 81 is in close contact with the region on the positive electrode current collecting terminal 31 side in the width direction of the flat surface of the lithium ion unit cell 100. On the other hand, the spacer 82 is in close contact with the region on the negative electrode current collector terminal 32 side in the width direction of the flat surface of the lithium ion unit cell 100.

ここで,スペーサ81,82のリチウムイオン単電池100の扁平面内における具体的な位置について説明する。図3は,スペーサ81,82が密接する位置をハッチングによって示している。図3中の2点鎖線枠は,リチウムイオン単電池100の扁平面のうち,列置方向から見て発電要素60の発電エリアと同じ位置になる領域(以下,「発電領域A」とする)を示している。ここでいう発電要素60の発電エリアとは,少なくとも正極板61と負極板62とが重なっているエリアを意味する。さらに発電領域Aは,幅方向の正極集電端子31側の端部に位置する正極側端部領域A1と,幅方向の負極集電端子32側の端部に位置する負極側端部領域A2と,正極側端部領域A1と負極側端部領域A2との間に位置し,中心位置60Pが含まれる中心領域A3とに区画される。   Here, specific positions of the spacers 81 and 82 in the flat surface of the lithium ion unit cell 100 will be described. FIG. 3 shows the positions where the spacers 81 and 82 are in close contact with each other by hatching. A two-dot chain line frame in FIG. 3 is a region (hereinafter referred to as “power generation region A”) in the flat surface of the lithium ion unit cell 100 and located at the same position as the power generation area of the power generation elements 60 when viewed from the row direction. Is shown. The power generation area of the power generation element 60 here means an area where at least the positive electrode plate 61 and the negative electrode plate 62 overlap. Furthermore, the power generation region A includes a positive electrode side end region A1 located at the end portion on the positive electrode current collecting terminal 31 side in the width direction and a negative electrode side end region A2 located on the end portion on the negative electrode current collector terminal 32 side in the width direction. And a center region A3 that is located between the positive electrode side end region A1 and the negative electrode side end region A2 and includes the center position 60P.

スペーサ81の幅は,正極側端部領域A1の幅W1と略均等であり,スペーサ81は,正極側端部領域A1と重なる位置に配置される。一方,スペーサ82の幅は,負極側端部領域A2の幅W2と略均等であり,スペーサ82は,負極側端部領域A2と重なる位置に配置される。また,幅方向だけではなく,高さ方向も揃えられる。この構成により,リチウムイオン組電池200では,拘束バンド73を組み付けた際,スペーサ81,82によって,リチウムイオン単電池100の扁平面の一部分,具体的には正極側端部領域A1および負極側端部領域A2のみを荷重する。そのため,リチウムイオン単電池100の扁平面のうち,正極側端部領域A1および負極側端部領域A2については面圧が上昇する。   The width of the spacer 81 is substantially equal to the width W1 of the positive electrode side end region A1, and the spacer 81 is disposed at a position overlapping the positive electrode side end region A1. On the other hand, the width of the spacer 82 is substantially equal to the width W2 of the negative electrode side end region A2, and the spacer 82 is disposed at a position overlapping the negative electrode side end region A2. In addition to the width direction, the height direction is also aligned. With this configuration, in the lithium ion battery pack 200, when the restraint band 73 is assembled, the spacers 81 and 82 cause a portion of the flat surface of the lithium ion cell 100, specifically, the positive electrode side end region A1 and the negative electrode side end. Only the partial area A2 is loaded. Therefore, the surface pressure of the positive electrode side end region A1 and the negative electrode side end region A2 of the flat surface of the lithium ion cell 100 increases.

冷却プレート83は,平板状の部材であり,隣り合うリチウムイオン単電池100,100間に挿入される。具体的には,一方の面を,一方のリチウムイオン単電池100の扁平面と接し,他方の面を他方のリチウムイオン単電池100の扁平面を荷重するスペーサ81およびスペーサ82と接する。   The cooling plate 83 is a flat member and is inserted between adjacent lithium ion cells 100, 100. Specifically, one surface is in contact with the flat surface of one lithium ion unit cell 100 and the other surface is in contact with the spacer 81 and the spacer 82 that load the flat surface of the other lithium ion unit cell 100.

冷却プレート83は,図4に示すように,発電領域Aと略均等の幅および高さであり,列置方向から見て発電領域Aと重なる位置に配置される。すなわち,冷却プレート83の扁平面の面積は,発電領域Aの面積と略同等である。そして,スペーサ81,82と接する面と反対側の面は,スペーサ81,82に荷重されるリチウムイオン単電池100と対向する他のリチウムイオン単電池100の扁平面と接する。他のリチウムイオン単電池100にとっては,スペーサ81,82との間に冷却プレート83が介在するため,スペーサ81,82による荷重が幅方向ないし高さ方向に分散される。すなわち,冷却プレート83と接する他のリチウムイオン単電池100は,冷却プレート83によって幅方向に略均等に荷重される。   As shown in FIG. 4, the cooling plate 83 has a width and height substantially equal to the power generation region A, and is disposed at a position overlapping the power generation region A when viewed from the row direction. That is, the area of the flat surface of the cooling plate 83 is substantially equal to the area of the power generation region A. The surface opposite to the surface in contact with the spacers 81 and 82 is in contact with the flat surface of another lithium ion cell 100 facing the lithium ion cell 100 loaded on the spacers 81 and 82. For other lithium ion cells 100, since the cooling plate 83 is interposed between the spacers 81 and 82, the load by the spacers 81 and 82 is dispersed in the width direction or the height direction. In other words, the other lithium ion cells 100 in contact with the cooling plate 83 are loaded substantially uniformly in the width direction by the cooling plate 83.

冷却プレート83には,アルミ等の高熱伝導性を有する金属を適用できる。冷却プレート83と接するリチウムイオン単電池100の発電要素60から発生した熱は,冷却プレート83に伝わり,電池ケース10外に放出される。   A metal having high thermal conductivity such as aluminum can be applied to the cooling plate 83. Heat generated from the power generation element 60 of the lithium ion unit cell 100 in contact with the cooling plate 83 is transmitted to the cooling plate 83 and released to the outside of the battery case 10.

また,隣り合うリチウムイオン単電池100,100の間には,スペーサ81,冷却プレート83,スペーサ82,および他方のリチウムイオン単電池100の扁平面によって囲まれた空隙85が形成される。この空隙85に冷媒流(例えば,空気流や水流)を導入することで冷却効果が高まる。   Further, a gap 85 surrounded by the spacer 81, the cooling plate 83, the spacer 82, and the flat surface of the other lithium ion unit cell 100 is formed between the adjacent lithium ion unit cells 100, 100. By introducing a refrigerant flow (for example, air flow or water flow) into the gap 85, the cooling effect is enhanced.

[リチウムイオン組電池の製造方法]
続いて,上述したリチウムイオン組電池200の製造方法について,スペーサ81,82を取り付ける手順に着目して説明する。図5は,リチウムイオン組電池200の製造手順を示すフローチャートである。
[Method for producing lithium-ion battery pack]
Next, a method for manufacturing the above-described lithium ion assembled battery 200 will be described by focusing on the procedure for attaching the spacers 81 and 82. FIG. 5 is a flowchart showing a manufacturing procedure of the lithium ion assembled battery 200.

リチウムイオン組電池200の製造手順では,先ず,リチウムイオン単電池100を製造する(S01)。製造後のリチウムイオン単電池100に対しては,電池性能の各種の検査を行い,不良品は取り除かれる。   In the manufacturing procedure of the lithium ion assembled battery 200, first, the lithium ion single battery 100 is manufactured (S01). The manufactured lithium ion unit cell 100 is subjected to various inspections of battery performance, and defective products are removed.

リチウムイオン単電池100単体で良品となったものについては,そのリチウムイオン単電池100の扁平面にかかる面圧を測定する(S02)。S02では,扁平面の幅方向全域の面圧を測定する。面圧測定は,一般的な面圧センサを使用すればよい。また,S02の測定において扁平面の幅方向に面圧のばらつきが許容範囲を超えた場合には,不良品として取り除かれる。なお,S02の測定は,製造後のリチウムイオン単電池100に対する各種の検査を行う前に行ってもよい。   For the lithium ion unit cell 100 that has become a non-defective product, the surface pressure applied to the flat surface of the lithium ion unit cell 100 is measured (S02). In S02, the surface pressure in the entire width direction of the flat surface is measured. For the surface pressure measurement, a general surface pressure sensor may be used. Further, in the measurement of S02, when the variation in the surface pressure in the width direction of the flat surface exceeds the allowable range, it is removed as a defective product. In addition, you may perform the measurement of S02 before performing the various test | inspection with respect to the lithium ion single battery 100 after manufacture.

次に,ハイレートでの充放電試験を行う(S03)。そして,充放電試験後に再度リチウムイオン単電池100の扁平面にかかる面圧を測定する(S04)。S04では,S02と同じ箇所を同じ方法で測定する。そして,S02の測定結果とS04の測定結果とを比較し,扁平面の幅方向中,面圧が低下した範囲を特定する(S05)。   Next, a charge / discharge test at a high rate is performed (S03). Then, the surface pressure applied to the flat surface of the lithium ion cell 100 is measured again after the charge / discharge test (S04). In S04, the same part as S02 is measured by the same method. And the measurement result of S02 and the measurement result of S04 are compared, and the range where the surface pressure fell in the width direction of a flat surface is specified (S05).

リチウムイオン単電池100は,ハイレートでの充電および放電を繰り返すと,発電要素60の端部で面圧の変化量が大きくなる傾向にある。例えば,図6は,36C(レート)での放電を5秒間行った後の,面圧の変化率を示している。図6中,縦軸はS02とS04との間での面圧変化率を意味し,横軸は電池ケース10の発電領域Aの幅方向上の位置(正極集電端子側の端部を0とし,負極集電端子側の端部を100とする。)を意味する。   When the lithium ion unit cell 100 is repeatedly charged and discharged at a high rate, the amount of change in surface pressure tends to increase at the end of the power generation element 60. For example, FIG. 6 shows the change rate of the surface pressure after discharging at 36 C (rate) for 5 seconds. In FIG. 6, the vertical axis represents the rate of change in surface pressure between S02 and S04, and the horizontal axis represents the position in the width direction of the power generation region A of the battery case 10 (the end on the positive electrode current collector terminal side is 0). And the end on the negative electrode current collector terminal side is 100).

図6に示すように,本形態のリチウムイオン電池100では,S03でのハイレート試験後,発電領域Aの幅方向のうち,中央部分(図6中の横軸で21〜82の部分)では面圧が上昇し,端部側の領域(図6中の横軸で0〜20の部分および83〜100の部分)では面圧が低下することがわかる。このように,ハイレート試験の前後の面圧を測定することで,面圧が低下した範囲を特定できる。   As shown in FIG. 6, in the lithium ion battery 100 of this embodiment, after the high-rate test in S03, in the width direction of the power generation region A, the central portion (the portion of 21 to 82 on the horizontal axis in FIG. 6) is the surface. It can be seen that the pressure increases and the surface pressure decreases in the region on the end side (portions 0 to 20 and 83 to 100 on the horizontal axis in FIG. 6). Thus, by measuring the surface pressure before and after the high rate test, the range in which the surface pressure has decreased can be identified.

本形態では,面圧が低下した範囲,すなわち面圧変化率が100%以下となった範囲のうち,中心位置60Pよりも正極集電端子31側の範囲(図6中の横軸で0〜20の部分に相当)を「拘束範囲R1」とし,負極集電端子32側の範囲(図6中の横軸で83〜100の部分に相当)を「拘束範囲R2」とする。拘束範囲R1は,図3の正極側端部領域A1の幅と等価である。また,拘束範囲R2は,図3の負極側端部領域A2の幅と等価である。   In the present embodiment, in the range where the surface pressure is reduced, that is, the range where the surface pressure change rate is 100% or less, the range on the positive electrode current collecting terminal 31 side from the center position 60P (0 to 0 on the horizontal axis in FIG. 6). (Corresponding to the portion 20) is defined as “restraint range R1”, and the range on the negative electrode current collector terminal 32 side (corresponding to the portion 83 to 100 on the horizontal axis in FIG. 6) is defined as “restraint range R2”. The restraint range R1 is equivalent to the width of the positive electrode side end region A1 in FIG. Further, the constraint range R2 is equivalent to the width of the negative electrode side end region A2 in FIG.

次に,拘束範囲R1と同じ幅のスペーサ81と,拘束範囲R2と同じ幅のスペーサ82とを用意し,拘束範囲R1の位置にスペーサ81を配置し,拘束範囲R2の位置にスペーサ82を配置する(S06)。そして,リチウムイオン単電池100,100間に冷却プレート83を挟み,拘束バンド73をエンドプレート71,72に締め付け,各リチウムイオン単電池100にバスバー91,92を組み付けてリチウムイオン組電池200を完成させる(S07)。S07の後,製造後のリチウムイオン組電池200に対しては,電池性能の各種の試験を行い,不良品は取り除かれ,良品は出荷される。   Next, a spacer 81 having the same width as the restriction range R1 and a spacer 82 having the same width as the restriction range R2 are prepared, the spacer 81 is arranged at the position of the restriction range R1, and the spacer 82 is arranged at the position of the restriction range R2. (S06). Then, a cooling plate 83 is sandwiched between the lithium ion cells 100, 100, the restraint band 73 is fastened to the end plates 71, 72, and bus bars 91, 92 are assembled to each lithium ion cell 100 to complete the lithium ion assembled battery 200. (S07). After S07, the manufactured lithium ion assembled battery 200 is subjected to various tests of battery performance, defective products are removed, and non-defective products are shipped.

[スペーサの応用例]
[第1の応用例]
続いて,スペーサ81,82の応用例について説明する。第1の応用例のスペーサは,複数ブロックによって構成される。この点,1ブロック,すなわち単体で構成される実施の形態のスペーサ81,82とは異なる。
[Application example of spacer]
[First application example]
Next, application examples of the spacers 81 and 82 will be described. The spacer of the first application example is composed of a plurality of blocks. This point is different from the spacers 81 and 82 of the embodiment constituted by one block, that is, a single unit.

図7は,第1の応用例のスペーサ86の構成を示している。スペーサ86は,平板状のプレート861を複数枚列置方向に列置したものである。各プレート861の幅方向および高さ方向の大きさは同じである。各プレート861の列置方向の高さは,同じであっても異なっていてもよい。   FIG. 7 shows the configuration of the spacer 86 of the first application example. The spacer 86 is formed by arranging a plurality of flat plates 861 in the arrangement direction. Each plate 861 has the same size in the width direction and the height direction. The height of the plates 861 in the row direction may be the same or different.

第1の応用例のスペーサ86によれば,プレート861の枚数を調整する,すなわちスペーサ86の列置方向の高さを調整可能にすることにより,リチウムイオン単電池100の扁平面にかかる荷重を調整できる。例えば,プレート861の枚数を減らし,スペーサ86の列置方向の高さを低くすれば,スペーサ86が与える荷重が弱くなる。一方,プレート861の枚数を増やし,スペーサ86の列置方向の高さを高くすれば,スペーサ86が与える荷重が強くなる。   According to the spacer 86 of the first application example, the load applied to the flat surface of the lithium ion unit cell 100 can be adjusted by adjusting the number of the plates 861, that is, by adjusting the height of the spacers 86 in the row direction. Can be adjusted. For example, if the number of the plates 861 is reduced and the height of the spacers 86 in the row direction is lowered, the load applied by the spacers 86 becomes weaker. On the other hand, if the number of plates 861 is increased and the height of the spacers 86 in the row direction is increased, the load applied by the spacers 86 becomes stronger.

スペーサ86の高さの決定は,面圧の変化率の大きさによって決定する。例えば,変化率が大きければ,スペーサ86の高さを高くして,低下した箇所の面圧を高くする。一方,変化率が小さければ,スペーサ86の高さを低くして,面圧を微調整する。   The height of the spacer 86 is determined according to the change rate of the surface pressure. For example, if the rate of change is large, the height of the spacer 86 is increased, and the surface pressure of the lowered portion is increased. On the other hand, if the change rate is small, the height of the spacer 86 is lowered and the surface pressure is finely adjusted.

[第2の応用例]
第2の応用例のスペーサは,第1の応用例と同様に,複数ブロックによって構成される。ただし,第2の応用例では,幅方向に複数のブロックを並置する。この点,列置方向に複数枚のプレートを重ねる第1の応用例のスペーサ86とは異なる。
[Second application example]
As in the first application example, the spacer of the second application example is composed of a plurality of blocks. However, in the second application example, a plurality of blocks are juxtaposed in the width direction. This is different from the spacer 86 of the first application example in which a plurality of plates are stacked in the row direction.

図8は,第2の応用例のスペーサ87の構成を示している。スペーサ87は,直方体のブロック871を複数個幅方向に並置してなる。各ブロック871の列置方向および高さ方向の大きさは同じである。各ブロック871の幅方向の大きさは,同じであっても異なっていてもよい。   FIG. 8 shows the configuration of the spacer 87 of the second application example. The spacer 87 is formed by juxtaposing a plurality of rectangular blocks 871 in the width direction. The sizes of the blocks 871 in the row direction and the height direction are the same. The size in the width direction of each block 871 may be the same or different.

第2の応用例のスペーサ87によれば,ブロック871の個数を調整する,すなわちスペーサ87の幅方向の大きさを調整可能にすることで,リチウムイオン単電池100の面圧が低下する領域の幅にばらつきがあったとしても,そのばらつきに対応できる。例えば,拘束範囲R2が広ければ,ブロック871の個数を増やすことで,スペーサ87の幅を大きくできる。一方,拘束範囲R2が狭ければ,ブロック871の個数を減らすことで,スペーサ87の幅を小さくできる。   According to the spacer 87 of the second application example, by adjusting the number of blocks 871, that is, by making it possible to adjust the size of the spacer 87 in the width direction, the region 87 in which the surface pressure of the lithium ion unit cell 100 decreases is reduced. Even if there is a variation in the width, the variation can be dealt with. For example, if the constraint range R2 is wide, the width of the spacer 87 can be increased by increasing the number of blocks 871. On the other hand, if the constraint range R2 is narrow, the width of the spacer 87 can be reduced by reducing the number of blocks 871.

なお,第2の応用例では,複数のブロック871を幅方向に列置しているが,高さ方向に列置してもよい。また,幅方向と高さ方向との両方に複数のブロック871を列置してもよい。また,第1の応用例と第2の応用例とを組み合わせ,列置方向,幅方向,および高さ方向の3方に,複数のブロックないしプレートを列置してもよい。   In the second application example, the plurality of blocks 871 are arranged in the width direction, but may be arranged in the height direction. A plurality of blocks 871 may be arranged in both the width direction and the height direction. Further, the first application example and the second application example may be combined, and a plurality of blocks or plates may be arranged in three directions of the arrangement direction, the width direction, and the height direction.

以上詳細に説明したように本発明のリチウムイオン組電池200では,リチウムイオン単電池100の扁平面に接するスペーサ81,82が,発電領域Aの端部を含む領域であって中央部を含まない領域A1,A2を荷重する。これにより,扁平面を荷重する領域A1,A2と荷重しない領域A3とが設けられ,荷重された領域A1,A2,すなわちハイレートでの充放電によって面圧が低下している領域の面圧を上げることができる。さらに,スペーサ81とスペーサ82とは別体であることから,スペーサ81,82個々に位置調整が可能であり,リチウムイオン単電池100個々にスペーサ81,82を適切に配置できる。そのため,リチウムイオン単電池100個々に寸法誤差や組付誤差があったとしてもスペーサの位置を微調整できる。その結果,リチウムイオン単電池100の扁平面内の面圧が均一に近づき,電池性能の劣化を確実に抑制することが期待できる。   As described above in detail, in the lithium ion assembled battery 200 of the present invention, the spacers 81 and 82 in contact with the flat surface of the lithium ion unit cell 100 are regions including the end portion of the power generation region A and not including the central portion. The areas A1 and A2 are loaded. As a result, areas A1 and A2 that load the flat surface and areas A3 that do not load are provided, and the surface pressure of the areas A1 and A2 that are loaded, that is, the area where the surface pressure is reduced due to charge / discharge at a high rate, is increased. be able to. Furthermore, since the spacer 81 and the spacer 82 are separate bodies, the positions of the spacers 81 and 82 can be adjusted individually, and the spacers 81 and 82 can be appropriately arranged for each lithium ion cell 100. Therefore, the position of the spacer can be finely adjusted even if there is a dimensional error or an assembly error for each lithium ion cell 100. As a result, it can be expected that the surface pressure in the flat surface of the lithium ion unit cell 100 approaches uniformly and the deterioration of the battery performance is surely suppressed.

また,本発明のリチウムイオン組電池200の製造方法では,ハイレートでの充放電試験を行う前後の面圧を取得し,試験前後での面圧の変化率から,リチウムイオン単電池100個々の,扁平面内の面圧が低下する場所を特定している。そして,その面圧が低下する場所(実施の形態では拘束範囲R1と拘束範囲R2)にスペーサ81,82をそれぞれ配置している。この構成によれば,面圧の低下場所を確認してスペーサ81,82を配置するため,その場所を適切に荷重できる。特に,リチウムイオン単電池100について寸法誤差や組付誤差があったとしても,個々のリチウムイオン単電池100について面圧の低下場所を特定していることから,リチウムイオン単電池100個々に適切に荷重できる。そのため,電池ケース10の扁平面内の面圧が均一に近づき,面圧が均一になることで発電要素60の部分的な膨張ないし収縮が抑制される。その結果として,電池性能の劣化を確実に抑制することが期待できる。   Moreover, in the manufacturing method of the lithium ion assembled battery 200 of the present invention, the surface pressure before and after performing the charge / discharge test at the high rate is obtained, and the change rate of the surface pressure before and after the test is used to determine the individual The place where the surface pressure in the flat surface decreases is specified. Then, the spacers 81 and 82 are respectively arranged at the places where the surface pressure decreases (in the embodiment, the restriction range R1 and the restriction range R2). According to this configuration, the place where the surface pressure is reduced is confirmed and the spacers 81 and 82 are arranged, so that the place can be appropriately loaded. In particular, even if there is a dimensional error or assembly error for the lithium ion unit cell 100, the location where the surface pressure is reduced is specified for each lithium ion unit cell 100. Can be loaded. Therefore, the surface pressure in the flat surface of the battery case 10 approaches uniformly and the surface pressure becomes uniform, so that partial expansion or contraction of the power generation element 60 is suppressed. As a result, it can be expected that the deterioration of the battery performance is surely suppressed.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,リチウムイオン電池は,車載用に限らず,家電製品やパソコンに利用されるものであってもよい。また,電池はリチウムイオン電池に限るものではない。すなわち,ニッケル水素電池やニッカド電池等の二次電池でも本発明を適用できる。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, the lithium ion battery is not limited to being mounted on a vehicle, but may be used for home appliances and personal computers. The battery is not limited to a lithium ion battery. That is, the present invention can be applied to a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery.

また,スペーサ81は,少なくとも発電領域Aの正極集電端子31側の端部が含まれる領域と接していればよく,その幅は正極側端部領域A1の幅W1と厳密に一致していなくてもよい。スペーサ82も,少なくとも発電領域Aの負極集電端子32側の端部が含まれる領域と接していればよく,その幅は正極側端部領域A2の幅W2と厳密に一致していなくてもよい。例えば,スペーサ81,82は,発電領域A外の領域も荷重してよい。   The spacer 81 only needs to be in contact with at least a region including the end of the power generation region A on the positive current collector terminal 31 side, and its width does not exactly match the width W1 of the positive end region A1. May be. The spacer 82 only needs to be in contact with at least the region including the end of the power generation region A on the negative electrode current collector terminal 32 side, and the width thereof may not exactly match the width W2 of the positive electrode end region A2. Good. For example, the spacers 81 and 82 may also load a region outside the power generation region A.

また,冷却プレート83は,スペーサ81,82と接することができる幅および高さであればよく,その幅および高さは発電領域Aの幅および高さよりも長くてもよい。すなわち,冷却プレート83の扁平面の面積は,発電領域Aの面積以上となる。   The cooling plate 83 may be any width and height that can contact the spacers 81 and 82, and the width and height may be longer than the width and height of the power generation region A. That is, the area of the flat surface of the cooling plate 83 is equal to or larger than the area of the power generation region A.

また,冷却プレート83は,リチウムイオン単電池100のスペーサ81,82によって荷重されている扁平面側に,その扁平面と対向する他のリチウムイオン単電池100がなければ,配置しなくてよい(例えば,図2に示した組電池200のエンドプレート72側部分を参照)。また,例えば,リチウムイオン単電池100を2つのみ列置する場合,両リチウムイオン単電池とも外側となる扁平面にスペーサ81,82を配置すれば,冷却プレート83は不要である。   Further, the cooling plate 83 does not have to be arranged if there is no other lithium ion unit cell 100 facing the flat surface on the flat surface side that is loaded by the spacers 81 and 82 of the lithium ion unit cell 100 ( For example, see the end plate 72 side portion of the assembled battery 200 shown in FIG. 2). Further, for example, when only two lithium ion cells 100 are arranged in a row, the cooling plate 83 is not necessary if the spacers 81 and 82 are arranged on the flat surface on the outer side of both lithium ion cells.

また,実施の形態では,S03のハイレート試験で36C5秒間の充放電を行っているが,これに限るものではない。ハイレート試験としては,大電流の充放電を実施できるものであればよく,例えば本形態のリチウムイオン単電池100では,20C以上のレートで充電あるいは放電を行えばよい。   In the embodiment, charging and discharging are performed for 36C5 seconds in the high-rate test of S03, but the present invention is not limited to this. The high-rate test is not particularly limited as long as it can charge and discharge a large current. For example, in the lithium ion unit cell 100 of this embodiment, charging or discharging may be performed at a rate of 20 C or higher.

10 電池ケース(角型ケース)
31 正極集電端子
32 負極集電端子
60 発電要素
61 正極板
62 負極板
73 拘束バンド(拘束部材)
81 スペーサ(第1スペーサ)
82 スペーサ(第2スペーサ)
83 冷却プレート(介在部材)
100 リチウムイオン単電池(二次電池)
200 リチウムイオン組電池(組電池)
A 発電領域
A1 正極側端部領域(第1領域)
A2 負極側端部領域(第2領域)
10 Battery case (square case)
31 Positive current collector terminal 32 Negative current collector terminal 60 Power generation element 61 Positive electrode plate 62 Negative electrode plate 73 Restraint band (restraint member)
81 Spacer (first spacer)
82 Spacer (second spacer)
83 Cooling plate (intervening member)
100 Lithium ion cell (secondary battery)
200 Lithium ion battery pack (battery pack)
A Power generation region A1 Positive electrode side end region (first region)
A2 Negative electrode side end region (second region)

Claims (8)

発電要素と,
前記発電要素を収容する角型ケースと,
前記発電要素の一方の端部と接合する正極集電端子と,
前記発電要素の他方の端部と接合する負極集電端子と,
を有する二次電池を複数有し,
隣り合う前記二次電池を,前記角型ケースの扁平面同士を対向させて列置する組電池において,
列置された複数の前記二次電池を纏めて拘束し,各二次電池を前記二次電池の列置方向に荷重する拘束部材と,
前記二次電池の前記角型ケースの一方の扁平面である第1面と接し,前記第1面内の領域のうち,前記列置方向から見て,前記発電要素と重なる領域である発電領域内であり,前記発電領域の前記正極集電端子側の端部を含み,前記発電領域の中央部を含まない領域である第1領域を荷重する第1スペーサと,
前記第1面と接し,前記第1面内の領域のうち,前記列置方向から見て,前記発電領域内であり,前記発電領域の前記負極集電端子側の端部を含み,前記発電領域の中央部を含まない領域である第2領域を荷重する第2スペーサと,
を備え
前記第1スペーサおよび前記第2スペーサは,前記二次電池について行われた充放電試験にて面圧が低下した範囲を荷重し,前記試験にて面圧が低下しなかった範囲を荷重しないことを特徴とする組電池。
Power generation elements;
A square case for housing the power generation element;
A positive current collector terminal joined to one end of the power generating element;
A negative current collector terminal joined to the other end of the power generation element;
A plurality of secondary batteries having
In the assembled battery in which the adjacent secondary batteries are arranged in a row with the flat surfaces of the square cases facing each other,
A constraining member that collectively restrains the plurality of secondary batteries arranged in a row, and loads each secondary battery in the direction in which the secondary batteries are arranged;
A power generation region that is in contact with a first surface that is one flat surface of the rectangular case of the secondary battery and that overlaps the power generation element when viewed from the row direction in the region in the first surface. A first spacer for loading a first region that includes an end of the power generation region on the side of the positive current collector terminal and does not include a central portion of the power generation region;
The power generation region is in contact with the first surface and is within the power generation region of the region within the first surface when viewed from the row direction, and includes an end of the power generation region on the negative current collector terminal side, A second spacer for loading the second region, which is a region not including the central portion of the region;
Equipped with a,
The first spacer and the second spacer are loaded in a range where the surface pressure is reduced in the charge / discharge test performed on the secondary battery, and are not loaded in the range where the surface pressure is not reduced in the test. A battery pack characterized by.
請求項1に記載する組電池において,
隣り合う前記二次電池の間に位置し,一方の面が一方の二次電池の扁平面を荷重する前記第1スペーサおよび前記第2スペーサと接し,他方の面が他方の二次電池の扁平面と接する介在部材を備えることを特徴とする組電池。
The assembled battery according to claim 1,
Located between adjacent secondary batteries, one surface is in contact with the first spacer and the second spacer that load the flat surface of one secondary battery, and the other surface is the flat surface of the other secondary battery. An assembled battery comprising an interposition member in contact with the surface.
請求項1または請求項2に記載する組電池において,
前記第1スペーサおよび前記第2スペーサは,平板状のプレート部材が前記列置方向に複数枚重なってなることを特徴とする組電池。
In the assembled battery according to claim 1 or 2,
The assembled battery, wherein the first spacer and the second spacer are formed by overlapping a plurality of flat plate members in the row direction.
請求項1から請求項3のいずれか1つに記載する組電池において,
前記第1スペーサおよび前記第2スペーサは,直方体のブロック部材が前記列置方向に直交する方向に複数個重なってなることを特徴とする組電池。
In the assembled battery according to any one of claims 1 to 3,
A plurality of the first spacers and the second spacers are formed by stacking a plurality of rectangular parallelepiped block members in a direction orthogonal to the arrangement direction.
発電要素と,
前記発電要素を収容する角型ケースと,
前記発電要素の一方の端部と接合する正極集電端子と,
前記発電要素の他方の端部と接合する負極集電端子と,
を有する二次電池を複数有し,
隣り合う前記二次電池を,前記角型ケースの扁平面同士を対向させて列置する組電池の製造方法において,
前記組電池を構成する各二次電池について充放電試験を行い,前記充放電試験前の面圧と前記充放電試験後の面圧とを取得する取得ステップと,
前記取得ステップにて取得した面圧に基づいて,各二次電池について,前記角型ケースの扁平面内で面圧が低下する場所を特定する特定ステップと,
前記特定ステップの後,前記二次電池の一方の扁平面に,前記特定ステップにて特定した場所を荷重するスペーサを配置し,前記特定ステップにて特定されなかった場所にはスペーサを配置しない配置ステップと,
を含むことを特徴とする組電池の製造方法。
Power generation elements;
A square case for housing the power generation element;
A positive current collector terminal joined to one end of the power generating element;
A negative current collector terminal joined to the other end of the power generation element;
A plurality of secondary batteries having
In the manufacturing method of an assembled battery in which the secondary batteries adjacent to each other are arranged with the flat surfaces of the square cases facing each other,
An acquisition step of performing a charge / discharge test on each secondary battery constituting the assembled battery and acquiring a surface pressure before the charge / discharge test and a surface pressure after the charge / discharge test;
Based on the surface pressure acquired in the acquisition step, for each secondary battery, a specifying step for specifying a place where the surface pressure decreases in the flat surface of the square case;
After the specifying step, on one flat surface of the secondary battery, a spacer that loads the place specified in the specifying step is arranged, and a spacer is not arranged in a place that is not specified in the specifying step. Steps,
A method for producing an assembled battery, comprising:
請求項5に記載する組電池の製造方法において,
前記配置ステップでは,隣り合う前記二次電池の間に,一方の面が一方の二次電池の扁
平面を荷重する前記スペーサと接し,他方の面が他方の二次電池の扁平面と接する介在部材を配置することを特徴とする組電池の製造方法。
In the manufacturing method of the assembled battery according to claim 5,
In the arrangement step, between the adjacent secondary batteries, one surface is in contact with the spacer that loads the flat surface of one secondary battery, and the other surface is in contact with the flat surface of the other secondary battery. A method for producing an assembled battery, comprising arranging members.
請求項5または請求項6に記載する組電池の製造方法において,
前記配置ステップでは,前記面圧取得ステップにて取得した試験前の面圧と試験後の面圧との変化量に基づいて,前記スペーサの,前記二次電池の列置方向の厚さを調整することを特徴とする組電池の製造方法。
In the manufacturing method of the assembled battery according to claim 5 or 6,
In the arranging step, the thickness of the spacers in the arrangement direction of the secondary batteries is adjusted based on the amount of change between the pre-test surface pressure and the post-test surface pressure acquired in the surface pressure acquisition step. A method for producing an assembled battery, comprising:
請求項5から請求項7のいずれか1つに記載する組電池の製造方法において,
前記配置ステップでは,前記特定ステップにて特定した場所の範囲に基づいて,前記スペーサの,前記二次電池の列置方向と直交する方向の大きさを調整することを特徴とする組電池の製造方法。
In the manufacturing method of the assembled battery as described in any one of Claims 5-7,
In the arranging step, the size of the spacer in the direction orthogonal to the arrangement direction of the secondary batteries is adjusted based on the range of the location specified in the specifying step. Method.
JP2011098840A 2011-04-27 2011-04-27 Assembled battery and manufacturing method of assembled battery Active JP5585524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011098840A JP5585524B2 (en) 2011-04-27 2011-04-27 Assembled battery and manufacturing method of assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011098840A JP5585524B2 (en) 2011-04-27 2011-04-27 Assembled battery and manufacturing method of assembled battery

Publications (2)

Publication Number Publication Date
JP2012230837A JP2012230837A (en) 2012-11-22
JP5585524B2 true JP5585524B2 (en) 2014-09-10

Family

ID=47432226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011098840A Active JP5585524B2 (en) 2011-04-27 2011-04-27 Assembled battery and manufacturing method of assembled battery

Country Status (1)

Country Link
JP (1) JP5585524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886203A1 (en) 2020-03-27 2021-09-29 Samsung SDI Co., Ltd. A method for assembling a stack of prismatic battery cells, a stack of prismatic battery cells, a battery module and a vehicle including a battery pack comprising at least one battery module

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011919A (en) * 2013-07-01 2015-01-19 三洋電機株式会社 Power unit
JP5846166B2 (en) * 2013-07-29 2016-01-20 株式会社デンソー Battery pack
JP5561703B1 (en) * 2013-10-15 2014-07-30 サーチウェア株式会社 Assembled battery, moving body equipped with the same, and method of manufacturing assembled battery
JP6172037B2 (en) * 2014-04-23 2017-08-02 トヨタ自動車株式会社 Power storage device
JP2016119149A (en) * 2014-12-18 2016-06-30 Fdk株式会社 Manufacturing method of power storage module, and power storage module
JP6724552B2 (en) * 2016-05-26 2020-07-15 トヨタ自動車株式会社 Battery
JP6852308B2 (en) * 2016-08-26 2021-03-31 トヨタ自動車株式会社 Batteries
JP6845989B2 (en) * 2017-02-06 2021-03-24 トヨタ自動車株式会社 Batteries
JP6872142B2 (en) 2017-04-20 2021-05-19 トヨタ自動車株式会社 Batteries
JP7037720B2 (en) 2017-11-21 2022-03-17 トヨタ自動車株式会社 How to manufacture an assembled battery and a cell used for the assembled battery
JP7004206B2 (en) 2017-12-22 2022-01-21 トヨタ自動車株式会社 Batteries assembled
JP7302470B2 (en) * 2019-12-27 2023-07-04 マツダ株式会社 Lithium-ion battery device for vehicles
CN115244774A (en) * 2020-03-12 2022-10-25 三洋电机株式会社 Battery pack
JP7360603B2 (en) 2020-07-01 2023-10-13 トヨタ自動車株式会社 Non-aqueous electrolyte secondary batteries and battery modules

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120631B2 (en) * 2008-04-14 2013-01-16 トヨタ自動車株式会社 Battery pack and power supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886203A1 (en) 2020-03-27 2021-09-29 Samsung SDI Co., Ltd. A method for assembling a stack of prismatic battery cells, a stack of prismatic battery cells, a battery module and a vehicle including a battery pack comprising at least one battery module

Also Published As

Publication number Publication date
JP2012230837A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5585524B2 (en) Assembled battery and manufacturing method of assembled battery
US10381676B2 (en) Layer cell, assembled battery including layer cell, and method for assembling layer cell
CA2645174C (en) Battery module, method of fabricating the same, and vehicle having battery module
US9548475B2 (en) Battery cell of irregular structure and battery module employed with the same
JP4501080B2 (en) Battery pack and manufacturing method thereof
KR102002350B1 (en) Battery Module Assembly
US8557430B2 (en) Rechargeable battery having current collector plate with protrusion
JP6198844B2 (en) Assembled battery
KR101898295B1 (en) Battery Module Assembly and Method of manufacturing the same
US20120308874A1 (en) Secondary battery and battery pack
US20100316906A1 (en) Prismatic cell and packed battery using the same
US20130071710A1 (en) Secondary battery
JP6697685B2 (en) Sealed batteries and assembled batteries
US8822055B2 (en) Secondary battery
CN109155380A (en) Battery module including cover assembly
JP2011253763A (en) Secondary battery
US20230070512A1 (en) Secondary battery
JP5344237B2 (en) Assembled battery
KR102006227B1 (en) Assembly Having Safety Element for Protection against Overcurrent and Overheating and Battery Cell Comprising the Same
US10593922B2 (en) Battery pack
KR102486134B1 (en) Cylindrical-type Battery Comprising Gasket- Washer for High-effective Sealing
KR100782886B1 (en) Method for preparing secondary battery and charging apparatus for using the same
US10847980B2 (en) Battery module
JP5299434B2 (en) Manufacturing method of battery pack
JP7556394B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R151 Written notification of patent or utility model registration

Ref document number: 5585524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151