JP5577980B2 - Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink - Google Patents
Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink Download PDFInfo
- Publication number
- JP5577980B2 JP5577980B2 JP2010208350A JP2010208350A JP5577980B2 JP 5577980 B2 JP5577980 B2 JP 5577980B2 JP 2010208350 A JP2010208350 A JP 2010208350A JP 2010208350 A JP2010208350 A JP 2010208350A JP 5577980 B2 JP5577980 B2 JP 5577980B2
- Authority
- JP
- Japan
- Prior art keywords
- metal plate
- heat sink
- ceramic substrate
- power module
- additive element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 301
- 238000000034 method Methods 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 229910052751 metal Inorganic materials 0.000 claims description 412
- 239000002184 metal Substances 0.000 claims description 412
- 239000000919 ceramic Substances 0.000 claims description 188
- 239000000654 additive Substances 0.000 claims description 157
- 230000000996 additive effect Effects 0.000 claims description 157
- 239000010949 copper Substances 0.000 claims description 124
- 229910052802 copper Inorganic materials 0.000 claims description 68
- 229910052782 aluminium Inorganic materials 0.000 claims description 61
- 238000005304 joining Methods 0.000 claims description 59
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 58
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 44
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 33
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 claims description 25
- 229910052710 silicon Inorganic materials 0.000 claims description 24
- 229910052725 zinc Inorganic materials 0.000 claims description 23
- 229910052709 silver Inorganic materials 0.000 claims description 22
- 229910052744 lithium Inorganic materials 0.000 claims description 21
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- 239000006104 solid solution Substances 0.000 claims description 11
- 238000004544 sputter deposition Methods 0.000 claims description 11
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 239000007769 metal material Substances 0.000 claims description 7
- 238000007747 plating Methods 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 238000007740 vapor deposition Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 description 22
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 16
- 238000001816 cooling Methods 0.000 description 15
- 229910000679 solder Inorganic materials 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 238000002844 melting Methods 0.000 description 10
- 238000007711 solidification Methods 0.000 description 10
- 230000008023 solidification Effects 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 238000004453 electron probe microanalysis Methods 0.000 description 6
- 238000005219 brazing Methods 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910017944 Ag—Cu Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910020836 Sn-Ag Inorganic materials 0.000 description 3
- 229910020988 Sn—Ag Inorganic materials 0.000 description 3
- 229910018956 Sn—In Inorganic materials 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910017945 Cu—Ti Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 208000005156 Dehydration Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/021—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/04—Ceramic interlayers
- C04B2237/06—Oxidic interlayers
- C04B2237/064—Oxidic interlayers based on alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/124—Metallic interlayers based on copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/125—Metallic interlayers based on noble metals, e.g. silver
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/126—Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
- C04B2237/127—The active component for bonding being a refractory metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/366—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/368—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/60—Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/704—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/706—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/467—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
この発明は、大電流、高電圧を制御する半導体装置に用いられるヒートシンク付パワーモジュール用基板、パワーモジュール及びヒートシンク付パワーモジュール用基板の製造方法に関するものである。 The present invention relates to a power module substrate with a heat sink used in a semiconductor device that controls a large current and a high voltage, a power module, and a method for manufacturing a power module substrate with a heat sink.
半導体素子の中でも電力供給のためのパワーモジュールは、発熱量が比較的高いため、これを搭載する基板としては、例えば、AlN(窒化アルミ)、Al2O3(アルミナ)、Si3N4(窒化ケイ素)などからなるセラミックス基板の一方の面側に第一の金属板が接合されるとともに、セラミックス基板の他方の面側に第二の金属板を介してヒートシンクが接続されたヒートシンク付パワーモジュール用基板が用いられる。
このようなヒートシンク付パワーモジュール基板では、第一の金属板に回路パターンが形成され、この第一の金属板の上に、はんだ材を介してパワー素子の半導体チップが搭載される。
Among semiconductor elements, a power module for supplying power has a relatively high calorific value, and for example, AlN (aluminum nitride), Al 2 O 3 (alumina), Si 3 N 4 ( A power module with a heat sink in which a first metal plate is joined to one surface side of a ceramic substrate made of silicon nitride) and the like, and a heat sink is connected to the other surface side of the ceramic substrate via a second metal plate A substrate is used.
In such a power module substrate with a heat sink, a circuit pattern is formed on a first metal plate, and a semiconductor chip of a power element is mounted on the first metal plate via a solder material.
例えば、特許文献1には、第一の金属板及び第二の金属板を銅板とし、この銅板をDBC法によってセラミックス基板に直接接合してなるパワーモジュール用基板が提案されている。また、特許文献1の第1図に示すように、このパワーモジュール用基板に、有機系耐熱性接着剤用いてアルミニウム製のヒートシンクを接合することで、ヒートシンク付パワーモジュール用基板が構成されている。 For example, Patent Document 1 proposes a power module substrate in which a first metal plate and a second metal plate are copper plates, and the copper plates are directly bonded to a ceramic substrate by a DBC method. Further, as shown in FIG. 1 of Patent Document 1, a power module substrate with a heat sink is configured by bonding an aluminum heat sink to the power module substrate using an organic heat-resistant adhesive. .
また、特許文献2には、第一の金属板及び第二の金属板としてアルミニウム板を用いてなるパワーモジュール用基板が提案されている。このパワーモジュール用基板は、第二の金属板がろう付けによってヒートシンクに接合されることにより、ヒートシンク付パワーモジュール用基板が構成されている。
さらに、特許文献3には、セラミックス基板の一方の面に金属板を接合し、セラミックス基板の他方の面に、鋳造法によってアルミニウム製のヒートシンクを直接形成したものが提案されている。そして、金属板としてアルミニウム板、銅板を使用することが開示されている。
Further,
ところで、特許文献1に記載されたヒートシンク付パワーモジュール用基板においては、アルミニウム製のヒートシンクとセラミックス基板との間に銅板が配設されていることから、ヒートシンクとセラミックス基板との熱膨張係数の差に起因する熱歪みを、この銅板において十分に緩和することができず、熱サイクル負荷時にセラミックス基板に割れ等が生じやすいといった問題があった。
なお、特許文献1には、ヒートシンクと第二の金属板との間に介在する有機系耐熱性接着剤によって熱歪みを緩和することが記載されているが、この有機系耐熱性接着剤が介在することで熱抵抗が高くなるため、第一の金属板の上に搭載された電気部品等の発熱体からの熱をヒートシンク側に効率的に放散することができないといった問題があった。
By the way, in the power module substrate with a heat sink described in Patent Document 1, since the copper plate is disposed between the aluminum heat sink and the ceramic substrate, the difference in thermal expansion coefficient between the heat sink and the ceramic substrate. There is a problem that the thermal strain caused by the above cannot be sufficiently relaxed in this copper plate, and the ceramic substrate is likely to be cracked during a thermal cycle load.
In addition, Patent Document 1 describes that thermal strain is alleviated by an organic heat resistant adhesive interposed between the heat sink and the second metal plate, but the organic heat resistant adhesive is interposed. As a result, the thermal resistance becomes high, and there is a problem that heat from a heating element such as an electrical component mounted on the first metal plate cannot be efficiently dissipated to the heat sink side.
また、特許文献2に記載されたヒートシンク付パワーモジュール用基板においては、第一の金属板としてアルミニウム板が用いられている。
ここで、銅とアルミニウムとを比較するとアルミニウムの方が熱伝導率が低いため、第一の金属板としてアルミニウム板を用いた場合には、第一の金属板の上に搭載された電気部品等の発熱体からの熱を拡げて放散することが銅よりも劣ることになる。このため、電子部品の小型化や高出力化により、パワー密度が上昇した場合には、熱を十分に放散することができなくなるおそれがあった。
In the power module substrate with a heat sink described in
Here, when copper and aluminum are compared, since aluminum has lower thermal conductivity, when an aluminum plate is used as the first metal plate, the electrical components mounted on the first metal plate, etc. It is inferior to copper to spread and dissipate the heat from the heating element. For this reason, when the power density increases due to downsizing and high output of the electronic component, there is a possibility that heat cannot be sufficiently dissipated.
さらに、特許文献3に記載されたヒートシンク付パワーモジュール用基板においては、セラミックス基板に直接アルミニウム製のヒートシンクを接合していることから、ヒートシンクとセラミックス基板との熱膨張係数の差に起因する熱歪みによってセラミックス基板に割れが生じやすくなる。これを防止するために、特許文献3においては、ヒートシンクの耐力を低く設定する必要があった。このため、ヒートシンク自体の強度が不足し、取扱いが非常に困難であった。
また、鋳造法によってヒートシンクを形成していることから、ヒートシンクの構造が比較的簡単になり、冷却能力の高いヒートシンクを形成することができず、熱の放散を促進することができないといった問題があった。
Furthermore, in the power module substrate with a heat sink described in
In addition, since the heat sink is formed by a casting method, the structure of the heat sink becomes relatively simple, a heat sink having a high cooling capacity cannot be formed, and heat dissipation cannot be promoted. It was.
この発明は、前述した事情に鑑みてなされたものであって、第一の金属板の上に搭載された電子部品等の発熱体からの熱の放散を促進することができ、かつ、熱サイクル負荷時におけるセラミックス基板の割れの発生を抑制し、信頼性の高いヒートシンク付パワーモジュール用基板、パワーモジュール、及び、ヒートシンク付パワーモジュール用基板の製造方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, can promote the dissipation of heat from a heating element such as an electronic component mounted on a first metal plate, and is capable of thermal cycling. An object of the present invention is to provide a highly reliable power module substrate with a heat sink, a power module, and a method for manufacturing a power module substrate with a heat sink that suppresses the occurrence of cracks in the ceramic substrate during loading.
このような課題を解決して、前記目的を達成するために、本発明のヒートシンク付パワーモジュール用基板の製造方法は、セラミックス基板と、該セラミックス基板の一方の面に接合された第一の金属板と、前記セラミックス基板の他方の面に接合された第二の金属板と、該第二の金属板の他方の面側に接合されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板であって、前記第一の金属板は、銅又は銅合金で構成され、この第一の金属板の一方の面が電子部品が搭載される搭載面とされており、前記第二の金属板は、耐力が30N/mm2以下のアルミニウムで構成されており、前記ヒートシンクは、耐力が100N/mm2以上の金属材料で構成され、その厚さが2mm以上とされていることを特徴としている。 In order to solve such problems and achieve the above object, a method for manufacturing a power module substrate with a heat sink according to the present invention includes a ceramic substrate and a first metal bonded to one surface of the ceramic substrate. A power module substrate with a heat sink, comprising: a plate; a second metal plate bonded to the other surface of the ceramic substrate; and a heat sink bonded to the other surface of the second metal plate. The first metal plate is made of copper or a copper alloy, and one surface of the first metal plate is a mounting surface on which electronic components are mounted, and the second metal plate is The heat resistance is made of aluminum having a strength of 30 N / mm 2 or less, and the heat sink is made of a metal material having a strength of 100 N / mm 2 or more, and has a thickness of 2 mm or more.
この構成のヒートシンク付パワーモジュール用基板においては、電子部品が搭載される搭載面を有する第一の金属板が銅又は銅合金で構成されているので、電子部品から発生する熱を十分に拡げることができ、熱の放散を促進することができる。
また、ヒートシンクとセラミックス基板との間に、耐力が30N/mm2以下のアルミニウムからなる第二の金属板が配設されているので、ヒートシンクとセラミックス基板との熱膨張係数の差に起因する熱歪みをこの第二の金属板で十分に緩和することができ、セラミックス基板の割れを抑制することができる。
さらに、上述のように、第二の金属板によって熱歪みを緩和することが可能であることから、ヒートシンクを、耐力が100N/mm2以上の金属材料で構成され、その厚さが2mm以上とすることができ、ヒートシンク自体の剛性が高く、取扱いが容易となる。
また、ヒートシンクを第二の金属板に接合する構成としていることから、ヒートシンクの構造に制約がなく、冷却能力に優れたヒートシンクを採用することができる。
In the power module substrate with a heat sink having this configuration, the first metal plate having the mounting surface on which the electronic component is mounted is made of copper or a copper alloy, so that heat generated from the electronic component can be sufficiently expanded. Can promote heat dissipation.
In addition, since the second metal plate made of aluminum having a proof stress of 30 N / mm 2 or less is disposed between the heat sink and the ceramic substrate, the heat caused by the difference in the thermal expansion coefficient between the heat sink and the ceramic substrate. The strain can be sufficiently relaxed by the second metal plate, and cracking of the ceramic substrate can be suppressed.
Furthermore, as described above, since the thermal strain can be reduced by the second metal plate, the heat sink is made of a metal material having a proof stress of 100 N / mm 2 or more, and its thickness is 2 mm or more. The heat sink itself is highly rigid and easy to handle.
Moreover, since it is set as the structure which joins a heat sink to a 2nd metal plate, there is no restriction | limiting in the structure of a heat sink, and it can employ | adopt the heat sink excellent in the cooling capability.
ここで、前記第二の金属板のうち前記セラミックス基板との接合界面又は前記ヒートシンクとの接合界面の少なくともいずれか一方には、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素が固溶しており、前記第二の金属板のうち接合界面近傍における前記添加元素の濃度の合計が0.01質量%以上5質量%以下の範囲内に設定されていることが好ましい。
この場合、前記第二の金属板に、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga及びLiのうちのいずれか1種又は2種以上の添加元素が固溶しているので、前記第二の金属板の接合界面側部分が固溶強化することになる。これにより、第二の金属板部分での破断を防止することができる。
Here, Si, Cu, Ag, Zn, Mg, Ge, Ca, Ga, Li, or the like is present on at least one of the bonding interface with the ceramic substrate or the bonding interface with the heat sink among the second metal plates. 1 type (s) or 2 or more types of additional element is solid-solving, and the sum total of the density | concentration of the said additional element in the joining interface vicinity of said 2nd metal plate is 0.01 mass% or more and 5 mass% It is preferably set within the following range.
In this case, since one or more additive elements of Si, Cu, Ag, Zn, Mg, Ge, Ca, Ga and Li are dissolved in the second metal plate, The joint interface side portion of the second metal plate is strengthened by solid solution. Thereby, the fracture | rupture in a 2nd metal plate part can be prevented.
また、前記第二の金属板のうち接合界面近傍における前記添加元素の濃度の合計が0.01質量%以上とされているので、第二の金属板の接合界面側部分を確実に固溶強化することができる。また、前記第二の金属板のうち接合界面近傍における前記添加元素の濃度の合計が5質量%以下とされているので、第二の金属板の接合界面近傍の強度が過剰に高くなることを防止でき、このパワーモジュール用基板に熱サイクルが負荷された際に、熱歪みを第二の金属板で緩和することが可能となり、セラミックス基板の割れの発生を抑制できる。 In addition, since the total concentration of the additive elements in the vicinity of the bonding interface in the second metal plate is 0.01% by mass or more, the bonding interface side portion of the second metal plate is surely solid-solution strengthened. can do. Further, since the total concentration of the additive elements in the vicinity of the bonding interface in the second metal plate is 5% by mass or less, the strength in the vicinity of the bonding interface of the second metal plate is excessively increased. When the thermal cycle is applied to the power module substrate, the thermal strain can be relaxed by the second metal plate, and the occurrence of cracks in the ceramic substrate can be suppressed.
さらに、前記第二の金属板のうち前記セラミックス基板との接合界面には、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素の濃度が、前記第二の金属板中の前記添加元素の濃度の2倍以上とされた添加元素高濃度部が形成されていることが好ましい。
この場合、第二の金属板の接合界面に、前記添加元素の濃度が前記第二の金属板中の前記添加元素の濃度の2倍以上とされた添加元素高濃度部が形成されているので、界面近傍に存在する前記添加元素原子により、第二の金属板の接合強度の向上を図ることが可能となる。なお、第二の金属板中の前記添加元素の濃度とは、第二の金属板のうち接合界面から一定距離(例えば、5nm以上)離れた部分における前記添加元素の濃度である。
Further, one or more of Si, Cu, Ag, Zn, Mg, Ge, Ca, Ga, and Li are added to the bonding interface with the ceramic substrate of the second metal plate. It is preferable that a high concentration portion of the additive element in which the concentration of the element is at least twice the concentration of the additive element in the second metal plate is formed.
In this case, a high concentration portion of the additive element in which the concentration of the additive element is twice or more the concentration of the additive element in the second metal plate is formed at the bonding interface of the second metal plate. The additive element atoms present in the vicinity of the interface can improve the bonding strength of the second metal plate. The concentration of the additive element in the second metal plate is the concentration of the additive element in a portion of the second metal plate that is away from the bonding interface by a certain distance (for example, 5 nm or more).
ここで、前記第二の金属板のうち前記セラミックス基板との接合界面に、前記添加元素高濃度部が形成されており、前記セラミックス基板がAl2O3で構成され、前記セラミックス基板との接合界面に形成された前記添加元素高濃度部を含む前記接合界面をエネルギー分散型X線分析法で分析したAl、添加元素、Oの質量比が、Al:添加元素:O=50〜90質量%:1〜30質量%:45質量%以下とされていてもよい。
また、前記第二の金属板のうち前記セラミックス基板との接合界面に、前記添加元素高濃度部が形成されており、前記セラミックス基板がAlNで構成され、前記セラミックス基板との接合界面に形成された前記添加元素高濃度部を含む前記接合界面をエネルギー分散型X線分析法で分析したAl、添加元素、O、Nの質量比が、Al:添加元素:O:N=50〜90質量%:1〜30質量%:1〜10質量%:25質量%以下とされていてもよい。
さらに、前記第二の金属板のうち前記セラミックス基板との接合界面に、前記添加元素高濃度部が形成されており、前記セラミックス基板がSi3N4で構成され、前記添加元素がCu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上とされており、前記セラミックス基板との接合界面に形成された前記添加元素高濃度部を含む前記接合界面をエネルギー分散型X線分析法で分析したAl、Si、添加元素、O、Nの質量比が、Al:Si:添加元素:O:N=15〜45質量%:15〜45質量%:1〜30質量%:2〜20質量%:25質量%以下とされていてもよい。
Here, the high concentration portion of the additive element is formed at the bonding interface with the ceramic substrate of the second metal plate, the ceramic substrate is made of Al 2 O 3 , and is bonded to the ceramic substrate. The mass ratio of Al, additive element, and O obtained by analyzing the bonding interface including the high concentration portion of the additive element formed at the interface by energy dispersive X-ray analysis is Al: additive element: O = 50 to 90 mass%. : 1-30 mass%: You may be 45 mass% or less.
Further, the high concentration portion of the additive element is formed at the bonding interface with the ceramic substrate in the second metal plate, the ceramic substrate is made of AlN, and is formed at the bonding interface with the ceramic substrate. The mass ratio of Al, additive element, O, and N analyzed by energy dispersive X-ray analysis of the joint interface including the high concentration part of the additive element is Al: additive element: O: N = 50 to 90 mass%. : 1-30 mass%: 1-10 mass%: You may be 25 mass% or less.
Further, the high concentration portion of the additive element is formed at the bonding interface with the ceramic substrate in the second metal plate, the ceramic substrate is made of Si 3 N 4 , and the additive element is Cu, Ag. , Zn, Mg, Ge, Ca, Ga, Li, and the junction interface including the high concentration portion of the additive element formed at the junction interface with the ceramic substrate The mass ratio of Al, Si, additive element, O, and N analyzed by energy dispersive X-ray analysis is Al: Si: additive element: O: N = 15 to 45 mass%: 15 to 45 mass%: 1 -30 mass%: 2-20 mass%: You may be 25 mass% or less.
接合界面に存在する前記添加元素原子の質量比が30質量%を超えると、過剰な添加元素によって接合強度が低下するおそれがある。また、第二の金属板の接合界面近傍が必要以上に強化されることになり、熱サイクル負荷時にセラミックス基板に応力が作用し、セラミックス基板が割れてしまうおそれがある。一方、前記添加元素原子の質量比が1質量%未満であると、添加元素原子による接合強度の向上を充分に図ることができなくなるおそれがある。よって、接合界面における添加元素原子の質量比は、1〜30質量%の範囲内とすることが好ましいのである。 When the mass ratio of the additive element atoms present at the bonding interface exceeds 30% by mass, the bonding strength may be reduced by an excessive additive element. In addition, the vicinity of the bonding interface of the second metal plate is strengthened more than necessary, and stress may act on the ceramic substrate during a thermal cycle load, causing the ceramic substrate to break. On the other hand, if the mass ratio of the additive element atoms is less than 1% by mass, there is a possibility that the junction strength due to the additive element atoms cannot be sufficiently improved. Therefore, the mass ratio of the additive element atoms at the bonding interface is preferably in the range of 1 to 30% by mass.
ここで、エネルギー分散型X線分析法による分析を行う際のスポット径は極めて小さいため、前記接合界面の複数点(例えば、10〜100点)で測定し、その平均値を算出することになる。また、測定する際には、第二の金属板の結晶粒界とセラミックス基板との接合界面は測定対象とせず、結晶粒とセラミックス基板との接合界面のみを測定対象とする。
なお、本明細書中におけるエネルギー分散型X線分析法による分析値は、日本電子製の電子顕微鏡JEM−2010Fに搭載したサーモフィッシャーサイエンティフィック株式会社製のエネルギー分散型蛍光X線元素分析装置NORAN System7を用いて加速電圧200kVで行った。
Here, since the spot diameter at the time of performing the analysis by the energy dispersive X-ray analysis method is extremely small, measurement is performed at a plurality of points (for example, 10 to 100 points) on the bonding interface, and the average value is calculated. . When measuring, the bonding interface between the crystal grain boundary of the second metal plate and the ceramic substrate is not measured, and only the bonding interface between the crystal grain and the ceramic substrate is measured.
The analytical value obtained by the energy dispersive X-ray analysis method in this specification is the energy dispersive X-ray fluorescence element analyzer NORAN manufactured by Thermo Fisher Scientific Co., Ltd. mounted on the electron microscope JEM-2010F manufactured by JEOL. The acceleration was performed at 200 kV using System7.
また、前記セラミックス基板がAlNからなり、前記セラミックス基板のうち少なくとも一方の面には、Al2O3層が形成されていることが好ましい。
この場合、銅または銅合金からなる第一の金属板が接合されるセラミックス基板の一方の面にAl2O3層が形成されていることから、このAl2O3層と第一の金属板(銅板)とを、酸素と銅との共晶反応を利用したDBC法によって接合することが可能となる。よって、セラミックス基板と第一の金属板(銅板)とを、比較的容易に、かつ、確実に接合することができる。
Preferably, the ceramic substrate is made of AlN, and an Al 2 O 3 layer is formed on at least one surface of the ceramic substrate.
In this case, since the Al 2 O 3 layer is formed on one surface of the ceramic substrate to which the first metal plate made of copper or copper alloy is bonded, this Al 2 O 3 layer and the first metal plate (Copper plate) can be joined by a DBC method using a eutectic reaction between oxygen and copper. Therefore, the ceramic substrate and the first metal plate (copper plate) can be joined relatively easily and reliably.
本発明のパワーモジュールは、前述のヒートシンク付パワーモジュール用基板と、第一の金属板上に搭載された電子部品と、を備えたことを特徴としている。
この構成のヒートシンク付パワーモジュールによれば、第一の金属板上に搭載された電子部品からの熱を効率的に放散することができ、電子部品のパワー密度(発熱量)が向上した場合であっても、十分に対応することができる。
A power module according to the present invention includes the above-described power module substrate with a heat sink and an electronic component mounted on the first metal plate.
According to the power module with a heat sink having this configuration, the heat from the electronic component mounted on the first metal plate can be efficiently dissipated, and the power density (heat generation amount) of the electronic component is improved. Even if it exists, it can respond sufficiently.
本発明のパワーモジュール用基板の製造方法は、セラミックス基板と、該セラミックス基板の一方の面に接合された第一の金属板と、前記セラミックス基板の他方の面に接合された第二の金属板と、該第二の金属板の他方の面側に接合されたヒートシンクと、を備えたヒートシンク付パワーモジュール用基板の製造方法であって、前記第一の金属板は、銅又は銅合金で構成され、前記第二の金属板は、耐力が30N/mm2以下のアルミニウムで構成され、前記ヒートシンクは、耐力が100N/mm2以上の金属材料で構成されており、前記第一の金属板と前記セラミックス基板とを接合する銅板接合工程と、前記第二の金属板と前記セラミックス基板とを接合するアルミニウム板接合工程と、前記第二の金属板と前記ヒートシンクとを接合するヒートシンク接合工程と、を備えており、前記アルミニウム板接合工程又は前記ヒートシンク接合工程のうち少なくともいずれか一方においては、前記第二の金属板の接合界面にSi,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素を配置し、前記第二の金属板を接合することを特徴としている。 The power module substrate manufacturing method of the present invention includes a ceramic substrate, a first metal plate bonded to one surface of the ceramic substrate, and a second metal plate bonded to the other surface of the ceramic substrate. And a heat sink bonded to the other surface side of the second metal plate, and a method for manufacturing a power module substrate with a heat sink, wherein the first metal plate is made of copper or a copper alloy The second metal plate is made of aluminum having a proof stress of 30 N / mm 2 or less, and the heat sink is made of a metal material having a proof strength of 100 N / mm 2 or more, and the first metal plate and A copper plate joining step for joining the ceramic substrate, an aluminum plate joining step for joining the second metal plate and the ceramic substrate, and the second metal plate and the heat sink. And at least one of the aluminum plate joining step and the heat sink joining step, Si, Cu, Ag, Zn, Mg at the joining interface of the second metal plate. , Ge, Ca, Ga, Li, one or more additive elements are arranged, and the second metal plate is joined.
この構成のパワーモジュール用基板の製造方法によれば、前述したヒートシンク付パワーモジュール用基板を製造することができる。また、前記アルミニウム板接合工程又は前記ヒートシンク接合工程のうち少なくともいずれか一方においては、前記第二の金属板の接合界面にSi,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素を配置し、前記第二の金属板を接合する構成としているので、第二の金属板と前記セラミックス基板、あるいは、前記第二の金属板と前記ヒートシンク、を強固に接合することができる。また、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liといった元素は、アルミニウムの融点を降下させる元素であるため、比較的低温な条件においても、第二の金属板の接合界面に溶融金属領域を形成することができる。なお、これらの添加元素は、第二の金属板等の接合面に固着させてもよいし、接合面にこれらの添加元素を含む金属箔(ろう材箔)を配設してもよい。 According to the method for manufacturing a power module substrate having this configuration, the above-described power module substrate with a heat sink can be manufactured. Further, in at least one of the aluminum plate joining step and the heat sink joining step, Si, Cu, Ag, Zn, Mg, Ge, Ca, Ga, Li may be bonded to the joining interface of the second metal plate. Any one or two or more additional elements are arranged and the second metal plate is joined, so that the second metal plate and the ceramic substrate, or the second metal plate and the The heat sink can be firmly bonded. In addition, since elements such as Si, Cu, Ag, Zn, Mg, Ge, Ca, Ga, and Li are elements that lower the melting point of aluminum, the bonding interface of the second metal plate can be obtained even under relatively low temperature conditions. A molten metal region can be formed. These additive elements may be fixed to the joining surface of the second metal plate or the like, or a metal foil (brazing material foil) containing these additive elements may be disposed on the joining surface.
ここで、前記アルミニウム板接合工程又は前記ヒートシンク接合工程のうち少なくともいずれか一方においては、前記添加元素が前記第二の金属板側に向けて拡散することにより、接合界面に溶融金属領域を形成し、この溶融金属領域を凝固させることによって接合することが好ましい。
この場合、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素を前記第二の金属板側に拡散させることにより、前記第二の金属板の接合界面に前記溶融金属領域を形成し、この溶融金属領域を凝固させることで、前記第二の金属板を接合する、いわゆる拡散接合(Transient Liquid Phase Diffusion Bonding)によって接合しているので、比較的低温条件でおいても、接合信頼性に優れたヒートシンク付パワーモジュール用基板を製造することができる。
Here, in at least one of the aluminum plate joining step and the heat sink joining step, the additive element diffuses toward the second metal plate to form a molten metal region at the joining interface. It is preferable to join by solidifying the molten metal region.
In this case, by diffusing one or more additive elements of Si, Cu, Ag, Zn, Mg, Ge, Ca, Ga, Li to the second metal plate side, the first The molten metal region is formed at the bonding interface between the two metal plates, and the molten metal region is solidified to join the second metal plate by so-called diffusion bonding (Transient Liquid Phase Diffusion Bonding). Therefore, a power module substrate with a heat sink excellent in bonding reliability can be manufactured even under relatively low temperature conditions.
また、前記第二の金属板の接合界面に配置される前記添加元素量が、0.01mg/cm2以上10mg/cm2以下の範囲内とされていることが好ましい。
この場合、前記第二の金属板の接合界面に配置される前記添加元素量を0.01mg/cm2以上としているので、第二の金属板の接合界面に、溶融金属領域を確実に形成することができる。
さらに、前記第二の金属板の接合界面に配置される前記添加元素量を10mg/cm2以下としているので、前記添加元素が過剰に第二の金属板側に拡散して接合界面近傍の第二の金属板の強度が過剰に高くなることを防止できる。よって、パワーモジュール用基板に冷熱サイクルが負荷された際に、熱歪みを第二の金属板で吸収することができ、セラミックス基板の割れ等を防止できる。
また、前記第二の金属板の接合界面に配置される前記添加元素量が、0.01mg/cm2以上10mg/cm2以下の範囲内とされているので、前記第二の金属板のうち接合界面近傍における前記添加元素の濃度の合計が0.01質量%以上5質量%以下の範囲内とされたヒートシンク付パワーモジュール用基板を製造することができる。
Moreover, it is preferable that the amount of the additive element disposed at the bonding interface of the second metal plate is in a range of 0.01 mg /
In this case, since the amount of the additional element disposed at the bonding interface of the second metal plate is 0.01 mg / cm 2 or more, the molten metal region is surely formed at the bonding interface of the second metal plate. be able to.
Furthermore, since the amount of the additional element disposed at the bonding interface of the second metal plate is 10 mg / cm 2 or less, the additional element is excessively diffused to the second metal plate side and the second element in the vicinity of the bonding interface. It is possible to prevent the strength of the second metal plate from becoming excessively high. Therefore, when the cooling cycle is loaded on the power module substrate, the thermal strain can be absorbed by the second metal plate, and cracking of the ceramic substrate can be prevented.
Moreover, since the amount of the additive element arranged at the bonding interface of the second metal plate is within a range of 0.01 mg / cm 2 or more and 10 mg / cm 2 or less, of the second metal plate It is possible to manufacture a power module substrate with a heat sink in which the total concentration of the additive elements in the vicinity of the bonding interface is in the range of 0.01% by mass to 5% by mass.
さらに、前記銅板接合工程の前に、前記セラミックス基板の少なくとも一方の面にAl2O3層を形成するアルミナ層形成工程を行うことが好ましい。
この場合、セラミックス基板の一方の面にAl2O3層を形成することにより、銅又は銅合金からなる第一の金属板とセラミックスとをDBC法を用いて接合することが可能となる。なお、形成するAl2O3層の厚さは、1μm以上とすることが好ましい。Al2O3層の厚さが1μm未満の場合、第一の金属板とセラミックスとの良好に接合できなくなるおそれがあるためである。
Furthermore, it is preferable to perform an alumina layer forming step of forming an Al 2 O 3 layer on at least one surface of the ceramic substrate before the copper plate bonding step.
In this case, by forming the Al 2 O 3 layer on one surface of the ceramic substrate, the first metal plate made of copper or a copper alloy and the ceramic can be bonded using the DBC method. Note that the thickness of the Al 2 O 3 layer to be formed is preferably 1 μm or more. This is because if the thickness of the Al 2 O 3 layer is less than 1 μm, the first metal plate and the ceramics may not be satisfactorily bonded.
また、前記アルミニウム板接合工程と前記ヒートシンク接合工程とを同時に行うことが好ましい。
この場合、前記第二の金属板と前記セラミックス基板、前記第二の金属板と前記ヒートシンク、を同時に接合する構成としていることから、前記第二の金属板の接合工程を1回で行うことができ、このヒートシンク付パワーモジュール用基板の製造コストを大幅に削減することができる。また、セラミックス基板に不要な熱負荷が作用することがなく、反り等の発生を抑制することができる。さらに、セラミックス基板の他方の面側に、第二の金属板とヒートシンクとが同時に接合されることから、セラミックス基板の他方の面側に剛性の高い部材が一度に接合されることになり、接合時におけるセラミックス基板の反りの発生を抑制することができる。
Moreover, it is preferable to perform the said aluminum plate joining process and the said heat sink joining process simultaneously.
In this case, since the second metal plate and the ceramic substrate, and the second metal plate and the heat sink are joined at the same time, the joining step of the second metal plate can be performed once. In addition, the manufacturing cost of the power module substrate with a heat sink can be greatly reduced. Further, unnecessary thermal load does not act on the ceramic substrate, and the occurrence of warpage or the like can be suppressed. Furthermore, since the second metal plate and the heat sink are simultaneously bonded to the other surface side of the ceramic substrate, a highly rigid member is bonded to the other surface side of the ceramic substrate at one time. Generation of warpage of the ceramic substrate at the time can be suppressed.
さらに、前記第二の金属板の接合界面に、前記添加元素とともにアルミニウムを配置することが好ましい。
この場合、前記添加元素とともにアルミニウムを配置しているので、第二の金属板の接合界面に溶融金属領域を確実に形成することが可能となる。また、添加元素の酸化損耗を抑制することができる。
Furthermore, it is preferable to arrange aluminum together with the additive element at the bonding interface of the second metal plate.
In this case, since aluminum is disposed together with the additive element, it is possible to reliably form a molten metal region at the bonding interface of the second metal plate. In addition, oxidation wear of the additive element can be suppressed.
また、蒸着、CVD、スパッタリング、めっき又はペーストの塗布のいずれかから選択される手段により、前記第二の金属板の接合界面に前記添加元素を配置することが好ましい。
この場合、蒸着、CVD、スパッタリング、めっき又はペーストの塗布のいずれかから選択される手段によって、第二の金属板の接合界面に確実に添加元素を配置することができる。
Moreover, it is preferable to arrange | position the said additional element in the joining interface of said 2nd metal plate by the means selected from either vapor deposition, CVD, sputtering, plating, or application | coating of a paste.
In this case, the additive element can be reliably arranged at the bonding interface of the second metal plate by means selected from vapor deposition, CVD, sputtering, plating, or paste application.
本発明によれば、第一の金属板の上に搭載された電子部品等の発熱体からの熱の放散を促進することができ、かつ、熱サイクル負荷時におけるセラミックス基板の割れの発生を抑制し、信頼性の高いヒートシンク付パワーモジュール用基板、パワーモジュール、及び、ヒートシンク付パワーモジュール用基板の製造方法を提供することができる。 According to the present invention, it is possible to promote the dissipation of heat from a heating element such as an electronic component mounted on the first metal plate, and to suppress the occurrence of cracks in the ceramic substrate during a thermal cycle load. In addition, a highly reliable power module substrate with a heat sink, a power module, and a method for manufacturing a power module substrate with a heat sink can be provided.
以下に、本発明の実施形態について添付した図面を参照して説明する。
図1に本発明の第1の実施形態であるヒートシンク付パワーモジュール用基板10及びこのヒートシンク付パワーモジュール用基板10を用いたパワーモジュール1を示す。
このパワーモジュール1は、ヒートシンク付パワーモジュール用基板10と、このヒートシンク付パワーモジュール用基板10の搭載面22A上にはんだ層2を介して接合された半導体チップ3(電子部品)と、を備えている。ここで、はんだ層2は、例えばSn−Ag系、Sn−In系、若しくはSn−Ag−Cu系のはんだ材とされている。なお、本実施形態では、搭載面22Aとはんだ層2との間にNiメッキ層(図示なし)が設けられている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a
The power module 1 includes a
ヒートシンク付パワーモジュール用基板10は、セラミックス基板21と、このセラミックス基板21の一方の面(図1において上面)に接合された第一の金属板22と、セラミックス基板21の他方の面(図1において下面)に接合された第二の金属板23と、からなるパワーモジュール用基板20と、ヒートシンク11と、を備えている。
The
セラミックス基板21は、第一の金属板22と第二の金属板23との間の電気的接続を防止するものであって、絶縁性の高いAl2O3(アルミナ)で構成されている。また、セラミックス基板21の厚さは、0.2〜1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。
The
第一の金属板22は、銅又は銅合金で構成されており、本実施形態では、タフピッチ銅の圧延板とされている。また、その板厚は0.1〜1.0mmの範囲内に設定されており、本実施形態では、0.6mmに設定されている。
この第一の金属板22には、回路パターンが形成されており、その一方の面(図1において上面)が、半導体チップ3が搭載される搭載面22Aとされている。
The
A circuit pattern is formed on the
第二の金属板23は、耐力が30N/mm2以下のアルミニウムで構成されており、本実施形態では純度99.99%以上の純アルミニウム(いわゆる4Nアルミ)で構成されている。また、その板厚は0.6〜6mmの範囲内に設定されており、本実施形態では、2.0mmに設定されている。
The
ヒートシンク11は、前述のパワーモジュール用基板20を冷却するためのものである。本実施形態におけるヒートシンク11は、パワーモジュール用基板20と接合される天板部12と、この天板部12に積層配置される冷却部材13と、を備えている。冷却部材13の内部には、冷却媒体が流通する流路14が形成されている。
ここで、天板部12と冷却部材13とは、固定ネジ15によって連結される構造とされている。このため、天板部12には、固定ネジ15をねじ込んでも容易に変形しないように剛性を確保する必要がある。そこで、本実施形態では、ヒートシンク11の天板部12を、耐力が100N/mm2以上の金属材料で構成し、その厚さを2mm以上としている。なお、本実施形態では、天板部12は、A6063合金(アルミニウム合金)で構成されている。
The
Here, the
そして、図2に示すように、セラミックス基板21と第二の金属板23との接合界面30においては、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素が固溶しており、本実施形態では、添加元素としてCuが固溶している。
ここで、第二の金属板23の接合界面30近傍には、接合界面30から積層方向に離間するにしたがい漸次添加元素の濃度(本実施形態ではCu濃度)が低下する濃度傾斜層31が形成されている。また、この濃度傾斜層31の接合界面30側(第二の金属板23の接合界面30近傍)の添加元素の濃度(本実施形態ではCu濃度)が、0.01質量%以上5質量%以下の範囲内に設定されている。
なお、第二の金属板23の接合界面30近傍の添加元素の濃度は、EPMA分析(スポット径30μm)によって、接合界面30から50μmの位置で5点測定した平均値である。また、図2のグラフは、第二の金属板23の中央部分において積層方向にライン分析を行い、前述の50μm位置での濃度を基準として求めたものである。
As shown in FIG. 2, at the
Here, in the vicinity of the
The concentration of the additive element in the vicinity of the
また、図3に示すように、第二の金属板23とヒートシンク11の天板部12との接合界面40においては、第二の金属板23及び天板部12に、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素が固溶しており、本実施形態では、添加元素としてCuが固溶している。
ここで、第二の金属板23及び天板部12の接合界面40近傍には、接合界面40から積層方向に離間するにしたがい漸次添加元素の濃度(本実施形態ではCu濃度)が低下する濃度傾斜層41、42が形成されている。また、この濃度傾斜層41、42の接合界面40側(第二の金属板23及び天板部12の接合界面40近傍)の添加元素の濃度(本実施形態ではCu濃度)が、0.01質量%以上5質量%以下の範囲内に設定されている。
なお、この第二の金属板23及び天板部12の接合界面40近傍の添加元素の濃度は、EPMA分析(スポット径30μm)によって、接合界面40から50μmの位置で5点測定した平均値である。また、図3のグラフは、第二の金属板23及び天板部12の中央部分において積層方向にライン分析を行い、前述の50μm位置での濃度を基準として求めたものである。
Further, as shown in FIG. 3, at the
Here, in the vicinity of the
The concentration of the additive element in the vicinity of the
また、セラミックス基板21と第二の金属板23との接合界面30を透過電子顕微鏡において観察した場合には、図4に示すように、接合界面30に添加元素(Cu)が濃縮した添加元素高濃度部32が形成されている。この添加元素高濃度部32においては、添加元素の濃度(Cu濃度)が、第二の金属板23中の添加元素の濃度(Cu濃度)の2倍以上とされている。なお、この添加元素高濃度部32の厚さHは4nm以下とされている。
In addition, when the
なお、ここで観察する接合界面30は、第二の金属板23の格子像の界面側端部とセラミックス基板21の格子像の接合界面30側端部との間の中央を基準面Sとする。また、第二の金属板23中の添加元素の濃度(Cu濃度)は、第二の金属板23のうち接合界面30から一定距離(本実施形態では5nm)離れた部分における添加元素の濃度(Cu濃度)である。
Note that the
また、この接合界面30をエネルギー分散型X線分析法(EDS)で分析した際のAl、添加元素(Cu)、Oの質量比が、Al:添加元素(Cu):O=50〜90質量%:1〜30質量%:45質量%以下の範囲内に設定されている。なお、EDSによる分析を行う際のスポット径は1〜4nmとされており、接合界面30を複数点(例えば、本実施形態では20点)で測定し、その平均値を算出している。また、第二の金属板23の結晶粒界とセラミックス基板21との接合界面30は測定対象とせず、第二の金属板23の結晶粒とセラミックス基板21との接合界面30のみを測定対象としている。また、エネルギー分散型X線分析法による分析値は、日本電子製の電子顕微鏡JEM−10Fに搭載したサーモフィッシャーサイエンティフィック株式会社製のエネルギー分散型蛍光X線元素分析装置NORAN System7を用いて加速電圧200kVで行った。
The mass ratio of Al, additive element (Cu), and O when this
以下に、前述の構成のヒートシンク付パワーモジュール用基板10の製造方法について、図5から図8を参照して説明する。
Below, the manufacturing method of the board |
まず、図5及び図6に示すように、銅からなる第一の金属板22と、セラミックス基板21とを接合する(銅板接合工程S01)。ここで、セラミックス基板21がAl2O3で構成されていることから、銅からなる第一の金属板22とセラミックス基板21とを、銅と酸素の共晶反応を利用したDBC法により接合する。具体的には、タフピッチ銅からなる第一の金属板22と、セラミックス基板21とを接触させ、窒素ガス雰囲気中で1075℃で10分加熱することで、第一の金属板22と、セラミックス基板21とが接合されることになる。
First, as shown in FIGS. 5 and 6, the
次に、セラミックス基板21の他方の面側に第二の金属板23を接合する(アルミニウム板接合工程S02)とともに、第二の金属板23とヒートシンク11の天板部12とを接合する(ヒートシンク接合工程S03)。本実施形態では、これらアルミニウム板接合工程S02と、ヒートシンク接合工程S03と、を同時に実施することになる。
Next, the
第二の金属板23のセラミックス基板21との接合面にスパッタリングによって添加元素(Cu)を固着して第1固着層51を形成するとともに、第二の金属板23のヒートシンク11の天板部12との接合面にスパッタリングによって添加元素(Cu)を固着して第2固着層52を形成する(固着層形成工程S11)。ここで、第1固着層51及び第2固着層52における添加元素量は0.01mg/cm2以上10mg/cm2以下の範囲内とされており、本実施形態では、添加元素としてCuを用いており、第1固着層51及び第2固着層52におけるCu量が0.08mg/cm2以上2.7mg/cm2以下に設定されている。
The additive element (Cu) is fixed to the joint surface of the
次に、図6に示すように、第二の金属板23をセラミックス基板21の他方の面側に積層する。さらに、第二の金属板23の他方の面側にヒートシンク11の天板部12を積層する(積層工程S12)。
このとき、図6に示すように、第二の金属板23の第1固着層51が形成された面がセラミックス基板21を向くように、かつ、第二の金属板23の第2固着層52が形成された面が天板部12を向くようにして、これらを積層する。すなわち、第二の金属板23とセラミックス基板21との間に第1固着層51(添加元素:Cu)を介在させ、第二の金属板23と天板部12との間に第2固着層52(添加元素:Cu)を介在させているのである。
Next, as shown in FIG. 6, the
At this time, as shown in FIG. 6, the surface of the
次に、第一の金属板22及びセラミックス基板21、第二の金属板23、天板部12をその積層方向に加圧(圧力1〜35kgf/cm2)した状態で真空加熱炉内に装入して加熱する(加熱工程S13)。ここで、本実施形態では、真空加熱炉内の圧力は10−3〜10−6Paの範囲内に設定し、加熱温度は550℃以上650℃以下の範囲内に設定している。
Next, the
すると、図7に示すように、第二の金属板23とセラミックス基板21との界面に第1溶融金属領域55が形成されることになる。この第1溶融金属領域55は、図7に示すように、第1固着層51の添加元素(Cu)が第二の金属板23側に拡散することによって、第二の金属板23の第1固着層51近傍の添加元素の濃度(Cu濃度)が上昇して融点が低くなることにより形成されるものである。
また、図8に示すように、第二の金属板23と天板部12との界面に第2溶融金属領域56が形成される。この第2溶融金属領域56は、図8に示すように、第2固着層52の添加元素(Cu)が第二の金属板23側及び天板部12側に拡散することによって、第二の金属板23及び天板部12の第2固着層52近傍の添加元素の濃度(Cu濃度)が上昇して融点が低くなることにより形成されるものである。
Then, as shown in FIG. 7, the first
Further, as shown in FIG. 8, a second
次に、第1溶融金属領域55、第2溶融金属領域56が形成された状態で温度を一定に保持しておく(溶融金属凝固工程S14)。
すると、第1溶融金属領域55中のCuが、さらに第二の金属板23側へと拡散していくことになる。これにより、第1溶融金属領域55であった部分のCu濃度が徐々に低下していき融点が上昇することになり、温度を一定に保持した状態で凝固が進行していく。これにより、セラミックス基板21と第二の金属板23とが接合される。
同様に、第2溶融金属領域56中のCuが、さらに第二の金属板23側及び天板部12側へと拡散し、第2溶融金属領域56であった部分のCu濃度が徐々に低下していき融点が上昇することになり、温度を一定に保持した状態で凝固が進行していく。これにより、第二の金属板23と天板部12とが接合される。
Next, the temperature is kept constant with the first
Then, Cu in the 1st molten metal area |
Similarly, Cu in the second
つまり、セラミックス基板21と第二の金属板23、及び、天板部12と第二の金属板23とは、いわゆる拡散接合(Transient Liquid Phase Diffusion Bonding)によって接合されているのである。このようにして凝固が進行した後に、常温にまで冷却を行う。
That is, the
このようにして、第一の金属板22、セラミックス基板21、第二の金属板23、ヒートシンク11の天板部12とが接合され、本実施形態であるヒートシンク付パワーモジュール用基板10が製造されることになる。
In this way, the
以上のような構成とされた本実施形態であるヒートシンク付パワーモジュール用基板10によれば、半導体チップ3が搭載される搭載面22Aを有する第一の金属板22が、タフピッチ銅で構成されているので、半導体チップ3から発生する熱を十分に拡げることができ、この熱の放散を促進することができる。よって、パワー密度の高い半導体チップ3等の電子部品を搭載することができ、半導体パッケージの小型化、高出力化を図ることが可能となる。
According to the power module substrate with a
また、ヒートシンク11の天板部12を、耐力が100N/mm2以上の金属材料で構成され、その厚さが2mm以上のものとしており、本実施形態では、A6063合金(アルミニウム合金)で構成されたものとしていることから、剛性が高く、取扱いが容易となる。よって、図1に示すように、この天板部12を冷却部材13に固定ネジ15で固定することができ、冷却能力に優れたヒートシンク11を構成することが可能となる。
Further, the
さらに、ヒートシンク11の天板部12とセラミックス基板21との間に、耐力が30N/mm2以下のアルミニウム(本実施形態では、純度99.99%以上の純アルミニウム)からなる第二の金属板23が配設されているので、ヒートシンク11の天板部12の剛性が高くても、ヒートシンク11の天板部12とセラミックス基板21との熱膨張係数の差に起因する熱歪みをこの第二の金属板23で十分に緩和することができ、セラミックス基板21の割れの発生を抑制することができる。特に、本実施形態では、第二の金属層の厚さを0.6〜6mmの範囲内としていることから、確実に熱歪みを吸収することができるとともに、この第二の金属板23による熱抵抗の増大を抑制することができる。
Furthermore, a second metal plate made of aluminum having a proof stress of 30 N / mm 2 or less (in this embodiment, pure aluminum having a purity of 99.99% or more) between the
また、本実施形態では、セラミックス基板21がAl2O3で構成されているので、上述のように、タフピッチ銅からなる第一の金属板22とセラミックス基板21とを、酸素と銅との共晶反応を利用したDBC法によって接合することができる。よって、セラミックス基板21と第一の金属板22との接合強度を確保することができ、接合信頼性に優れたヒートシンク付パワーモジュール用基板10を構成することができる。
In the present embodiment, since the
また、第二の金属板23とセラミックス基板21との接合界面30、及び、第二の金属板23とヒートシンク11の天板部12との接合界面40には、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素が固溶しており、本実施形態では、添加元素としてCuが固溶されているので、第二の金属板23の接合界面30、40側部分が固溶強化することになり、第二の金属板23部分での破断を防止することができる。
Further, the
ここで、第二の金属板23のうち接合界面30、40近傍における添加元素の濃度(本実施形態ではCu濃度)が0.01質量%以上5質量%以下の範囲内に設定されているので、第二の金属板23の接合界面30、40近傍の強度が過剰に高くなることを防止でき、このヒートシンク付パワーモジュール用基板10に冷熱サイクルが負荷された際に、熱歪みを第二の金属板23で緩和することが可能となり、セラミックス基板21の割れの発生を抑制できる。
Here, since the concentration of the additive element (Cu concentration in the present embodiment) in the vicinity of the bonding interfaces 30 and 40 in the
また、第二の金属板23とセラミックス基板21との接合界面30には、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素の濃度(本実施形態ではCu濃度)が、第二の金属板23中の前記添加元素の濃度の2倍以上とされた添加元素高濃度部32が形成されているので、界面近傍に存在する添加元素原子(Cu原子)により、第二の金属板23の接合強度の向上を図ることが可能となる。
In addition, one or more of Si, Cu, Ag, Zn, Mg, Ge, Ca, Ga, and Li are added to the
また、添加元素高濃度部32を含む接合界面30をエネルギー分散型X線分析法で分析したAl、添加元素(Cu)、Oの質量比が、Al:添加元素(Cu):O=50〜90質量%:1〜30質量%:45質量%以下とされているので、Alと添加元素(Cu)との反応物が過剰に生成されることがなく、第二の金属板23とセラミックス基板21との接合を良好に行うことができる。また、この反応物によって第二の金属板23の接合界面30近傍が必要以上に強化されることがなく、熱歪みを確実に吸収することが可能となり、熱サイクル負荷時のセラミックス基板21の割れの発生を抑制することができる。
Further, the mass ratio of Al, additive element (Cu), and O obtained by analyzing the
本実施形態であるヒートシンク付パワーモジュール用基板10の製造方法によれば、前述したヒートシンク付パワーモジュール用基板10を製造することができる。また、アルミニウム板接合工程S02及びヒートシンク接合工程S03においては、第二の金属板23の接合界面30、40にSi,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素(本実施形態ではCu)を配置し、第二の金属板23を接合する構成としているので、第二の金属板23とセラミックス基板21、及び、第二の金属板23とヒートシンク11の天板部12、をそれぞれ強固に接合することができる。また、Si,Cu,Zn,Mg,Ge,Ca,Liといった元素は、アルミニウムの融点を降下させる元素であるため、比較的低温な条件においても、第二の金属板23の接合界面30、40に、第1溶融金属領域55、第2溶融金属領域56を形成することができる。
さらに、Cuが存在することによって接合界面30、40近傍が活性化すると推測され、低温状況下でもセラミックス基板21と第二の金属板23、天板部12と第二の金属板23、をそれぞれ強固に接合すること可能となるのである。
According to the method for manufacturing the power module substrate with
Further, it is presumed that the vicinity of the bonding interfaces 30 and 40 is activated by the presence of Cu, and the
また、本実施形態では、アルミニウム板接合工程S02及びヒートシンク接合工程S03においては、添加元素(Cu)が第二の金属板23側及び天板部12側に向けて拡散することにより、接合界面30、40に第1溶融金属領域55、第2溶融金属領域56を形成し、この第1溶融金属領域55、第2溶融金属領域56を凝固させることによって接合する、いわゆる拡散接合(Transient Liquid Phase Diffusion Bonding)によって接合しているので、比較的低温条件で強固に接合することができ、接合信頼性に優れたヒートシンク付パワーモジュール用基板10を製造することができる。
In the present embodiment, in the aluminum plate joining step S02 and the heat sink joining step S03, the additive element (Cu) diffuses toward the
また、第二の金属板23の接合面に形成される第1固着層51及び第2固着層52における添加元素量は0.01mg/cm2以上10mg/cm2以下の範囲内とされており、本実施形態では、添加元素としてCuを用いており、第1固着層51及び第2固着層52におけるCu量が0.08mg/cm2以上2.7mg/cm2以下に設定されているので、第二の金属板23の接合界面30、40に確実に、第1溶融金属領域55、第2溶融金属領域56を形成することができる。また、添加元素(Cu)が過剰に第二の金属板23側に拡散して接合界面30、40近傍の第二の金属板23の強度が過剰に高くなることを防止できる。よって、ヒートシンク付パワーモジュール用基板10に熱サイクルが負荷された際に、熱歪みを第二の金属板23で確実に吸収することができ、セラミックス基板21の割れ等を防止できる。
In addition, the amount of additive elements in the first fixed
また、本実施形態では、アルミニウム板接合工程S02とヒートシンク接合工程S03とを同時に行う構成としているので、第二の金属板23の両面の接合工程を1回で行うことができ、このヒートシンク付パワーモジュール用基板10の製造コストを大幅に削減することができる。さらに、セラミックス基板21に不要な熱負荷が作用することがなく、反り等の発生を抑制することができる。
また、スパッタリングにより、第二の金属板23の接合面に添加元素(Cu)を固着させることで、第1固着層51及び第2固着層52を形成しているので、第二の金属板23の接合界面30、40に確実に添加元素を配置することができる。
Moreover, in this embodiment, since it is set as the structure which performs aluminum plate joining process S02 and heat sink joining process S03 simultaneously, the joining process of both surfaces of the
Further, since the first fixed
次に、本発明の第2の実施形態について、図9から図15を参照して説明する。
図9に示すパワーモジュール101は、ヒートシンク付パワーモジュール用基板110と、このヒートシンク付パワーモジュール用基板110の搭載面122A上にはんだ層2を介して接合された半導体チップ3(電子部品)と、を備えている。ここで、はんだ層2は、例えばSn−Ag系、Sn−In系、若しくはSn−Ag−Cu系のはんだ材とされている。なお、本実施形態では、搭載面122Aとはんだ層2との間にNiメッキ層(図示なし)が設けられている。
Next, a second embodiment of the present invention will be described with reference to FIGS.
A
ヒートシンク付パワーモジュール用基板110は、セラミックス基板121と、このセラミックス基板121の一方の面(図9において上面)に接合された第一の金属板122と、セラミックス基板121の他方の面(図9において下面)に接合された第二の金属板123と、からなるパワーモジュール用基板120と、ヒートシンク111と、を備えている。
The
セラミックス基板121は、第一の金属板122と第二の金属板123との間の電気的接続を防止するものであって、絶縁性の高いAlN(窒化アルミ)で構成されている。また、セラミックス基板121の厚さは、0.2〜1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。
The
第一の金属板122は、銅又は銅合金で構成されており、本実施形態では、タフピッチ銅の圧延板とされている。また、その板厚は0.1 〜1.0mmの範囲内に設定されており、本実施形態では、0.6 mmに設定されている。
この第一の金属板122には、回路パターンが形成されており、その一方の面(図9において上面)が、半導体チップ3が搭載される搭載面122Aとされている。
The
A circuit pattern is formed on the
ここで、セラミックス基板121と第一の金属板122との界面には、図10に示すように、Al2O3層125が形成されている。本実施形態では、このAl2O3層125の厚さは、1μm以上とされている。
Here, an Al 2 O 3 layer 125 is formed at the interface between the
第二の金属板123は、耐力が30N/mm2以下のアルミニウムで構成されており、本実施形態では純度99.99%以上の純アルミニウム(いわゆる4Nアルミ)で構成されている。また、その板厚は0.6〜6mmの範囲内に設定されており、本実施形態では、2.0mmに設定されている。
The
ヒートシンク111は、前述のパワーモジュール用基板120を冷却するためのものである。本実施形態におけるヒートシンク111は、パワーモジュール用基板120と接合される天板部112と、冷却媒体(例えば冷却水)を流通するための流路114と、を備えている。
ここで、ヒートシンク111(天板部112)は、熱伝導性が良好な材質で構成されることが望ましく、かつ、構造材としての剛性を確保する必要がある。そこで、本実施形態においては、ヒートシンク111の天板部112は、A6063(アルミニウム合金)で構成されている。
The
Here, the heat sink 111 (top plate portion 112) is preferably made of a material having good thermal conductivity, and it is necessary to ensure rigidity as a structural material. Therefore, in the present embodiment, the
そして、図11に示すように、セラミックス基板121と第二の金属板123との接合界面130においては、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素が固溶しており、本実施形態では、添加元素としてGeが固溶している。
ここで、第二の金属板123の接合界面130近傍には、接合界面130から積層方向に離間するにしたがい漸次添加元素の濃度(本実施形態ではGe濃度)が低下する濃度傾斜層131が形成されている。また、この濃度傾斜層131の接合界面130側(第二の金属板123の接合界面130近傍)の添加元素の濃度(本実施形態ではGe濃度)が、0.01質量%以上5質量%以下の範囲内に設定されている。
なお、第二の金属板123の接合界面130近傍の添加元素の濃度は、EPMA分析(スポット径30μm)によって、接合界面130から50μmの位置で5点測定した平均値である。また、図11のグラフは、第二の金属板123の中央部分において積層方向にライン分析を行い、前述の50μm位置での濃度を基準として求めたものである。
As shown in FIG. 11, at the
Here, in the vicinity of the
The concentration of the additive element in the vicinity of the
また、図12に示すように、第二の金属板123とヒートシンク111の天板部112との接合界面140においては、第二の金属板123及び天板部112に、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素が固溶しており、本実施形態では、添加元素としてGeが固溶している。
ここで、第二の金属板123及び天板部112の接合界面140近傍には、接合界面140から積層方向に離間するにしたがい漸次添加元素の濃度(本実施形態ではGe濃度)が低下する濃度傾斜層141、142が形成されている。また、この濃度傾斜層141、142の接合界面140側(第二の金属板123及び天板部112の接合界面140近傍)の添加元素の濃度(本実施形態ではGe濃度)が、0.01質量%以上5質量%以下の範囲内に設定されている。
なお、この第二の金属板123及び天板部112の接合界面140近傍の添加元素の濃度は、EPMA分析(スポット径30μm)によって、接合界面140から50μmの位置で5点測定した平均値である。また、図12のグラフは、第二の金属板123及び天板部112の中央部分において積層方向にライン分析を行い、前述の50μm位置での濃度を基準として求めたものである。
As shown in FIG. 12, at the
Here, in the vicinity of the
The concentration of the additive element in the vicinity of the
また、セラミックス基板121と第二の金属板123との接合界面130を透過電子顕微鏡において観察した場合には、図13に示すように、接合界面130に添加元素(Ge)が濃縮した添加元素高濃度部132が形成されている。この添加元素高濃度部132においては、添加元素の濃度(Ge濃度)が、第二の金属板123中の添加元素の濃度(Ge濃度)の2倍以上とされている。なお、この添加元素高濃度部132の厚さHは4nm以下とされている。
In addition, when the
なお、ここで観察する接合界面130は、図13に示すように、第二の金属板123の格子像の界面側端部とセラミックス基板121の格子像の接合界面130側端部との間の中央を基準面Sとする。また、第二の金属板123中の添加元素の濃度(Ge濃度)は、第二の金属板123のうち接合界面130から一定距離(本実施形態では5nm)離れた部分における添加元素の濃度(Ge濃度)である。
Note that, as shown in FIG. 13, the
また、この接合界面130をエネルギー分散型X線分析法(EDS)で分析した際のAl、添加元素(Ge)、O、Nの質量比が、Al:添加元素(Ge):O:N=50〜90質量%:1〜30質量%:1〜10質量%:25質量%以下の範囲内に設定されている。なお、EDSによる分析を行う際のスポット径は1〜4nmとされており、接合界面130を複数点(例えば、本実施形態では20点)で測定し、その平均値を算出している。また、第二の金属板123の結晶粒界とセラミックス基板121との接合界面130は測定対象とせず、第二の金属板123の結晶粒とセラミックス基板121との接合界面130のみを測定対象としている。
また、エネルギー分散型X線分析法による分析値は、日本電子製の電子顕微鏡JEM−2010Fに搭載したサーモフィッシャーサイエンティフィック株式会社製のエネルギー分散型蛍光X線元素分析装置NORAN System7を用いて加速電圧200kVで行った。
The mass ratio of Al, additive element (Ge), O, and N when this
Analyzed values by energy dispersive X-ray analysis are accelerated using an energy dispersive X-ray fluorescence element analyzer NORAN System 7 manufactured by Thermo Fisher Scientific Co., Ltd. mounted on an electron microscope JEM-2010F manufactured by JEOL. The voltage was 200 kV.
以下に、前述の構成のヒートシンク付パワーモジュール用基板110の製造方法について説明する。
Below, the manufacturing method of the board |
まず、図14及び図15に示すように、AlNからなるセラミックス基板121の一方の面に、Al2O3層125を形成する(アルミナ層形成工程S100)。このアルミナ層形成工程S100においては、AlNの酸化処理を1200℃以上でAr−O2混合ガス雰囲気にて行った。酸素分圧PO2を10kPaとし、水蒸気分圧PH2Oを0.05kPaに調整した。このように、高酸素分圧/低水蒸気分圧雰囲気にてAlNの酸化処理を行うことにより、AlNとの密着性に優れた緻密なAl2O3層125が形成されることになる。ここで、Al2O3層125の厚さは1μm以上とされている。
なお、高純度のArガスを脱酸処理した後に酸素ガスを混合することによって酸素分圧を調整した。また、この雰囲気ガスをシリカゲルと五酸化二リンを充填した乾燥系に通すことで脱水処理を行った後に所定温度に調整された水中を通過させることによって水蒸気分圧を調整した。
First, as shown in FIGS. 14 and 15, an Al 2 O 3 layer 125 is formed on one surface of a
In addition, oxygen partial pressure was adjusted by mixing oxygen gas after deoxidizing high purity Ar gas. Moreover, after performing dehydration treatment by passing this atmospheric gas through a drying system filled with silica gel and diphosphorus pentoxide, the water vapor partial pressure was adjusted by passing water adjusted to a predetermined temperature.
次に、銅からなる第一の金属板122と、セラミックス基板121とを接合する(銅板接合工程S101)。ここで、AlNからなるセラミックス基板121の一方の面にAl2O3層125が形成されていることから、銅からなる第一の金属板122とAl2O3層125とが、銅と酸素の共晶反応を利用したDBC法により接合されることになる。具体的には、タフピッチ銅からなる第一の金属板122と、セラミックス基板121のAl2O3層125とを接触させ、窒素ガス雰囲気中で1075℃で10分加熱することで、第一の金属板122と、セラミックス基板121のAl2O3層125とを接合するのである。
Next, the
次に、セラミックス基板121の他方の面側に第二の金属板123を接合する(アルミニウム板接合工程S102)とともに、第二の金属板123とヒートシンク111(天板部112)とを接合する(ヒートシンク接合工程S103)。本実施形態では、これらアルミニウム板接合工程S102と、ヒートシンク接合工程S103と、を同時に実施することになる。
Next, the
第二の金属板123のセラミックス基板121との接合面にスパッタリングによって添加元素を固着して第1固着層151を形成するとともに、第二の金属板123のヒートシンク111(天板部112)との接合面にスパッタリングによって添加元素を固着して第2固着層152を形成する(固着層形成工程S111)。ここで、第1固着層151及び第2固着層152における添加元素量は0.01mg/cm2以上10mg/cm2以下の範囲内とされており、本実施形態では、添加元素としてGeを用いており、第1固着層151及び第2固着層152におけるGe量が0.01mg/cm2以上10mg/cm2以下に設定されている。
An additive element is fixed to the bonding surface of the
次に、図15に示すように、第二の金属板123をセラミックス基板121の他方の面側に積層する。さらに、第二の金属板123の他方の面側にヒートシンク111の天板部112を積層する(積層工程S112)。
このとき、図15に示すように、第二の金属板123の第1固着層151が形成された面がセラミックス基板121を向くように、かつ、第二の金属板123の第2固着層152が形成された面が天板部112を向くようにして、これらを積層する。すなわち、第二の金属板123とセラミックス基板121との間に第1固着層151(添加元素:Ge)を介在させ、第二の金属板123と天板部112との間に第2固着層152(添加元素:Ge)を介在させているのである。
Next, as shown in FIG. 15, the
At this time, as shown in FIG. 15, the surface of the
次に、第一の金属板122及びセラミックス基板121、第二の金属板123、天板部112をその積層方向に加圧(圧力1〜35kgf/cm2)した状態で真空加熱炉内に装入して加熱する(加熱工程S113)。ここで、本実施形態では、真空加熱炉内の圧力は10−3〜10−6Paの範囲内に、加熱温度は550℃以上650℃以下の範囲内に設定している。
Next, the
すると、第二の金属板123とセラミックス基板121との界面に第1溶融金属領域が形成されることになる。この第1溶融金属領域は、第1固着層151の添加元素(Ge)が第二の金属板123側に拡散することによって、第二の金属板123の第1固着層151近傍の添加元素の濃度(Ge濃度)が上昇して融点が低くなることにより形成されるものである。
また、第二の金属板123と天板部112との界面に第2溶融金属領域が形成される。この第2溶融金属領域は、第2固着層152の添加元素(Ge)が第二の金属板123側及び天板部112側に拡散することによって、第二の金属板123及び天板部112の第2固着層152近傍の添加元素の濃度(Ge濃度)が上昇して融点が低くなることにより形成されるものである。
As a result, a first molten metal region is formed at the interface between the
Further, a second molten metal region is formed at the interface between the
次に、第1溶融金属領域、第2溶融金属領域が形成された状態で温度を一定に保持しておく(溶融金属凝固工程S114)。
すると、第1溶融金属領域中のGeが、さらに第二の金属板123側へと拡散していくことになる。これにより、第1溶融金属領域であった部分のGe濃度が徐々に低下していき融点が上昇することになり、温度を一定に保持した状態で凝固が進行していく。これにより、セラミックス基板121と第二の金属板123とが接合される。
同様に、第2溶融金属領域中のGeが、さらに第二の金属板123側及び天板部112側へと拡散し、第2溶融金属領域であった部分のGe濃度が徐々に低下していき融点が上昇することになり、温度を一定に保持した状態で凝固が進行していく。これにより、第二の金属板123と天板部112とが接合される。
Next, the temperature is kept constant with the first molten metal region and the second molten metal region formed (molten metal solidification step S114).
Then, Ge in the first molten metal region is further diffused toward the
Similarly, Ge in the second molten metal region further diffuses toward the
つまり、セラミックス基板121と第二の金属板123、及び、天板部112と第二の金属板123とは、いわゆる拡散接合(Transient Liquid Phase Diffusion Bonding)によって接合されているのである。このようにして凝固が進行した後に、常温にまで冷却を行う。
That is, the
このようにして、第一の金属板122、セラミックス基板121、第二の金属板123、ヒートシンク111(天板部112)とが接合され、本実施形態であるヒートシンク付パワーモジュール用基板110が製造されることになる。
In this way, the
以上のような構成とされた本実施形態であるヒートシンク付パワーモジュール用基板110によれば、上述の第1の実施形態であるヒートシンク付パワーモジュール用基板と同様の作用効果を奏することになり、第一の金属板122の上に搭載された半導体チップ3等の発熱体からの熱を効率良く促進することができ、かつ、熱サイクル負荷時におけるセラミックス基板121の割れの発生を抑制し、信頼性の高いヒートシンク付パワーモジュール用基板110を提供することが可能となる。
According to the power module substrate with
また、本実施形態では、AlNからなるセラミックス基板121の一方の面に、Al2O3層125を形成し、このAl2O3層125を介して、銅からなる第一の金属板122とセラミックス基板121とをDBC法によって接合していることから、第一の金属板122とセラミックス基板121とを強固に接合することができる。よって、AlNからなるセラミックス基板121であっても、DBC法を利用して銅からなる第一の金属板122を接合することが可能となる。
In the present embodiment, an Al 2 O 3 layer 125 is formed on one surface of the
さらに、アルミナ層形成工程S100において、形成するAl2O3層125の厚さを1μm以上としているので、第一の金属板122とセラミックス基板121とを確実に接合することが可能となる。
また、本実施形態では、高酸素分圧/低水蒸気分圧雰囲気にてAlNの酸化処理を行うことにより、AlNとの密着性に優れた緻密なAl2O3層125を形成しているので、AlNからなるセラミックス基板121とAl2O3層125との間での剥離の発生を防止することが可能となる。
Furthermore, since the thickness of the Al 2 O 3 layer 125 to be formed is 1 μm or more in the alumina layer forming step S100, the
In the present embodiment, since the AlN is oxidized in a high oxygen partial pressure / low steam partial pressure atmosphere, the dense Al 2 O 3 layer 125 having excellent adhesion to AlN is formed. Further, it is possible to prevent the occurrence of peeling between the
次に、本発明の第3の実施形態について、図16から図18を参照して説明する。
図16に示すパワーモジュール201は、ヒートシンク付パワーモジュール用基板210と、このヒートシンク付パワーモジュール用基板210の搭載面222A上にはんだ層2を介して接合された半導体チップ3(電子部品)と、を備えている。ここで、はんだ層2は、例えばSn−Ag系、Sn−In系、若しくはSn−Ag−Cu系のはんだ材とされている。なお、本実施形態では、搭載面222Aとはんだ層2との間にNiメッキ層(図示なし)が設けられている。
Next, a third embodiment of the present invention will be described with reference to FIGS.
A
ヒートシンク付パワーモジュール用基板210は、セラミックス基板221と、このセラミックス基板221の一方の面(図16において上面)に接合された第一の金属板222と、セラミックス基板221の他方の面(図16において下面)に接合された第二の金属板223とを備えたパワーモジュール用基板220と、ヒートシンク211と、を備えている。
The
セラミックス基板221は、第一の金属板222と第二の金属板223との間の電気的接続を防止するものであって、絶縁性の高いSi3N4(窒化ケイ素)で構成されている。また、セラミックス基板221の厚さは、0.2〜1.5mmの範囲内に設定されており、本実施形態では、0.32mmに設定されている。
The
第一の金属板222は、銅又は銅合金で構成されており、本実施形態では、タフピッチ銅の圧延板とされている。また、その板厚は0.1〜1.0mmの範囲内に設定されており、本実施形態では、0.6mmに設定されている。
この第一の金属板222には、回路パターンが形成されており、その一方の面(図16において上面)が、半導体チップ3が搭載される搭載面222Aとされている。
The
A circuit pattern is formed on the
第二の金属板223は、耐力が30N/mm2以下のアルミニウムで構成されており、本実施形態では純度99.99%以上の純アルミニウム(いわゆる4Nアルミ)で構成されている。また、その板厚は0.6〜6mmの範囲内に設定されており、本実施形態では、2.0mmに設定されている。
The
ヒートシンク211は、前述のパワーモジュール用基板220を冷却するためのものである。本実施形態におけるヒートシンク211は、パワーモジュール用基板220と接合される天板部212と、冷却媒体(例えば冷却水)を流通するための流路214と、を備えている。
ここで、ヒートシンク211(天板部212)は、熱伝導性が良好な材質で構成されることが望ましく、かつ、構造材としての剛性を確保する必要がある。そこで、本実施形態においては、ヒートシンク211の天板部212は、A6063(アルミニウム合金)で構成されている。
The
Here, it is desirable that the heat sink 211 (top plate portion 212) be made of a material having good thermal conductivity, and it is necessary to ensure rigidity as a structural material. Therefore, in the present embodiment, the
そして、図17に示すように、セラミックス基板221と第二の金属板223との接合界面230においては、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素が固溶しており、本実施形態では、添加元素としてCuが固溶している。
ここで、第二の金属板223の接合界面230近傍には、接合界面230から積層方向に離間するにしたがい漸次添加元素の濃度(本実施形態ではCu濃度)が低下する濃度傾斜層231が形成されている。また、この濃度傾斜層231の接合界面230側(第二の金属板223の接合界面230近傍)の添加元素の濃度(本実施形態ではCu濃度)が、0.01質量%以上5質量%以下の範囲内に設定されている。
なお、第二の金属板223の接合界面230近傍の添加元素の濃度は、EPMA分析(スポット径30μm)によって、接合界面230から50μmの位置で5点測定した平均値である。また、図17のグラフは、第二の金属板223の中央部分において積層方向にライン分析を行い、前述の50μm位置での濃度を基準として求めたものである。
As shown in FIG. 17, at the
Here, in the vicinity of the
The concentration of the additive element in the vicinity of the
また、図18に示すように、第二の金属板223とヒートシンク211の天板部212との接合界面240においては、第二の金属板223及び天板部212に、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素が固溶しており、本実施形態では、添加元素としてCuが固溶している。
ここで、第二の金属板223及び天板部212の接合界面240近傍には、接合界面240から積層方向に離間するにしたがい漸次添加元素の濃度(本実施形態ではCu濃度)が低下する濃度傾斜層241、242が形成されている。また、この濃度傾斜層241、242の接合界面240側(第二の金属板223及び天板部212の接合界面240近傍)の添加元素の濃度(本実施形態ではCu濃度)が、0.01質量%以上5質量%以下の範囲内に設定されている。
なお、この第二の金属板223及び天板部212の接合界面240近傍の添加元素の濃度は、EPMA分析(スポット径30μm)によって、接合界面240から50μmの位置で5点測定した平均値である。また、図12のグラフは、第二の金属板223及び天板部212の中央部分において積層方向にライン分析を行い、前述の50μm位置での濃度を基準として求めたものである。
As shown in FIG. 18, at the
Here, in the vicinity of the
The concentration of the additive element in the vicinity of the
また、セラミックス基板221と第二の金属板223との接合界面230を透過電子顕微鏡において観察した場合には、図19に示すように、接合界面230に添加元素(Cu)が濃縮した添加元素高濃度部232が形成されている。この添加元素高濃度部232においては、添加元素の濃度(Cu濃度)が、第二の金属板223中の添加元素の濃度(Si濃度)の2倍以上とされている。なお、この添加元素高濃度部232の厚さHは4nm以下とされている。
In addition, when the
なお、ここで観察する接合界面230は、図19に示すように、第二の金属板223の格子像の界面側端部とセラミックス基板221の格子像の接合界面230側端部との間の中央を基準面Sとする。また、第二の金属板223中の添加元素の濃度(Cu濃度)は、第二の金属板223のうち接合界面230から一定距離(本実施形態では5nm)離れた部分における添加元素の濃度(Cu濃度)である。
As shown in FIG. 19, the
また、この接合界面230をエネルギー分散型X線分析法(EDS)で分析した際のAl、Si、添加元素(Cu)、O、Nの質量比が、Al:Si:添加元素(Cu):O:N=15〜45質量%:15〜45質量%:1〜30質量%:2〜20質量%:25質量%以下の範囲内に設定されている。なお、EDSによる分析を行う際のスポット径は1〜4nmとされており、接合界面230を複数点(例えば、本実施形態では20点)で測定し、その平均値を算出している。また、第二の金属板223の結晶粒界とセラミックス基板121との接合界面230は測定対象とせず、第二の金属板223の結晶粒とセラミックス基板221との接合界面230のみを測定対象としている。
また、エネルギー分散型X線分析法による分析値は、日本電子製の電子顕微鏡JEM−2010Fに搭載したサーモフィッシャーサイエンティフィック株式会社製のエネルギー分散型蛍光X線元素分析装置NORAN System7を用いて加速電圧200kVで行った。
The mass ratio of Al, Si, additive element (Cu), O, and N when the
Analyzed values by energy dispersive X-ray analysis are accelerated using an energy dispersive X-ray fluorescence element analyzer NORAN System 7 manufactured by Thermo Fisher Scientific Co., Ltd. mounted on an electron microscope JEM-2010F manufactured by JEOL. The voltage was 200 kV.
以下に、前述の構成のヒートシンク付パワーモジュール用基板210の製造方法について説明する。
Below, the manufacturing method of the board |
まず、図20及び図21に示すように、銅からなる第一の金属板222と、セラミックス基板221とを接合する(銅板接合工程S201)。ここで、Si3N4からなるセラミックス基板221と第一の金属板222とは、いわゆる活性金属法によって接合されている。この活性金属法では、図21に示すように、セラミックス基板221と第一の金属板222との間に、Ag−Cu−Tiからなるろう材225を配設して、セラミックス基板221と第一の金属板222とを接合するものである。
なお、本実施形態では、Ag−27.4質量%Cu−2.0質量%Tiからなるろう材225を用いて、10−3Paの真空中にて、850℃で10分加熱することによって、セラミックス基板221と第一の金属板222とを接合している。
First, as shown in FIGS. 20 and 21, the
In the present embodiment, the
次に、セラミックス基板221の他方の面側に第二の金属板223を接合する(アルミニウム板接合工程S202)とともに、第二の金属板223とヒートシンク211(天板部212)とを接合する(ヒートシンク接合工程S203)。本実施形態では、これらアルミニウム板接合工程S202と、ヒートシンク接合工程S203と、を同時に実施することになる。
Next, the
第二の金属板223のセラミックス基板221との接合面にスパッタリングによって添加元素(Cu)を固着して第1固着層251を形成するとともに、第二の金属板223のヒートシンク211の天板部212との接合面にスパッタリングによって添加元素(Cu)を固着して第2固着層252を形成する(固着層形成工程S211)。ここで、第1固着層251及び第2固着層252における添加元素量は0.01mg/cm2以上10mg/cm2以下の範囲内とされており、本実施形態では、添加元素としてCuを用いており、第1固着層251及び第2固着層252におけるCu量が0.08mg/cm2以上2.7mg/cm2以下に設定されている。
The additive element (Cu) is fixed to the bonding surface of the
次に、図21に示すように、第二の金属板223をセラミックス基板221の他方の面側に積層する。さらに、第二の金属板223の他方の面側にヒートシンク211の天板部212を積層する(積層工程S212)。
Next, as shown in FIG. 21, the
そして、第一の金属板222及びセラミックス基板221、第二の金属板223、天板部212をその積層方向に加圧(圧力1〜35kgf/cm2)した状態で真空加熱炉内に装入して加熱する(加熱工程S213)。ここで、本実施形態では、真空加熱炉内の圧力は10−3〜10−6Paの範囲内に、加熱温度は550℃以上650℃以下の範囲内に設定している。
すると、第二の金属板223とセラミックス基板221との界面に第1溶融金属領域が形成され、第二の金属板223と天板部212との界面に第2溶融金属領域が形成されることになる。
Then, the
Then, a first molten metal region is formed at the interface between the
次に、冷却を行うことで第1溶融金属領域、第2溶融金属領域を凝固させる(溶融金属凝固工程S214)。 Next, the first molten metal region and the second molten metal region are solidified by cooling (molten metal solidification step S214).
このようにして、第一の金属板222、セラミックス基板221、第二の金属板223、ヒートシンク211(天板部212)とが接合され、本実施形態であるヒートシンク付パワーモジュール用基板210が製造されることになる。
In this way, the
以上のような構成とされた本実施形態であるヒートシンク付パワーモジュール用基板210によれば、上述の第1、第2の実施形態であるヒートシンク付パワーモジュール用基板と同様の作用効果を奏することになり、第一の金属板222の上に搭載された半導体チップ3等の発熱体からの熱を効率良く促進することができ、かつ、熱サイクル負荷時におけるセラミックス基板221の割れの発生を抑制し、信頼性の高いヒートシンク付パワーモジュール用基板210を提供することが可能となる。
According to the power module substrate with
また、Ag−Cu−Tiのろう材225を用いた活性金属法によって、第一の金属板222とセラミックス基板221とを接合しているので、第一の金属板222及びセラミックス基板221に酸素を介在させることなく、パワーモジュール用基板220を構成することができる。
Further, since the
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、第二の金属板を、純度99.99%以上の純アルミニウムの圧延板としたものとして説明したが、これに限定されることはなく、耐力が30N/mm2以下のアルミニウムで構成されたものであればよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, although the second metal plate has been described as a rolled plate of pure aluminum having a purity of 99.99% or more, the present invention is not limited to this, and the second metal plate is made of aluminum having a proof stress of 30 N / mm 2 or less. Anything can be used.
また、第2の実施形態において、AlNを酸化処理することによってAl2O3層を形成するものとして説明したが、これに限定されることはなく、他の手段によってセラミックス基板の表面にAl2O3層を形成してもよい。
さらに、第1の実施形態及び第2の実施形態における固着層形成工程において、スパッタによって添加元素を固着するものとして説明したが、これに限定されることはなく、蒸着、CVD、めっき又はペーストの塗布によって添加元素を固着させてもよい。
In the second embodiment, the Al 2 O 3 layer is formed by oxidizing AlN. However, the present invention is not limited to this, and Al 2 is applied to the surface of the ceramic substrate by other means. An O 3 layer may be formed.
Further, in the fixing layer forming step in the first embodiment and the second embodiment, it has been described that the additive element is fixed by sputtering. However, the present invention is not limited to this, and deposition, CVD, plating, or paste is not limited thereto. The additive element may be fixed by coating.
また、第二の金属板とセラミックス基板、第二の金属板と天板部、との間に、それぞれ1種の添加元素を配置して接合するものとして説明したが、これに限定されることはなく、Si,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素を配設してもよい。
さらに、MgやCa等の易酸化元素を用いる場合には、アルミニウムとともに添加元素を配設することが好ましい。これにより、MgやCa等の易酸化元素が酸化損耗することを抑制することができる。
Moreover, although it demonstrated as what arrange | positions and joins one kind of additional element between a 2nd metal plate and a ceramic substrate, and a 2nd metal plate and a top-plate part, respectively, it is limited to this Instead, any one or two or more additive elements of Si, Cu, Ag, Zn, Mg, Ge, Ca, Ga, and Li may be provided.
Furthermore, when an easily oxidizable element such as Mg or Ca is used, it is preferable to arrange an additive element together with aluminum. Thereby, it is possible to suppress oxidation wear of easily oxidizable elements such as Mg and Ca.
また、本実施形態では、ヒートシンクの天板部をA6063合金で構成したものとして説明したが、これに限定されることはなく、A1100合金、A3003合金、A5052合金、A7N01合金等の他の金属材料で構成されたものであってもよい。
さらに、ヒートシンクの構造は、本実施形態に限定されることはなく、他の構造のヒートシンクを採用してもよい。
In the present embodiment, the top plate of the heat sink has been described as being made of an A6063 alloy. However, the present invention is not limited to this, and other metal materials such as an A1100 alloy, an A3003 alloy, an A5052 alloy, and an A7N01 alloy. It may be configured by.
Furthermore, the structure of the heat sink is not limited to this embodiment, and a heat sink having another structure may be adopted.
また、本実施形態では、ヒートシンクの上に一つのパワーモジュール用基板が接合された構成として説明したが、これに限定されることはなく、一つのヒートシンクの上に複数のパワーモジュール用基板が接合されていてもよい。 In the present embodiment, the power module substrate is described as being bonded to the heat sink. However, the present invention is not limited to this, and a plurality of power module substrates are bonded to the heat sink. May be.
さらに、図22に示すように、第二の金属板323を、複数の金属板323A、323Bを積層した構造としてもよい。この場合、第二の金属板323のうち一方側(図22において上側)に位置する金属板323Aがセラミックス基板321に接合され、他方側(図22において下側)に位置する金属板323Bがヒートシンク311の天板部312に接合されることになる。なお、図22では、2枚の金属板323A、323Bを積層させたものとしているが、積層する枚数に制限はない。また、図22に示すように、積層する金属板同士の大きさ、形状が異なっていても良いし、同じ大きさ、形状に調整されたものであってもよい。さらに、これらの金属板の組成が異なっていても良い。
Furthermore, as shown in FIG. 22, the
本発明の有効性を確認するために行った比較実験について説明する。
Al2O3からなる厚さ0.635mmのセラミックス基板と、タフピッチ銅の圧延板からなる厚さ0.6mmの第一の金属板と、アルミニウムからなる厚さ2.0mmの第二の金属板と、を準備した。ここで、第二の金属板においては、アルミニウムの純度を変更することにより、耐力が10N/mm2、25N/mm2、35N/mm2の3種類を準備した。
また、ヒートシンクとしてアルミニウム板を準備した。ここで、ヒートシンクとなるアルミニウム板として、耐力が145N/mm2で厚さ5.0mm(A6063合金)、耐力が110N/mm2で厚さ3.0mm(A3003合金)、耐力が95N/mm2で厚さ5.0mm(Al−Si合金)、耐力が145N/mm2で厚さ1.0mm(A6063合金)の4種類を準備した。
A comparative experiment conducted to confirm the effectiveness of the present invention will be described.
A 0.635 mm thick ceramic substrate made of Al 2 O 3, a 0.6 mm thick first metal plate made of a tough pitch copper rolled plate, and a 2.0 mm thick second metal plate made of aluminum And prepared. Here, in the second metal plate, by altering the purity of aluminum, yield strength were prepared three kinds of 10N / mm 2, 25N / mm 2, 35N /
An aluminum plate was prepared as a heat sink. Here, as an aluminum plate serving as a heat sink, a proof stress of 145 N / mm 2 and a thickness of 5.0 mm (A6063 alloy), a proof stress of 110 N / mm 2 and a thickness of 3.0 mm (A3003 alloy), and a proof stress of 95 N / mm 2 And 4 types of thickness 5.0 mm (Al—Si alloy), proof stress 145 N / mm 2 and thickness 1.0 mm (A6063 alloy) were prepared.
これらのセラミックス基板、第一の金属板、第二の金属板、ヒートシンクを、第1の実施形態に記載された方法により接合し、表1に示すように、6種類のヒートシンク付パワーモジュール用基板を製造した。なお、固着層形成工程S11におけるCu量は0.9mg/cm2とした。また、加熱工程S13における加圧圧力を5kgf/cm2、加熱温度を610℃、真空加熱炉内の圧力を10−4Paとした。 These ceramic substrates, the first metal plate, the second metal plate, and the heat sink are joined by the method described in the first embodiment, and as shown in Table 1, there are six types of power module substrates with heat sinks. Manufactured. Note that the amount of Cu in the fixing layer forming step S11 was set to 0.9 mg / cm 2 . The pressurizing pressure in the heating step S13 was 5 kgf / cm 2 , the heating temperature was 610 ° C., and the pressure in the vacuum heating furnace was 10 −4 Pa.
そして、これらのヒートシンク付パワーモジュール用基板に、冷熱サイクル(−45℃−125℃)を2000回繰り返し、セラミックス基板の割れの有無について確認した。また、ヒートシンクの変形についても確認した。評価結果を表1に示す。 And the heat cycle (-45 degreeC-125 degreeC) was repeated 2000 times to these power module substrates with a heat sink, and the presence or absence of the crack of a ceramic substrate was confirmed. Also, the deformation of the heat sink was confirmed. The evaluation results are shown in Table 1.
第二の金属板の耐力を35N/mm2とした比較例1においては、セラミックス基板に割れが確認された。ヒートンシンクとセラミックス基板との熱膨張係数の差に起因する熱歪みを、第二の金属板で十分緩和することができなかったためと推測される。
また、ヒートシンクを構成するアルミニウム板を耐力が95N/mm2で厚さ5.0mm(Al−Si合金)とした比較例2、耐力が145N/mm2で厚さ1.0mm(A6063合金)とした比較例3においては、ヒートシンクの強度が不十分であってヒートシンクに変形が生じた。
In Comparative Example 1 in which the proof stress of the second metal plate was 35 N / mm 2 , cracks were confirmed in the ceramic substrate. It is presumed that the thermal distortion caused by the difference in thermal expansion coefficient between the heat sink and the ceramic substrate could not be sufficiently relaxed by the second metal plate.
Further, Comparative Example 2 in which the aluminum plate constituting the heat sink has a proof stress of 95 N / mm 2 and a thickness of 5.0 mm (Al—Si alloy), the proof stress is 145 N / mm 2 and a thickness of 1.0 mm (A6063 alloy). In Comparative Example 3, the heat sink strength was insufficient and the heat sink was deformed.
これに対して、耐力が30N/mm2以下のアルミニウムからなる第二の金属板と、耐力が100N/mm2以上で厚さが2mm以上とされたヒートシンクと、を備えた実施例1−3においては、セラミックス基板に割れは確認されなかった。また、ヒートシンクの変形も認められなかった。 In contrast, a second metal plate yield strength of from 30 N / mm 2 or less of aluminum, Example yield strength with a heat sink thickness at 100 N / mm 2 or more is equal to or greater than 2 mm, 1-3 No cracks were found in the ceramic substrate. Further, no deformation of the heat sink was observed.
1、101、201、301 パワーモジュール
3 半導体チップ(電子部品)
10、110、210、310 ヒートシンク付パワーモジュール用基板
11、111、211、311 ヒートシンク
12、112、212、312 天板部
20、120、220、320 パワーモジュール用基板
21、121、221、321 セラミックス基板
22、122、222、322 第一の金属板
22A、122A、222A、322A 搭載面
23、123、223、323 第二の金属板
30、130、230 接合界面(セラミックス基板/第二の金属板)
32、132、232 添加元素高濃度部
40、140、240 接合界面(第二の金属板/天板部)
55 第1溶融金属領域(溶融金属領域)
56 第2溶融金属領域(溶融金属領域)
125 Al2O3層
1, 101, 201, 301
10, 110, 210, 310 Power module substrate with
32, 132, 232 Additive element
55 1st molten metal area (molten metal area)
56 Second molten metal region (molten metal region)
125 Al 2 O 3 layers
Claims (15)
前記第一の金属板は、銅又は銅合金で構成され、この第一の金属板の一方の面が電子部品が搭載される搭載面とされており、
前記第二の金属板は、耐力が30N/mm2以下のアルミニウムで構成されており、
前記ヒートシンクは、耐力が100N/mm2以上の金属材料で構成され、その厚さが2mm以上とされていることを特徴とするヒートシンク付パワーモジュール用基板。 A ceramic substrate, a first metal plate bonded to one surface of the ceramic substrate, a second metal plate bonded to the other surface of the ceramic substrate, and the other surface of the second metal plate A power module substrate with a heat sink comprising a heat sink bonded to the side,
The first metal plate is made of copper or a copper alloy, and one surface of the first metal plate is a mounting surface on which electronic components are mounted,
The second metal plate is made of aluminum having a proof stress of 30 N / mm 2 or less,
The heat sink is made of a metal material having a proof stress of 100 N / mm 2 or more, and has a thickness of 2 mm or more.
前記セラミックス基板がAl2O3で構成され、前記セラミックス基板との接合界面に形成された前記添加元素高濃度部を含む前記接合界面をエネルギー分散型X線分析法で分析したAl、添加元素、Oの質量比が、Al:添加元素:O=50〜90質量%:1〜30質量%:45質量%以下とされていることを特徴とする請求項3に記載のヒートシンク付パワーモジュール用基板。 The additive element high concentration portion is formed at the bonding interface with the ceramic substrate in the second metal plate,
The ceramic substrate is made of Al 2 O 3 , and the bonding interface including the high concentration portion of the additive element formed at the bonding interface with the ceramic substrate is analyzed by energy dispersive X-ray analysis Al, additive element, 4. The power module substrate with a heat sink according to claim 3, wherein the mass ratio of O is Al: additive element: O = 50 to 90 mass%: 1 to 30 mass%: 45 mass% or less. .
前記セラミックス基板がAlNで構成され、前記セラミックス基板との接合界面に形成された前記添加元素高濃度部を含む前記接合界面をエネルギー分散型X線分析法で分析したAl、添加元素、O、Nの質量比が、Al:添加元素:O:N=50〜90質量%:1〜30質量%:1〜10質量%:25質量%以下とされていることを特徴とする請求項3に記載のヒートシンク付パワーモジュール用基板。 The additive element high concentration portion is formed at the bonding interface with the ceramic substrate in the second metal plate,
The ceramic substrate is made of AlN, and Al, additive elements, O, and N are analyzed by energy dispersive X-ray analysis of the joint interface including the high concentration portion of the additive element formed at the joint interface with the ceramic substrate. The mass ratio of Al: additive element: O: N = 50 to 90% by mass: 1 to 30% by mass: 1 to 10% by mass: 25% by mass or less. Power module board with heat sink.
前記セラミックス基板がSi3N4で構成され、前記添加元素がCu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上とされており、
前記セラミックス基板との接合界面に形成された前記添加元素高濃度部を含む前記接合界面をエネルギー分散型X線分析法で分析したAl、Si、添加元素、O、Nの質量比が、Al:Si:添加元素:O:N=15〜45質量%:15〜45質量%:1〜30質量%:2〜20質量%:25質量%以下とされていることを特徴とする請求項3に記載のヒートシンク付パワーモジュール用基板。 The additive element high concentration portion is formed at the bonding interface with the ceramic substrate in the second metal plate,
The ceramic substrate is made of Si 3 N 4 , and the additive element is one or more of Cu, Ag, Zn, Mg, Ge, Ca, Ga, Li,
The mass ratio of Al, Si, additive elements, O, and N analyzed by energy dispersive X-ray analysis of the joint interface including the high concentration portion of the additive element formed at the joint interface with the ceramic substrate is Al: 4. Si: additive element: O: N = 15 to 45% by mass: 15 to 45% by mass: 1 to 30% by mass: 2 to 20% by mass: 25% by mass or less A power module substrate with a heat sink as described.
前記第一の金属板は、銅又は銅合金で構成され、前記第二の金属板は、耐力が30N/mm2以下のアルミニウムで構成され、前記ヒートシンクは、耐力が100N/mm2以上の金属材料で構成されており、
前記第一の金属板と前記セラミックス基板とを接合する銅板接合工程と、前記第二の金属板と前記セラミックス基板とを接合するアルミニウム板接合工程と、前記第二の金属板と前記ヒートシンクとを接合するヒートシンク接合工程と、を備えており、
前記アルミニウム板接合工程又は前記ヒートシンク接合工程のうち少なくともいずれか一方においては、前記第二の金属板の接合界面にSi,Cu,Ag,Zn,Mg,Ge,Ca,Ga,Liのうちのいずれか1種又は2種以上の添加元素を配置し、前記第二の金属板を接合することを特徴とするヒートシンク付パワーモジュール用基板の製造方法。 A ceramic substrate, a first metal plate bonded to one surface of the ceramic substrate, a second metal plate bonded to the other surface of the ceramic substrate, and the other surface of the second metal plate A method for manufacturing a power module substrate with a heat sink, comprising:
The first metal plate is made of copper or a copper alloy, the second metal plate is made of aluminum having a yield strength of 30 N / mm 2 or less, and the heat sink is a metal having a yield strength of 100 N / mm 2 or more. Composed of materials,
A copper plate joining step for joining the first metal plate and the ceramic substrate; an aluminum plate joining step for joining the second metal plate and the ceramic substrate; and the second metal plate and the heat sink. A heat sink joining process for joining,
In at least one of the aluminum plate bonding step and the heat sink bonding step, any one of Si, Cu, Ag, Zn, Mg, Ge, Ca, Ga, and Li is formed on the bonding interface of the second metal plate. A method for producing a power module substrate with a heat sink, wherein one or two or more additional elements are arranged and the second metal plate is joined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010208350A JP5577980B2 (en) | 2010-09-16 | 2010-09-16 | Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010208350A JP5577980B2 (en) | 2010-09-16 | 2010-09-16 | Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012042837A Division JP5910166B2 (en) | 2012-02-29 | 2012-02-29 | Power module substrate manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012064801A JP2012064801A (en) | 2012-03-29 |
JP5577980B2 true JP5577980B2 (en) | 2014-08-27 |
Family
ID=46060191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010208350A Active JP5577980B2 (en) | 2010-09-16 | 2010-09-16 | Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5577980B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013229579A (en) | 2012-03-30 | 2013-11-07 | Mitsubishi Materials Corp | Substrate for power module, substrate for power module having heat sink, and power module |
JP5987418B2 (en) * | 2012-03-30 | 2016-09-07 | 三菱マテリアル株式会社 | Manufacturing method of power module substrate with heat sink |
JP2014112732A (en) * | 2012-03-30 | 2014-06-19 | Mitsubishi Materials Corp | Substrate for power module with heat sink and power module |
JP6201297B2 (en) * | 2012-11-08 | 2017-09-27 | 三菱マテリアル株式会社 | Power module substrate with copper plate and method for manufacturing power module substrate with copper plate |
JP6307832B2 (en) * | 2013-01-22 | 2018-04-11 | 三菱マテリアル株式会社 | Power module board, power module board with heat sink, power module with heat sink |
JP6024477B2 (en) * | 2013-01-25 | 2016-11-16 | 三菱マテリアル株式会社 | Manufacturing method of power module substrate with heat sink |
JP6183166B2 (en) * | 2013-01-30 | 2017-08-23 | 三菱マテリアル株式会社 | Power module substrate with heat sink and manufacturing method thereof |
JP6111764B2 (en) | 2013-03-18 | 2017-04-12 | 三菱マテリアル株式会社 | Power module substrate manufacturing method |
JP5672324B2 (en) | 2013-03-18 | 2015-02-18 | 三菱マテリアル株式会社 | Manufacturing method of joined body and manufacturing method of power module substrate |
JP6621076B2 (en) | 2013-03-29 | 2019-12-18 | 三菱マテリアル株式会社 | Power module substrate, power module substrate with heat sink, and power module |
JP2015002305A (en) | 2013-06-18 | 2015-01-05 | 三菱電機株式会社 | Semiconductor device |
WO2015163453A1 (en) * | 2014-04-25 | 2015-10-29 | 三菱マテリアル株式会社 | Power module substrate unit and power module |
DE102014211562A1 (en) * | 2014-06-17 | 2015-12-17 | Robert Bosch Gmbh | Semiconductor arrangement with a heat sink |
CN205491580U (en) * | 2015-11-30 | 2016-08-17 | 比亚迪股份有限公司 | IGBT heat dissipation module and have its IGBT module |
JP7135716B2 (en) | 2017-10-27 | 2022-09-13 | 三菱マテリアル株式会社 | Joined body, insulated circuit board with heat sink, and heat sink |
JP7192451B2 (en) | 2018-01-25 | 2022-12-20 | 三菱マテリアル株式会社 | COPPER/CERAMIC JOINT, INSULATED CIRCUIT BOARD, METHOD FOR MANUFACTURING COPPER/CERAMIC JOINT, AND METHOD FOR MANUFACTURING INSULATED CIRCUIT BOARD |
WO2020044590A1 (en) | 2018-08-28 | 2020-03-05 | 三菱マテリアル株式会社 | Copper/ceramic bonded body, insulation circuit board, method for producing copper/ceramic bonded body, and method for manufacturing insulation circuit board |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003197826A (en) * | 2001-12-26 | 2003-07-11 | Toshiba Corp | Ceramic circuit board and semiconductor module using the same |
JP2008227336A (en) * | 2007-03-15 | 2008-09-25 | Hitachi Metals Ltd | Semiconductor module, circuit board used therefor |
US8637777B2 (en) * | 2008-03-17 | 2014-01-28 | Mitsubishi Materials Corporation | Power module substrate having heatsink, method for manufacturing the same, power module having heatsink, and power module substrate |
US8564118B2 (en) * | 2008-06-06 | 2013-10-22 | Mitsubishi Materials Corporation | Power module substrate, power module, and method for manufacturing power module substrate |
-
2010
- 2010-09-16 JP JP2010208350A patent/JP5577980B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012064801A (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5577980B2 (en) | Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink | |
JP6621076B2 (en) | Power module substrate, power module substrate with heat sink, and power module | |
KR102097177B1 (en) | Power module substrate, power module substrate with heat sink, and power module | |
JP6696215B2 (en) | Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink | |
JP5614485B2 (en) | Power module substrate with heat sink, power module with heat sink, and method for manufacturing power module substrate with heat sink | |
KR101586157B1 (en) | Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module | |
WO2013147144A1 (en) | Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module | |
WO2011049067A1 (en) | Substrate for power module, substrate with heat sink for power module, power module, method for producing substrate for power module, and method for producing substrate with heat sink for power module | |
JP5910166B2 (en) | Power module substrate manufacturing method | |
JP5938390B2 (en) | Power module | |
WO2014103934A1 (en) | Power module | |
JP2012178513A (en) | Power module unit and manufacturing method of the same | |
JP2014112732A (en) | Substrate for power module with heat sink and power module | |
JP5741793B2 (en) | Power module substrate, power module substrate with heat sink, power module, method for manufacturing power module substrate, and method for manufacturing power module substrate with heat sink | |
JP5699853B2 (en) | Power module substrate, power module substrate with heat sink, power module, and method for manufacturing power module substrate | |
JP5765131B2 (en) | Power module substrate, power module substrate with heat sink, power module, and method for manufacturing power module substrate | |
JP5724273B2 (en) | Power module substrate, power module substrate with heat sink, power module, method for manufacturing power module substrate, and method for manufacturing power module substrate with heat sink | |
JP2012164708A (en) | Manufacturing method for substrate for power module, and substrate for power module | |
JP6237058B2 (en) | Power module substrate with copper plate and method for manufacturing power module substrate with copper plate | |
JP5359943B2 (en) | Power module substrate, power module, and method of manufacturing power module substrate | |
JP5640571B2 (en) | Power module substrate manufacturing method | |
JP5359942B2 (en) | Power module substrate, power module, and method of manufacturing power module substrate | |
JP2015230900A (en) | Power module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140623 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5577980 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |