JP5575098B2 - Insulation material molded body for arc extinguishing, and circuit breaker using the same - Google Patents
Insulation material molded body for arc extinguishing, and circuit breaker using the same Download PDFInfo
- Publication number
- JP5575098B2 JP5575098B2 JP2011266889A JP2011266889A JP5575098B2 JP 5575098 B2 JP5575098 B2 JP 5575098B2 JP 2011266889 A JP2011266889 A JP 2011266889A JP 2011266889 A JP2011266889 A JP 2011266889A JP 5575098 B2 JP5575098 B2 JP 5575098B2
- Authority
- JP
- Japan
- Prior art keywords
- arc
- insulating material
- inorganic filler
- molded body
- material molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012774 insulation material Substances 0.000 title description 3
- 239000011256 inorganic filler Substances 0.000 claims description 79
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 79
- 239000011810 insulating material Substances 0.000 claims description 78
- 229920005989 resin Polymers 0.000 claims description 39
- 239000011347 resin Substances 0.000 claims description 39
- 239000012756 surface treatment agent Substances 0.000 claims description 39
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000000465 moulding Methods 0.000 claims description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 9
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical group [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- 230000007246 mechanism Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 229920003189 Nylon 4,6 Polymers 0.000 claims description 6
- WMWXXXSCZVGQAR-UHFFFAOYSA-N dialuminum;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3] WMWXXXSCZVGQAR-UHFFFAOYSA-N 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 description 13
- 230000000903 blocking effect Effects 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 239000010456 wollastonite Substances 0.000 description 8
- 229910052882 wollastonite Inorganic materials 0.000 description 8
- 239000002904 solvent Substances 0.000 description 7
- 239000004952 Polyamide Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229920002647 polyamide Polymers 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 230000008033 biological extinction Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 3
- 229920002302 Nylon 6,6 Polymers 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 229920000306 polymethylpentene Polymers 0.000 description 3
- 239000011116 polymethylpentene Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229930182556 Polyacetal Natural products 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920000007 Nylon MXD6 Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 229920006039 crystalline polyamide Polymers 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000002335 surface treatment layer Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
Images
Landscapes
- Breakers (AREA)
Description
本発明は、回路遮断器などの電流遮断時に接点から発生するアークを消弧するために使用される消弧用絶縁材料成形体、および、それを用いた回路遮断器に関する。 The present invention relates to an arc-extinguishing insulating material molded body used for extinguishing an arc generated from a contact when a current is interrupted, such as a circuit breaker, and a circuit breaker using the same.
配線用遮断器および漏電遮断器は、過負荷や短絡などの要因で二次側の回路(負荷、電路)に異常な電流が流れたときに電路を開放し、一次側からの電源供給を遮断することにより、負荷回路や電線を損傷から回避させるために用いる装置である。 The circuit breaker and earth leakage circuit breaker open the circuit when an abnormal current flows through the secondary circuit (load, circuit) due to an overload or short circuit, and shut off the power supply from the primary side. By doing so, it is an apparatus used to avoid load circuits and electric wires from being damaged.
このような配線用遮断器および漏電遮断器において、過剰電流または定格電流の通電時に、可動接触子の接点と固定接触子の接点を開離させると、両者の間にアークが発生する。遮断時にアークが発生する付近の可動接触子と固定接触子とを、図1(a)および図1(b)に模式的に示す。図1(b)は、図1(a)中のIb−Ibに沿った断面であり、一部、図1(a)に示す消弧装置の側面も示している。アークは回路遮断器の構成部品への熱的および電磁力的な負担となるので、速やかに消弧する必要がある。アークの消弧を速やかに進めるため、図1(a)および図1(b)に示すように、可動接触子1の可動接点2と固定接触子3の固定接点4との周辺部に、アークの消弧に寄与する消弧用絶縁材料成形体5を配置する。消弧用絶縁材料成形体5は、図1(a)に示すように、例えば、可動接触子1と固定接触子3とを両脇から挟むように配置する。消弧用絶縁材料成形体は、アークに暴露されると、その成型物を構成する材料自体が分解してガスを発生し、発生したガスによるアークの冷却や発生したガスの吹きつけによるアークの延伸などにより、アークの消弧に寄与する。
In such a circuit breaker and earth leakage circuit breaker, when the contact of the movable contact and the contact of the fixed contact are separated when an excess current or a rated current is applied, an arc is generated between them. FIG. 1A and FIG. 1B schematically show a movable contact and a stationary contact in the vicinity where an arc is generated when interrupted. FIG.1 (b) is the cross section along Ib-Ib in Fig.1 (a), and also shows the side surface of the arc-extinguishing apparatus shown in FIG.1 (a) in part. Since the arc is a thermal and electromagnetic force on the circuit breaker components, it must be extinguished quickly. In order to promptly extinguish the arc, as shown in FIGS. 1 (a) and 1 (b), an arc is formed around the
図2に示す消弧装置は、磁性体の金属からなる複数の消弧板6(グリッド)が互いに空隙を介して積層配列されたもので、各消弧板6には切欠部7が備えられている。消弧用絶縁材料成形体は、可動接点2と固定接点4とを挟むように配置され(図1参照)、可動接点と固定接点との間に発生したアーク8を引き延ばし、消弧板を備える消弧装置に押し込む役割を果たし、また、電極降下電圧を発生したり、アークを冷却したりすることにより、過電流を限流する(より低く抑制する)働きも有している。
The arc-extinguishing apparatus shown in FIG. 2 is formed by stacking a plurality of arc-extinguishing plates 6 (grids) made of magnetic metal with a gap therebetween, and each arc-extinguishing plate 6 is provided with a notch 7. ing. The arc extinguishing insulating material molded body is disposed so as to sandwich the
消弧用絶縁材料成型体の材料としては、たとえば、特許文献1(特開2007−149486号公報)では、ナイロン、テフロン(登録商標)などの材料を消弧用の絶縁材料成形体として用いることが開示されている。また、特許文献2(特開平7−302535号公報)では、耐熱性の高い樹脂に、耐圧強度向上のため無機鉱物を配合した消弧用絶縁材料成形体が開示されている。 As a material of the arc extinguishing insulating material molded body, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 2007-149486), a material such as nylon or Teflon (registered trademark) is used as the arc extinguishing insulating material molded body. Is disclosed. Patent Document 2 (Japanese Patent Laid-Open No. 7-302535) discloses an arc-extinguishing insulating material molded body in which an inorganic mineral is blended with a resin having high heat resistance to improve pressure resistance.
しかしながら、これらの消弧用絶縁材料成形体は、強度、耐熱性や耐圧性などに関しては向上が認められるものの、遮断性能の耐久性の観点から実施される過負荷遮断試験において、規定回数の連続遮断が不可能であるという問題があった。また、消弧時に発生する熱分解ガスによる消弧装置内の内圧上昇が抑制できず、消弧時の内圧上昇によって回路遮断機の筐体が破損しやすいという問題があった。 However, although these arc extinguishing insulating material molded bodies have been improved in strength, heat resistance, pressure resistance, etc., in the overload interruption test conducted from the viewpoint of durability of interruption performance, the prescribed number of times There was a problem that blockage was impossible. Moreover, the internal pressure rise in the arc extinguishing apparatus due to the pyrolysis gas generated during arc extinction cannot be suppressed, and there is a problem that the casing of the circuit breaker is easily damaged by the internal pressure rise during arc extinguishing.
本発明の目的は、回路遮断時に発生するアークを消弧するのに十分な熱分解ガスを発生でき、また、筐体破損を無くすため発生ガス量を抑制し、その際に起こる温度上昇に耐える耐熱性、および、内圧上昇に耐えうる耐圧性を備えた消弧用絶縁材料成型体、および、それを用いた回路遮断器を提供することである。 It is an object of the present invention to generate a pyrolysis gas sufficient to extinguish an arc generated when a circuit is interrupted, and to suppress the amount of generated gas in order to eliminate damage to the casing and to withstand a temperature rise that occurs at that time. An object of the present invention is to provide an arc extinguishing insulating material molded body having heat resistance and pressure resistance capable of withstanding an increase in internal pressure, and a circuit breaker using the same.
本発明は、回路遮断器に用いられる消弧用絶縁材料成形体であって、
1500℃以下で分解しない無機充填材Aと、マトリックス樹脂とを含み、
前記無機充填材Aの少なくとも一部は1500℃以下で分解する無機表面処理剤で被覆されており、
前記無機充填材Aが針状または繊維状であるか、または、前記無機充填材Aとは別の針状の無機充填材Bを含む、消弧用絶縁材料成形体である。
The present invention is an arc-extinguishing insulating material molded body used for a circuit breaker,
Inorganic filler A that does not decompose at 1500 ° C. or less, and a matrix resin,
At least a part of the inorganic filler A is coated with an inorganic surface treatment agent that decomposes at 1500 ° C. or less,
The inorganic filler A is an arc-extinguishing insulating material molded body in which the inorganic filler A is acicular or fibrous, or includes an acicular inorganic filler B different from the inorganic filler A.
前記無機表面処理剤が300℃〜1500℃で分解することが好ましい。
前記無機表面処理剤が水酸化アルミニウムまたは酸化アルミニウム水和物であることが好ましい。
It is preferable that the inorganic surface treatment agent decomposes at 300 ° C to 1500 ° C.
The inorganic surface treatment agent is preferably aluminum hydroxide or aluminum oxide hydrate.
前記無機充填材Aおよび前記無機充填材Bが針状酸化チタンであることが好ましい。
前記無機充填材Aが針状酸化チタンであり、前記無機表面処理剤が水酸化アルミニウムであることが好ましい。
It is preferable that the inorganic filler A and the inorganic filler B are acicular titanium oxide.
It is preferable that the inorganic filler A is acicular titanium oxide and the inorganic surface treatment agent is aluminum hydroxide.
前記無機充填材Aの形状は、短軸長さ0.01〜5μm、長軸長さ0.05〜50μmの針状であることが好ましい。 The shape of the inorganic filler A is preferably a needle shape having a minor axis length of 0.01 to 5 μm and a major axis length of 0.05 to 50 μm.
前記マトリックス樹脂がナイロン46を含むことが好ましい。
また、本発明は、固定接点を有する固定子、可動接点を有する可動子、可動子を作動させる開閉機構、および、上記固定接点と上記可動接点が開離するときに発生するアークを消弧するための上記の消弧用絶縁材料成形体を含む消弧装置を備える、回路遮断器にも関する。
The matrix resin preferably includes nylon 46.
The present invention also provides a stator having a fixed contact, a mover having a movable contact, an opening / closing mechanism for operating the mover, and extinguishing an arc generated when the fixed contact and the movable contact are separated. The present invention also relates to a circuit breaker comprising an arc extinguishing device including the arc extinguishing insulating material molded body.
本発明の消弧用絶縁材料成形体は、アークにより分解する(1500℃以下で分解する)無機表面処理剤(無機化合物からなる表面処理剤)で表面処理された無機充填材Aを含んでいることにより、遮断時に発生するアークにより樹脂分と共に無機充填材Aの無機表面処理剤が分解し、無機充填材Aおよび/または無機充填材Bを飛散させるため、連続遮断時においても、消弧用成形体の表面に無機充填材のみが残存することなく、常に樹脂と無機充填材が混在するため、アーク消弧に有効な樹脂由来の熱分解ガスを発生し続けることができる。 The arc extinguishing insulating material molded body of the present invention includes an inorganic filler A surface-treated with an inorganic surface treatment agent (decomposed at 1500 ° C. or less) that is decomposed by an arc (a surface treatment agent comprising an inorganic compound). As a result, the inorganic surface treatment agent of the inorganic filler A is decomposed together with the resin by the arc generated at the time of interruption, and the inorganic filler A and / or the inorganic filler B is scattered, so that the arc extinguishing can be performed even during continuous interruption. Since only the inorganic filler does not remain on the surface of the molded body and the resin and the inorganic filler are always mixed, it is possible to continue generating a resin-derived pyrolysis gas effective for arc extinguishing.
また、無機充填材の配合によって樹脂量を減らし、遮断時の内圧上昇を押さえられるため、回路遮断器等の筐体破損を抑制することができる。 In addition, since the amount of resin is reduced by blending the inorganic filler and the increase in internal pressure at the time of interruption can be suppressed, it is possible to suppress breakage of the casing such as a circuit breaker.
さらに、本発明の消弧用絶縁材料成形体を回路遮断器に用いることにより、過負荷遮断性能および短絡遮断性能などの遮断性能に優れた回路遮断器を得ることが出来る。 Furthermore, by using the arc extinguishing insulating material molded body of the present invention for a circuit breaker, a circuit breaker excellent in breaking performance such as overload breaking performance and short-circuit breaking performance can be obtained.
以下、本発明について詳細に説明する。なお、以下の実施の形態の説明では、図面を用いて説明しているが、本願の図面において同一の参照符号を付したものは、同一部分または相当部分を示している。 Hereinafter, the present invention will be described in detail. In the following description of the embodiments, the description is made with reference to the drawings. In the drawings of the present application, the same reference numerals denote the same or corresponding parts.
本発明に係る回路遮断器の実施の形態を、図1〜図6に基づいて説明する。
図1(a)は、本発明に係る回路遮断器における消弧装置の遮断時の様子を模式的に示す正面図であり、図1(b)は、図1(a)のIb−Ibに沿った断面を含む消弧装置の遮断時の様子を模式的に示す側面図である。図1(a)および図1(b)において、可動接触子1の固定接触子3側に可動接点2が設けられ、固定接触子3の一端であって可動接点2と対応する位置に固定接点4が設けられ、可動接点2および固定接点4の周囲を挟むように消弧用絶縁材料成型体5が設けられている。本発明に係る回路遮断器は、図1(a)および図1(b)において、可動接点2と固定接点4との間で発生するアークに曝される部分に、特定の化合物を含む消弧用絶縁材料成型体5を設けることを特徴とする。
An embodiment of a circuit breaker according to the present invention will be described with reference to FIGS.
Fig.1 (a) is a front view which shows typically the mode at the time of interruption | blocking of the arc-extinguishing apparatus in the circuit breaker based on this invention, FIG.1 (b) is Ib-Ib of Fig.1 (a). It is a side view which shows typically the mode at the time of interruption | blocking of the arc-extinguishing apparatus containing the cross section along. 1 (a) and 1 (b), the
次に、回路遮断器の動作について説明する。図1(a)および図1(b)において、開閉機構部(図3および図4参照)が動作して可動接触子1が回動することにより、可動接点2と固定接点4とが接触または開離する仕組みとなっている。接点同士を接触させることにより電力が電源から負荷に供給される。通電の信頼性を確保するために可動接点2は固定接点4に規定の接触圧力で押さえつけられている。
Next, the operation of the circuit breaker will be described. 1 (a) and 1 (b), the
短絡事故などが起こり回路に大きな過電流が流れると、可動接点2と固定接点4との間の接触面における電磁反発力が非常に強くなる。上記可動接点2に加わっている接触圧力に打ち勝つために、可動接触子1は回動し、可動接点2と固定接点4とが開離し、さらに、開閉機構部および引き外し装置の動作によって、固定接点4と可動接点2との開離距離が増大するに従って、アーク抵抗が増大することによりアーク電圧が上昇する。
When a short circuit accident or the like occurs and a large overcurrent flows in the circuit, the electromagnetic repulsion force on the contact surface between the
このような遮断動作中において、可動接点2と固定接点4との間には、アークによって短時間、すなわち数ミリ秒のうちに大量のエネルギーが発生する。この時、消弧装置の側面に設けた消弧用絶縁材料成型体がアークに曝されることによって分解ガスを発生し、発生した分解ガスによりアークが冷却され消弧される。
During such an interruption operation, a large amount of energy is generated between the
また、図2は、消弧装置である金属製のU字型やV字型の切欠部7を持つ複数の消弧板6を一定間隔で積層した回路遮断器の消弧装置部分の斜視図である。可動接点2と固定接点4の間に発生したアーク8が消弧板6の方向へ磁気力によって引き付けられ伸長するために、アーク電圧は更に上昇する。さらに、消弧装置である消弧板に取り込むことで過電流を限流させ、アークを消弧し、回路を遮断する。
FIG. 2 is a perspective view of an arc extinguishing device portion of a circuit breaker in which a plurality of arc extinguishing plates 6 having metal U-shaped or V-shaped cutout portions 7 which are arc extinguishing devices are stacked at regular intervals. It is. Since the
上記回路遮断器について、より詳細に説明する。図3および図4は、本発明の回路遮断器の一例の模式的な断面図であり、図3は回路遮断器の接触時(オン状態)、図4は図3に示す回路遮断器の一部であって、回路遮断器の遮断時(オフ状態)を示す。図3および図4において、回路遮断器は、銅などの導体からなる可動接触子1、可動接触子1の一端に固着された可動接点2、可動接点2と接離する固定接点4、固定接点4が固着された銅などの導体からなる固定接触子3、固定接触子3の他端部に構成された電源側の端子部9を備え、外部電源から配線が接続される。
The circuit breaker will be described in more detail. 3 and 4 are schematic cross-sectional views of an example of the circuit breaker according to the present invention. FIG. 3 shows a circuit breaker in contact (on state), and FIG. 4 shows a circuit breaker shown in FIG. It is a part, Comprising: The time of circuit breaker interruption | blocking (OFF state) is shown. 3 and 4, the circuit breaker includes a
消弧装置100部分における消弧板6は互いに空隙を介して積層配列されている。消弧装置100は、可動接点2と固定接点4との間に発生したアークを冷却および消弧する磁性体の金属からなる複数の消弧板6(グリッド)と、グリッドを両側で保持する消弧側板11(図3および図4においては、消弧側板の片側を示す)と、消弧用絶縁材料成型体5で構成される。消弧用絶縁材料成型体5および消弧側板11は絶縁材料からなり、消弧用絶縁材料成型体5は後述の特定の材料を含む。消弧用絶縁材料成型体5は、図4の状態における可動接点2および固定接点4の間に設けられており、上面から見ると固定接点4を露出させ、アークに曝される固定接触子3の他の大部分を覆うように設けられている(図5(a)および図5(b)参照)。
The arc extinguishing plates 6 in the
さらに、上記回路遮断器には、例えば、可動接触子1を回動して開閉駆動する開閉機構部110、この開閉機構部110を手動で操作するためのハンドル13、引き外し装置部120、負荷側の端子部10などを備える。カバー14およびベース15は、上記の各部品を収納および/または固定し、筐体18の一部を構成している。端子部9を筐体18内と隔離するエンドプレート17は、アークによるホットガスを排出する排気孔17aを有し、ベース15に設けられたガイド溝16に挿入装着されている。
Further, the circuit breaker includes, for example, an opening /
消弧用絶縁材料成型体は、分解ガスによるアークの消弧、および、分解ガスのガス流によるアークの消弧板への誘導、消弧装置内の絶縁遮蔽を目的として設置される。本発明では、限定した温度範囲で分解する無機表面処理剤で表面処理された無機充填材Aを含む樹脂混合物を用いる。 The arc extinguishing insulating material molded body is installed for the purpose of arc extinction of the arc by the cracked gas, induction of the arc to the arc extinguishing plate by the gas flow of the cracked gas, and insulation shielding in the arc extinguishing apparatus. In this invention, the resin mixture containing the inorganic filler A surface-treated with the inorganic surface treating agent which decomposes | disassembles in the limited temperature range is used.
上記消弧用絶縁材料成型体と接触子対(固定接触子および可動接触子)との配置関係について、図5(a)に接触子対の側面図を示し、図5(b)に図5(a)の上面図を示す。図5(a)および図5(b)において、消弧用絶縁材料成型体5は、可動接触子1の可動接点2(図示していない)および固定接触子3の固定接点4の接触子対付近に設けられており、図5(b)に示されるように、上面から見ると、固定接点4を露出させ、アークに曝される固定接触子3の他の大部分を覆うように設けられている。この消弧用絶縁材料成型体は、アークが固定接触子の固定接点以外の部分に移動しないようにするための絶縁部材の働きもしている。
FIG. 5A shows a side view of the contact pair and FIG. 5B shows the arrangement relationship between the arc extinguishing insulating material molded body and the contact pair (fixed contact and movable contact). The top view of (a) is shown. 5 (a) and 5 (b), the arc extinguishing insulating material molded
チタン酸カリウムやワラストナイトなどの樹脂強化用充填材を配合した消弧用絶縁材料成型体は、遮断する電気容量が大きい場合に、遮断を繰り返すと、遮断が不可能となる現象が見られた。そこで、本発明者らは、各種無機充填材を配合した消弧用絶縁材料成形体について詳細に検討した結果、繰り返し遮断が不可能な消弧用絶縁材料成形体と可能な消弧用絶縁材料成型体が存在し、その差異が無機充填材の種類に基づいていることを発見した。特に、1500℃以下で分解する無機表面処理剤で表面処理された無機充填材を含む消弧用絶縁材料成形体において、繰り返し遮断が可能となることを発見した。 Insulation materials for arc extinguishing that contain resin reinforcing fillers such as potassium titanate and wollastonite, there is a phenomenon that the interruption becomes impossible if the interruption is repeated when the interruption has a large electric capacity. It was. Accordingly, the present inventors have studied in detail the arc extinguishing insulating material molded body containing various inorganic fillers, and as a result, the arc extinguishing insulating material molded body that cannot be repeatedly interrupted and the arc extinguishing insulating material that can be used. It has been discovered that molded bodies exist and that the difference is based on the type of inorganic filler. In particular, it has been found that in an arc extinguishing insulating material molded body including an inorganic filler surface-treated with an inorganic surface treating agent that decomposes at 1500 ° C. or lower, it is possible to repeatedly cut off.
図6に、繰り返し遮断が不可能な消弧用絶縁材料成形体と、1500℃以下で分解する無機表面処理剤で表面処理された消弧用絶縁材料成形体の過負荷遮断試験後の差異を示す。図6(a1)、図6(a2)は、それぞれ、過負荷遮断試験において繰り返し遮断が可能な消弧用絶縁材料成形体の表面および断面を表している。なお、過負荷遮断試験は、回路遮断器に定格電流を超える過剰な電流を通電し遮断し規定回数成功させることをもって合格とする試験であり、詳細は後述する。図6(a2)において、図の右側が遮断時に発生するアークに曝された表面である。 Fig. 6 shows the difference between an arc extinguishing insulating material molded body that cannot be repeatedly interrupted and an arc extinguishing insulating material molded body surface-treated with an inorganic surface treating agent that decomposes at 1500 ° C or less after an overload interruption test. Show. FIGS. 6 (a1) and 6 (a2) respectively show a surface and a cross section of an arc-extinguishing insulating material molded body that can be repeatedly interrupted in an overload interruption test. The overload breaking test is a test that passes the circuit breaker by passing an excess current exceeding the rated current and shuts it off and succeeds the specified number of times, and details will be described later. In FIG. 6 (a2), the right side of the figure is the surface exposed to the arc generated at the time of interruption.
同様に、図6(b1)、図6(b2)は、過負荷遮断試験において繰り返し遮断が不可能な消弧用絶縁材料成形体の表面および断面を表している。図6(b1)、図6(b2)に示す消弧用絶縁材料成形体5は、遮断時に表面の樹脂分が熱分解し、遮断後に無機充填材51のみが表面に残存している。一方で、繰り返し遮断が可能となる図6(a1)、図6(a2)に示す消弧用絶縁材料成型体5は、その表面が無機充填材51だけでなくマトリックス樹脂も混在する面となっていた。これは、表面処理された無機充填材を含む消弧用絶縁材料成形体では、アーク暴露時に無機充填材51だけが残ることなく、無機充填材51の表面処理層(無機充填材51の表面に存在する1500℃以下で分解する無機表面処理剤)がアークに曝され熱分解することによって、無機充填材51を飛散させ、遮断後も消弧用絶縁材料成形体5の表面にマトリックス樹脂と無機充填材51が混在することにより、繰り返し遮断が可能となったものである。
Similarly, FIG. 6 (b1) and FIG. 6 (b2) show the surface and cross section of the arc extinguishing insulating material molded body that cannot be repeatedly interrupted in the overload interruption test. In the arc extinguishing insulating material molded
無機表面処理剤で処理された無機充填材は、該無機表面処理材を介してマトリックス樹脂と接着している。アークに曝され、この無機表面処理剤が分解すると、無機充填材はマトリックス樹脂との接着力を失います。そして、表面処理剤が分解する際における分解ガスの発生や形態の変化に起因する衝撃や圧力によって、マトリックス樹脂との接着力を失った無機充填材Aは、マトリックス樹脂もしくは隣接する無機充填材から離れ、飛散する。 The inorganic filler treated with the inorganic surface treatment agent is bonded to the matrix resin through the inorganic surface treatment material. When this inorganic surface treatment agent decomposes when exposed to an arc, the inorganic filler loses its adhesive strength with the matrix resin. And the inorganic filler A which lost the adhesive force with matrix resin by the impact and pressure resulting from the generation | occurrence | production of the decomposition gas at the time of a surface treating agent decomposition | disassembly, or a change of a form is used from a matrix resin or an adjacent inorganic filler. Separate and scatter.
本発明においては、無機充填材Aの表面にのみ分解温度の低い無機化合物(無機表面処理剤)が存在しているため、無機表面処理剤が飛散するまでの間は、少なくとも無機充填材Aは消弧用絶縁材料成形体中に残ることになり、成形体の強度低下の速度が抑えられる。また、成形体の最表面に存在する無機表面処理剤のみが飛散し、成形体の表層に近接する内部の無機充填材Aはその量が減少することなく存在するため、消弧用成形体の強度を保持することができる。 In the present invention, since an inorganic compound (inorganic surface treatment agent) having a low decomposition temperature exists only on the surface of the inorganic filler A, at least the inorganic filler A is used until the inorganic surface treatment agent is scattered. It remains in the arc extinguishing insulating material molded body, and the rate of strength reduction of the molded body can be suppressed. Further, only the inorganic surface treatment agent present on the outermost surface of the molded body is scattered, and the inorganic filler A in the vicinity of the surface layer of the molded body is present without decreasing the amount thereof. Strength can be maintained.
また、成形体の強度向上を目的として、熱分解する無機表面処理剤で表面処理された無機充填材Aとは別に、針状の(樹脂強化用)無機充填材Bを混ぜることによっても、繰り返し遮断を実現することができる。これは、一方の無機充填材Aの無機表面処理剤が熱分解して無機充填材が飛散する際に、他方の熱分解しない無機充填材も飛散することによって、消弧用絶縁材料成型体の表面が常に樹脂と無機充填材が混在する面となることによる。 Further, for the purpose of improving the strength of the molded body, it is also possible to repeat by mixing needle-shaped (for resin reinforcement) inorganic filler B separately from inorganic filler A surface-treated with an inorganic surface treatment agent that is thermally decomposed. Blocking can be realized. This is because when the inorganic surface treatment agent of one inorganic filler A is thermally decomposed and the inorganic filler is scattered, the other inorganic filler which is not thermally decomposed is also scattered, thereby This is because the surface is always a surface in which a resin and an inorganic filler are mixed.
本発明における無機表面処理剤の分解温度は、遮断時のアーク暴露、または、温度上昇により分解する必要があることから、1500℃以下であることが必要である。また、分解温度の下限は、樹脂との混練が可能であればよい。特に、ナイロンなどの樹脂と安定に混合するためには、無機表面処理剤は300℃以上の十分高い温度で分解することが好ましい。なお、広域な温度範囲に渡って分解する無機表面処理剤については、熱重量分析法などで確認することによって、300℃以上の十分高い温度で分解する成分が含まれていれば、300℃以上の十分高い温度で分解する無機表面処理剤であるものとする。 The decomposition temperature of the inorganic surface treatment agent in the present invention needs to be 1500 ° C. or lower because it needs to be decomposed by arc exposure during interruption or temperature rise. Further, the lower limit of the decomposition temperature is sufficient if kneading with the resin is possible. In particular, in order to stably mix with a resin such as nylon, the inorganic surface treatment agent is preferably decomposed at a sufficiently high temperature of 300 ° C. or higher. In addition, about the inorganic surface treatment agent which decomposes | dissolves over a wide temperature range, if it contains the component decomposed | disassembled at sufficiently high temperature of 300 degreeC or more by confirming with a thermogravimetric analysis etc., 300 degreeC or more It is assumed that the inorganic surface treatment agent decomposes at a sufficiently high temperature.
300〜1500℃の温度で分解する無機表面処理剤としては、水酸化アルミニウム、酸化アルミニウム水和物、タルク、炭酸カルシウム、水酸化マグネシウムなどが挙げられる。 Examples of the inorganic surface treatment agent that decomposes at a temperature of 300 to 1500 ° C. include aluminum hydroxide, aluminum oxide hydrate, talc, calcium carbonate, and magnesium hydroxide.
無機充填材Aを無機表面処理剤で被覆する方法としては、例えば、無機充填材Aを水などの溶媒に懸濁してスラリーとし、あるいは、水などの溶媒に分散してゾルとし、必要に応じて湿式粉砕や分級処理した後、この溶媒中に無機表面処理剤の水溶性塩を添加し、水溶性塩が溶媒中でアルカリ性を示す場合は硫酸、塩酸などの酸性溶液で、あるいは、水溶性塩が溶媒中で酸性を示す場合は水酸化ナトリウム、アンモニア水などのアルカリ性溶液で中和して、無機充填材Aの表面に無機表面処理剤を沈殿、付着させる方法が挙げられる。 As a method of coating the inorganic filler A with an inorganic surface treatment agent, for example, the inorganic filler A is suspended in a solvent such as water to form a slurry, or dispersed in a solvent such as water to form a sol. After wet pulverization and classification, add a water-soluble salt of an inorganic surface treatment agent to this solvent. If the water-soluble salt is alkaline in the solvent, use an acidic solution such as sulfuric acid or hydrochloric acid, or water-soluble In the case where the salt is acidic in the solvent, a method of neutralizing with an alkaline solution such as sodium hydroxide or aqueous ammonia to precipitate and adhere the inorganic surface treatment agent on the surface of the inorganic filler A can be mentioned.
より具体的には、無機充填材Aを含む溶媒を好ましくは40〜90℃の温度、より好ましくは60〜80℃の範囲に加熱しながら、この中に、無機表面処理剤の水溶性塩を添加し、次に水酸化ナトリウム、アンモニア水等のアルカリ性水溶液を添加して中和することが好ましい。中和反応は系のpHを6〜8に調整しながら行うことが好ましい。中和した後70℃以上の温度に加熱することにより、無機表面処理剤で無機充填材Aを被覆することができる。無機表面処理剤の添加量は、表面処理量の設定に応じて適宜調整することができるが、好ましくは、無機充填材Aの量に対して0.1〜100重量%の範囲であり、より好ましくは1〜10重量%程度である。 More specifically, while the solvent containing the inorganic filler A is preferably heated to a temperature of 40 to 90 ° C, more preferably 60 to 80 ° C, a water-soluble salt of the inorganic surface treatment agent is added thereto. It is preferable to add and then neutralize by adding an alkaline aqueous solution such as sodium hydroxide or aqueous ammonia. The neutralization reaction is preferably performed while adjusting the pH of the system to 6-8. By heating to a temperature of 70 ° C. or higher after neutralization, the inorganic filler A can be coated with an inorganic surface treatment agent. The addition amount of the inorganic surface treatment agent can be appropriately adjusted according to the setting of the surface treatment amount, but is preferably in the range of 0.1 to 100% by weight with respect to the amount of the inorganic filler A, and more Preferably, it is about 1 to 10% by weight.
無機充填材Aの分解温度は1500℃より高い。無機充填材Aとしては、例えば、針状酸化チタン、ワラストナイトなどのケイ酸塩鉱物などが挙げられる。特に、針状酸化チタン、ワラストナイトが好ましい。樹脂強化効果の点において優れた性能を示すためである。同様のものを、後述の無機充填材Bとしても用いることができる。無機充填材Aおよび前記無機充填材Bがワラストナイトであることが好ましい。 The decomposition temperature of the inorganic filler A is higher than 1500 ° C. Examples of the inorganic filler A include silicate minerals such as acicular titanium oxide and wollastonite. In particular, acicular titanium oxide and wollastonite are preferable. This is to show excellent performance in terms of the resin reinforcing effect. The same thing can be used also as the below-mentioned inorganic filler B. The inorganic filler A and the inorganic filler B are preferably wollastonite.
また、無機充填材Aは、針状または繊維状であることが好ましい。これは、消弧用絶縁材料成型体が、アーク暴露時の消弧装置内部の内圧上昇および分解ガスによる風圧に耐える強度を得るためである。特に、遮断時に飛散する性能の観点から、特に、針状であることが好ましい。しかし、無機充填材Aとは別に補強用の無機充填材として、針状の無機充填材B(1500℃以下の温度で分解する無機表面処理で被覆されていない無機充填材)を添加する場合には、表面処理される無機充填材Aは、必ずしも針状もしくは繊維状である必要はない。 Moreover, it is preferable that the inorganic filler A is acicular or fibrous. This is because the arc extinguishing insulating material molded body obtains a strength that can withstand the internal pressure rise inside the arc extinguishing device and the wind pressure caused by the decomposition gas during arc exposure. In particular, the needle shape is preferable from the viewpoint of the performance of scattering at the time of blocking. However, in the case of adding a needle-like inorganic filler B (an inorganic filler not coated with an inorganic surface treatment that decomposes at a temperature of 1500 ° C. or lower) as an inorganic filler for reinforcement separately from the inorganic filler A. The inorganic filler A to be surface-treated does not necessarily have to be needle-like or fibrous.
本発明において用いられる無機充填材A(表面処理前)および無機充填材Bは、針状の場合、好ましくは長軸長さが0.01〜50μm、短軸長さが0.01〜5μmのものであり、繊維状の場合、好ましくは長軸長さが5〜200μm、短軸長さが0.1〜30μmのものであり、粒状の場合、好ましくは粒子径が0.5〜50μmのものである。 When the inorganic filler A (before surface treatment) and the inorganic filler B used in the present invention are needle-shaped, the major axis length is preferably 0.01 to 50 μm and the minor axis length is 0.01 to 5 μm. In the case of a fiber, the major axis length is preferably 5 to 200 μm and the minor axis length is 0.1 to 30 μm. In the case of a granular shape, the particle diameter is preferably 0.5 to 50 μm. Is.
無機充填材Aおよび無機表面処理剤の合計量(無機充填材Bを含む場合は、無機充填材A、無機表面処理剤および無機充填材Bの合計量)の消弧用絶縁材料成型体中に占める割合は、5〜50重量%が好ましい。5重量%未満であると、十分な樹脂強度の強化効果を得ることができず、50重量%より大きいと、消弧用絶縁材料成型体中の樹脂成分の構成比率が減少し、熱分解ガス量が減少するため、十分なアーク消弧性能を得ることができない。 In the arc extinguishing insulating material molded body of the total amount of inorganic filler A and inorganic surface treatment agent (when inorganic filler B is included, the total amount of inorganic filler A, inorganic surface treatment agent and inorganic filler B) The occupying ratio is preferably 5 to 50% by weight. If it is less than 5% by weight, a sufficient resin strength strengthening effect cannot be obtained, and if it is more than 50% by weight, the constituent ratio of the resin component in the arc extinguishing insulating material molded body decreases, and the pyrolysis gas Since the amount is reduced, sufficient arc extinguishing performance cannot be obtained.
以上のことから、無機表面処理剤で表面処理された無機充填材Aとしては、水酸化アルミニウムで表面処理された針状酸化チタン、もしくは、水酸化アルミニウムで表面処理されたワラストナイトが好ましい。 From the above, the inorganic filler A surface-treated with an inorganic surface treatment agent is preferably acicular titanium oxide surface-treated with aluminum hydroxide or wollastonite surface-treated with aluminum hydroxide.
消弧用絶縁材料成型体に含まれるマトリックス樹脂は、消弧性能、耐圧強度および耐アーク消耗性の向上、さらには成形時間の短縮を図るために用いられる。消弧用絶縁材料成型体には、50重量%以上のマトリックス樹脂を含むことが好ましい。マトリックス樹脂に含まれる成分としては、例えば、ポリオレフィン、ポリオレフィン系共重合体、ポリアミド、ポリアミド系ポリマーブレンド、ポリアセタールおよびポリアセタール系ポリマーブレンド、脂肪族ポリエステル樹脂、セルロース系樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂、ユリア樹脂、メラミン樹脂などやこれらの混合物が使用される。 The matrix resin contained in the arc extinguishing insulating material molding is used to improve arc extinguishing performance, pressure resistance and arc wear resistance, and to shorten the molding time. The arc extinguishing insulating material molded body preferably contains 50% by weight or more of a matrix resin. Components contained in the matrix resin include, for example, polyolefins, polyolefin copolymers, polyamides, polyamide polymer blends, polyacetal and polyacetal polymer blends, aliphatic polyester resins, cellulose resins, polytetrafluoroethylene and other fluorine-based compounds. Resins, urea resins, melamine resins, and the like and mixtures thereof are used.
ポリオレフィンは芳香環を有さず、耐衝撃性に優れることから、消弧性能および耐圧強度を満足させるために用いられる。その具体例としては、ポリプロピレン、ポリエチレン、ポリメチルペンテンなどが挙げられる。それらのなかではポリプロピレン、ポリメチルペンテンなどの比重が小さいものが、絶縁材料の軽量化の点から好ましく、特にポリメチルペンテンは融点240℃の結晶性樹脂のために高耐熱性が得られる点から好ましい。 Polyolefin does not have an aromatic ring and is excellent in impact resistance, so it is used to satisfy arc extinguishing performance and pressure resistance. Specific examples thereof include polypropylene, polyethylene, polymethylpentene and the like. Among them, those having a small specific gravity such as polypropylene and polymethylpentene are preferable from the viewpoint of reducing the weight of the insulating material. In particular, polymethylpentene is a crystalline resin having a melting point of 240 ° C., so that high heat resistance can be obtained. preferable.
ポリオレフィン系共重合体は芳香環を有しないことから消弧性能を満足させるために用いられる。その具体例としては、エチレン−ビニルアルコール共重合体、エチレン−酢酸ビニル共重合体などがあげられるが、エチレン−ビニルアルコール共重合体などの高強度樹脂が、耐圧強度の向上を図る点から好ましい。 Since the polyolefin copolymer does not have an aromatic ring, it is used to satisfy arc extinguishing performance. Specific examples thereof include an ethylene-vinyl alcohol copolymer, an ethylene-vinyl acetate copolymer, and the like, but a high-strength resin such as an ethylene-vinyl alcohol copolymer is preferable from the viewpoint of improving the pressure resistance. .
ポリアミドはアミド結合をもつ高分子化合物のことをいい、本発明ではポリアミド共重合体をも含む。ポリアミドは高強度樹脂であり、耐圧強度を満足させるために用いられる。その具体例としては、ナイロン6T、ナイロン46、ナイロン66、ナイロンMXD6、ナイロン610、ナイロン6、ナイロン11、ナイロン12およびナイロン6とナイロン66の共重合体ナイロンなどがあげられる。
Polyamide refers to a polymer compound having an amide bond, and the present invention includes a polyamide copolymer. Polyamide is a high-strength resin and is used to satisfy the pressure strength. Specific examples thereof include nylon 6T, nylon 46, nylon 66, nylon MXD6, nylon 610, nylon 6,
特に、ポリアミドを含む場合は、アーク暴露による分解によって発生するガスにより、アークを冷却し、またアーク電圧を向上する能力に優れ、大電流遮断時における過電流を低く抑制することができる。 In particular, when polyamide is included, the ability to cool the arc and improve the arc voltage with a gas generated by decomposition due to arc exposure is excellent, and the overcurrent at the time of interrupting a large current can be suppressed to a low level.
上記ポリアミド樹脂のなかでは、高融点の結晶性ポリアミドであるナイロン46(融点290℃)およびナイロン66(融点260℃)が好ましい。特に、マトリックス樹脂がナイロン46を含む場合、アーク消弧に有効な樹脂由来の熱分解ガスを発生し続けることができ、耐熱性に優れた消弧用絶縁材料成形体を得ることが出来る。 Among the polyamide resins, nylon 46 (melting point 290 ° C.) and nylon 66 (melting point 260 ° C.) which are high melting crystalline polyamides are preferable. In particular, when the matrix resin contains nylon 46, it is possible to continue to generate a thermal decomposition gas derived from a resin effective for arc extinguishing, and to obtain an arc extinguishing insulating material molded body excellent in heat resistance.
消弧用絶縁材料成型体は、必要に応じて、安定剤、酸化防止剤、酸化促進剤、紫外線吸収剤、可塑剤、着色剤、充填剤などの添加物を配合して成形することができる。 The arc-extinguishing insulating material molded body can be molded by adding additives such as a stabilizer, an antioxidant, an oxidation accelerator, an ultraviolet absorber, a plasticizer, a colorant, and a filler, if necessary. .
消弧用絶縁材料成型体の作製方法としては、既存の方法で行なうことができる。たとえば、射出成形、押し出し成形、中空成形(ブロー成形)、熱成形(真空または圧空成形)、カレンダー成形、2種以上のシートやフィルムを重ね合わせたり、貼り合わせて一体物に加工する積層成形、液体成形、注型、粉末成形などが挙げられる。 As a method for producing the arc extinguishing insulating material molded body, an existing method can be used. For example, injection molding, extrusion molding, hollow molding (blow molding), thermoforming (vacuum or pressure forming), calender molding, laminated molding in which two or more types of sheets and films are stacked or bonded together, Examples include liquid molding, casting, and powder molding.
消弧用絶縁材料成型体に対して、表面の耐光性向上、耐候性向上などの機能性向上化学薬品処理や物理的処理などの後処理を行なってもよい。化学薬品処理としては、薬品処理、溶剤処理、カップリング剤処理、モノマー・ポリマーコティング、表面グラフト化などが挙げられる。また、物理的処理としては、紫外線照射処理、プラズマ処理、イオンビーム処理などが挙げられる。 The arc extinguishing insulating material molded body may be subjected to post-treatment such as chemical treatment or physical treatment for improving functionality such as surface light resistance improvement and weather resistance improvement. Examples of chemical treatment include chemical treatment, solvent treatment, coupling agent treatment, monomer / polymer coating, and surface grafting. Examples of the physical treatment include ultraviolet irradiation treatment, plasma treatment, and ion beam treatment.
本発明の回路遮断器によれば、接点近傍に設置した上記消弧用絶縁材料成型体のアークによる分解ガスの寄与により、限流性能が高められた結果、事故発生などの過電流遮断時に、回路遮断器自体に注入されるエネルギーの低下により本回路遮断器の構造物への負担を軽減して回路遮断器の大容量化もしくは小形化が可能となっている。 According to the circuit breaker of the present invention, due to the contribution of the decomposition gas by the arc of the arc extinguishing insulating material molded body installed in the vicinity of the contact point, as a result of the current limiting performance being enhanced, at the time of overcurrent interruption such as the occurrence of an accident, By reducing the energy injected into the circuit breaker itself, it is possible to reduce the burden on the structure of the circuit breaker and to increase the capacity or the size of the circuit breaker.
本発明の回路遮断器には、上記のような消弧用絶縁材料成型体を接点近傍に設置し、アークによる消弧用絶縁材料成型体の分解ガスの寄与により、限流性能を高めると共に、接点間に発生したアークを伸張させて消弧板へ誘導する働きをする。この結果、事故発生などの過電流遮断時に、回路遮断器自体に注入されるエネルギーの低下により本回路遮断器の構造物への負担が軽減する。 In the circuit breaker of the present invention, the arc extinguishing insulating material molded body as described above is installed in the vicinity of the contact point, and the contribution of the decomposition gas of the arc extinguishing insulating material molded body by the arc enhances the current limiting performance, The arc generated between the contacts is stretched and guided to the arc extinguishing plate. As a result, the load on the structure of the circuit breaker is reduced by the reduction of the energy injected into the circuit breaker itself at the time of overcurrent interruption such as the occurrence of an accident.
以下に、本発明の実施例を記載するが、本発明はこれらに限定されるわけではない。
(実施例1〜2、比較例1〜2)
表1に、実施例1〜2および比較例1〜2の消弧用絶縁材料成型体の材料組成を示す。マトリックス樹脂として、ポリアミド46(DSM製TS350)を使用した。無機充填材Aとして、針状酸化チタン(水酸化アルミニウム処理品:石原産業FTL−110)、または、ワラストナイト(キンセイマテック製SH−800)を使用した。なお、針状酸化チタン、ワラストナイトについては、1500℃以下で分解することはなく、一般に分解に関するデータが得られていない。無機表面処理剤としては水酸化アルミニウムを使用し、該無機表面処理剤で表面処理された無機充填材Aを用いて消弧用絶縁材料成型体を製造した。無機機充填材Aおよび無機表面処理剤の合計量の消弧用絶縁材料成型体中に占める割合は、30重量%とした。また、無機表面処理剤の添加量は、無機充填材Aの量に対して1重量%とした。
Examples of the present invention will be described below, but the present invention is not limited thereto.
(Examples 1-2, Comparative Examples 1-2)
Table 1 shows the material composition of the arc-extinguishing insulating material molded bodies of Examples 1-2 and Comparative Examples 1-2. As the matrix resin, polyamide 46 (DSM TS350) was used. As the inorganic filler A, acicular titanium oxide (aluminum hydroxide-treated product: Ishihara Sangyo FTL-110) or wollastonite (SH-800 manufactured by Kinsei Matec) was used. In addition, about acicular titanium oxide and wollastonite, it does not decompose | disassemble at 1500 degrees C or less, and generally the data regarding decomposition | disassembly are not obtained. As the inorganic surface treatment agent, aluminum hydroxide was used, and an arc-extinguishing insulating material molded body was produced using the inorganic filler A surface-treated with the inorganic surface treatment agent. The proportion of the total amount of inorganic machine filler A and inorganic surface treatment agent in the arc extinguishing insulating material molded body was 30% by weight. The amount of the inorganic surface treatment agent added was 1% by weight with respect to the amount of the inorganic filler A.
消弧用絶縁材料成型体の製造は、表1に示す樹脂と、無機表面処理剤で表面処理された無機充填材Aを、サイドフィード式樹脂混練機で加熱混練し、押し出し機によって、ペレットを形成した後、射出成形によって製造した。図3および図4に例示する回路遮断器に、厚さ1mmの消弧用絶縁材料成型体を設置して、過負荷遮断試験、短絡遮断試験を行なった。過負荷遮断試験、短絡遮断試験の内容は、以下の通りである。 The arc extinguishing insulating material molded body is manufactured by heat-kneading the resin shown in Table 1 and the inorganic filler A surface-treated with an inorganic surface treatment agent with a side-feed type resin kneader, and using an extruder to produce pellets. After forming, it was manufactured by injection molding. An arc-extinguishing insulating material molded body having a thickness of 1 mm was installed in the circuit breaker illustrated in FIGS. 3 and 4, and an overload interruption test and a short-circuit interruption test were performed. The contents of the overload interrupt test and the short circuit interrupt test are as follows.
(過負荷遮断試験)
本試験は、前記構成の消弧用絶縁材料成型体を含む回路遮断器に、閉成状態で定格電流の6倍の電流(たとえば100A用回路遮断器の場合は600A)を通電し、可動接点4と固定接点5とを接点開離距離L(可動接点4と固定接点5との距離)が15〜25mmとなるように開離させて、アーク電流を発生させ、アーク電流の遮断を規定回数成功させることをもって合格とする試験である。
(Overload interruption test)
In this test, a circuit breaker including the arc extinguishing insulating material molded body having the above-described configuration was energized with a current 6 times the rated current in a closed state (for example, 600 A in the case of a 100 A circuit breaker), and the
(短絡遮断試験)
本試験は、閉成状態において、10〜100kAの過剰電流を通電して可動接触子を開離させ、アーク電流を発生させ、このアーク電流の遮断の規定回数の成功と破損がないことをもって合格とする試験である。
(Short-circuit interruption test)
This test passed in the closed state by passing an excess current of 10 to 100 kA to release the movable contact, generating an arc current, and the success of the specified number of interruptions of this arc current and no breakage. This is a test.
本実施例の試験条件としては、過負荷遮断試験がAC690V/600A、12回遮断で合格とし、短絡遮断試験は440V/50kA、3回遮断が可能で、かつ、消弧用絶縁材料成型体および回路遮断器容器に破損がないことをもって合格とした。 As test conditions of this example, the overload interruption test passed AC690V / 600A, 12 interruptions, the short circuit interruption test was 440V / 50kA, 3 interruptions were possible, and the arc extinguishing insulating material molded body and The circuit breaker vessel was accepted as having no damage.
実施例1〜2では、過負荷試験は規定遮断回数の12回に到達し、短絡試験も規定遮断回数の3回遮断を達成し、消弧用絶縁材料成型体及び遮断器筐体の破損も無かった。実施例1〜2の過負荷遮断試験後の消弧用絶縁材料成形体の表面及び断面を観察した結果、アークに曝された表面には、樹脂と無機充填材が混在しているのが確認できた。これに対し、比較例1〜2では、過負荷遮断試験、短絡遮断試験のいずれかが規定回数に達することが出来なかった。
In Examples 1 and 2, the overload test reaches the specified number of interruptions 12 times, the short circuit test also achieves the specified number of
比較例1の過負荷遮断試験後の消弧用絶縁材料成形体を観察した結果、ワラストナイトが表面に露出しており、樹脂成分の不足により連続遮断ができなくなったことがわかった。比較例2の消弧用絶縁材料成形体の過負荷遮断試験後表面を観察した結果、一部溶解したガラス繊維が表面に露出していた。このことから、樹脂成分の不足により、連続遮断ができなくなったと考えられる。短絡遮断試験の不合格については、露出したガラス繊維上に遮断時に発生したすすが析出し、導電性を有するに至り、沿面放電経路となり、アークの遮断を阻害する要因となったと考えられる。 As a result of observing the arc extinguishing insulating material molded body after the overload interruption test of Comparative Example 1, it was found that wollastonite was exposed on the surface and continuous interruption could not be performed due to lack of resin components. As a result of observing the surface after the overload blocking test of the arc extinguishing insulating material molded body of Comparative Example 2, partially dissolved glass fibers were exposed on the surface. From this, it is considered that continuous shut-off cannot be performed due to a shortage of resin components. Regarding the failure of the short circuit interruption test, it is considered that the soot generated at the time of interruption was deposited on the exposed glass fiber, and it became electrically conductive, resulting in a creeping discharge path, which hindered arc interruption.
以上の結果から、本発明の消弧用絶縁材料成型体は、1500℃以下で分解する無機表面処理剤で表面処理された針状または繊維状の無機充填材Aを含むため、従来の消弧用絶縁材料成型体よりも大きな電気容量の遮断に耐える強度をもち、過負荷遮断性能及び短絡遮断性能に優れることが分かった。また、本発明の消弧用絶縁材料成型体を用いた回路遮断器は、回路遮断性能に優れることが示された。 From the above results, since the arc extinguishing insulating material molded body of the present invention includes the needle-like or fibrous inorganic filler A surface-treated with an inorganic surface treatment agent that decomposes at 1500 ° C. or lower, the conventional arc extinguishing It has been found that it has the strength to withstand the interruption of a larger electric capacity than the molded product of insulating material, and is excellent in overload interruption performance and short circuit interruption performance. Moreover, it was shown that the circuit breaker using the arc-extinguishing insulating material molded body of the present invention is excellent in circuit breaking performance.
以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described as described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 可動接触子、2 可動接点、3 固定接触子、4 固定接点、5 消弧用絶縁材料成型体、6 消弧板、7 切欠部、8 アーク、9,10 端子、100 消弧装置、11 消弧側板、110 開閉機構部、13 ハンドル、120 引き外し装置部、14 カバー、15 ベース、16 ガイド溝、17 エンドプレート、17a 排気孔、18 筐体。 1 movable contact, 2 movable contact, 3 fixed contact, 4 fixed contact, 5 arc-extinguishing insulating material molded body, 6 arc extinguishing plate, 7 notch, 8 arc, 9, 10 terminals, 100 arc extinguishing device, 11 Arc extinguishing side plate, 110 opening / closing mechanism part, 13 handle, 120 trip device part, 14 cover, 15 base, 16 guide groove, 17 end plate, 17a exhaust hole, 18 housing.
Claims (8)
1500℃以下で分解しない無機充填材Aと、マトリックス樹脂とを含み、
前記無機充填材Aの少なくとも一部は1500℃以下で分解する無機表面処理剤で被覆されており、
前記無機充填材Aが針状または繊維状であるか、または、前記無機充填材Aとは別の針状の無機充填材Bを含む、消弧用絶縁材料成形体。 An arc extinguishing material molding used for a circuit breaker,
Inorganic filler A that does not decompose at 1500 ° C. or less, and a matrix resin,
At least a part of the inorganic filler A is coated with an inorganic surface treatment agent that decomposes at 1500 ° C. or less,
An arc-extinguishing insulating material molded body in which the inorganic filler A is needle-like or fibrous, or includes an acicular inorganic filler B different from the inorganic filler A.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011266889A JP5575098B2 (en) | 2011-04-01 | 2011-12-06 | Insulation material molded body for arc extinguishing, and circuit breaker using the same |
CN201210093172.9A CN102737920B (en) | 2011-04-01 | 2012-04-01 | Insulating material molding body for arc extinction and circuit breaker using same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011082035 | 2011-04-01 | ||
JP2011082035 | 2011-04-01 | ||
JP2011266889A JP5575098B2 (en) | 2011-04-01 | 2011-12-06 | Insulation material molded body for arc extinguishing, and circuit breaker using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012216494A JP2012216494A (en) | 2012-11-08 |
JP5575098B2 true JP5575098B2 (en) | 2014-08-20 |
Family
ID=47269080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011266889A Active JP5575098B2 (en) | 2011-04-01 | 2011-12-06 | Insulation material molded body for arc extinguishing, and circuit breaker using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5575098B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6385313B2 (en) * | 2015-06-08 | 2018-09-05 | 株式会社三共 | Slot machine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3359422B2 (en) * | 1994-03-10 | 2002-12-24 | 三菱電機株式会社 | Arc-extinguishing insulating material composition, arc-extinguishing insulating material molded article, and arc-extinguishing device using them |
-
2011
- 2011-12-06 JP JP2011266889A patent/JP5575098B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012216494A (en) | 2012-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2009202223B2 (en) | Metal-hydrate containing arc-extinguishing compostions and methods | |
CN101250323A (en) | Flame-proof smoke-inhibiting nylon 6 composite material | |
CN101580609B (en) | Arc extinguishing resin processed article and circuit breaker using the same | |
JP4655094B2 (en) | Arc extinguishing resin processed product and circuit breaker using the same | |
TW563151B (en) | Circuit breaker | |
JP4827187B2 (en) | Arc extinguishing resin processed product and circuit breaker using the same | |
JP5575098B2 (en) | Insulation material molded body for arc extinguishing, and circuit breaker using the same | |
JP4753263B2 (en) | Circuit breaker | |
US8809721B2 (en) | Quenching element, quenching unit, quenching and plugging unit, and switching device | |
KR20130087394A (en) | Electrical circuit breaker | |
CN102737920B (en) | Insulating material molding body for arc extinction and circuit breaker using same | |
JP5741148B2 (en) | Insulation material molded body for arc extinguishing, and circuit breaker using the same | |
JP4817316B2 (en) | Arc extinguishing resin processed product and circuit breaker using the same | |
JP2015130356A (en) | Arc-extinguishing insulating material molding, and circuit breaker using the same | |
JP2010260963A (en) | Flame-retardant resin composition and molded item thereof | |
JP5889172B2 (en) | Circuit breaker | |
JP4941409B2 (en) | Arc extinguishing resin processed product and circuit breaker using the same | |
JP2001176372A (en) | Circuit breaker | |
CN111433874B (en) | Arc-extinguishing insulating material molded body and circuit breaker | |
CN103367069A (en) | Resin-molded component for arc extinction and loop breaker | |
JP2017039817A (en) | Resin composition for arc extinguishing | |
TW202116921A (en) | Arc bix material of direct-current low-voltage circuit breaker being suitable for application as a material for manufacturing the arc box of a direct-current low-voltage circuit breaker | |
JP6635334B2 (en) | Arc extinguishing resin composition | |
KR20030005406A (en) | Circuit breaker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140603 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140701 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5575098 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |