JP5577528B2 - Synthetic friction pile - Google Patents

Synthetic friction pile Download PDF

Info

Publication number
JP5577528B2
JP5577528B2 JP2011041026A JP2011041026A JP5577528B2 JP 5577528 B2 JP5577528 B2 JP 5577528B2 JP 2011041026 A JP2011041026 A JP 2011041026A JP 2011041026 A JP2011041026 A JP 2011041026A JP 5577528 B2 JP5577528 B2 JP 5577528B2
Authority
JP
Japan
Prior art keywords
pile
supporting force
piles
reinforcing bar
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011041026A
Other languages
Japanese (ja)
Other versions
JP2012177264A (en
Inventor
謙治 河野
泰士 脇屋
俊輔 宇佐美
正宏 林
久和 田近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011041026A priority Critical patent/JP5577528B2/en
Publication of JP2012177264A publication Critical patent/JP2012177264A/en
Application granted granted Critical
Publication of JP5577528B2 publication Critical patent/JP5577528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Piles And Underground Anchors (AREA)

Description

本発明は、軟弱地盤の基礎杭等に使用する合成摩擦杭に関する。   The present invention relates to a synthetic friction pile used for a foundation pile of soft ground.

軟弱地盤等においては、セメントミルクと掘削土砂とを攪拌してなるソイルセメントやコンクリート等の柱状体の中心部分に、この柱状体が硬化しないうちに芯材として鋼管杭やコンクリート杭等の既製杭を貫入させる合成摩擦杭がよく使用される。図3はこの合成摩擦杭を示す概念図で、Gは地盤、Sはソイルセメント(柱状体)、1は芯材(既製杭)である。芯材1の頭部が図示しない構造物のフーチングに接続されて荷重を受け、柱状体Sの外周が周囲の地盤Gと接触して摩擦支持する構造である。   In soft ground, etc., in the center of a columnar body such as soil cement or concrete made by stirring cement milk and excavated earth and sand, a prefabricated pile such as a steel pipe pile or a concrete pile is used as the core material before the columnar body is cured. Synthetic friction piles are often used. FIG. 3 is a conceptual diagram showing this synthetic friction pile, wherein G is the ground, S is a soil cement (columnar body), and 1 is a core material (ready-made pile). The head of the core material 1 is connected to a footing of a structure (not shown) to receive a load, and the outer periphery of the columnar body S is in contact with the surrounding ground G to be frictionally supported.

合成摩擦杭においては芯材とソイルセメント柱状体との付着、すなわち一体化が重要である。特許文献1には、芯材である鋼管の表面に圧延により突起を形成したり、溶接ビードや鉄筋の溶接により突起を設けることが記載されている。
図4は表面に突起を取り付けた鋼管を示す正面図、図5は同じく斜視図で、(a)は鋼管1の表面に縦鉄筋2aを取り付けたもの、(b)は同じく鋼管1の表面にらせん鉄筋2bを取り付けたもの、(c)は環状鉄筋2cを取り付けたもので、らせんの水平面となす角度をθとすれば、(a)はθ=90度、(c)はθ=0度に相当する。太線で示したのは溶接部分である。
In the synthetic friction pile, adhesion between the core material and the soil cement columnar body, that is, integration is important. Patent Document 1 describes that a protrusion is formed by rolling on the surface of a steel pipe as a core material, or a protrusion is provided by welding a weld bead or a reinforcing bar.
FIG. 4 is a front view showing a steel pipe with protrusions attached to the surface, FIG. 5 is a perspective view of the same, (a) shows a steel pipe 1 with a vertical rebar 2a attached, and (b) shows a steel pipe 1 surface. A spiral rebar 2b attached, (c) with an annular rebar 2c, and if the angle formed with the horizontal plane of the helix is θ, (a) is θ = 90 degrees and (c) is θ = 0 degrees. It corresponds to. The welded portion is indicated by a bold line.

図6はこのうちの(a)と(b)について、荷重と変位との関係を示すグラフである。鉛直方向の変位δは、すなわち杭頭部の沈下量である。縦鉄筋の場合は小さい荷重ですぐに支持力が発揮される反面、沈下が進むにつれて支持力が減少するので許容される沈下量が少ない場合に用いられる。一方、らせん鉄筋ではゆるやかに支持力が発揮されるので、許容される沈下量が大きい場合に用いられる。したがって、許容される沈下量が杭径の10%であるため、小径の杭では縦鉄筋が、中径杭ではらせん鉄筋が最適とされる。   FIG. 6 is a graph showing the relationship between load and displacement for (a) and (b). The vertical displacement δ is the amount of settlement of the pile head. In the case of a vertical reinforcing bar, the supporting force is exerted immediately with a small load, while the supporting force decreases as the subsidence progresses, so it is used when the allowable amount of subsidence is small. On the other hand, since the helical reinforcing bar exerts a supporting force gently, it is used when the allowable amount of settlement is large. Therefore, the allowable amount of settlement is 10% of the pile diameter, so vertical bars are optimal for small-diameter piles and helical reinforcing bars are optimal for medium-diameter piles.

なお、環状鉄筋を設けた鋼管杭は、特許文献2に記載されている。   In addition, the steel pipe pile which provided the cyclic | annular reinforcement is described in patent document 2. FIG.

特開昭62−268422号公報Japanese Patent Laid-Open No. 62-268422 特開2001−323459号公報JP 2001-323459 A

本発明は、表面に縦鉄筋を取り付けた杭体、らせん鉄筋を取り付けた杭体のそれぞれの特性を生かし、広い範囲にわたって高い支持力の得られる合成摩擦杭を実現することを目的とする。   An object of this invention is to implement | achieve the synthetic | combination friction pile from which each of the pile body which attached the vertical reinforcing bar to the surface, and the pile body which attached the helical reinforcing bar can obtain a high bearing force over a wide range.

本発明は、地盤を柱状に掘削し、掘削土砂とセメントミルクとを混合攪拌して形成したソイルセメント柱状体の中心部分に、この柱状体が硬化しないうちに芯材を貫入させ、これらが一体となって周面摩擦力を発揮するようにした合成摩擦杭において、前記芯材が、杭体の表面に縦鉄筋とらせん鉄筋とを複合させて取り付けたものであり、地盤の性能から見た必要な支持力に応じて、前記縦鉄筋と前記らせん鉄筋の構成割合が調整されていることを特徴とする合成摩擦杭であり、望ましくは前記縦鉄筋を1〜4本とし、前記らせん鉄筋が杭垂直方向に対してなす角度を30〜70°とすることを特徴とする前記の合成摩擦杭である。 The present invention excavates the ground into a columnar shape, and inserts a core material into the central portion of the soil cement columnar body formed by mixing and stirring the excavated earth and cement milk before the columnar body is cured, and these are integrated. in the synthesis friction piles which is adapted to exert a circumferential surface frictional force becomes, the core material state, and are not the longitudinal reinforcing bars and the spiral reinforcement attached by a composite on the surface of the pile body, seen from the performance of the ground depending on the required supporting force, a synthetic friction piles which allocations of the spiral reinforcement and the longitudinal reinforcing bars is characterized that you have been adjusted, preferably a previous 1-4 present the Kitate rebar, said helix rebar is the synthetic friction piles characterized that you and 30 to 70 ° the angle with respect to the pile vertically.

本発明によれば、縦鉄筋、らせん鉄筋の構成割合を調整することにより、広い範囲にわたって高い支持力の得られる合成摩擦杭が容易に得られ、軟弱地盤等における効率的な基礎構造が実現するという、すぐれた効果を奏する。   According to the present invention, by adjusting the composition ratio of the longitudinal reinforcing bar and the helical reinforcing bar, a synthetic friction pile that can obtain a high bearing force over a wide range can be easily obtained, and an efficient foundation structure in soft ground or the like is realized. It has an excellent effect.

本発明実施例の合成摩擦杭を示す斜視図である。It is a perspective view which shows the synthetic | combination friction pile of this invention Example. 図1に示した実施例における支持力特性を示すグラフである。It is a graph which shows the supporting force characteristic in the Example shown in FIG. 本発明に係わる合成摩擦杭を示す概念図である。It is a conceptual diagram which shows the synthetic | combination friction pile concerning this invention. 従来の技術における表面に突起を取り付けた鋼管を示す正面図である。It is a front view which shows the steel pipe which attached the processus | protrusion to the surface in the prior art. 同じく従来の技術における表面に突起を取り付けた鋼管を示す斜視図である。It is a perspective view which similarly shows the steel pipe which attached the processus | protrusion to the surface in a prior art. 従来の技術における表面に突起を取り付けた鋼管の荷重と変位との関係を示すグラフである。It is a graph which shows the relationship between the load and displacement of the steel pipe which attached the processus | protrusion to the surface in the prior art.

さきに図6において説明したように、縦鉄筋では小さい荷重ですぐに支持力が発揮されるが、沈下が進むにつれて支持力が減少するのに対して、らせん鉄筋では沈下量が大きく、沈下につれてゆるやかに支持力が発揮される。そこでこれらを複合するとこれらの特性が合成され、本発明の杭体では、縦鉄筋の部分の作用により小さい沈下量領域から高い支持力が発現され、その後沈下量が増えるとともにらせん鉄筋の作用によって高い支持力がそのまま維持されるという特性が得られ、結果的に沈下量によらずほぼ一定の高い支持力が確保できる。   As described above with reference to FIG. 6, the supporting force is exerted immediately with a small load in the vertical rebar, but the supporting force decreases as the subsidence progresses, whereas the amount of subsidence increases in the helical rebar, and as the subsidence proceeds Supportive power is exhibited gently. Therefore, when these are combined, these characteristics are synthesized, and in the pile body of the present invention, a high bearing force is expressed from the smaller subsidence amount region in the action of the longitudinal rebar part, and then the amount of subsidence increases and the action of the helical rebar increases. The characteristic that the supporting force is maintained as it is is obtained, and as a result, a substantially constant high supporting force can be secured regardless of the amount of settlement.

本発明において杭体としては、鋼管杭または既製コンクリート杭を使用することができる。既製コンクリート杭としては、鉄筋コンクリート杭(RC杭)、プレストレストコンクリート杭(PC杭)、高強度プレストレストコンクリート杭(PHC杭)、外殻鋼管付きコンクリート杭(SC杭)、高強度コンクリート拡径杭(ST杭)等を例示することができる。   In the present invention, a steel pipe pile or a ready-made concrete pile can be used as the pile body. Ready-made concrete piles include reinforced concrete piles (RC piles), prestressed concrete piles (PC piles), high-strength prestressed concrete piles (PHC piles), concrete piles with shell steel pipes (SC piles), high-strength concrete expanded piles (ST Stakes) and the like.

杭体の表面に突起付き線材を取り付ける方法としては、杭体が鋼管杭、または外殻鋼管付きコンクリート杭(SC杭)の場合には、溶接によるのが好ましい。このとき、突起付き線材の線長の全てにわたって溶接する必要はなく、所定のピッチを設けて離散的に溶接すればよい。
また、杭体が鉄筋コンクリート杭(RC杭)、プレストレストコンクリート杭(PC杭)、高強度プレストレストコンクリート杭(PHC杭)、高強度コンクリート拡径杭(ST杭)等の既製コンクリート杭の場合には、これら既製コンクリート杭を製造する際に複数の鋼片等が表面(外周面)に露出するように形成し、これらの鋼片等に突起付き線材を溶接により取り付けるか、またはアンカー等を用いて既製コンクリート杭の表面(外周面)に複数の線材取り付け金具を設け、これらの線材取り付け金具に突起付き線材を取り付ける方法などによることができる。
As a method for attaching the wire with projections to the surface of the pile body, it is preferable to use welding when the pile body is a steel pipe pile or a concrete pile with an outer shell steel pipe (SC pile). At this time, it is not necessary to weld all the wire lengths of the wire rod with protrusions, and a predetermined pitch may be provided for discrete welding.
In addition, when the pile body is a precast concrete pile such as a reinforced concrete pile (RC pile), a prestressed concrete pile (PC pile), a high strength prestressed concrete pile (PHC pile), a high strength concrete expanded pile (ST pile), When manufacturing these ready-made concrete piles, a plurality of steel slabs, etc. are formed so as to be exposed on the surface (outer peripheral surface), and wire with a projection is attached to these steel slabs by welding, or ready-made using anchors etc. It is possible to use a method in which a plurality of wire rod fittings are provided on the surface (outer peripheral surface) of a concrete pile, and wire rods with protrusions are attached to these wire rod fittings.

上記のように、本発明においては杭体として鋼管杭や既製コンクリート杭を用いることができるが、突起付き線材の取り付けの容易性からみて、鋼管杭、あるいは外殻鋼管付きコンクリート杭(SC杭)が好ましく、鋼管杭がもっとも好ましい。
以下においては杭体として鋼管(鋼管杭)を用いた場合を例として説明するが、既製コンクリート杭の場合においても以下の説明は全く同じである。
As described above, in the present invention, a steel pipe pile or a ready-made concrete pile can be used as the pile body. However, from the viewpoint of easy mounting of the wire with protrusions, a steel pipe pile or a concrete pile with an outer shell steel pipe (SC pile) And steel pipe piles are most preferred.
Below, the case where a steel pipe (steel pipe pile) is used as a pile body is demonstrated as an example, However, The following description is completely the same also in the case of a ready-made concrete pile.

改良地盤の柱状体に貫入させる摩擦杭の場合、柱状体を含めた合成杭全体の支持力は、地盤と柱状体との間の摩擦力と、柱状体と芯材(摩擦杭)との間の付着力との和である。一方がいかに強固に結合されていても、他方が滑ってしまえばトータルの支持力は得られない。
杭の支持力は、杭にある変位が生じたときに杭に作用している荷重値として評価される。一般的に杭の許容変位をδaとし、そのときに作用している鉛直荷重Wを杭の支持力と考える。杭の許容変位δaは、一般に杭径の10%に相当する変位量に設定される。例えば杭径が1000mmであれば100mm変位(沈下)したときに作用している鉛直荷重が、杭径が100mmであれば10mm変位(沈下)したときの鉛直荷重が支持力である。よって杭径が小さいほど、小さい変位量で所定の支持力を発現する必要があり、杭に必要な荷重〜変位性能は、杭径によって規定される。
In the case of a friction pile that penetrates into the columnar body of the improved ground, the bearing capacity of the entire composite pile including the columnar body is between the frictional force between the ground and the columnar body, and between the columnar body and the core material (friction pile). This is the sum of No matter how firmly one is connected, if the other slips, total support cannot be obtained.
The bearing capacity of the pile is evaluated as a load value acting on the pile when a displacement occurs in the pile. Generally, the allowable displacement of the pile is δa, and the vertical load W acting at that time is considered as the supporting force of the pile. The allowable displacement δa of the pile is generally set to a displacement amount corresponding to 10% of the pile diameter. For example, if the pile diameter is 1000 mm, the vertical load acting when the displacement is 100 mm (settlement) is the support force, and if the pile diameter is 100 mm, the vertical load when the pile displacement is 10 mm (settlement) is the support force. Therefore, as the pile diameter is smaller, it is necessary to develop a predetermined supporting force with a smaller amount of displacement, and the load to displacement performance necessary for the pile is defined by the pile diameter.

本発明の実施例を図面により説明する。図1は合成摩擦杭における芯材の3とおりの実施例を示す斜視図で、いずれも芯材としての杭体が鋼管の場合である。鋼管1の表面には縦鉄筋2aとらせん鉄筋2bが複合させて取り付けられているが、図1(a)は縦鉄筋2aを主体として、らせん鉄筋2bはピッチを大きくしてまばらに配置している。ここでは一例として、縦鉄筋2aが4本、らせん鉄筋2bが杭垂直方向に対して角度70°として取り付けられている例を示す。当該例は、初期沈下時に大きな支持力を得たいが、物理的に鋼管に対して縦鉄筋のみを配置できない場合に用いられる。縦鉄筋のみでは、所定の支持力100,000Nを超える300,000N以上の支持力を得ることができない。当該例においては、らせん鉄筋2bを杭垂直方向に対して70°の角度でまばらに配置して、主体である縦鉄筋2aに付着力を付加させれば、300,000N+αの支持力を発揮できるという効果を有する。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing three embodiments of the core material in the synthetic friction pile, and all are cases where the pile body as the core material is a steel pipe. A vertical rebar 2a and a helical rebar 2b are combined and attached to the surface of the steel pipe 1. FIG. 1 (a) is mainly composed of the vertical rebar 2a, and the helical rebar 2b is sparsely arranged with a large pitch. Yes. Here, as an example, four vertical reinforcing bars 2a and spiral reinforcing bars 2b are attached at an angle of 70 ° with respect to the pile vertical direction. This example is used when it is desired to obtain a large supporting force at the time of initial settlement, but it is not possible to physically arrange only the vertical reinforcing bars with respect to the steel pipe. A longitudinal reinforcing bar alone cannot provide a supporting force of 300,000 N or more exceeding a predetermined supporting force of 100,000 N. In this example, if the helical rebar 2b is sparsely arranged at an angle of 70 ° with respect to the vertical direction of the pile, and an adhesive force is added to the main longitudinal rebar 2a, the bearing force of 300,000 N + α can be demonstrated. Has an effect.

図1(c)はらせん鉄筋2bを主体として密に巻き付け、縦鉄筋2aを少量配置している。ここでは一例として、縦鉄筋2aが1本、らせん鉄筋2bが杭垂直方向に対して角度30°として取り付けられている例を示す。当該例は、支持力的にはらせん鉄筋のみでよいが、沈下量を抑制するために、初期剛性を向上させたい場合に用いられる。当該例においては、所定の支持力100,000Nはらせん鉄筋2bのみで十分確保できるが、さらに縦鉄筋2aを1本追加することにより、初期剛性が増加し、沈下量も低減させるという効果を有する。   In FIG. 1 (c), the spiral reinforcing bar 2b is mainly wound tightly, and a small amount of the vertical reinforcing bar 2a is arranged. Here, as an example, an example is shown in which one vertical reinforcing bar 2a and one helical reinforcing bar 2b are attached at an angle of 30 ° with respect to the pile vertical direction. This example only requires a helical reinforcing bar in terms of supporting force, but is used when it is desired to improve the initial rigidity in order to suppress the amount of settlement. In this example, a predetermined bearing force of 100,000 N can be sufficiently secured only by the helical reinforcing bar 2b, but by adding one longitudinal reinforcing bar 2a, the initial rigidity is increased and the amount of settlement is reduced.

図1(b)は両者の中間で、縦鉄筋2a、らせん鉄筋2bをそれぞれほぼ同等に配置している。ここでは一例として、縦鉄筋2aが2本、らせん鉄筋2bが杭垂直方向に対して角度50°として取り付けられている例を示す。当該例は、沈下量の広い範囲にわたって所定の支持力を安定して発揮させたい場合に用いられる。らせん鉄筋2bのみだけでは、所定の支持力100,000Nは初期に発揮できない。当該例においては、縦鉄筋2aを2本配置し、付着力を付加させることにより、初期不足分の支持力を補い、トータルとして100,000N以上の支持力を維持させるという効果を有する。   In FIG. 1 (b), the vertical reinforcing bars 2a and the helical reinforcing bars 2b are arranged approximately equally in the middle of both. Here, as an example, two vertical reinforcing bars 2a and spiral reinforcing bars 2b are attached at an angle of 50 ° with respect to the pile vertical direction. This example is used when it is desired to stably exert a predetermined supporting force over a wide range of the amount of settlement. The predetermined supporting force of 100,000 N cannot be exerted in the initial stage only by the helical rebar 2b alone. In this example, by arranging two vertical reinforcing bars 2a and adding an adhesive force, it has an effect of supplementing the initial insufficient support force and maintaining a total support force of 100,000 N or more.

以下、図1(a)〜図1(c)をそれぞれ実施例1〜3とする。
図2は、図1に示した実施例1〜3それぞれの杭体の有する支持力特性をグラフで示したものである。各実施例の支持力特性は、縦鉄筋の特性とらせん鉄筋の特性とを合成したものであり、沈下量の微小な部分では縦鉄筋の効果が、また沈下の大きい部分ではらせん鉄筋の効果が表れ、沈下量の広い範囲にわたって、所定の支持力を発揮する。
Hereafter, Fig.1 (a)-FIG.1 (c) are set as Examples 1-3, respectively.
FIG. 2 is a graph showing the supporting force characteristics of the pile bodies of Examples 1 to 3 shown in FIG. The bearing capacity characteristic of each example is a combination of the characteristics of the longitudinal reinforcing bar and the helical reinforcing bar. The effect of the longitudinal reinforcing bar is obtained at a small part of the settlement, and the effect of the helical reinforcing bar is produced at a part where the settlement is large. Appears and exhibits a predetermined supporting force over a wide range of sinking amount.

本発明における支持力特性は、縦鉄筋とらせん鉄筋との構成の割合を調整することによってさまざまに変えることができる。図2において、縦鉄筋の割合の高い(a)では微小な沈下量からすぐに支持力を発揮でき、逆にらせん鉄筋の割合の高い(c)では沈下量が大きくなっても高い支持力を持続する。
したがって、縦鉄筋を主体とする(a)のタイプは、初期(微小)沈下時に大きな支持力を得たいが、物理的に鋼管に対して縦鉄筋のみを配置できない場合に用いるとよい。逆にらせん鉄筋主体の(c)のタイプは、支持力の面ではらせん鉄筋のみでよいが、初期沈下量を抑制するために初期剛性を向上させたい場合に用いるとよい。
The bearing force characteristics in the present invention can be variously changed by adjusting the ratio of the configuration of the vertical reinforcing bar and the helical reinforcing bar. In FIG. 2, (a) having a high ratio of vertical reinforcing bars can immediately exert a supporting force from a small amount of subsidence, and conversely (c) having a high proportion of helical reinforcing bars provides a high supporting force even if the amount of subsidence increases. continue.
Therefore, the type (a) mainly composed of vertical reinforcing bars is preferably used when it is desired to obtain a large supporting force at the time of initial (minute) settlement, but only the vertical reinforcing bars cannot be physically disposed on the steel pipe. On the other hand, the type (c) mainly composed of the helical reinforcing bars may be only the helical reinforcing bars in terms of the supporting force, but may be used when it is desired to improve the initial rigidity in order to suppress the initial settlement.

これらの中間である(b)のタイプは、沈下量の広い範囲にわたって所定の支持力を安定して発揮させたい場合に用いるとよい。
本発明の複合突起を設けた芯材を使用すれば、精密機械工場などの沈下量制限が厳しい建屋基礎において支持力特性をうまく活用することができる。
また、縦鉄筋、らせん鉄筋の取り付け割合によってそれぞれの支持力特性の発揮割合を調整できるので、杭全体としての支持力〜沈下量特性を容易にコントロールすることができる。
The intermediate type (b) is preferably used when it is desired to stably exert a predetermined supporting force over a wide range of settlement.
If the core material provided with the composite protrusion of the present invention is used, it is possible to effectively utilize the bearing capacity characteristics in a building foundation where the amount of settlement is severe, such as a precision machine factory.
Moreover, since the display ratio of each supporting force characteristic can be adjusted with the attachment ratio of a vertical reinforcing bar and a helical reinforcing bar, the supporting force-subsidence amount characteristic as the whole pile can be controlled easily.

本発明によれば、縦鉄筋、らせん鉄筋の構成割合を調整することにより、広い範囲にわたって高い支持力の得られる合成摩擦杭が容易に得られ、軟弱地盤等における効率的な基礎構造を実現できるので、産業上格段の効果を奏する。   According to the present invention, by adjusting the composition ratio of the vertical reinforcing bar and the helical reinforcing bar, a synthetic friction pile that can obtain a high bearing force over a wide range can be easily obtained, and an efficient foundation structure in soft ground or the like can be realized. Therefore, there is a remarkable effect in the industry.

1 芯材(既製杭、鋼管)
2 突起
2a 縦鉄筋
2b らせん鉄筋
2c 環状鉄筋
G 地盤
S ソイルセメント柱状体
1 Core material (off-the-shelf pile, steel pipe)
2 Protrusions 2a Vertical bars 2b Helical bars 2c Ring bars G Ground S Soil cement columnar

Claims (2)

地盤を柱状に掘削し、掘削土砂とセメントミルクとを混合攪拌して形成したソイルセメント柱状体の中心部分に、この柱状体が硬化しないうちに芯材を貫入させ、これらが一体となって周面摩擦力を発揮するようにした合成摩擦杭において、
前記芯材が、杭体の表面に縦鉄筋とらせん鉄筋とを複合させて取り付けたものであり、地盤の性能から見た必要な支持力に応じて、前記縦鉄筋と前記らせん鉄筋の構成割合が調整されていることを特徴とする合成摩擦杭。
The core material is penetrated into the central part of the soil cement columnar body formed by excavating the ground into a columnar shape and mixing and agitating the excavated soil and cement milk, and the columnar body does not harden. In synthetic friction piles that are designed to exert surface friction,
The core material state, and are not the longitudinal reinforcing bars and the spiral reinforcement attached by a composite on the surface of the pile body, depending on the required supporting force as seen from the performance of the ground, the configuration of the spiral reinforcement and the longitudinal reinforcing bars synthesis friction piles ratio is characterized that you have been adjusted.
記縦鉄筋を1〜4本とし、前記らせん鉄筋が杭垂直方向に対してなす角度を30〜70°とすることを特徴とする請求項1に記載の合成摩擦杭。 Before the Kitate rebar and 1-4 present the synthesis friction piles of claim 1, wherein the helical reinforcement is characterized that you and 30 to 70 ° the angle with respect to the pile vertically.
JP2011041026A 2011-02-28 2011-02-28 Synthetic friction pile Active JP5577528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011041026A JP5577528B2 (en) 2011-02-28 2011-02-28 Synthetic friction pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041026A JP5577528B2 (en) 2011-02-28 2011-02-28 Synthetic friction pile

Publications (2)

Publication Number Publication Date
JP2012177264A JP2012177264A (en) 2012-09-13
JP5577528B2 true JP5577528B2 (en) 2014-08-27

Family

ID=46979270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041026A Active JP5577528B2 (en) 2011-02-28 2011-02-28 Synthetic friction pile

Country Status (1)

Country Link
JP (1) JP5577528B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981606B2 (en) * 2017-04-04 2021-12-15 東亜建設工業株式会社 Pile driving method on bedrock

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229442Y2 (en) * 1971-05-12 1977-07-05
JPS5229443Y2 (en) * 1971-05-13 1977-07-05
JP5239609B2 (en) * 2007-08-17 2013-07-17 Jfeスチール株式会社 Friction pile
JP5407266B2 (en) * 2007-10-17 2014-02-05 Jfeスチール株式会社 Friction pile

Also Published As

Publication number Publication date
JP2012177264A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
KR100999020B1 (en) Composite phc pile and construction method using the same
JP2010048039A (en) Prestressed reinforced concrete pile
JP5808074B2 (en) Steel pipe concrete composite pile
JP2008231799A (en) Base isolation structure
JP5239609B2 (en) Friction pile
JP5407266B2 (en) Friction pile
JP2008231816A (en) Construction method of pile foundation structure
JP2011122428A (en) Prefabricated pile
JP5577528B2 (en) Synthetic friction pile
JP6814610B2 (en) Concrete pile
JP2006257710A (en) Joint structure of cast-in-situ concrete pile to foundation
JP2012219581A (en) Foundation structure and structure including the same
JP4029191B2 (en) Subsidence suppression structure, construction method of settlement suppression structure
JP5008683B2 (en) Pile head reinforcement member and pile head reinforcement structure using it
JP2004027727A (en) Foundation pile and construction method for foundation pile
JP5047861B2 (en) Stabilization method of long fiber mixed reinforced soil
JP2012188923A (en) Earth retaining wall reinforcing structure and method
JP4154492B2 (en) Pile head connection structure of ready-made piles
JP2010001599A (en) Pile for exterior and foundation structure of exterior structure
JP2007218086A (en) Steel tower foundation structure
KR20210073076A (en) Phc pile for soil retaining wall
JP4496471B2 (en) Pile head joint structure and construction method
JP2006138096A (en) Jointing structure of pile head, and its construction method
KR20090015190A (en) The structure of which a pile connected to another pile with a longer diameter
JP5641550B1 (en) Manufacturing method of steel pipe core material for friction pile and steel pipe core material for friction pile

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130605

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5577528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250