JP5581595B2 - Power distribution system, power transmission device, power reception device, power transmission method, and power reception method - Google Patents

Power distribution system, power transmission device, power reception device, power transmission method, and power reception method Download PDF

Info

Publication number
JP5581595B2
JP5581595B2 JP2009021544A JP2009021544A JP5581595B2 JP 5581595 B2 JP5581595 B2 JP 5581595B2 JP 2009021544 A JP2009021544 A JP 2009021544A JP 2009021544 A JP2009021544 A JP 2009021544A JP 5581595 B2 JP5581595 B2 JP 5581595B2
Authority
JP
Japan
Prior art keywords
power
information
receiving
power generation
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009021544A
Other languages
Japanese (ja)
Other versions
JP2010178587A (en
Inventor
茂 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009021544A priority Critical patent/JP5581595B2/en
Priority to EP20090252817 priority patent/EP2214282B1/en
Priority to US12/693,113 priority patent/US8324757B2/en
Priority to CN2010101132207A priority patent/CN101794991B/en
Publication of JP2010178587A publication Critical patent/JP2010178587A/en
Application granted granted Critical
Publication of JP5581595B2 publication Critical patent/JP5581595B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力配電システム、電力送電装置、電力受電装置、電力送電方法および電力受電方法に関する。   The present invention relates to a power distribution system, a power transmission device, a power reception device, a power transmission method, and a power reception method.

従来の交流による電力送配電網の構成はおおよそ以下の通りとなっている。   The configuration of a conventional power transmission / distribution network using alternating current is roughly as follows.

発電所は、水力・火力・電子力とそのエネルギー源は様々であるが、家庭や企業等の実際の消費地からは離れている場合が多く、発電所から直接電力を供給しようとすると電圧が低下してしまう。従って、発電所と消費地との間には、電圧の変換を行う変電所が介在するのが一般的である。その変電所は、発電所と消費地との間に複数個存在するのが一般的であり、また発電所から消費地までの系統は一つに限られず、一つの発電所は複数の変電所に電力を供給するし、一つの変電所も複数の発電所から電力供給を受ける。これが電力網といわれる所以である。   Power plants have a variety of energy sources such as hydropower, thermal power, and electronic power, but they are often far away from the actual consumption areas such as homes and businesses. It will decline. Therefore, a substation for converting voltage is generally interposed between the power plant and the consumption area. In general, there are multiple substations between the power plant and the consumption area, and the number of systems from the power plant to the consumption area is not limited to one. The substation also receives power from multiple power plants. This is why it is called a power grid.

発電所と変電所との間は送電線で結ばれ、その送電線の距離は、その間の直流抵抗や地面との間のキャパシタンスが到底無視できない長さとなっている。従って、従来においては、出来るだけ電圧を高くして送電する等、電流を減らす工夫がなされてきた。一方、変電所は、複数の発電所からの電力を入力可能な構造となっているのが基本である(一つの発電所からしか電力が供給されない構成もある)。これは、変電所に接続されているユーザの要求電力が増加した場合に複数の発電所からの電力でまかなうことが目的である。従って、変電所では常に負荷状態を監視し、最終的には発電所の発電量を調整することになる。電力送配電網における配電損失を最小にするための技術としては、例えば特許文献1がある。   The power plant and the substation are connected by a transmission line, and the distance of the transmission line is such a length that the direct current resistance and the capacitance with the ground cannot be ignored. Therefore, in the past, contrivances have been made to reduce the current, for example, by transmitting the power as high as possible. On the other hand, a substation basically has a structure in which power from a plurality of power plants can be input (there is a configuration in which power is supplied only from one power plant). The purpose of this is to cover with power from a plurality of power plants when the power demand of the user connected to the substation increases. Therefore, the substation always monitors the load state, and finally adjusts the power generation amount of the power plant. As a technique for minimizing the power distribution loss in the power transmission / distribution network, for example, Patent Document 1 is known.

特開2006−217689号公報JP 2006-217689 A

現在敷設されている電力送配電網においては、発電所、変電所、および発電所と変電所とを結びつける送配電網の構成が変更されることは少ない。すなわち、変電所に接続される発電所が、日々ダイナミックに変化することは無い。   In the power transmission / distribution network currently laid, the configuration of the power transmission / distribution network connecting the power plant, the substation, and the power plant / substation is rarely changed. That is, the power plant connected to the substation does not change dynamically every day.

しかし、太陽光、風力、バイオマス等のいわゆる自然エネルギーを用いた発電装置は、その設置や廃止が、現状の交流による電力送配電網に比べれば遥かに頻繁に発生する。この状況は、今後これらの発電装置が普及するに連れて進展が考えられる。従って、発電装置、変電装置、および発電装置と変電装置とを結びつける送配電網の構成がダイナミックに変更されることが多くなり、従来の技術では、このようなダイナミックな変更に対処できない問題があった。   However, power generators using so-called natural energy such as sunlight, wind power, and biomass are installed and abolished much more frequently than current power transmission and distribution networks using alternating current. This situation is likely to progress as these power generation devices become more widespread. Therefore, the configuration of the power generation device, the substation device, and the transmission / distribution network that connects the power generation device and the substation device is often dynamically changed, and there is a problem that the conventional technology cannot cope with such a dynamic change. It was.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、送配電網における電力損失が少なくなるように自動化することが可能な、新規かつ改良された電力配電システム、電力送電装置、電力受電装置、電力送電方法および電力受電方法を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a new and improved power that can be automated to reduce power loss in the power transmission and distribution network. An object is to provide a power distribution system, a power transmission device, a power reception device, a power transmission method, and a power reception method.

上記課題を解決するために、本発明のある観点によれば、電力を送電する少なくとも一つの電力送電装置と、前記電力送電装置から送電される電力を受電する少なくとも一つの電力受電装置と、を含み、前記電力送電装置は、電力を生成する電力生成手段と、前記電力生成手段が生成した電力に関する電力情報及び前記電力生成手段についての固有情報を含んだ情報を、前記電力生成手段で生成した電力と関連付けて送信する情報送信手段と、を含み、前記電力受電装置は、前記情報送信手段が送信した情報を受信する情報受信手段と、前記情報受信手段が受信した情報に基づいて電力生成手段が生成した電力の消費を制御する電力消費制御手段と、を含む、電力配電システムが提供される。   In order to solve the above problems, according to an aspect of the present invention, at least one power transmission device that transmits power, and at least one power reception device that receives power transmitted from the power transmission device, The power transmission device includes the power generation unit that generates power, and the power generation unit generates information including power information about the power generated by the power generation unit and unique information about the power generation unit. Information transmitting means for transmitting in association with power, wherein the power receiving device receives information transmitted by the information transmitting means, and generates power based on information received by the information receiving means. And a power consumption control means for controlling the consumption of the power generated by the power distribution system.

かかる構成によれば、電力送電装置は電力を送電し、電力受電装置は電力送電装置から送電される電力を受電する。上記電力送電装置において、電力生成手段は電力を生成し、情報送信手段は電力生成手段が生成した電力に関する電力情報及び電力生成手段についての固有情報を含んだ情報を、電力生成手段で生成した電力と関連付けて送信する。そして、上記電力受電装置において、情報受信手段は電力送電装置の情報送信手段が送信した情報を受信し、電力消費制御手段は情報受信手段が受信した情報に基づいて電力生成手段が生成した電力の消費を制御する。その結果、電力送電装置から送信された情報に基づいて電力の消費を制御することで、送配電網における電力損失が少なくなるように自動化することが可能となる。   According to such a configuration, the power transmission device transmits power, and the power reception device receives power transmitted from the power transmission device. In the power transmission device, the power generation unit generates power, and the information transmission unit generates power information related to the power generated by the power generation unit and information including unique information about the power generation unit. Send in association with. In the power receiving device, the information receiving unit receives the information transmitted by the information transmitting unit of the power transmitting device, and the power consumption control unit is configured to receive the power generated by the power generating unit based on the information received by the information receiving unit. Control consumption. As a result, by controlling the power consumption based on the information transmitted from the power transmission device, it is possible to automate so that the power loss in the transmission and distribution network is reduced.

また、上記課題を解決するために、本発明の別の観点によれば、電力を生成する電力生成手段と、前記電力生成手段が生成した電力に関する電力情報及び前記電力生成手段についての固有情報を含んだ情報を、前記電力生成手段で生成した電力と関連付けて送信する情報送信手段と、を含む、電力送電装置が提供される。   In order to solve the above problems, according to another aspect of the present invention, there is provided power generation means for generating power, power information related to power generated by the power generation means, and unique information about the power generation means. There is provided an electric power transmission device including information transmission means for transmitting the included information in association with the electric power generated by the electric power generation means.

前記情報送信手段は、前記電力生成手段が生成した電力に重畳して情報を送信するようにしてもよい。   The information transmitting unit may transmit information superimposed on the power generated by the power generating unit.

前記固有情報は、絶対的な位置についての情報であってもよい。   The unique information may be information on an absolute position.

前記固有情報は、単位電力に対する二酸化炭素の発生量であってもよい。   The unique information may be the amount of carbon dioxide generated per unit power.

前記固有情報は、単位電力あたりの単価であってもよい。   The unique information may be a unit price per unit power.

前記固有情報は、変電回数であってもよい。   The unique information may be the number of times of transformation.

また、上記課題を解決するために、本発明の別の観点によれば、電力を生成する装置から送電される電力を受電する受電手段と、前記装置が送信した、前記送電される電力に関する電力情報及び前記装置についての固有情報を含んだ情報を受信する情報受信手段と、前記情報受信手段が受信した情報に基づいて、前記受電手段が受電した前記電力の消費を制御する電力消費制御手段と、を含む、電力受電装置が提供される。   In order to solve the above problem, according to another aspect of the present invention, a power receiving unit that receives power transmitted from a device that generates power, and power related to the transmitted power transmitted by the device. Information receiving means for receiving information and information including specific information about the device; and power consumption control means for controlling consumption of the power received by the power receiving means based on information received by the information receiving means; A power receiving device is provided.

上記電力受電装置は、前記情報受信手段が受信した全ての前記固有情報を含んだ情報を送信する情報送信手段をさらに含んでいてもよい。   The power receiving apparatus may further include an information transmission unit that transmits information including all the unique information received by the information reception unit.

前記電力消費制御手段は、絶対的な距離が最も近い前記装置からの電力を優先して消費するよう制御するようにしてもよい。   The power consumption control means may control to preferentially consume power from the device having the closest absolute distance.

前記電力消費制御手段は、単位電力あたりの単価が最も低い前記装置からの電力を優先して消費するよう制御するようにしてもよい。   The power consumption control means may control to preferentially consume power from the device having the lowest unit price per unit power.

前記電力消費制御手段は、単位電力に対する二酸化炭素の発生量が最も低い前記装置からの電力を優先して消費するよう制御するようにしてもよい。   The power consumption control means may control to preferentially consume power from the device that generates the least amount of carbon dioxide per unit power.

また、上記課題を解決するために、本発明の別の観点によれば、電力を電力生成手段で生成する電力生成ステップと、前記電力生成ステップで生成した電力に関する電力情報及び前記電力生成手段についての固有情報を含んだ情報を、前記電力生成ステップで生成した電力と関連付けて送信する情報送信ステップと、を含む、電力送電方法が提供される。   In order to solve the above problem, according to another aspect of the present invention, a power generation step of generating power by a power generation unit, power information related to the power generated in the power generation step, and the power generation unit An information transmission step of transmitting information including the unique information in association with the power generated in the power generation step is provided.

また、上記課題を解決するために、本発明の別の観点によれば、電力を生成する装置から送電される電力を受電する受電ステップと、前記装置が送信した、前記送電される電力に関する電力情報及び前記装置についての固有情報を含んだ情報を受信する情報受信ステップと、前記情報受信ステップで受信した情報に基づいて、前記受電ステップで受電した前記電力の消費を制御する電力消費制御ステップと、を含む、電力受電方法が提供される。   Moreover, in order to solve the said subject, according to another viewpoint of this invention, the electric power reception step which receives the electric power transmitted from the apparatus which produces | generates electric power, and the electric power regarding the transmitted electric power which the said apparatus transmitted An information receiving step for receiving information including information and unique information about the device, and a power consumption control step for controlling consumption of the power received in the power receiving step based on the information received in the information receiving step; A power receiving method is provided.

以上説明したように本発明によれば、送配電網における電力損失が少なくなるように自動化することが可能な、新規かつ改良された電力配電システム、電力送電装置、電力受電装置、電力送電方法および電力受電方法を提供することができる。これは特に、発電装置や変電装置の設置や廃止が頻繁に発生するシステムにおいて有効なものとなる。   As described above, according to the present invention, a new and improved power distribution system, power transmission device, power reception device, power transmission method, and power transmission method that can be automated so as to reduce power loss in the transmission and distribution network, and A power receiving method can be provided. This is particularly effective in a system in which installation and abolition of power generation devices and transformers frequently occur.

本発明の一実施形態にかかる電力配電システム100の構成について示す説明図である。It is explanatory drawing shown about the structure of the power distribution system 100 concerning one Embodiment of this invention. 本発明の一実施形態にかかる発電装置101の構成について示す説明図である。It is explanatory drawing shown about the structure of the electric power generating apparatus 101 concerning one Embodiment of this invention. 本発明の一実施形態にかかる負荷121の構成について示す説明図である。It is explanatory drawing shown about the structure of the load 121 concerning one Embodiment of this invention. 従来の電力配電システムの構成の一例について説明する説明図である。It is explanatory drawing explaining an example of a structure of the conventional power distribution system.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

また、以下の順序に従って本発明の好適な実施の形態について詳細に説明する。
〔1〕従来の電力配電システムの構成の一例
〔2〕本発明の一実施形態にかかる電力配電システムの構成
〔3〕本発明の一実施形態にかかる発電装置の構成
〔4〕本発明の一実施形態にかかる負荷の変形例
〔5〕まとめ
Further, preferred embodiments of the present invention will be described in detail according to the following order.
[1] Example of configuration of conventional power distribution system [2] Configuration of power distribution system according to one embodiment of the present invention [3] Configuration of power generation device according to one embodiment of the present invention [4] One configuration of the present invention Modification of load according to embodiment [5] Summary

〔1〕従来の電力配電システムの構成の一例
まず、本発明の好適な実施の形態を説明する前に、従来の電力配電システムの構成の一例について説明する。図4は、従来の電力配電システムの構成の一例について説明する説明図である。以下、図4を用いて従来の電力配電システムの構成の一例について説明する。
[1] Example of Configuration of Conventional Power Distribution System First, an example of the configuration of a conventional power distribution system will be described before describing a preferred embodiment of the present invention. FIG. 4 is an explanatory diagram illustrating an example of a configuration of a conventional power distribution system. Hereinafter, an example of the configuration of a conventional power distribution system will be described with reference to FIG.

図4に示したように、従来の電力配電システムは、例えば、発電を行う発電装置1a、1b、5と、発電装置で発電された電力の電圧を変換する変電装置3、4と、供給された電力を消費する負荷6、7、8と、電力を伝送する送電線2a、2b、3a、3b、4a,4b、5aと、を含んで構成される。   As shown in FIG. 4, a conventional power distribution system is supplied with, for example, power generation devices 1a, 1b, and 5 that generate power, and transformers 3 and 4 that convert the voltage of the power generated by the power generation device. Load 6, 7, 8 that consumes the power and power transmission lines 2 a, 2 b, 3 a, 3 b, 4 a, 4 b, 5 a that transmit the power.

発電装置1aは、送電線2aで変電装置3と接続されている。そして、発電装置1bは、送電線2bで同じく変電装置3と接続されている。変電装置3は、さらに別の変電装置4と送電線3aで接続されているが、変電装置4には、変電装置3とは別の発電装置5と送電線5aで接続されている。そして、変電装置4は、負荷7と送電線7で、負荷8と送電線で、それぞれ接続されている。   The power generator 1a is connected to the transformer 3 by a power transmission line 2a. And the electric power generating apparatus 1b is similarly connected with the power transformation apparatus 3 with the power transmission line 2b. The substation 3 is further connected to another substation 4 by a power transmission line 3a, but is connected to the substation 4 by a power generation unit 5 different from the substation 3 and a power transmission line 5a. And the transformation device 4 is connected by the load 7 and the power transmission line 7, and the load 8 and the power transmission line, respectively.

図4に示したような従来の電力配電システムでは、各送電線に配電される電力量は、発電装置や変電装置の能力、負荷での電力消費量に応じて、自動的に、または人間の手によって手動で制御がなされる。従って、従来の電力配電システムでは、このように制御がなされることで、システムが破綻しない(例えば、ある送電線が過剰な電力を供給しない)ことが前提となっている。   In the conventional power distribution system as shown in FIG. 4, the amount of power distributed to each transmission line is either automatically or according to the power consumption of the power generation device or the transformation device and the power consumption at the load. Control is done manually by hand. Therefore, in the conventional power distribution system, it is assumed that the system is not broken by such control (for example, a certain transmission line does not supply excessive power).

以上、従来の電力配電システムの構成の一例について説明した。   The example of the configuration of the conventional power distribution system has been described above.

図4に示したような従来の電力配電システムでは、送電線の抵抗や、地面との間のキャパシタンスによって電力の損失が発生する。この電力の損失が、電力配電システム全体としての電力損失という観点からは、最適なものであるかどうかは判断しにくい。また、電力配電システム全体としての電力損失が最適であるかどうかを判断するにしても、電力配電システムの各部の電圧や電流に関する情報をモニタして、モニタした情報を何らかの手段で収集し、分析した上で、最適であるかどうかを判断する必要がある。   In the conventional power distribution system as shown in FIG. 4, power loss occurs due to the resistance of the transmission line and the capacitance with the ground. It is difficult to determine whether this power loss is optimal from the viewpoint of power loss as a whole power distribution system. Even if it is determined whether the power loss of the power distribution system as a whole is optimal, the information on the voltage and current of each part of the power distribution system is monitored, and the monitored information is collected and analyzed by some means. In addition, it is necessary to determine whether it is optimal.

そこで本発明の一実施形態においては、発電装置や変電装置を識別するための固有情報や、発電装置や送電装置から配電される電力に関する情報を発電装置や変電装置から送信する。そして、電力を受け取る変電装置や負荷側で、これらの情報を受信することで、電力配電システム全体としての電力損失を最適化することを目的とする。   Therefore, in one embodiment of the present invention, unique information for identifying the power generation device and the power transformation device and information related to the power distributed from the power generation device and the power transmission device are transmitted from the power generation device and the power transformation device. And it aims at optimizing the power loss as the whole power distribution system by receiving these information in the substation which receives electric power, or the load side.

〔2〕本発明の一実施形態にかかる電力配電システムの構成
次に、本発明の一実施形態にかかる電力配電システムの構成について説明する。図1は、本発明の一実施形態にかかる電力配電システム100の構成について示す説明図である。以下、図1を用いて、本発明の一実施形態にかかる電力配電システム100の構成について説明する。
[2] Configuration of Power Distribution System According to One Embodiment of the Present Invention Next, a configuration of a power distribution system according to one embodiment of the present invention will be described. FIG. 1 is an explanatory diagram showing a configuration of a power distribution system 100 according to an embodiment of the present invention. Hereinafter, the configuration of the power distribution system 100 according to the embodiment of the present invention will be described with reference to FIG.

図1に示したように、本発明の一実施形態にかかる電力配電システム100は、発電装置101、102、103と、変電装置111、112と、負荷121、122と、を含んで構成される。   As shown in FIG. 1, a power distribution system 100 according to an embodiment of the present invention includes power generation devices 101, 102, and 103, power transformation devices 111 and 112, and loads 121 and 122. .

発電装置101、102、103は、内部で電力を発電して供給するものである。これらの発電装置で発電する電力は、交流であってもよく、直流であってもよい。   The power generators 101, 102, and 103 are for generating and supplying electric power inside. The power generated by these power generation devices may be alternating current or direct current.

発電装置101は、変電装置111と送電線131で接続されている。発電装置101からは、送電線131を通じて内部で発電された電力I1を変電装置111に供給する。そして、電力I1の供給と同時に、発電装置101からは送電線131を通じて、発電装置101に関する情報や、発電装置101が発電した電力に関する情報G1を変電装置111に送信する。発電装置101からこれらの情報G1を変電装置111に送信する際には、送電線131で配電する電力に重畳して送信してもよく、電力の供給に用いる電力線とは別系統の通信線を送電線131に備え、その通信線を介して送信してもよい。また、これらの情報G1の発電装置101からの送信は、有線による通信に限られず、無線通信によって行われるようにしてもよい。   The power generation device 101 is connected to the power transformation device 111 and the power transmission line 131. From the power generation apparatus 101, the electric power I <b> 1 generated internally through the power transmission line 131 is supplied to the transformation apparatus 111. Simultaneously with the supply of the electric power I1, the power generation apparatus 101 transmits information regarding the power generation apparatus 101 and information G1 regarding the power generated by the power generation apparatus 101 to the substation 111 via the power transmission line 131. When transmitting the information G1 from the power generation device 101 to the power transformation device 111, the information G1 may be superimposed on the power distributed by the power transmission line 131. The power transmission line 131 may be provided and transmitted via the communication line. The transmission of the information G1 from the power generation device 101 is not limited to wired communication, and may be performed by wireless communication.

発電装置101から送信する情報の内容については後に詳述するが、例えば発電装置を識別するための識別情報、絶対的な位置情報、特定の変電ノードとの間の送電線のインピーダンス情報等を含んでいてもよい。   The details of the information transmitted from the power generation device 101 will be described in detail later, including, for example, identification information for identifying the power generation device, absolute position information, impedance information of a transmission line with a specific substation, and the like. You may go out.

発電装置102は、変電装置111と送電線132で接続されている。発電装置101と同様に、発電装置102からは、送電線132を通じて内部で発電された電力I2を変電装置111に供給する。そして、電力の供給と同時に、発電装置102からは送電線132を通じて、発電装置102に関する情報や、発電装置102が発電した電力に関する情報G2を変電装置111に送信する。   The power generation device 102 is connected to the power transformation device 111 by a power transmission line 132. Similarly to the power generation apparatus 101, the power generation apparatus 102 supplies the power I <b> 2 generated internally through the power transmission line 132 to the substation apparatus 111. Simultaneously with the supply of power, the power generation device 102 transmits information related to the power generation device 102 and information G2 related to the power generated by the power generation device 102 to the power transformation device 111 through the power transmission line 132.

変電装置111は、発電装置101、102から電力I1、I2の供給を受け、電圧を変換して出力するものである。そして、変電装置111は発電装置101、102から電力の供給を受けると共に、発電装置101、102から送信された情報G1、G2を受信するものである。変電装置111は、負荷121と送電線133で接続されており、また変電装置112と送電線134で接続されている。変電装置111は、変圧後の電力I1、I2を出力して、送電線133、134を介して供給すると共に、発電装置101、102から送信された情報G1、G2も送信する。   The substation device 111 is supplied with electric power I1 and I2 from the power generation devices 101 and 102, converts the voltage, and outputs the converted voltage. And the power transformation apparatus 111 receives the supply of electric power from the power generation apparatuses 101 and 102, and receives the information G1 and G2 transmitted from the power generation apparatuses 101 and 102. The substation device 111 is connected to the load 121 via a power transmission line 133, and is connected to the substation device 112 via a power transmission line 134. The transformer 111 outputs the transformed power I1 and I2 and supplies them via the power transmission lines 133 and 134, and also transmits information G1 and G2 transmitted from the power generators 101 and 102.

発電装置101と同様に、変電装置111からこれらの情報G1、G2を送信する際には、送電線133、134で配電する電力に重畳して送信してもよい
Similarly to the power generation apparatus 101, when transmitting the information G1 and G2 from the power transformation apparatus 111, the information G1 and G2 may be transmitted superimposed on the power distributed by the power transmission lines 133 and 134 .

負荷121は、変電装置111から送電線133を介して電力I1、I2の供給を受けるものである。そして、負荷121は、変電装置111から電力の供給を受けると共に、変電装置111から送信される、発電装置101、102から送信された情報G1、G2も受信するものである。負荷121では、発電装置101、102から送信された情報G1、G2に基づいて、どの発電装置から供給された電力を消費すれば効率的であるかを判断することが可能となる。負荷121、122としては、例えば、主に家庭内で使用される電気機器が該当する。そのような電気機器の具体例としては、例えばパーソナルコンピュータ、テレビ、ビデオレコーダ、コンポーネントステレオセット、冷蔵庫、電子レンジその他の機器がある。   The load 121 is supplied with electric power I1 and I2 from the transformer 111 through the power transmission line 133. The load 121 receives power supplied from the power transformation device 111 and also receives information G1 and G2 transmitted from the power generation devices 101 and 102 transmitted from the power transformation device 111. In the load 121, based on the information G1 and G2 transmitted from the power generation devices 101 and 102, it is possible to determine which power supply from which power generation device is consumed is efficient. As the loads 121 and 122, for example, electrical equipment mainly used in the home is applicable. Specific examples of such electric devices include personal computers, televisions, video recorders, component stereo sets, refrigerators, microwave ovens, and other devices.

発電装置103は、変電装置112と送電線135で接続されている。発電装置101、102と同様に、発電装置103からは、送電線135を通じて内部で発電された電力I3を変電装置112に供給する。そして、電力の供給と同時に、発電装置103からは送電線135を通じて、発電装置103に関する情報や、発電装置103が発電した電力に関する情報G3を変電装置112に送信する。   The power generation device 103 is connected to the power transformation device 112 by a power transmission line 135. Similar to the power generation devices 101 and 102, the power generation device 103 supplies the power I <b> 3 generated internally through the power transmission line 135 to the substation 112. Simultaneously with the supply of power, the power generation device 103 transmits information regarding the power generation device 103 and information G3 regarding the power generated by the power generation device 103 to the power transformation device 112 through the power transmission line 135.

変電装置112は、変電装置111、および発電装置103から電力I1、I2、I3の供給を受け、電圧を変換して出力するものである。そして、変電装置112は変電装置111、および発電装置103から電力I1、I2、I3の供給を受けると共に、変電装置111から送信された情報G1、G2および発電装置103から送信された情報G3を受信するものである。変電装置112は、負荷122と送電線136で接続されている。変電装置112は、変圧後のI1、I2、I3電力を出力して、送電線136を介して供給すると共に、変電装置111から送信された情報G1、G2および発電装置103から送信された情報G3も送信する。   The substation 112 receives power I1, I2, and I3 from the substation 111 and the power generation apparatus 103, converts the voltage, and outputs the converted voltage. The transformer 112 receives the power I1, I2, and I3 from the transformer 111 and the power generator 103, and receives the information G1 and G2 transmitted from the transformer 111 and the information G3 transmitted from the generator 103. To do. The substation device 112 is connected to the load 122 by a power transmission line 136. The transformer 112 outputs the transformed I1, I2, and I3 powers, supplies them via the transmission line 136, and transmits the information G1 and G2 transmitted from the transformer 111 and the information G3 transmitted from the generator 103. Also send.

負荷122は、変電装置112から送電線136を介して電力I1、I2、I3の供給を受けるものである。そして、負荷122は、変電装置112から電力の供給を受けると共に、変電装置112から送信される、発電装置101、102から送信された情報G1、G2、および発電装置103から送信された情報G3も受信するものである。負荷122では、発電装置101、102から送信された情報G1、G2、および発電装置103から送信された情報G3に基づいて、どの発電装置から供給された電力を消費すれば効率的であるかを判断することが可能となる。   The load 122 receives supply of electric power I1, I2, and I3 via the power transmission line 136 from the transformer device 112. The load 122 receives the supply of power from the power transformation device 112 and also transmits information G1 and G2 transmitted from the power generation devices 101 and 102 and information G3 transmitted from the power generation device 103. To receive. Based on the information G1 and G2 transmitted from the power generation devices 101 and 102 and the information G3 transmitted from the power generation device 103, the load 122 determines which power supply from which power generation device is consumed is efficient. It becomes possible to judge.

図1のように構成されたシステムでは、例えば負荷122においては、情報G1、G2、G3を受信することで、現在消費している電力の発電端までの論理距離(物理的な距離に、送配電線のインピーダンスやロスを加味したもの)を知ることができる。そのため、その論理距離が長い場合には(例えば発電装置101、102と負荷122との間の距離が長い場合には)、その発電端で発電された電力の負荷122での消費を下げることができる。そして、発電端までの論理距離が短い電力を優先して消費するように制御することで、配電システム全体としての送電線による電力ロスを小さくするような電力消費が可能となる。   In the system configured as shown in FIG. 1, for example, the load 122 receives information G1, G2, and G3, so that the logical distance (physical distance to the power generation end) of the currently consumed power is transmitted. It is possible to know the distribution line impedance and loss). Therefore, when the logical distance is long (for example, when the distance between the power generation devices 101 and 102 and the load 122 is long), the consumption of the power generated at the power generation end at the load 122 can be reduced. it can. And by controlling so that electric power with a short logical distance to the power generation end is consumed preferentially, it becomes possible to consume electric power so as to reduce the power loss due to the transmission line as the entire power distribution system.

また、変電装置111、112においても、上流にある電力減までの論理距離を知ることが出来る。従って、上流の電力源が単一で無い限り、下流への供給電力をどの電力源から得るかを選択することが出来る。従来の電力配電システムでは、上流の電力源(発電所)はほぼ固定されており、予め論理距離が一番近い発電所からの電力を優先して得ることとするように指定すれば同様の機能を実現することが出来る。しかし、従来の電力配電システムでは、上流の電力源が頻繁に入れ替わることは無い。よって、仮に論理距離が一番近い発電所が廃止されたり、新たに論理距離が一番近い発電所が設けられたりすると、別の発電所を論理距離が一番近い発電所として人間の手で再度設定し直さなければいけない。これに対して本発明の一実施形態にかかる電力配電システム100では、変電装置111、112は発電装置101、102、103から送信される情報を随時受信することができる。従って、発電装置の新たな設置や、発電装置の撤去に応じて、受信する情報から、どの発電装置からの電力を消費すれば最も効率的かを判断することが出来る。   In addition, the transformers 111 and 112 can also know the logical distance to the power reduction upstream. Therefore, as long as there is no single upstream power source, it is possible to select from which power source the downstream power supply is obtained. In the conventional power distribution system, the upstream power source (power plant) is almost fixed, and the same function can be used if it is specified in advance that power from the power plant with the nearest logical distance is given priority. Can be realized. However, in the conventional power distribution system, the upstream power source does not frequently change. Therefore, if the power station with the closest logical distance is abolished or a new power station with the closest logical distance is established, another power station will be set as the power station with the closest logical distance by human hands. You must set it again. On the other hand, in the power distribution system 100 according to the embodiment of the present invention, the substation devices 111 and 112 can receive information transmitted from the power generation devices 101, 102, and 103 at any time. Therefore, according to the new installation of the power generation device or the removal of the power generation device, it is possible to determine from the received information which power generation device consumes the most efficient power.

例えば、変電装置112が電力の供給を受けている発電装置101、102、103の内、論理距離が一番短い発電装置が発電装置103だった場合を考える。この場合に、発電装置103が電力配電システム100から撤去されると、変電装置112は発電装置101、102が送信した情報を随時受信している。従って、変電装置112は発電装置101、102のどちらが最も論理距離が短い発電装置であるかどうかを自動的に判断することができる。   For example, consider a case where the power generation device having the shortest logical distance is the power generation device 103 among the power generation devices 101, 102, and 103 to which the power transformation device 112 is supplied with power. In this case, when the power generation device 103 is removed from the power distribution system 100, the power transformation device 112 receives information transmitted from the power generation devices 101 and 102 as needed. Therefore, the substation device 112 can automatically determine which of the power generation devices 101 and 102 is the power generation device with the shortest logical distance.

ここで、発電装置101、102、103が送信する情報としては、(1)情報通信や電力配電システム100のマネジメントに関する情報、(2)発電する電力の物理仕様に関する情報、(3)発電する電力のコストや経費に関する情報、を含んでいてもよい。   Here, the information transmitted by the power generation devices 101, 102, and 103 includes (1) information related to information communication and management of the power distribution system 100, (2) information related to physical specifications of power to be generated, and (3) power to be generated. Information about costs and expenses.

(1)情報通信や電力配電システム100のマネジメントに関する情報としては、例えば、発電装置と通信を実行するための発電装置のアドレス、発電装置を識別するための発電端識別情報を含んでいてもよい。これら以外にも、情報通信や電力配電システム100のマネジメントに関する情報として、例えば発電装置に複数の発電機が含まれる場合における発電機を識別するための発電機識別情報等を含んでいてもよい。   (1) Information relating to information communication and management of the power distribution system 100 may include, for example, an address of a power generation device for executing communication with the power generation device, and power generation end identification information for identifying the power generation device. . In addition to these, information relating to information communication and management of the power distribution system 100 may include, for example, generator identification information for identifying a generator when the generator includes a plurality of generators.

(2)発電する電力の物理仕様に関する情報としては、例えば現状の出力電圧、公称出力電圧、現状の出力電流、公称出力電流、最大出力電流、最大出力、現状の出力、緯度・経度等の位置情報を含んでいてもよい。これら以外にも、発電する電力の物理仕様に関する情報としては、例えば特定の変電ノードとの間の送電線のインピーダンス等を含んでいてもよい。   (2) Information on the physical specifications of power to be generated includes, for example, current output voltage, nominal output voltage, current output current, nominal output current, maximum output current, maximum output, current output, position such as latitude and longitude Information may be included. In addition to these, the information related to the physical specifications of the power to be generated may include, for example, the impedance of a transmission line with a specific substation node.

(3)発電する電力のコストや経費に関する情報としては、例えば発電している電力の単価、発電している電力の単位電力あたりの二酸化炭素発生量、電力の変電回数(発電装置においては0回)、今後の予測発電量等の情報を含んでいてもよい。今後の予測発電量とは、例えばメンテナンス等により発電量が増減することが分かっている場合には、発電量が増減する時間とその発電量の情報を含んでいてもよい。   (3) Information on the cost and expense of power to be generated includes, for example, the unit price of the power being generated, the amount of carbon dioxide generated per unit power of the power being generated, the number of power transformations (0 times in the power generator) ), And may include information such as future predicted power generation. For example, when it is known that the power generation amount increases or decreases due to maintenance or the like, the predicted power generation amount in the future may include information on the time when the power generation amount increases or decreases and the power generation amount.

また、変電装置111、112が送信する情報は、発電装置101、102、103が送信した情報そのものであってもよく、発電装置101、102、103が送信した情報に変電装置111、112に関する情報を付加したものであってもよい。さらには、発電装置101、102、103が送信した情報に、変電装置111、112で変更を加えたものであってもよい。変電装置111、112が送信する情報としては、(1)情報通信や電力配電システム100のマネジメントに関する情報、(2)発電する電力の物理仕様に関する情報、(3)発電する電力のコストや経費に関する情報、を含んでいてもよい。   Further, the information transmitted by the power transformation devices 111 and 112 may be the information itself transmitted by the power generation devices 101, 102, and 103, and the information regarding the power transformation devices 111 and 112 is added to the information transmitted by the power generation devices 101, 102, and 103. May be added. Further, the information transmitted by the power generation apparatuses 101, 102, and 103 may be changed by the power transformation apparatuses 111 and 112. The information transmitted by the transformers 111 and 112 includes (1) information related to information communication and management of the power distribution system 100, (2) information related to physical specifications of power to be generated, and (3) costs and expenses related to power generated. Information may be included.

(1)情報通信や電力配電システム100のマネジメントに関する情報としては、例えば、変電装置と通信を実行するための変電装置のアドレス、変電装置を識別するための発電端識別情報を含んでいてもよい。これら以外にも、情報通信や電力配電システム100のマネジメントに関する情報として、例えば上流の発電装置や変電装置と通信を実行するためのこれら発電装置や変電装置のアドレス等を含んでいてもよい。   (1) Information related to information communication and management of the power distribution system 100 may include, for example, an address of a substation for executing communication with the substation, and power generation end identification information for identifying the substation. . In addition to these, information relating to information communication and management of the power distribution system 100 may include, for example, addresses of these power generation devices and substations for communication with upstream power generation devices and substations.

(2)発電する電力の物理仕様に関する情報としては、例えば現状の出力電圧、公称出力電圧、現状の出力電流、公称出力電流、最大出力電流、最大出力、現状の出力、緯度・経度等の位置情報を含んでいても良い。これら以外にも、発電する電力の物理仕様に関する情報としては、例えば特定の変電ノードとの間の送電線のインピーダンス等を含んでいてもよい。   (2) Information on the physical specifications of power to be generated includes, for example, current output voltage, nominal output voltage, current output current, nominal output current, maximum output current, maximum output, current output, position such as latitude and longitude Information may be included. In addition to these, the information related to the physical specifications of the power to be generated may include, for example, the impedance of a transmission line with a specific substation node.

(3)発電する電力のコストや経費に関する情報としては、例えば各発電所が発電している電力の単価を配分し直し、変電装置で必要になる費用やコストを加算した電力単価、発電している電力の単位電力あたりの二酸化炭素発生量、電力の変電回数(変電装置を通過する度に1増加する)、今後の予測変電量等の情報を含んでいてもよい。今後の予測変電量とは、例えばメンテナンス等により変電量が増減することが分かっている場合には、発電量が増減する時間とその変電量の情報を含んでいてもよい。   (3) As information on the cost and expense of the power to be generated, for example, the unit price of power generated by each power plant is redistributed, and the unit price of power is calculated by adding the cost and cost required by the transformer. It may include information such as the amount of carbon dioxide generated per unit power of power, the number of times of power transformation (increases by 1 every time it passes through the transformer), and the predicted amount of transformation in the future. For example, when it is known that the amount of power change will increase or decrease due to maintenance or the like, the predicted amount of power change in the future may include information on the time when the power generation amount increases or decreases and the amount of power change.

末端の負荷や変電所から見れば、どこが上流側で最も近い発電所または変電所なのかを知ることが出来るが、末端の負荷や変電所で受信したこれらの情報の中身を解析することで、受電した電力がどのような経路を辿ってきたかを判断することができる。また、末端の負荷や変電所では、受電した電力の経路のみならず、受電した電力が発電に要したコストに関する情報も知ることが出来る。従って、末端の負荷や変電所は、受信した情報の出所を発電端である発電装置まで辿ることが可能な構造を有することになる。   If you look at the end load or substation, you can know which is the nearest power plant or substation upstream, but by analyzing the contents of the information received at the end load or substation, It is possible to determine what route the received power has taken. In addition, at the terminal load or substation, it is possible to know not only the route of the received power but also information about the cost of the received power required for power generation. Therefore, the load and the substation at the end have a structure that can trace the source of the received information to the power generation device that is the power generation end.

以上、本発明の一実施形態にかかる電力配電システム100の構成について説明した。次に、本発明の一実施形態にかかる発電装置の構成について説明する。   The configuration of the power distribution system 100 according to the embodiment of the present invention has been described above. Next, the structure of the electric power generating apparatus concerning one Embodiment of this invention is demonstrated.

〔3〕本発明の一実施形態にかかる発電装置の構成
図2は、本発明の一実施形態にかかる発電装置101の構成について示す説明図である。以下、図2を用いて、本発明の一実施形態にかかる発電装置の構成について、発電装置101を例にして説明する。
[3] Configuration of Power Generation Device According to One Embodiment of the Present Invention FIG. 2 is an explanatory diagram showing the configuration of the power generation device 101 according to one embodiment of the present invention. Hereinafter, the configuration of the power generation device according to the embodiment of the present invention will be described using the power generation device 101 as an example with reference to FIG. 2.

図2に示したように、本発明の一実施形態にかかる発電装置101は、発電機201と、マイクロプロセッサ202と、モデム203と、電流測定部204と、ラインドライバ205、206と、キャパシタC1,C2と、抵抗R1と、を含んで構成される。   As shown in FIG. 2, the power generation apparatus 101 according to an embodiment of the present invention includes a generator 201, a microprocessor 202, a modem 203, a current measurement unit 204, line drivers 205 and 206, and a capacitor C1. , C2 and a resistor R1.

発電機201は電力を発電するものであり、本実施形態においては、発電機201では直流の電力を発電する。発電機201で発電された電力の電圧値の情報はマイクロプロセッサ202に送られる。発電機201で発電される電力の状況は、キャパシタC1への蓄電状況をモニタリングすることで逐一監視される。また、抵抗R1の両端の電位差から、発電機201で発電された電力の電流値を電流測定部204で測定する。電流測定部204で測定した電流値はマイクロプロセッサ202に送られる。   The generator 201 generates power. In the present embodiment, the generator 201 generates DC power. Information on the voltage value of the power generated by the generator 201 is sent to the microprocessor 202. The state of the electric power generated by the generator 201 is monitored step by step by monitoring the state of power stored in the capacitor C1. Further, the current measurement unit 204 measures the current value of the power generated by the generator 201 from the potential difference between both ends of the resistor R1. The current value measured by the current measuring unit 204 is sent to the microprocessor 202.

マイクロプロセッサ202には、発電機201が発電した電力の電圧値および電流値の情報の他、上述した(1)情報通信や電力配電システム100のマネジメントに関する情報、(2)発電する電力の物理仕様に関する情報、(3)発電する電力のコストや経費に関する情報が送られてくる。具体的には、発電装置101を他の発電装置と識別するための発電所ID、発電装置101の位置情報その他の発電装置101に関する情報がマイクロプロセッサ202に送られる。マイクロプロセッサ202では、これらの情報を集約し、モデム203に送る。   In the microprocessor 202, in addition to the information on the voltage value and current value of the power generated by the generator 201, (1) information related to information communication and management of the power distribution system 100, and (2) physical specifications of the power to be generated. (3) Information on the cost and expense of power to be generated is sent. Specifically, a power plant ID for identifying the power generation device 101 from other power generation devices, position information of the power generation device 101 and other information related to the power generation device 101 are sent to the microprocessor 202. In the microprocessor 202, these pieces of information are collected and sent to the modem 203.

モデム203は、マイクロプロセッサ202から送られる情報を、発電機201で発電された電力に重畳できる形式に変調するものである。本実施形態においては、モデム203は、十分高い周波数帯域を使用して行われる情報信号の送受信における、信号の変調・復調を行うものである。モデム203で変調された情報は、ラインドライバ205、キャパシタC2を経由して、発電機201で発電された電力に重畳されて、発電装置101から情報G1として出力される。   The modem 203 modulates the information sent from the microprocessor 202 into a format that can be superimposed on the power generated by the generator 201. In the present embodiment, the modem 203 performs signal modulation / demodulation in transmission / reception of an information signal performed using a sufficiently high frequency band. The information modulated by the modem 203 is superimposed on the power generated by the generator 201 via the line driver 205 and the capacitor C2, and is output as information G1 from the power generator 101.

発電装置101からの情報G1を電力に重畳して出力する場合には、例えば、本件発明者と同一発明者による発明である特開2008−123051号公報に記載された発明を用いることができる。発電装置101からの情報G1を電力に重畳して出力する場合には、当該発明のように、電力と情報とをパケット化し、電力パケットと情報パケットとを時分割で送信しても良い。このように電力生成元でパケットを生成して送信することで、電力消費元で電力を受電し、消費することが可能となる。もちろん、情報の電力への重畳手法については、かかる例に限定されないことは言うまでも無い。   In the case where the information G1 from the power generation device 101 is superimposed on the electric power and output, for example, the invention described in Japanese Patent Application Laid-Open No. 2008-123051 which is an invention by the same inventor as the present inventor can be used. When the information G1 from the power generation apparatus 101 is superimposed on the power and output, the power and the information may be packetized and the power packet and the information packet may be transmitted in a time division manner as in the present invention. Thus, by generating and transmitting a packet at the power generation source, the power consumption source can receive and consume the power. Needless to say, the method of superimposing information on power is not limited to this example.

以上、本発明の一実施形態にかかる発電装置101の構成について説明した。なお、上記では本発明の一実施形態にかかる発電装置の構成として発電装置101を例にして説明したが、発電装置102、103においても、発電装置101と同様の構成を有することが出来る。次に、本発明の一実施形態にかかる負荷121の構成について説明する。   The configuration of the power generation device 101 according to the embodiment of the present invention has been described above. In the above description, the power generation apparatus 101 is described as an example of the configuration of the power generation apparatus according to the embodiment of the present invention. However, the power generation apparatuses 102 and 103 can have the same configuration as the power generation apparatus 101. Next, the configuration of the load 121 according to the embodiment of the present invention will be described.

〔4〕本発明の一実施形態にかかる負荷の構成
図3は、本発明の一実施形態にかかる負荷121の構成について示す説明図である。以下、図3を用いて、本発明の一実施形態にかかる負荷の構成について、負荷121を例にして説明する。
[4] Configuration of Load According to One Embodiment of the Present Invention FIG. 3 is an explanatory diagram showing the configuration of the load 121 according to one embodiment of the present invention. Hereinafter, the configuration of the load according to the embodiment of the present invention will be described using the load 121 as an example with reference to FIG. 3.

負荷121は、本発明の電力受電装置の一例である。負荷121には、発電装置101において電圧V1で発電された電力および発電装置102において電圧V2で発電された電力が供給される。図3に示したように、本発明の一実施形態にかかる負荷121は、チャージコントローラ301と、モデム302と、DC/DCコンバータ303と、マイクロプロセッサ304と、負荷305と、キャパシタC1、C2、C3、C4と、スイッチS1、S2と、を含んで構成される。   The load 121 is an example of the power receiving device of the present invention. The load 121 is supplied with the power generated at the voltage V1 in the power generation apparatus 101 and the power generated at the voltage V2 in the power generation apparatus 102. As shown in FIG. 3, the load 121 according to an embodiment of the present invention includes a charge controller 301, a modem 302, a DC / DC converter 303, a microprocessor 304, a load 305, capacitors C1, C2, C3 and C4 and switches S1 and S2 are included.

チャージコントローラ301は、供給された電力を用いて、発電装置101、102からの電力が供給されていない場合に負荷121の動作に用いられるキャパシタC3の充電を制御するものである。チャージコントローラ301によってキャパシタC3への過充電が防がれることになる。   The charge controller 301 uses the supplied power to control charging of the capacitor C3 used for the operation of the load 121 when the power from the power generation devices 101 and 102 is not supplied. The charge controller 301 prevents the capacitor C3 from being overcharged.

モデム302は、発電装置101、102から送信された情報G1、G2の変調・復調を行うものである。発電装置101、102から送信される情報G1、G2としては、例えば、1)情報通信や電力配電システム100のマネジメントに関する情報、(2)発電する電力の物理仕様に関する情報、(3)発電する電力のコストや経費に関する情報がある。本実施形態においては、モデム302は、モデム203と同様に、十分高い周波数帯域を使用して行われる情報信号の送受信における、信号の変調・復調を行うものである。モデム302で復調された情報はマイクロプロセッサ304に送られる。   The modem 302 modulates and demodulates information G1 and G2 transmitted from the power generation devices 101 and 102. Examples of information G1 and G2 transmitted from the power generation devices 101 and 102 include 1) information related to information communication and management of the power distribution system 100, (2) information related to physical specifications of power to be generated, and (3) power to be generated. There is information about costs and expenses. In the present embodiment, the modem 302 performs signal modulation / demodulation in transmission / reception of an information signal performed using a sufficiently high frequency band, like the modem 203. Information demodulated by the modem 302 is sent to the microprocessor 304.

DC/DCコンバータ303は、発電装置101、102から電力網を通じて供給された電力を、負荷305が必要とする電流・電圧に変換するものである。   The DC / DC converter 303 converts the power supplied from the power generators 101 and 102 through the power network into the current / voltage required by the load 305.

マイクロプロセッサ304は、モデム302で復調された情報G1、G2を受け取り、受け取った情報G1、G2に基づいてスイッチS1、S2のスイッチング動作を制御するものである。また、マイクロプロセッサ304は、負荷305における電力消費状況をモニタし、負荷305における電力消費状況に応じてスイッチS1、S2のスイッチング動作を制御する。負荷305は、発電装置101、102から供給される電力を実際に消費するものである。なお、スイッチS1、S2は、各種スイッチング素子、例えばMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)を用いてもよい。   The microprocessor 304 receives the information G1 and G2 demodulated by the modem 302, and controls the switching operation of the switches S1 and S2 based on the received information G1 and G2. In addition, the microprocessor 304 monitors the power consumption status in the load 305 and controls the switching operations of the switches S1 and S2 according to the power consumption status in the load 305. The load 305 actually consumes the power supplied from the power generation devices 101 and 102. The switches S1 and S2 may use various switching elements, for example, MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor).

例えば、負荷121に、発電装置101、102の両方からの電力が供給されている場合において、モデム302で復調された情報G1、G2をマイクロプロセッサ304で受け取ったときを考える。このとき、発電装置101の方が発電装置102よりも絶対的な距離が近いことが分かれば、発電装置101から供給される電力を優先して消費するために、スイッチS1を閉じ、スイッチS2を開くよう、マイクロプロセッサ304で制御してもよい。   For example, consider the case where the microprocessor 304 receives the information G1 and G2 demodulated by the modem 302 when the load 121 is supplied with power from both the power generation devices 101 and 102. At this time, if it is known that the absolute distance of the power generation device 101 is shorter than that of the power generation device 102, the switch S1 is closed and the switch S2 is turned off in order to preferentially consume the power supplied from the power generation device 101. The microprocessor 304 may control the opening.

また例えば、モデム302で復調された情報G1、G2をマイクロプロセッサ304で受け取った結果、発電装置101から供給される電力の方が発電装置102から供給される電力よりも単位電力に対する二酸化炭素の発生量が少ないことが分かれば、発電装置101から供給される電力を優先して消費するために、スイッチS1を閉じ、スイッチS2を開くよう、マイクロプロセッサ304で制御してもよい。   Further, for example, as a result of receiving the information G1 and G2 demodulated by the modem 302 by the microprocessor 304, the power supplied from the power generation apparatus 101 generates more carbon dioxide per unit power than the power supplied from the power generation apparatus 102. If it is known that the amount is small, the microprocessor 304 may control the switch S1 to close and the switch S2 to open in order to preferentially consume the power supplied from the power generation apparatus 101.

また例えば、モデム302で復調された情報G1、G2をマイクロプロセッサ304で受け取った結果、発電装置101から供給される電力の方が発電装置102から供給される電力よりも単位電力あたりの単価が少ないことが分かれば、発電装置101から供給される電力を優先して消費するために、スイッチS1を閉じ、スイッチS2を開くよう、マイクロプロセッサ304で制御してもよい。   Further, for example, as a result of receiving the information G1 and G2 demodulated by the modem 302 by the microprocessor 304, the power supplied from the power generation apparatus 101 has a lower unit price per unit power than the power supplied from the power generation apparatus 102. If it is understood, the microprocessor 304 may be controlled to close the switch S1 and open the switch S2 in order to preferentially consume the power supplied from the power generation apparatus 101.

また例えば、モデム302で復調された情報G1、G2をマイクロプロセッサ304で受け取った結果、発電装置101から供給される電力の方が発電装置102から供給される電力よりも変電回数が少なければ、発電装置101から供給される電力を優先して消費するために、スイッチS1を閉じ、スイッチS2を開くよう、マイクロプロセッサ304で制御してもよい。   Further, for example, if the microprocessor 304 receives the information G1 and G2 demodulated by the modem 302, if the power supplied from the power generation apparatus 101 has a smaller number of transformations than the power supplied from the power generation apparatus 102, power generation In order to preferentially consume the power supplied from the device 101, the microprocessor 304 may control to close the switch S1 and open the switch S2.

また例えば、モデム302で復調された情報G1、G2をマイクロプロセッサ304で受け取った結果、装置のメンテナンス等によりある時点より所定の期間は発電装置101の発電量が低下することが分かれば、当該時点までは発電装置101から供給される電力を優先して消費し、当該時点が到達すると、上記期間の間は発電装置101から供給される電力を優先して消費するように、スイッチS1、S2のスイッチングを制御してもよい。   In addition, for example, if the microprocessor 304 receives the information G1 and G2 demodulated by the modem 302, if it is known that the power generation amount of the power generation apparatus 101 decreases for a predetermined period from a certain time due to maintenance of the apparatus, The switches S1 and S2 are used so that the power supplied from the power generator 101 is preferentially consumed, and when the time reaches, the power supplied from the power generator 101 is preferentially consumed during the period. Switching may be controlled.

マイクロプロセッサ304によるスイッチS1、S2のスイッチング制御のルールを、予めマイクロプロセッサ304に設定しておくことで、当該ルールに応じてスイッチS1、S2の切り替えを制御することができる。また負荷121の使用状況に応じて、マイクロプロセッサ304によるスイッチS1、S2のスイッチング制御のルールを任意に設定することで、当該ルールに応じてスイッチS1、S2の切り替えを制御することができる。もちろん、マイクロプロセッサ304によるスイッチS1、S2のスイッチングの制御の条件は、上述した例に限られないことは言うまでも無い。   By setting a rule for switching control of the switches S1 and S2 by the microprocessor 304 in the microprocessor 304 in advance, switching of the switches S1 and S2 can be controlled according to the rule. Further, by arbitrarily setting a switching control rule for the switches S1 and S2 by the microprocessor 304 according to the usage state of the load 121, switching of the switches S1 and S2 can be controlled according to the rule. Of course, it goes without saying that the conditions for controlling the switching of the switches S1 and S2 by the microprocessor 304 are not limited to the above-described example.

なお、図3に示した構成では、スイッチS1、S2にそれぞれ並列にキャパシタC1、C2が設けられている。キャパシタC1、C2は直流の電流を遮断し、十分高い周波数帯域を使用して行われる情報信号は通過させる。従って、スイッチS1、S2が開いている場合であっても、発電装置101、102から電力網を通じて送信される情報を受信することが可能となる。   In the configuration shown in FIG. 3, capacitors C1 and C2 are provided in parallel with the switches S1 and S2, respectively. Capacitors C1 and C2 block a direct current, and pass information signals performed using a sufficiently high frequency band. Therefore, even when the switches S1 and S2 are open, it is possible to receive information transmitted from the power generation apparatuses 101 and 102 through the power network.

図3に示した構成では、電源としてキャパシタC3を負荷121の内部に設けているが、本発明はかかる例に限定されないことは言うまでも無い。例えば、キャパシタC3の替わりに、またキャパシタC3と共に、負荷121の内部に二次電池を設けるようにしてもよい。   In the configuration shown in FIG. 3, the capacitor C3 is provided inside the load 121 as a power source, but it goes without saying that the present invention is not limited to such an example. For example, a secondary battery may be provided inside the load 121 in place of the capacitor C3 and together with the capacitor C3.

以上、本発明の一実施形態にかかる負荷121の構成について説明した。なお、本実施形態においては、本発明の電力受電装置の一例として負荷121を例示して説明したが、本発明の一実施形態にかかる変電装置111、112についても本発明の電力受電装置の一例である。変電装置111、112は、発電装置101、102、103で発電された電力の供給を受けて、予め定めた電圧・電流に変電して出力するものである。ここで、発電装置101、102、103から供給された電力の発電効率を考慮に入れて、変電装置111、112において、どの発電装置から供給された電力を優先して変電し、後段の電力網に出力するかを判断しても良い。この場合には、後段の電力網に情報を送信するために、変電装置111、112の内部に情報の変調および復調を実行するモデムを設けていても良い。   The configuration of the load 121 according to the embodiment of the present invention has been described above. In the present embodiment, the load 121 is illustrated as an example of the power receiving device of the present invention. However, the transformers 111 and 112 according to the embodiment of the present invention are also examples of the power receiving device of the present invention. It is. The transformers 111 and 112 are supplied with power generated by the power generators 101, 102, and 103, transformed into a predetermined voltage / current, and output. Here, taking into account the power generation efficiency of the power supplied from the power generation devices 101, 102, and 103, the power transformation devices 111 and 112 prioritize the power supplied from which power generation device and transform it into the subsequent power network. You may judge whether to output. In this case, a modem for performing modulation and demodulation of information may be provided inside the transformers 111 and 112 in order to transmit information to the power network at the subsequent stage.

〔5〕まとめ
このように発電装置および負荷を構成することで、発電装置では自己が発電した電力に関する情報や、位置情報等の発電装置そのものに関する情報をモデムで変調し、発電装置から供給する電力に重畳して出力することが可能となる。そして、負荷では、発電装置から電力の供給を受けて、電圧を変換して出力すると共に、発電装置から送信された情報を受信してモデムで復調し、受信した情報を解析することで、どの発電装置からの電力を使用すれば最も効率が良いかを判断することができる。
[5] Summary By configuring the power generation device and the load in this way, the power generation device modulates information about the power generated by itself and information about the power generation device itself such as position information with a modem and supplies power from the power generation device. It is possible to superimpose and output. The load receives power supply from the power generation device, converts the voltage and outputs it, receives the information transmitted from the power generation device, demodulates it by the modem, and analyzes the received information to determine which If the power from the power generator is used, it can be determined whether the efficiency is highest.

以上説明したように本発明の一実施形態によれば、発電装置から電力を供給すると共に、発電装置が発電する電力、および位置情報等の発電装置そのものに関する情報を送信する。変電を行う変電装置や、電力を消費する負荷では、発電装置から送信された情報を受信することで、どの発電装置で発電された電力を使用すれば最も効率が良くなるように電力の供給や消費が出来るかを判断することができる。   As described above, according to an embodiment of the present invention, electric power is supplied from the power generation device, and information related to the power generation device itself such as power generated by the power generation device and position information is transmitted. For substations that perform substations and loads that consume power, by receiving information transmitted from the power generation devices, the power supply or It can be judged whether it can be consumed.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

例えば、上記実施形態では、発電装置では直流の電力を発電すると共に、直流電力に重畳する形式で情報を発電装置から送信する構成としたが、本発明はかかる例に限定されないことは言うまでも無い
For example, in the above embodiment, the power generator generates DC power and transmits information from the power generator in a form superimposed on the DC power. However, it goes without saying that the present invention is not limited to this example. no.

えば、上記実施形態では、発電装置では直流の電力を発電し、変電装置では直流の電力の変電を行う構成としたが、本発明はかかる例に限定されず、発電装置では交流の電力を発電し、変電装置では交流の電力の変電を行う構成してもよい。交流の電力を配電する場合であっても、電力に重畳して各種情報を送信してもよい。
For example, in the above embodiment, the power generator generates power to DC power, although the transformation device and configured to perform substation DC power, the present invention is not limited to such an example, the power of the AC power generation device You may comprise the electric power generation and transforming AC power in the transformer. Even when the distribution of power of the AC, but it may also be sending information to be superimposed on the power.

本発明は、電力配電システム、電力送電装置、電力受電装置、電力送電方法および電力受電方法に適用可能である。   The present invention is applicable to a power distribution system, a power transmission device, a power reception device, a power transmission method, and a power reception method.

100 電力配電システム
101、102,103 発電装置
111、112 変電装置
121、122 負荷
201 発電機
202 マイクロプロセッサ
203 モデム
204 電流測定部
205、206 ラインドライバ
301 チャージコントローラ
302 モデム
303 DC/DCコンバータ
304 マイクロプロセッサ
305 負荷
DESCRIPTION OF SYMBOLS 100 Electric power distribution system 101,102,103 Electric power generation apparatus 111,112 Power transformation apparatus 121,122 Load 201 Generator 202 Microprocessor 203 Modem 204 Current measurement part 205,206 Line driver 301 Charge controller 302 Modem 303 DC / DC converter 304 Microprocessor 305 load

Claims (7)

電力を送電する少なくとも一つの電力送電装置と、
前記電力送電装置から送電される電力を受電する少なくとも一つの電力受電装置と、
を含み、
前記電力送電装置は、
電力を生成する電力生成手段と、
前記電力生成手段が生成した電力に関する電力情報及び前記電力生成手段について絶対的な位置についての情報を含んだ固有情報を含んだ情報を、前記電力生成手段で生成した電力に重畳することで該電力と関連付けて送信する情報送信手段と、
を含み、
前記電力受電装置は、
前記情報送信手段が送信した情報を受信する情報受信手段と、
前記情報受信手段が受信した情報に基づいて前記電力生成手段までの論理距離が短い電力を優先して消費するよう電力生成手段が生成した電力の消費を制御する電力消費制御手段と、
を含む、電力配電システム。
At least one power transmission device for transmitting power;
At least one power receiving device that receives power transmitted from the power transmitting device; and
Including
The power transmission device is:
Power generation means for generating power;
By superimposing the power information related to the power generated by the power generating means and the information including specific information including information on the absolute position of the power generating means on the power generated by the power generating means. Information transmitting means for transmitting in association with
Including
The power receiving device is:
Information receiving means for receiving the information transmitted by the information transmitting means;
A power consumption control means for controlling power consumption generated by the power generation means so as to preferentially consume power with a short logical distance to the power generation means based on information received by the information reception means;
Including power distribution system.
電力を生成する装置から送電される電力を受電する受電手段と、
前記装置が送信した、前記送電される電力に重畳される、該電力に関する電力情報及び前記装置について絶対的な位置についての情報を含んだ固有情報を含んだ情報を受信する情報受信手段と、
前記情報受信手段が受信した情報に基づいて、前記装置までの論理距離が短い電力を優先して消費するよう前記受電手段が受電した前記電力の消費を制御する電力消費制御手段と、
を含む、電力受電装置。
Power receiving means for receiving power transmitted from a device that generates power;
Information receiving means for receiving information including power information transmitted by the device, which is superimposed on the transmitted power, and specific information including information on the absolute position of the device;
Based on the information received by the information receiving means, power consumption control means for controlling the consumption of the power received by the power receiving means so as to preferentially consume power with a short logical distance to the device;
Including a power receiving device.
前記情報受信手段が受信した全ての前記固有情報を含んだ情報を送信する情報送信手段をさらに含む、請求項に記載の電力受電装置。 The power receiving apparatus according to claim 2 , further comprising an information transmission unit that transmits information including all the unique information received by the information reception unit. 前記電力消費制御手段は、絶対的な距離が最も近い前記装置からの電力を優先して消費するよう制御する、請求項に記載の電力受電装置。 The power receiving apparatus according to claim 2 , wherein the power consumption control unit performs control so that power from the apparatus having the closest absolute distance is preferentially consumed. 前記電力消費制御手段は、単位電力あたりの単価が最も低い前記装置からの電力を優先して消費するよう制御する、請求項に記載の電力受電装置。 The power receiving device according to claim 2 , wherein the power consumption control unit performs control so that power from the device having the lowest unit price per unit power is consumed with priority. 前記電力消費制御手段は、単位電力に対する二酸化炭素の発生量が最も低い前記装置からの電力を優先して消費するよう制御する、請求項に記載の電力受電装置。 The power receiving device according to claim 2 , wherein the power consumption control unit performs control so that power from the device having the lowest carbon dioxide generation amount per unit power is preferentially consumed. 電力を生成する装置から送電される電力を受電する受電ステップと、
前記装置が送信した、前記送電される電力に重畳される、該電力に関する電力情報及び前記装置について絶対的な位置についての情報を含んだ固有情報を含んだ情報を受信する情報受信ステップと、
前記情報受信ステップで受信した情報に基づいて、前記装置までの論理距離が短い電力を優先して消費するよう前記受電ステップで受電した前記電力の消費を制御する電力消費制御ステップと、
を含む、電力受電方法。
A power receiving step of receiving power transmitted from a device that generates power;
An information receiving step for receiving information including specific information including power information related to the power and information on an absolute position of the device, which is superimposed on the transmitted power transmitted by the device;
Based on the information received in the information receiving step, a power consumption control step for controlling consumption of the power received in the power receiving step so as to preferentially consume power with a short logical distance to the device;
Including a power receiving method.
JP2009021544A 2009-02-02 2009-02-02 Power distribution system, power transmission device, power reception device, power transmission method, and power reception method Expired - Fee Related JP5581595B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009021544A JP5581595B2 (en) 2009-02-02 2009-02-02 Power distribution system, power transmission device, power reception device, power transmission method, and power reception method
EP20090252817 EP2214282B1 (en) 2009-02-02 2009-12-17 Power distributing system, power transmitting device, power receiving device, power transmitting method and power receiving method
US12/693,113 US8324757B2 (en) 2009-02-02 2010-01-25 Power distributing system, power transmitting device, power receiving device, power transmitting method and power receiving method
CN2010101132207A CN101794991B (en) 2009-02-02 2010-01-26 Power distributing system, power transmitting device, power receiving device, power transmitting method and power receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021544A JP5581595B2 (en) 2009-02-02 2009-02-02 Power distribution system, power transmission device, power reception device, power transmission method, and power reception method

Publications (2)

Publication Number Publication Date
JP2010178587A JP2010178587A (en) 2010-08-12
JP5581595B2 true JP5581595B2 (en) 2014-09-03

Family

ID=41720677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021544A Expired - Fee Related JP5581595B2 (en) 2009-02-02 2009-02-02 Power distribution system, power transmission device, power reception device, power transmission method, and power reception method

Country Status (4)

Country Link
US (1) US8324757B2 (en)
EP (1) EP2214282B1 (en)
JP (1) JP5581595B2 (en)
CN (1) CN101794991B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457857B2 (en) * 2010-01-27 2014-04-02 株式会社Verifirm Power system, power transmission method, and power receiving apparatus
US20120266007A1 (en) * 2011-04-18 2012-10-18 Eaton Corporation Information technology (it) power supply, power distribution, or environmental control apparatus and method
JP2016046916A (en) * 2014-08-22 2016-04-04 株式会社Nttファシリティーズ Supply and demand management system
US9958927B2 (en) * 2015-06-02 2018-05-01 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Selecting active power supplies based on power supply cable length
CN109188204B (en) * 2018-09-07 2020-07-03 济南大学 Power distribution network theoretical line loss calculation method considering small power supply
JP7288377B2 (en) * 2019-09-26 2023-06-07 京セラ株式会社 Self-consignment system and self-consignment method
JP7229901B2 (en) * 2019-11-27 2023-02-28 京セラ株式会社 Self-consignment system and self-consignment method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668446A (en) * 1995-01-17 1997-09-16 Negawatt Technologies Inc. Energy management control system for fluorescent lighting
US6154488A (en) * 1997-09-23 2000-11-28 Hunt Technologies, Inc. Low frequency bilateral communication over distributed power lines
DE19850496A1 (en) * 1998-11-02 2000-05-04 Deutsche Telekom Ag Tariff dependent control of energy consumers in electrical power supply networks, involves passing tariff information via node of terrestrial network to energy consumers for load control
JP3634731B2 (en) * 2000-09-21 2005-03-30 シャープ株式会社 Photovoltaic power generation management system, solar power generation management server and solar power generation apparatus used in the system
KR20040083514A (en) * 2002-02-14 2004-10-02 얀마 가부시키가이샤 Power source switching unit and power source management system comprising it
JP2004064355A (en) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd Power line carrier communication system and attribute information setting method for terminal used for the same
JP4424494B2 (en) 2005-02-01 2010-03-03 東京電力株式会社 Distribution system configuration optimization device and distribution system configuration optimization method
JP5194435B2 (en) * 2006-11-08 2013-05-08 ソニー株式会社 Power supply system, power supply method, power supply program, and server
JP4970318B2 (en) 2007-06-12 2012-07-04 Tdk株式会社 Multilayer PTC thermistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010178587A (en) 2010-08-12
US8324757B2 (en) 2012-12-04
EP2214282B1 (en) 2014-05-21
US20100194189A1 (en) 2010-08-05
CN101794991A (en) 2010-08-04
CN101794991B (en) 2013-03-06
EP2214282A3 (en) 2013-07-31
EP2214282A2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP5581595B2 (en) Power distribution system, power transmission device, power reception device, power transmission method, and power reception method
US9363103B2 (en) Energy-management in a user-premises area network
TWI437791B (en) Networked dc power system
US7986219B2 (en) Power line communication system
US9350424B2 (en) Coexistence method by requesting access to the channel
Christakou A unified control strategy for active distribution networks via demand response and distributed energy storage systems
CN102668299A (en) Power station regulating system
KR101278125B1 (en) Dimming control apparatus using sensing of volts alternating current in power line communication
US20200067348A1 (en) Power transmission system including power transmitter apparatus, power receiver apparatus, or power transmitter and receiver apparatus easily attachable and detachable to/from transmission path
US9503158B2 (en) Adaptive sub-band algorithm for point-to-point communication in PLC networks
JP6715464B2 (en) Power transmitter and power receiver
JP2009011150A (en) Device and system for linking system, and power control system
CN104795818A (en) Remote power-feeding power generator and remote power-feeding fault locating method
JP5151271B2 (en) Power measurement system
CN105655814A (en) Intelligent socket for energy Internet
US11502726B2 (en) Coaxial cable power signal distribution systems and methods
KR101674941B1 (en) Power supply network using dc power supply and electric apparatus based on the power supply network
CN111711270B (en) Station line to user power supply relationship checking method and system for power distribution network
KR20180123891A (en) Wireless Charging Method and Apparatus and System therefor
KR101424500B1 (en) Battery emergency power generator and electric power system having the battery emergency power generator
KR20080001240U (en) System for supply the source of electricity using the direct-current converter of household
US8823213B2 (en) Electric power selling system
CN204559126U (en) Remote power-feeding power source generator
CN219382252U (en) Internal communication system of charging pile and charging pile
US20220271678A1 (en) Power equipment for remote control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R151 Written notification of patent or utility model registration

Ref document number: 5581595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees