JP5581552B2 - Tool holder - Google Patents

Tool holder Download PDF

Info

Publication number
JP5581552B2
JP5581552B2 JP2010240738A JP2010240738A JP5581552B2 JP 5581552 B2 JP5581552 B2 JP 5581552B2 JP 2010240738 A JP2010240738 A JP 2010240738A JP 2010240738 A JP2010240738 A JP 2010240738A JP 5581552 B2 JP5581552 B2 JP 5581552B2
Authority
JP
Japan
Prior art keywords
diameter
flow path
cutting fluid
sectional area
tool holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010240738A
Other languages
Japanese (ja)
Other versions
JP2012091274A (en
Inventor
泰彦 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Big Daishowa Seiki Co Ltd
Original Assignee
Big Daishowa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Big Daishowa Seiki Co Ltd filed Critical Big Daishowa Seiki Co Ltd
Priority to JP2010240738A priority Critical patent/JP5581552B2/en
Publication of JP2012091274A publication Critical patent/JP2012091274A/en
Application granted granted Critical
Publication of JP5581552B2 publication Critical patent/JP5581552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Gripping On Spindles (AREA)

Description

本発明は、切削液を霧状にした切削液ミストを先端部から噴出しながら切削作業が可能な工具ホルダに関する。   The present invention relates to a tool holder capable of performing a cutting operation while ejecting a cutting fluid mist in which the cutting fluid is atomized from a tip portion.

切削液ミストを噴出しながらの切削作業が可能な工具ホルダでは、回転式のものにあっては遠心力や重力等によって、また、回転式でないものであっても重力等によって、切削液ミストが供給流路の外周部に付着・堆積し、安定的に切削液ミストを供給できない場合がある。また、切削作業停止時には、堆積した切削液が遠心力や重力から解放されて、不測に垂れ流れることもある。   For tool holders that can perform cutting operations while jetting the cutting fluid mist, the cutting fluid mist is caused by centrifugal force, gravity, etc. if it is a rotary type, and by gravity etc. even if it is not a rotary type. In some cases, the cutting fluid mist cannot be stably supplied due to adhesion and accumulation on the outer periphery of the supply flow path. In addition, when the cutting operation is stopped, the accumulated cutting fluid is released from centrifugal force and gravity, and may droop unexpectedly.

この問題を解決するものとして、例えば回転式の工具ホルダについては、特許文献1に記載の技術があった。特許文献1に記載の技術は、工具ホルダの手前の供給流路(文献では、「ミスト通路」)内に、下流側開口部が上流側開口部よりも縮径した内孔及びこの内孔の半径方向外方に形成された外孔を有するノズルを備えている。   As a technique for solving this problem, for example, there is a technique described in Patent Document 1 for a rotary tool holder. The technique described in Patent Document 1 includes an inner hole in which a downstream opening is smaller in diameter than an upstream opening in a supply flow path (in the literature, “mist passage”) in front of a tool holder, and the inner hole. A nozzle having an outer hole formed radially outward is provided.

切削液ミストは回転によって遠心分離され、供給流路の半径方向外側と中心側とで切削液ミストの濃度が異なるようになるところ、特許文献1に記載の構成であると、濃度の小さい中心側の切削液ミストは内孔を流通し、その気流速度は加速され、濃度の高い外側の切削液ミストは外孔を流通する。そして、内孔と外孔とが合流する空間において、外孔を流通した切削液ミストが内孔を流通して加速された切削液ミストに混合され、再ミスト化を図れるとされている。   The cutting fluid mist is centrifuged by rotation, and the concentration of the cutting fluid mist is different between the radially outer side and the center side of the supply flow path. The cutting fluid mist flows through the inner hole, the air velocity is accelerated, and the high-concentration outer cutting fluid mist flows through the outer hole. Then, in the space where the inner hole and the outer hole merge, the cutting fluid mist flowing through the outer hole is mixed with the cutting fluid mist accelerated through the inner hole, and can be re-misted.

特開2000−158285号公報JP 2000-158285 A

しかしながら、切削液ミストは外孔を流通する際に再液化する可能性が高い。このため、比重の大きい再液化した切削液は、外孔から合流空間に放出されると、遠心力によって合流空間における外周部に押付けられて堆積するだけで、内孔を流通した切削液ミストと上手く混合されず、効率よく再ミスト化を図ることができない可能性がある。   However, the cutting fluid mist is highly likely to be reliquefied when flowing through the outer hole. For this reason, when the re-liquefied cutting fluid having a large specific gravity is discharged from the outer hole to the merged space, the cutting fluid mist that has circulated through the inner hole is simply pressed against the outer periphery of the merged space by centrifugal force and accumulated. There is a possibility that it is not mixed well and re-misting cannot be achieved efficiently.

上記実情に鑑み、本発明は、再ミスト化を確実に図り、安定して切削液ミストを供給可能な工具ホルダを提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a tool holder capable of reliably re-misting and stably supplying a cutting fluid mist.

本発明に係る工具ホルダの第一特徴構成は、先端部に刃具を取り付け可能であるホルダ本体と、前記ホルダ本体の中心軸に沿って前記ホルダ本体の内部に設けられ、前記ホルダ本体の後端側から前記先端部に向けて切削液ミストを供給する供給流路と、を備え、前記供給流路に上流側から下流側に向けて順に、前記供給流路の流路断面積を絞る第1縮径部と、前記第1縮径部によって絞られた前記流路断面積を少なくとも前記第1縮径部の上流側の前記流路断面積よりも拡張する拡径部と、前記拡径部によって拡張された前記流路断面積を有する拡径空間と、前記拡径空間の前記流路断面積を絞る第2縮径部と、を備え、前記拡径空間の外周部に、前記中心軸と交差する方向に沿った凹部を、前記中心軸に沿って複数形成した点にある。   The first characteristic configuration of the tool holder according to the present invention includes a holder main body to which a cutting tool can be attached at a front end portion, and provided inside the holder main body along a central axis of the holder main body, and a rear end of the holder main body A supply channel that supplies cutting fluid mist from the side toward the tip, and the flow channel cross-sectional area of the supply channel is reduced in order from the upstream side to the downstream side of the supply channel. A diameter-reduced part, a diameter-enlarged part that expands the flow-path cross-sectional area narrowed by the first diameter-reduced part at least more than the flow-path cross-sectional area upstream of the first diameter-reduced part, and the diameter-expanded part An enlarged space having the cross-sectional area of the flow path expanded by the above, and a second reduced diameter portion for reducing the cross-sectional area of the flow path of the enlarged diameter space, and the central axis on the outer peripheral portion of the expanded diameter space And a plurality of recesses along the direction intersecting with the central axis.

本構成であると、例えば、回転式の工具ホルダにあっては遠心力や重力等によって、また、非回転式の工具ホルダにあっては重力等によって、切削液ミストの一部は供給流路の外周部に付着・堆積して液化し、液化した切削液は、切削液ミストの気流によって下流側に送られて、特に拡径部の外周部に堆積する。一方、第1縮径部を通過する際に切削液ミストの気流速度は加速され、切削液ミストは第1縮径部から拡径空間に噴出される。即ち、流路断面積が小さい(気圧が高い)ところから流路断面積が大きい(気圧が低い)ところに、加速された気流が一気に放出されるため、切削液ミストは多少なりと放射状に拡散する。したがって、中心軸付近の切削液ミストはそのまま真っ直ぐに流下するものの、切削液ミストの一部は、第2縮径部にぶつかって跳ね返されて対流したり、径外方向に拡散されて拡径空間の外周部に直接吹き付けられたりする。   With this configuration, for example, a part of the cutting fluid mist is supplied by a centrifugal force or gravity in the case of a rotary tool holder or by gravity in a non-rotary tool holder. The cutting fluid adhering to, depositing, and liquefying on the outer peripheral portion is sent to the downstream side by the air current of the cutting fluid mist, and is particularly deposited on the outer peripheral portion of the enlarged diameter portion. On the other hand, the air velocity of the cutting fluid mist is accelerated when passing through the first reduced diameter portion, and the cutting fluid mist is ejected from the first reduced diameter portion into the enlarged space. In other words, since the accelerated air flow is released from a small channel cross-sectional area (atmospheric pressure) to a large channel cross-sectional area (at low air pressure), the cutting fluid mist diffuses somewhat radially. To do. Therefore, although the cutting fluid mist near the central axis flows straight down as it is, a portion of the cutting fluid mist collides with the second reduced diameter portion and convects or diffuses in the radially outward direction to expand the diameter. It is sprayed directly on the outer peripheral part.

また、拡径空間の外周面には、中心軸に沿って複数の凹部が形成されており、凹部には上述の液化した切削液が溜まる。凹部は、中心軸と交差する方向に沿っており、即ち、拡径空間の外周部に吹き付けられる気流の方向や、対流の流れ方向と交差している。したがって、凹部に溜まった切削液は、対流する気流や直接吹き付けられる気流によって凹部の角部分からしぶきを上げるように径内方向に向けて飛沫し、再ミスト化する。仮に滴状に飛沫したとしても、径内方向に向けて飛沫するので、第2縮径部に流入する乱れの無い気流速度の速い切削液ミストの気流に弾かれて拡散し、切削液は確実に再ミスト化される。   In addition, a plurality of recesses are formed along the central axis on the outer peripheral surface of the expanded space, and the above-described liquefied cutting fluid accumulates in the recesses. The concave portion is along the direction intersecting the central axis, that is, intersecting the direction of the airflow blown to the outer peripheral portion of the enlarged diameter space and the direction of convection. Therefore, the cutting fluid accumulated in the recesses splashes in the radial direction so as to be splashed from the corners of the recesses by a convective airflow or an airflow directly blown, and re-mists. Even if it drops in the form of droplets, it will splash in the radial direction, so it will be repelled and diffused by the air current of the cutting fluid mist that flows into the second reduced diameter portion and has no turbulence. It is re-misted.

拡径部の下流には第2縮径部が備えられているので、再ミスト化した切削液ミストを含んだ切削液ミストの気流速度が加速され、ミスト同士が凝集しにくく、再液化が防止される。   Since the second reduced diameter part is provided downstream of the enlarged diameter part, the air velocity of the cutting fluid mist including the remisted cutting fluid mist is accelerated, the mists are less likely to aggregate, and reliquefaction is prevented. Is done.

このように、本構成の工具ホルダであれば、再ミスト化を確実に図ることができ、安定した切削液ミストの供給が可能となる。   Thus, with the tool holder of this configuration, re-misting can be reliably achieved, and stable cutting fluid mist can be supplied.

本発明に係る工具ホルダの第二特徴構成は、前記第1縮径部及び前記第2縮径部は、前記流路断面積を徐々に絞るよう設定され、かつ、前記第1縮径部と前記拡径部との境界部分に第1段部を備えた点にある。   The second characteristic configuration of the tool holder according to the present invention is such that the first reduced diameter portion and the second reduced diameter portion are set so as to gradually reduce the flow path cross-sectional area, and the first reduced diameter portion and In the point which provided the 1st step part in the boundary part with the said enlarged diameter part.

本構成によると、第1縮径部及び第2縮径部は流路断面積を徐々に縮径するため、切削液ミストの気流は乱れにくく、円滑に流通し、効率よく気流速度が加速される。また、第1縮径部と拡径部との境界部分に第1段部が備えられているので、第1段部によって供給流路の流路断面積が急激に広がって、気流と供給流路との縁が切れ、気流は拡径部の表面に沿いにくい。この結果、切削液ミストの気流速度が落ちず、対流等が生じやすくなって、凹部に溜まった切削液の再ミスト化が促進される。   According to this configuration, since the first reduced diameter portion and the second reduced diameter portion gradually reduce the cross-sectional area of the flow path, the air current of the cutting fluid mist is less likely to be disturbed and smoothly flows, and the air velocity is efficiently accelerated. The In addition, since the first step portion is provided at the boundary portion between the first reduced diameter portion and the enlarged diameter portion, the flow passage cross-sectional area of the supply flow path is suddenly widened by the first step portion, and the air flow and the supply flow The edge with the road is cut, and the airflow is difficult to follow along the surface of the enlarged diameter portion. As a result, the air velocity of the cutting fluid mist does not decrease, convection and the like are likely to occur, and the re-misting of the cutting fluid accumulated in the recess is promoted.

本発明に係る工具ホルダの第三特徴構成は、前記拡径空間と前記第2縮径部との境界部分に第2段部を備えた点にある。   A third characteristic configuration of the tool holder according to the present invention is that a second step portion is provided at a boundary portion between the diameter-expanded space and the second reduced-diameter portion.

本構成であれば、拡径空間に溜まった切削液が、その表面付近を流通する気流によって第2段部にぶつけられ、径内方向に向けて飛沫し、再ミスト化する。仮に滴状に飛沫したとしても、径内方向に向けて飛沫するので、第2縮径部に流入する気流速度の速い切削液ミストの気流に弾かれて拡散し、切削液は確実に再ミスト化される。   If it is this structure, the cutting fluid collected in the diameter expansion space will be collided by the 2nd step part by the airflow which distribute | circulates the surface vicinity, will be splashed toward the radial inside direction, and will be re-misted. Even if the liquid drops in the form of droplets, they will splash toward the inner radial direction, so that they will be bounced and diffused by the airflow of the cutting fluid mist flowing into the second reduced diameter portion with a high airflow velocity, and the cutting fluid will surely be re-misted. It becomes.

本発明に係る工具ホルダの第四特徴構成は、前記第2段部における前記流路断面積は、少なくとも前記第1段部における前記流路断面積よりも大きい点にある。   A fourth characteristic configuration of the tool holder according to the present invention is that the flow passage cross-sectional area in the second step portion is at least larger than the flow passage cross-sectional area in the first step portion.

本構成によると、第2段部における流路断面積が第1段部における流路断面積よりも大きいので、第1段部から拡散した切削液ミストの気流を広い面積で受けることができ、切削液ミストは上流から下流方向へ円滑に流通する。   According to this configuration, since the flow passage cross-sectional area in the second step portion is larger than the flow passage cross-sectional area in the first step portion, the air current of the cutting fluid mist diffused from the first step portion can be received in a wide area, The cutting fluid mist flows smoothly from upstream to downstream.

本発明に係る工具ホルダの第五特徴構成は、前記中心軸の方向において、前記第2段部は位置変更可能である点にある。   A fifth characteristic configuration of the tool holder according to the present invention is that the position of the second step portion can be changed in the direction of the central axis.

本構成であれば、切削液ミストの噴出量等に応じて、第2段部の中心軸の方向における位置を変更することにより、各条件において最適に再ミスト化を図ることが可能である。   With this configuration, it is possible to optimize the re-misting in each condition by changing the position of the second step portion in the direction of the central axis in accordance with the amount of cutting fluid mist ejected.

本発明に係る工具ホルダの第六特徴構成は、前記供給流路に対して挿入固定可能な筒状の絞り部材を備え、前記絞り部材の挿入側の端部に前記第2段部を備え、かつ、前記絞り部材の内周部に前記第2縮径部を形成した点にある。   A sixth feature configuration of the tool holder according to the present invention includes a cylindrical throttle member that can be inserted and fixed to the supply flow path, and includes the second step portion at an insertion side end of the throttle member, And it exists in the point which formed the said 2nd diameter reduction part in the inner peripheral part of the said aperture_diaphragm | restriction member.

本構成であると、ホルダ本体の内部に複雑な加工を施すことなく、供給流路に絞り部材を挿入固定するだけで、供給流路に第2段部及び第2縮径部を備えることができる。   With this configuration, the supply channel can be provided with the second step portion and the second reduced diameter portion only by inserting and fixing the throttle member in the supply channel without performing complicated processing inside the holder body. it can.

本発明に係る工具ホルダの第七特徴構成は、前記絞り部材は捻じ込みによって前記供給流路に対して挿入固定可能であって、前記ホルダ本体の内周部に形成した捻じ込み用のネジ溝が前記凹部である点にある。   A seventh feature of the tool holder according to the present invention is that the throttle member can be inserted and fixed to the supply flow path by screwing, and is a screw groove for screwing formed in the inner periphery of the holder body. Is the recess.

通路状の孔の内部に複雑な形状を施すのは難しいところ、本構成であると、捻じ込み固定用のネジ溝が凹部を兼用するため、供給流路の加工が容易である。   Although it is difficult to give a complicated shape to the inside of the passage-shaped hole, in this configuration, the screw channel for screwing and fixing also serves as the concave portion, so that the processing of the supply channel is easy.

本発明に係る工具ホルダの側面図である。It is a side view of the tool holder concerning the present invention. 工具ホルダの側断面図である。It is a sectional side view of a tool holder. 拡径空間付近の断面図である。It is sectional drawing of diameter expansion space vicinity. 拡径空間の外周部の拡大断面図である。It is an expanded sectional view of the perimeter part of diameter expansion space. 別実施形態における拡径空間付近の断面図である。It is sectional drawing of diameter-expansion space vicinity in another embodiment. 別実施形態に係る拡径空間の外周部における中間付近の拡大断面図である。It is an expanded sectional view of the middle vicinity in the outer peripheral part of diameter expansion space concerning another embodiment. 別実施形態に係る拡径空間の外周部における上流側付近の拡大断面図である。It is an expanded sectional view of the upstream vicinity in the outer peripheral part of the diameter expansion space which concerns on another embodiment. 別実施形態に係る拡径空間の外周部における下流側付近の拡大断面図である。It is an expanded sectional view of the downstream vicinity in the outer peripheral part of the diameter expansion space which concerns on another embodiment.

本発明を回転式の工具ホルダに適用した例を図面に基づいて説明する。   An example in which the present invention is applied to a rotary tool holder will be described with reference to the drawings.

〔概要〕
工具ホルダは、図1に示すごとく、先端部に刃具Pを取り付け可能であって、工作機械主軸Bに挿入支持されるホルダ本体1と、ホルダ本体1の挿入側である後端部に取り付けられるプルボルト5と、を備えている。ホルダ本体1は、工作機械主軸Bに備えられた不図示のモータによって、「中心軸」としての回転軸芯X回りに回転駆動可能である。プルボルト5の外周面を凹入して保持部51を形成してある。工作機械主軸Bの側のクランプCによって保持部51を挿入方向に把持しながら内部側へ引っ張って、ホルダ本体1を工作機械主軸Bに保持してある。ホルダ本体1の先端部にチャック2を備えており、チャック2によって刃具Pはホルダ本体1から取り外し自在である。工具ホルダの後端側であるプルボルト5のミスト供給口53から切削液ミストMを供給し、切削作業中に刃具Pの先端部からワークに対して噴出可能である。
〔Overview〕
As shown in FIG. 1, the tool holder can be attached with a cutting tool P at the tip, and is attached to the holder body 1 inserted and supported by the machine tool spindle B and the rear end on the insertion side of the holder body 1. And a pull bolt 5. The holder main body 1 can be driven to rotate about a rotation axis X as a “center axis” by a motor (not shown) provided on the machine tool spindle B. The holding portion 51 is formed by recessing the outer peripheral surface of the pull bolt 5. The holder main body 1 is held on the machine tool spindle B by being pulled inward while holding the holding part 51 in the insertion direction by the clamp C on the machine tool spindle B side. A chuck 2 is provided at the tip of the holder body 1, and the cutting tool P can be detached from the holder body 1 by the chuck 2. The cutting fluid mist M can be supplied from the mist supply port 53 of the pull bolt 5 which is the rear end side of the tool holder, and can be ejected from the tip of the cutting tool P to the workpiece during the cutting operation.

以下、プルボルト5の側を「上流側」、「後端側」と称し、刃具Pの側を「下流側」、「先端側」と称する。   Hereinafter, the pull bolt 5 side is referred to as “upstream side” and “rear end side”, and the cutting tool P side is referred to as “downstream side” and “front end side”.

〔チャック〕
図2に示すごとく、チャック2は、一般的な構成であり、大きくは、筒状の締付ナット21及び筒状のコレット22を備えている。締付ナット21は、ホルダ本体1に捻じ込み可能に外挿されている。締付ナット21を締め込むと、締付ナット21は回転軸芯Xの方向に沿って移動する。コレット22は、締付ナット21に対して相対回転可能に係止されつつ、回転軸芯Xに沿って摺動可能にホルダ本体1の内部に挿入されている。コレット22には、回転軸芯Xの方向に沿ったスリットが複数形成されている。締付ナット21を締め込むことにより、コレット22は、ホルダ本体1に対して相対回転することなく挿入され、ホルダ本体1の内部のテーパー面によるクサビ作用により径内方向に撓んで縮径される。この縮径により、コレット22の内部に挿入した刃具Pの全周を均一に挟持することできる。
〔Chuck〕
As shown in FIG. 2, the chuck 2 has a general configuration, and roughly includes a cylindrical tightening nut 21 and a cylindrical collet 22. The tightening nut 21 is externally inserted into the holder body 1 so as to be able to be screwed. When the tightening nut 21 is tightened, the tightening nut 21 moves along the direction of the rotation axis X. The collet 22 is inserted into the holder main body 1 so as to be slidable along the rotation axis X while being locked so as to be rotatable relative to the tightening nut 21. A plurality of slits are formed in the collet 22 along the direction of the rotation axis X. By tightening the tightening nut 21, the collet 22 is inserted without rotating relative to the holder main body 1, and is bent and reduced in diameter by a wedge action by a tapered surface inside the holder main body 1. . With this reduced diameter, the entire circumference of the cutting tool P inserted into the collet 22 can be clamped uniformly.

〔供給流路〕
切削液ミストMは、図2に示すごとく、プルボルト5の後端側のミスト供給口53から供給され、ホルダ本体1の内部に設けた供給流路10及び刃具Pの内部に設けた不図示の孔を流通し、刃具Pの先端部から噴出される。切削液ミストMは、不図示のミスト発生部において、切削液Lと圧縮空気との混合によって発生し、ある程度の気流速度を持ってミスト供給口53に圧送供給される。供給流路10は、プルボルト5の内部に穿孔した孔部52、第3ノズル6の内部に穿孔した孔部61、パイプ7、第1ノズル3の内部に穿孔した孔部31、拡径空間12、「絞り部材」としての第2ノズル4の内部に穿孔した孔部41によって構成されている。
[Supply channel]
As shown in FIG. 2, the cutting fluid mist M is supplied from a mist supply port 53 on the rear end side of the pull bolt 5, and is provided in a supply flow path 10 provided in the holder body 1 and in a cutting tool P (not shown). It circulates through the hole and is ejected from the tip of the blade P. The cutting fluid mist M is generated by mixing the cutting fluid L and compressed air in a mist generating section (not shown), and is fed by pressure to the mist supply port 53 with a certain air velocity. The supply flow path 10 includes a hole 52 drilled in the pull bolt 5, a hole 61 drilled in the third nozzle 6, a pipe 7, a hole 31 drilled in the first nozzle 3, and a diameter expansion space 12. The hole 41 is formed in the second nozzle 4 as a “throttle member”.

各部材の組付け方法としては、ホルダ本体1の内部に回転軸芯Xに沿った孔部11を穿孔し、その孔部11に対して先端側から、第1ノズル3、第2ノズル4を順に挿入固定し、後端側からパイプ7、第3ノズル6、プルボルト5を順に挿入固定する。   As a method for assembling each member, a hole 11 along the rotation axis X is drilled in the holder body 1, and the first nozzle 3 and the second nozzle 4 are connected to the hole 11 from the tip side. The pipe 7, the third nozzle 6, and the pull bolt 5 are inserted and fixed in order from the rear end side.

孔部11のうち中央部分から先端部付近にかけてネジ溝13を形成してある。第1ノズル3及び第2ノズル4は、ホルダ本体1の孔部11に対して捻じ込みによって挿入固定可能であると共に、回転軸芯X方向における位置を自在に調整可能である。第1ノズル3及び第2ノズル4と、ホルダ本体1の孔部11との間には殆ど隙間はない。ネジ溝13は、拡径空間12の外周部において、回転軸芯Xとほぼ直交(交差)する方向に沿った形状で、回転軸芯Xに沿って複数形成されており、本発明に係る「凹部」に相当する。   A screw groove 13 is formed from the center portion to the vicinity of the tip portion of the hole portion 11. The first nozzle 3 and the second nozzle 4 can be inserted and fixed by being screwed into the hole 11 of the holder body 1 and can be freely adjusted in position in the rotation axis X direction. There is almost no gap between the first nozzle 3 and the second nozzle 4 and the hole 11 of the holder body 1. A plurality of screw grooves 13 are formed along the rotation axis X in a shape along the direction substantially orthogonal (crossing) with the rotation axis X at the outer peripheral portion of the diameter-enlarged space 12. Corresponds to “concave”.

第1ノズル3の孔部31は回転軸芯Xに沿っており、上流側の端部における流路断面積が最も大きく、下流側に向けてテーパー状に徐々に縮径されている。孔部31のうち、テーパー状に縮径される部分が本発明に係る「第1縮径部32」に相当し、第1ノズル3の下流側の端部が本発明に係る「拡径部33」に相当する。また、拡径部33は回転軸芯Xとほぼ直交する面であり、孔部31の下流側の端縁は角張っている。この角張った部分が、本発明に係る「第1段部34」に相当する。   The hole 31 of the first nozzle 3 is along the rotation axis X, has the largest flow path cross-sectional area at the upstream end, and is gradually reduced in diameter in a tapered shape toward the downstream. Of the hole 31, a portion that is reduced in a taper shape corresponds to the “first reduced diameter portion 32” according to the present invention, and an end portion on the downstream side of the first nozzle 3 is an “expanded diameter portion” according to the present invention. 33 ". Further, the enlarged diameter portion 33 is a surface substantially orthogonal to the rotation axis X, and the downstream edge of the hole 31 is angular. This angular portion corresponds to the “first step portion 34” according to the present invention.

第2ノズル4の孔部41は回転軸芯Xに沿っており、上流側の端部における流路断面積が最も大きく、下流側に向けてテーパー状に徐々に縮径され、下流側の端部付近から再びテーパー状に拡径されている。第2ノズル4を第1ノズル3と離間させて位置決めし、拡径空間12を構成してある。孔部41のうち、テーパー状に縮径される部分が、本発明に係る「第2縮径部42」に相当する。また、第2ノズル4の上流側の端部は、回転軸芯Xとほぼ直交する面であり、孔部41の上流側の端縁は角張っている。この角張った部分が、本発明に係る「第2段部43」に相当する。   The hole 41 of the second nozzle 4 is along the rotational axis X, has the largest flow path cross-sectional area at the upstream end, and is gradually reduced in a taper shape toward the downstream side. From the vicinity of the portion, the diameter is increased again in a tapered shape. The second nozzle 4 is positioned so as to be separated from the first nozzle 3, thereby forming an enlarged diameter space 12. A portion of the hole 41 that is reduced in a taper shape corresponds to the “second reduced diameter portion 42” according to the present invention. Further, the upstream end portion of the second nozzle 4 is a surface substantially orthogonal to the rotation axis X, and the upstream end edge of the hole portion 41 is angular. This angular portion corresponds to the “second step portion 43” according to the present invention.

第2ノズル4の孔部41の拡径された部分に、全体的に弾性部材44を固着してある。チャック2で刃具Pを固定する際は、弾性部材44に当接するまで刃具Pを挿入する。これにより、孔部の拡径された部分を刃具Pの位置決め部材として使用しつつも、弾性部材44が緩衝材となって第2ノズル4と刃具Pとは互いにガタつかず、また、切削液ミストの漏れを防ぐことができる。   The elastic member 44 is fixed to the entire diameter-enlarged portion of the hole 41 of the second nozzle 4. When the cutting tool P is fixed by the chuck 2, the cutting tool P is inserted until it comes into contact with the elastic member 44. Accordingly, the elastic member 44 serves as a buffer material and the second nozzle 4 and the cutting tool P do not rattle each other while the diameter-enlarged portion of the hole is used as a positioning member for the cutting tool P. Mist leakage can be prevented.

第3ノズル6の孔部61は回転軸芯Xに沿っており、上流側の端部付近で、下流側に向けてテーパー状に縮径され、その後は一定の流路断面積を有している。パイプ7は、全長に亘って一定の流路断面積を有する。パイプ7は、孔部61に圧入されており、第3ノズル6とパイプ7とは一体となっている。ホルダ本体1の孔部11の中間付近に段差を形成し、その段差に対して後端側から挿入した環状のエンド部材8を係止させてある。   The hole 61 of the third nozzle 6 is along the rotation axis X, and is tapered toward the downstream side in the vicinity of the upstream end, and thereafter has a constant channel cross-sectional area. Yes. The pipe 7 has a constant flow path cross-sectional area over its entire length. The pipe 7 is press-fitted into the hole 61, and the third nozzle 6 and the pipe 7 are integrated. A step is formed near the middle of the hole 11 of the holder main body 1, and an annular end member 8 inserted from the rear end side is locked to the step.

第3ノズル6の外径は、ホルダ本体1の孔部11の内径よりも多少小さく設定してある。第3ノズル6及びパイプ7は、パイプ7にスプリング9を外装した状態で、ホルダ本体1の孔部11に挿入する。最後にプルボルト5をホルダ本体1の孔部11に捻じ込み固定し、第3ノズル6及びパイプ7がホルダ本体1の孔部から抜け出しを防いでいる。スプリング9が第3ノズル6とエンド部材8とに亘って配設されているので、スプリング9の付勢力によって、第3ノズル6はプルボルト5に接触するよう後端側に常時付勢され、プルボルト5と第3ノズル6との間に隙間が生じることはない。さらに、第3ノズル6の後端側の端部にはシール部材62が配設されているため、プルボルト5と第3ノズル6との間から切削液ミストMが漏れ出すことはない。   The outer diameter of the third nozzle 6 is set slightly smaller than the inner diameter of the hole 11 of the holder body 1. The third nozzle 6 and the pipe 7 are inserted into the hole 11 of the holder main body 1 in a state where the spring 7 is sheathed on the pipe 7. Finally, the pull bolt 5 is screwed into the hole 11 of the holder body 1 and fixed, and the third nozzle 6 and the pipe 7 are prevented from coming out of the hole of the holder body 1. Since the spring 9 is disposed across the third nozzle 6 and the end member 8, the third nozzle 6 is constantly urged toward the rear end side so as to contact the pull bolt 5 by the urging force of the spring 9, and the pull bolt There is no gap between 5 and the third nozzle 6. Further, since the seal member 62 is disposed at the rear end side of the third nozzle 6, the cutting fluid mist M does not leak from between the pull bolt 5 and the third nozzle 6.

パイプ7の外径は、第1縮径部32の上流側の外径よりも小さく、かつ、第1縮径部32の下流側の外径よりも大きい。よって、パイプ7の下流側の端部は第1縮径部32の内周面に嵌り込み、供給流路10は円滑に接続される。なお、工作機械主軸Bの仕様によってプルボルト5の回転軸芯Xの方向の長さが変更されることがある。特に、プルボルト5の長さが短くなった場合は、スプリング9の作用によってプルボルト5と第3ノズル6との間に隙間が生じることはないが、第3ノズル6及びパイプ7の全長が一定であるため、パイプ7と第1縮径部32との間に隙間が生じ得る。しかし、切削液ミストMの気流速度は速いため、切削液ミストMがその隙間から漏れ出すことは殆どない。   The outer diameter of the pipe 7 is smaller than the outer diameter on the upstream side of the first reduced diameter portion 32 and larger than the outer diameter on the downstream side of the first reduced diameter portion 32. Therefore, the downstream end of the pipe 7 is fitted into the inner peripheral surface of the first reduced diameter portion 32, and the supply flow path 10 is smoothly connected. Depending on the specifications of the machine tool spindle B, the length of the pull bolt 5 in the direction of the rotational axis X may be changed. In particular, when the length of the pull bolt 5 is shortened, there is no gap between the pull bolt 5 and the third nozzle 6 due to the action of the spring 9, but the total length of the third nozzle 6 and the pipe 7 is constant. Therefore, a gap may be generated between the pipe 7 and the first reduced diameter portion 32. However, since the airflow speed of the cutting fluid mist M is fast, the cutting fluid mist M hardly leaks from the gap.

供給流路10はこのように構成され、供給流路10の流路断面積は、ミスト供給口53から第3ノズル6の途中までにおいて一定であり、第3ノズル6の途中でテーパー状に絞られ、その後はパイプ7の下流側の端部まで一定である。さらに、その流路断面積は、第1縮径部32でテーパー状に絞られ、拡径部33で一気に拡張される。さらに、供給流路10の流路断面積は、拡径空間12においては一定であるが、第2段部43において再び一気に絞られ、第2縮径部42でテーパー状に絞られた後に、刃具Pの後端側の端面に対応するよう再度拡張される。   The supply flow path 10 is configured as described above, and the flow path cross-sectional area of the supply flow path 10 is constant from the mist supply port 53 to the middle of the third nozzle 6 and is tapered in the middle of the third nozzle 6. After that, it is constant up to the downstream end of the pipe 7. Further, the flow passage cross-sectional area is narrowed in a tapered shape by the first reduced diameter portion 32 and is expanded at once by the enlarged diameter portion 33. Further, the flow passage cross-sectional area of the supply flow passage 10 is constant in the diameter-expanded space 12, but after being narrowed again at the second step portion 43 and tapered at the second diameter-reduced portion 42, It is expanded again so as to correspond to the end surface on the rear end side of the cutting tool P.

なお、図2から明らかなように、拡径空間12における流路断面積は一番広く、第2段部43における流路断面積は、第1段部34の上流側及び第1段部34の流路断面積よりも大きい。   As is clear from FIG. 2, the flow passage cross-sectional area in the enlarged diameter space 12 is the largest, and the flow passage cross-sectional area in the second step portion 43 is the upstream side of the first step portion 34 and the first step portion 34. It is larger than the flow path cross-sectional area.

〔切削液ミストの流通〕
図2に示すごとく、ミスト供給口53から供給された切削液ミストMは、下流側に向けて流通し、先ずは第3ノズル6の縮径部分において円滑に加速される。そして、その気流速度を維持しつつ流通し、第1縮径部32によってさらに円滑に加速される。
[Distribution of cutting fluid mist]
As shown in FIG. 2, the cutting fluid mist M supplied from the mist supply port 53 flows toward the downstream side, and is first accelerated smoothly at the reduced diameter portion of the third nozzle 6. And it distribute | circulates, maintaining the airflow speed, and is accelerated more smoothly by the 1st reduced diameter part 32. FIG.

作業中において工具ホルダは回転しているため、切削液ミストMには多少なりと遠心力が作用し、切削液ミストMは渦を巻きながら回転軸芯Xに沿って上流側から下流側に流通する。切削液ミストMの一部は、流通途中において供給通路の外周面に付着・堆積し、液化する。液化した切削液Lは、遠心力によって供給通路の外周面に貼り付きながら、切削液ミストMの気流によって下流側に押され、図3に示すごとく、拡径空間12の外周部に溜まる。即ち、拡径空間12に露出するネジ溝13に切削液Lが溜まる。切削液Lは、遠心力、切削液ミストMの気流、自身の表面張力等の影響により、図3及び図4に示すような表面形状となって、拡径空間12の外周部及び各ネジ溝13に溜まる。   Since the tool holder is rotating during the operation, a centrifugal force is applied to the cutting fluid mist M somewhat, and the cutting fluid mist M flows from the upstream side to the downstream side along the rotation axis X while swirling. To do. A part of the cutting fluid mist M adheres to and accumulates on the outer peripheral surface of the supply passage in the middle of circulation. The liquefied cutting fluid L is pushed downstream by the air current of the cutting fluid mist M while adhering to the outer peripheral surface of the supply passage by centrifugal force, and accumulates in the outer peripheral portion of the expanded space 12 as shown in FIG. That is, the cutting fluid L accumulates in the screw groove 13 exposed to the enlarged space 12. The cutting fluid L has a surface shape as shown in FIGS. 3 and 4 due to centrifugal force, the air current of the cutting fluid mist M, its own surface tension, etc. Accumulate at 13.

拡径空間12が孔部31に対してかなり広いため、拡径部33の気圧に対して孔部31の気圧の方が高まっている。したがって、第1縮径部32によって加速された切削液ミストMは、図3に示すごとく、孔部から拡径空間12に多少放射状に拡散しつつ勢い良く噴出す。この結果、回転軸芯X付近の気流はそのまま回転軸芯Xに沿って孔部41に向って直線的に流下するが、第2宿径部の勾配がきついので、一部の切削液ミストMは第2縮径部42にぶつかり、径外方向に向けて対流する。また、角張った第1段部34を備えているので、気流と供給流路10との縁が切れて、切削液ミストMが拡径部33に沿いにくく、上述の気流が生じやすい。   Since the expanded diameter space 12 is considerably wider than the hole 31, the pressure of the hole 31 is higher than the pressure of the expanded diameter 33. Therefore, the cutting fluid mist M accelerated by the first reduced diameter portion 32 is ejected vigorously while being diffused somewhat radially from the hole portion into the enlarged diameter space 12, as shown in FIG. As a result, the air flow around the rotation axis X flows straight down along the rotation axis X toward the hole 41, but the gradient of the second staying portion is tight, so that part of the cutting fluid mist M Hits the second reduced diameter portion 42 and convects in the radially outward direction. Moreover, since the square stepped first portion 34 is provided, the edge between the air flow and the supply flow path 10 is cut, and the cutting fluid mist M is unlikely to follow the enlarged diameter portion 33, so that the above-described air flow is likely to occur.

図4に示すごとく、対流した切削液ミストMの気流がネジ溝13に溜まった切削液Lの表面を高速でかすめ通る。これにより、ネジ溝13の歯先において、切削液Lが巻き上げられて、しぶきを上げるように径内方向に飛沫し、再ミスト化する。仮に滴状に飛沫したとしても、径内方向に向けて飛沫するので、回転軸芯X付近を直進する乱れの無い、かつ、気流速度の速い切削液ミストMの気流に弾かれて拡散し、切削液Lは確実に再ミスト化される。   As shown in FIG. 4, the air current of the convected cutting fluid mist M passes through the surface of the cutting fluid L accumulated in the thread groove 13 at a high speed. As a result, the cutting fluid L is wound up at the tooth tip of the screw groove 13 and splashes in the radially inward direction so as to increase the splash, thereby re-misting. Even if it is splashed in the form of droplets, it will splash toward the inner radial direction, so there will be no turbulence that goes straight in the vicinity of the rotation axis X, and it will be bounced and diffused by the air current of the cutting fluid mist M that has a high air velocity, The cutting fluid L is reliably re-misted.

なお、第2縮径部42によって供給流路10が縮径されるので、再ミスト化した切削液ミストMを含んだ切削液ミストMの気流速度が加速され、ミスト同士が凝集しにくく、再液化が防止される。   In addition, since the supply flow path 10 is reduced in diameter by the second reduced diameter portion 42, the air flow velocity of the cutting fluid mist M including the remisted cutting fluid mist M is accelerated, and the mists are less likely to agglomerate. Liquefaction is prevented.

また、第2ノズル4部が回転軸芯X方向に移動可能であるため、例えば、切削液ミストMの噴出量(噴出圧)を増加すると、気流の流れが若干変わる可能性があるが、第2ノズル4の位置を変えることによって、最適な再ミスト化を実現可能な状態に調整することができる。   In addition, since the second nozzle 4 portion is movable in the direction of the rotation axis X, for example, if the amount of ejection of the cutting fluid mist M (ejection pressure) is increased, the flow of the airflow may be slightly changed. By changing the position of the two nozzles 4, it is possible to adjust to a state where optimum re-misting can be realized.

〔別実施形態〕
上述の実施形態よりも、第2ノズル4における第2縮径部42の勾配を緩く設定した例について図5乃至図8に基づいて説明する。その他の構成については上述の実施形態と同じであるため説明しない。なお、上述の実施形態の構成と同じ構成については同じ符号を付すこととする。
[Another embodiment]
An example in which the gradient of the second reduced diameter portion 42 in the second nozzle 4 is set to be gentler than that in the above-described embodiment will be described with reference to FIGS. Since other configurations are the same as those in the above-described embodiment, they will not be described. In addition, the same code | symbol shall be attached | subjected about the same structure as the structure of the above-mentioned embodiment.

第1縮径部32によって加速された切削液ミストMは、図5に示すごとく、孔部から拡径空間12に放射状に拡散しつつ勢い良く噴出す。この結果、上述の実施形態に示したような気流状態が生じることもあるが、回転軸芯X付近の気流がそのまま回転軸芯Xに沿って孔部41に向って直線的に流下し、かつ、一部の切削液ミストMがネジ溝13に対して吹き付けられると共に、他の一部の切削液ミストMが拡径部33に対して吹き返して対流する場合がある。この場合の気流の流れについて以下に詳述する。   As shown in FIG. 5, the cutting fluid mist M accelerated by the first reduced diameter portion 32 is ejected vigorously while diffusing radially from the hole portion into the enlarged diameter space 12. As a result, an airflow state as shown in the above-described embodiment may occur, but the airflow in the vicinity of the rotation axis X flows straight down toward the hole 41 along the rotation axis X, and In some cases, a part of the cutting fluid mist M is blown against the screw groove 13 and another part of the cutting fluid mist M is blown back against the enlarged diameter portion 33 to be convected. The flow of the airflow in this case will be described in detail below.

図6に示すごとく、回転軸芯X方向における拡径部33の中間付近では、ネジ溝13に溜まった切削液Lの表面に対して、拡散された切削液ミストMの気流が勢い良くぶつかり、また、高速でかすめ通る。これにより、ネジ溝13の歯先において、切削液Lが巻き上げられて、しぶきを上げるように径内方向に飛沫し、再ミスト化する。仮に滴状に飛沫したとしても、径内方向に向けて飛沫するので、第2縮径部42に向って直進する乱れの無い気流速度の速い切削液ミストMの気流に弾かれて拡散し、切削液Lは確実に再ミスト化される。   As shown in FIG. 6, in the vicinity of the middle of the enlarged diameter portion 33 in the rotation axis X direction, the diffused air flow of the cutting fluid mist M collides with the surface of the cutting fluid L accumulated in the screw groove 13. In addition, it passes at high speed. As a result, the cutting fluid L is wound up at the tooth tip of the screw groove 13 and splashes in the radially inward direction so as to increase the splash, thereby re-misting. Even if splashed in the form of droplets, it splashes in the radial direction, so it is bounced and diffused by the air current of the cutting fluid mist M that travels straight toward the second diameter-reduced portion 42 and has no turbulence and has a high air velocity. The cutting fluid L is reliably re-misted.

図7に示すごとく、回転軸芯X方向における拡径部33の上流側付近でも同様に、対流する切削液ミストMの気流が、ネジ溝13に溜まった切削液Lを上流側へ巻き戻すように高速でかすめ通る。これにより、ネジ溝13の歯先において、切削液Lが巻き上げられてしぶきを上げるように径内方向に飛沫し、再ミスト化する。   As shown in FIG. 7, similarly, the air current of the convective cutting fluid mist M is rewound upstream of the cutting fluid L accumulated in the screw groove 13 in the vicinity of the upstream side of the enlarged diameter portion 33 in the rotation axis X direction. Passes fast at high speed. Thereby, at the tooth tip of the screw groove 13, the cutting fluid L is wound up and splashes in the radial inner direction so as to raise the splash, and is re-misted.

図8に示すごとく、回転軸芯X方向における拡径部33の下流側付近では、放射状に分散された切削液ミストMの気流が、回転軸芯X付近を流通する気流に合流するように径内方向に軌道修正しながら、ネジ溝13に溜まった切削液Lの表面を下流側へ押す。そして、第二段部において、切削液Lが巻き上げられてしぶきを上げるように径内方向に飛沫し、再ミスト化する。   As shown in FIG. 8, in the vicinity of the downstream side of the diameter-expanded portion 33 in the direction of the rotation axis X, the diameter of the radially dispersed air current of the cutting fluid mist M merges with the airflow flowing in the vicinity of the rotation axis X. While correcting the trajectory in the inward direction, the surface of the cutting fluid L accumulated in the thread groove 13 is pushed downstream. Then, in the second step portion, the cutting fluid L is wound up and splashes in the radial direction so as to raise the splash, and re-misted.

上述の実施形態と本実施形態とについての説明から分かるように、切削液ミストMの気流速度の変更だけで無く、第2縮径部42の勾配や、第1ノズル3と第2ノズル4との離間距離(拡径空間12の回転軸芯方向の長さ)等の諸条件の変更によっても、切削液ミストMの気流の流れが変わる可能性がある。しかし、本発明であると、どのような気流の流れが生じても、切削液ミストMの最適な再ミスト化が実現可能である。   As can be understood from the description of the above-described embodiment and the present embodiment, not only the change in the air flow velocity of the cutting fluid mist M, but also the gradient of the second reduced diameter portion 42, the first nozzle 3 and the second nozzle 4, The flow of the air current of the cutting fluid mist M may also be changed by changing various conditions such as the separation distance (the length of the diameter expansion space 12 in the direction of the rotation axis). However, according to the present invention, the optimum re-misting of the cutting fluid mist M can be realized regardless of the flow of airflow.

〔その他の別実施形態〕
(1)上述の実施形態では、本発明を回転式の工具ホルダに適用した例について説明したが、これに限られるものではない。本発明は、非回転式の工具ホルダに適用しても良い。
[Other alternative embodiments]
(1) In the above-described embodiment, an example in which the present invention is applied to a rotary tool holder has been described. However, the present invention is not limited to this. The present invention may be applied to a non-rotating tool holder.

(2)上述の実施形態では、刃具Pの先端部から切削液ミストMを噴出する構成としたが、刃具Pを取り付けずに、コレット22の先端部から切削液ミストMを噴出する構成であっても良い。 (2) In the above-described embodiment, the cutting fluid mist M is ejected from the distal end portion of the cutting tool P. However, the cutting fluid mist M is ejected from the distal end portion of the collet 22 without attaching the cutting tool P. May be.

(3)上述の実施形態では、「凹部」として第2ノズル4を捻じ込むためのネジ溝13を一例として挙げたが、これに限られるものではない。拡径空間12の外周部において、回転軸芯Xと略直交する方向に沿って、回転軸芯Xに沿って複数形成されている凹部であれば、例えば、周方向に沿って断片的に設けた凹部であっても良い。また、凹部と凸部とは表裏一体の関係にあり、凹部ではなく、凸部を形成してあっても良い。 (3) In the above-described embodiment, the thread groove 13 for screwing the second nozzle 4 as the “concave portion” is described as an example, but the present invention is not limited to this. In the outer peripheral portion of the diameter expansion space 12, if a plurality of concave portions are formed along the rotation axis X along the direction substantially orthogonal to the rotation axis X, for example, provided in pieces along the circumferential direction. It may be a concave portion. Further, the concave portion and the convex portion are in an integrated relationship, and a convex portion may be formed instead of the concave portion.

本発明は、先端部に刃具を取り付け可能であるホルダ本体と、ホルダ本体の中心軸に沿ってホルダ本体の内部に設けられ、ホルダ本体の後端側から先端部に向けて切削液ミストを供給する供給流路とを備えた各種の工具ホルダに適用可能である。   The present invention provides a holder main body capable of attaching a cutting tool to a tip end portion, and is provided inside the holder main body along the central axis of the holder main body, and supplies cutting fluid mist from the rear end side of the holder main body toward the tip end portion. The present invention can be applied to various tool holders including a supply flow path.

1 ホルダ本体
4 第2ノズル(絞り部材)
10 供給通路
12 拡径空間
13 ネジ溝(凹部)
32 第1縮径部
33 拡径部
34 第1段部
42 第2縮径部
43 第2段部
X 回転軸芯(中心軸)
P 刃具
M 切削液ミスト
1 Holder body 4 Second nozzle (aperture member)
10 Supply passage 12 Expanded space 13 Thread groove (recess)
32 1st diameter-reduced part 33 diameter-expanded part 34 1st step part 42 2nd diameter-reduced part 43 2nd step part X Rotation axis (center axis)
P Cutting tool M Cutting fluid mist

Claims (7)

先端部に刃具を取り付け可能であるホルダ本体と、
前記ホルダ本体の中心軸に沿って前記ホルダ本体の内部に設けられ、前記ホルダ本体の後端側から前記先端部に向けて切削液ミストを供給する供給流路と、を備え、
前記供給流路に上流側から下流側に向けて順に、前記供給流路の流路断面積を絞る第1縮径部と、前記第1縮径部によって絞られた前記流路断面積を少なくとも前記第1縮径部の上流側の前記流路断面積よりも拡張する拡径部と、前記拡径部によって拡張された前記流路断面積を有する拡径空間と、前記拡径空間の前記流路断面積を絞る第2縮径部と、を備え、
前記拡径空間の外周部に、前記中心軸と交差する方向に沿った凹部を、前記中心軸に沿って複数形成してある工具ホルダ。
A holder body capable of attaching a cutting tool to the tip,
A supply flow path that is provided inside the holder main body along the central axis of the holder main body and supplies a cutting fluid mist from the rear end side of the holder main body toward the front end portion,
In order from the upstream side to the downstream side of the supply channel, a first reduced diameter portion for reducing the flow path cross-sectional area of the supply flow channel, and at least the flow path cross-sectional area reduced by the first reduced diameter portion A diameter-enlarging portion that expands more than the channel cross-sectional area upstream of the first diameter-reducing portion, a diameter-enlarging space that has the channel cross-sectional area expanded by the diameter-enlarging portion, and the diameter-enlarging space A second reduced diameter portion for reducing the cross-sectional area of the flow path,
A tool holder in which a plurality of recesses along the direction intersecting the central axis are formed along the central axis in an outer peripheral portion of the diameter expansion space.
前記第1縮径部及び前記第2縮径部は、前記流路断面積を徐々に絞るよう設定され、かつ、前記第1縮径部と前記拡径部との境界部分に第1段部を備えた請求項1に記載の工具ホルダ。   The first reduced diameter portion and the second reduced diameter portion are set so as to gradually reduce the flow path cross-sectional area, and a first step portion is formed at a boundary portion between the first reduced diameter portion and the enlarged diameter portion. The tool holder according to claim 1, comprising: 前記拡径空間と前記第2縮径部との境界部分に第2段部を備えた請求項2に記載の工具ホルダ。   The tool holder according to claim 2, further comprising a second step portion at a boundary portion between the diameter-expanded space and the second reduced-diameter portion. 前記第2段部における前記流路断面積は、少なくとも前記第1段部における前記流路断面積よりも大きい請求項3に記載の工具ホルダ。   The tool holder according to claim 3, wherein the flow path cross-sectional area in the second step portion is at least larger than the flow path cross-sectional area in the first step portion. 前記中心軸の方向において、前記第2段部は位置変更可能である請求項3または4に記載の工具ホルダ。   The tool holder according to claim 3 or 4, wherein the position of the second step portion can be changed in the direction of the central axis. 前記供給流路に対して挿入固定可能な筒状の絞り部材を備え、
前記絞り部材の挿入側の端部に前記第2段部を備え、かつ、前記絞り部材の内周部に前記第2縮径部を形成してある請求項3から5の何れか一項に記載の工具ホルダ。
A cylindrical throttle member that can be inserted and fixed to the supply flow path,
6. The device according to claim 3, wherein the second stepped portion is provided at an end portion on the insertion side of the throttle member, and the second reduced diameter portion is formed on an inner peripheral portion of the throttle member. Tool holder as described.
前記絞り部材は捻じ込みによって前記供給流路に対して挿入固定可能であって、前記ホルダ本体の内周部に形成した捻じ込み用のネジ溝が前記凹部である請求項6に記載の工具ホルダ。   The tool holder according to claim 6, wherein the throttle member can be inserted and fixed to the supply flow path by screwing, and a screw groove for screwing formed in an inner peripheral portion of the holder body is the concave portion. .
JP2010240738A 2010-10-27 2010-10-27 Tool holder Expired - Fee Related JP5581552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240738A JP5581552B2 (en) 2010-10-27 2010-10-27 Tool holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240738A JP5581552B2 (en) 2010-10-27 2010-10-27 Tool holder

Publications (2)

Publication Number Publication Date
JP2012091274A JP2012091274A (en) 2012-05-17
JP5581552B2 true JP5581552B2 (en) 2014-09-03

Family

ID=46385220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240738A Expired - Fee Related JP5581552B2 (en) 2010-10-27 2010-10-27 Tool holder

Country Status (1)

Country Link
JP (1) JP5581552B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013108787A1 (en) * 2013-08-14 2015-02-19 Franz Haimer Maschinenbau Kg Tool assembly and tool holder for such a tool assembly
KR102169544B1 (en) * 2018-12-28 2020-10-23 한국야금 주식회사 Cutting tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158285A (en) * 1998-11-30 2000-06-13 Toyoda Mach Works Ltd Main spindle device
JP3671392B2 (en) * 2001-02-16 2005-07-13 ホーコス株式会社 Machine tool spindle equipment
JP4604986B2 (en) * 2005-11-30 2011-01-05 日産自動車株式会社 Deep hole processing equipment

Also Published As

Publication number Publication date
JP2012091274A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
US8393830B2 (en) Cylindrical rotating tool with internal fluid passage and machining method using the same
JP6283157B2 (en) Cutting tools
KR102064900B1 (en) Coolant delivery system, skiving machine equipped with the system, and skiving method performed with the system
JP2011067875A (en) Rotary cutting apparatus
JP6270878B2 (en) Rotating atomizing coating device and spray head
JP5581552B2 (en) Tool holder
JP2009504979A (en) Compressor cleaning
KR20190070236A (en) Nozzle, nozzle module, and machine tools provided with them
JP5438293B2 (en) Coolant supply device
JP3364802B2 (en) Spindle device of machine tool
JP6362802B1 (en) Cutting tools
JP2008075738A (en) Bearing device
US11399916B2 (en) Mixing chamber and handpiece
US20050029423A1 (en) Tool holder
JP2000317768A (en) Tool holder
JP4177079B2 (en) Collet for collet chuck
JP2003266274A (en) Liquid supply structure for tool
JP2011016203A (en) Chuck device and nut for chuck device
JP6906235B2 (en) Fluid nozzle
WO2002064310A1 (en) Main shaft device for machine tools
JP6395710B2 (en) Cutting tool capable of rotational drive
JP6032466B2 (en) Dicing machine
KR20030015395A (en) Main shaft device for machine tools
JP2002224930A (en) Tool holder equipped with fluid passage
JP2000158285A (en) Main spindle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140627

R150 Certificate of patent or registration of utility model

Ref document number: 5581552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees