JP5574169B2 - Appearance shape inspection direction of belt-shaped member and apparatus therefor - Google Patents

Appearance shape inspection direction of belt-shaped member and apparatus therefor Download PDF

Info

Publication number
JP5574169B2
JP5574169B2 JP2010134879A JP2010134879A JP5574169B2 JP 5574169 B2 JP5574169 B2 JP 5574169B2 JP 2010134879 A JP2010134879 A JP 2010134879A JP 2010134879 A JP2010134879 A JP 2010134879A JP 5574169 B2 JP5574169 B2 JP 5574169B2
Authority
JP
Japan
Prior art keywords
data
belt
shaped member
inspection
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010134879A
Other languages
Japanese (ja)
Other versions
JP2012002522A (en
Inventor
拡太郎 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2010134879A priority Critical patent/JP5574169B2/en
Publication of JP2012002522A publication Critical patent/JP2012002522A/en
Application granted granted Critical
Publication of JP5574169B2 publication Critical patent/JP5574169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Tyre Moulding (AREA)

Description

本発明は、例えば自動車用タイヤの製造工程において、成形ドラムに巻付けられたベルト部材等の帯状部材やコンベア上に載置された帯状部材の外観形状の検査を行うための帯状部材の外観形状検査方法及びその装置に関する。   The present invention is, for example, in the manufacturing process of an automobile tire, and the outer shape of the belt member for inspecting the outer shape of the belt member such as a belt member wound around a forming drum or the belt member placed on the conveyor. The present invention relates to an inspection method and an apparatus therefor.

この種の帯状部材の検査装置としては、成形ドラムに巻付けられた帯状部材の幅方向端部にスリット光を照射する照射装置と、照射装置によって帯状部材上に形成される照射線を撮像する撮像装置とを備え、成形ドラムを回転させながらドラム周方向の複数位置で撮像装置によって照射線を撮像し、撮像装置によって撮像された各照射線についてそれぞれ、予め登録されている形状パターンに対する位置ずれ量を求めるとともに、各位置ずれ量を加算し、加算した値に基づいて帯状部材の幅方向への位置ずれ量の適否を判定するようにしたものが知られている(例えば、特許文献1参照。)。   As this type of belt-shaped member inspection device, an irradiation device that irradiates slit light to the end in the width direction of a belt-shaped member wound around a forming drum, and an irradiation line formed on the belt-shaped member by the irradiation device are imaged. An imaging device is provided, and the irradiation line is imaged by the imaging device at a plurality of positions in the drum circumferential direction while rotating the forming drum, and each irradiation line imaged by the imaging device is misaligned with respect to a pre-registered shape pattern. It is known that the amount of positional deviation is added and the amount of positional deviation in the width direction of the belt-like member is determined based on the added value while obtaining the amount (see, for example, Patent Document 1). .)

特開2004−351810号公報JP 2004-351810 A

ところで、前記検査装置では、ドラム周方向の各位置で撮像された照射線の形状の予め登録されている形状パターンに対する位置ずれ量を求め、各位置ずれ量を加算した値に基づいて帯状部材の幅方向への位置ずれ量の適否を判定するようにしている。このため、例えば、成形ドラム上で帯状部材が長さ方向一方から他方に向かうにつれて幅方向一方から他方に斜めに巻付けられている場合の各位置ずれ量を加算した値と、成形ドラム上で帯状部材が長さ方向一方から他方に向かって真直ぐに巻付けられ且つ幅方向一方に偏って貼り付けられている場合の各位置ずれ量を加算した値と、成形ドラム上で帯状部材が幅方向に蛇行して巻付けられている場合の各位置ずれ量を加算した値とが同一になる可能性がある。即ち、前記検査装置では、成形ドラム上で帯状部材の幅方向位置が帯状部材の長さ方向のどの様に変化するかを検知することができない。   By the way, in the inspection apparatus, the amount of positional deviation with respect to a pre-registered shape pattern of the shape of the irradiation line imaged at each position in the drum circumferential direction is obtained, and based on the value obtained by adding the amount of each positional deviation, Appropriateness of the amount of positional deviation in the width direction is determined. For this reason, for example, a value obtained by adding each positional deviation amount when the band-shaped member is wound obliquely from one side to the other in the width direction as it goes from one side to the other in the length direction on the molding drum, and on the molding drum A value obtained by adding each positional deviation amount when the belt-like member is wound straightly from one side in the length direction to the other and is biased to one side in the width direction, and the belt-like member is arranged in the width direction on the forming drum. There is a possibility that the value obtained by adding the respective misalignment amounts when winding in a meandering manner is the same. That is, the inspection apparatus cannot detect how the position in the width direction of the band-shaped member changes in the length direction of the band-shaped member on the forming drum.

ここで、帯状部材の幅方向位置が長さ方向にどのように変化するか、帯状部材の厚さ方向の位置が長さ方向にどのように変化するか等は、成形されたタイヤの特性、例えばラジアルフォースバリエーション(RFV)や、ラテラルフォースバリエーション(LFV)や、コニシティフォース(COF)等のラテラルフォースデビエーション(LFD)に影響を与えるので、成形ドラム上における帯状部材の幅方向位置や厚さ方向の位置等の外観形状が帯状部材の長さ方向にどの様に変化しているかを知ることは、タイヤ特性の向上を図る上で有利である。   Here, how the width direction position of the band-shaped member changes in the length direction, how the position of the band-shaped member in the thickness direction changes in the length direction, etc. For example, it affects the radial force variation (RFV), lateral force variation (LFV), and lateral force deviation (LFD) such as concentric force (COF). It is advantageous to improve the tire characteristics to know how the appearance shape such as the position of the direction changes in the length direction of the belt-like member.

本発明は、前記課題に鑑みてなされたものであり、その目的とするところは、帯状部材の外観形状が帯状部材の長さ方向にどのように変化しているかを知ることのできる帯状部材の外観形状検査方法及びその装置を提供することにある。   This invention is made in view of the said subject, The place made into the objective of the strip | belt-shaped member which can know how the external appearance shape of a strip | belt-shaped member is changing in the length direction of a strip | belt-shaped member. An object is to provide an appearance shape inspection method and apparatus.

本発明は前記目的を達成するために、帯状部材の外観形状を検査する帯状部材の外観形状検査方法において、帯状部材の外観形状の輪郭を帯状部材の幅方向複数位置における帯状部材の厚さ方向の二次元輪郭データとして抽出可能な抽出手段を用い、帯状部材の外観形状の二次元輪郭データを帯状部材の長さ方向の複数個所で抽出する検出工程と、検出工程によって検出された二次元輪郭データを帯状部材の長さ方向に並べた後、並べられた二次元輪郭データを所定の色調基準に基づいて階調処理し、階調処理された各厚さ方向のデータから成る画像データを検査用データとして作成する検査用データ作成工程と、検査用データ作成工程で作成された検査用データから、各二次元輪郭データが示す帯状部材の外観形状の輪郭が帯状部材の長さ方向にどの様に変化するかを示す帯状部材の外観形状の特徴データを抽出する特徴データ抽出工程とを含んでいる。 In order to achieve the above object, the present invention provides a strip-shaped member appearance shape inspection method for inspecting a strip-shaped member appearance shape, wherein the contour of the strip-shaped member appearance shape is measured in the width direction of the strip-shaped member in the thickness direction of the strip-shaped member. Using a extracting means that can extract the two-dimensional contour data of the belt-like member and extracting the two-dimensional contour data of the outer shape of the belt-like member at a plurality of locations in the length direction of the belt-like member, and the two-dimensional contour detected by the detection step After arranging the data in the length direction of the belt-like member , the arranged two-dimensional contour data is gradation processed based on a predetermined color tone standard, and the image data composed of the gradation processed data in each thickness direction is inspected. the length of the test data generation step of generating a use data from the test data generated by test data generation process, contour strip of external shape of the belt-shaped members shown in the two-dimensional contour data And a feature data extraction step of extracting characteristic data of the external shape of the belt-shaped member that indicates changes which as countercurrent.

また、本発明は、帯状部材の外観形状を検査する帯状部材の外観形状検査装置において、帯状部材の外観形状の輪郭を帯状部材の幅方向複数位置における帯状部材の厚さ方向の二次元輪郭データとして検出する検出手段と、検出手段によって検出された二次元輪郭データを帯状部材の長さ方向に並べた後、並べられた二次元輪郭データを所定の色調基準に基づいて階調処理し、階調処理された各厚さ方向のデータから成る画像データを検査用データとして作成する検査用データ作成手段と、検査用データ作成手段で作成された検査用データから、各二次元輪郭データが示す帯状部材の外観形状の輪郭が帯状部材の長さ方向にどの様に変化するかを示す帯状部材の外観形状の特徴データを抽出する特徴データ抽出手段とを備えている。 Further, the present invention provides a strip-shaped member appearance shape inspection apparatus for inspecting a strip-shaped member appearance shape, wherein the contour of the strip-shaped member appearance shape is two-dimensional contour data in the thickness direction of the strip-shaped member at a plurality of positions in the width direction of the strip-shaped member. After arranging the two-dimensional contour data detected by the detection means and the two-dimensional contour data in the length direction of the belt-like member , the arranged two-dimensional contour data is subjected to gradation processing based on a predetermined color tone standard, Inspection data creation means for creating image data composed of data in each thickness direction that has been processed as inspection data , and strips indicated by each two-dimensional contour data from inspection data created by the inspection data creation means And feature data extracting means for extracting feature data of the outer shape of the band-shaped member indicating how the contour of the outer shape of the member changes in the length direction of the band-shaped member.

このように、検出された二次元輪郭データを帯状部材の長さ方向に並べた後、並べられた二次元輪郭データを所定の色調基準に基づいて階調処理し、階調処理された各厚さ方向のデータから成る画像データを検査用データとして作成し、該検査用データから、各二次元輪郭データが示す帯状部材の外観形状の輪郭が帯状部材の長さ方向にどの様に変化するかを示す帯状部材の外観形状の特徴データを抽出することから、特徴データとして、前記検査用データから、例えば帯状部材の幅方向の所定位置における帯状部材の厚さ方向のデータを帯状部材の長さ方向に連続する所定範囲で抽出すると、抽出されたデータは帯状部材の厚さが帯状部材の長さ方向にどの様に変化するかを示すことになる。また、特徴データとして、前記検査用データから、例えば帯状部材の幅方向端部位置のデータを帯状部材の長さ方向に連続する所定範囲で抽出すると、抽出されたデータは帯状部材の幅方向端部位置が帯状部材の長さ方向にどの様に変化するかを示すことになる。 Thus, after arranging the detected two-dimensional contour data in the length direction of the belt-shaped member , the arranged two-dimensional contour data is subjected to gradation processing based on a predetermined color tone standard, and each gradation processed thickness is processed. Image data consisting of longitudinal data is created as inspection data, and how the outline of the appearance of the band-shaped member indicated by each two-dimensional contour data changes in the length direction of the band-shaped member from the inspection data The characteristic data of the outer shape of the belt-shaped member indicating the length of the belt-shaped member is extracted from the inspection data as the characteristic data, for example, the data in the thickness direction of the belt-shaped member at a predetermined position in the width direction of the belt-shaped member. When extracted in a predetermined range that continues in the direction, the extracted data will indicate how the thickness of the strip member changes in the length direction of the strip member. Further, as the feature data, for example, when the data of the width direction end position of the belt-like member is extracted from the inspection data in a predetermined range continuous in the length direction of the belt-like member, the extracted data is the width direction end of the belt-like member. It shows how the position of the portion changes in the length direction of the belt-like member.

本発明によれば、検査用データから抽出された特徴データは帯状部材の厚さや帯状部材の幅方向端部位置が帯状部材の長さ方向にどの様に変化するかを示すことになるので、帯状部材の外観形状が帯状部材の長さ方向にどのように変化しているかを容易且つ確実に知ることができ、タイヤ特性の向上を図る上で極めて有利である。   According to the present invention, the feature data extracted from the inspection data indicates how the thickness of the strip member and the width direction end position of the strip member change in the length direction of the strip member. It can be known easily and reliably how the appearance of the belt-like member changes in the length direction of the belt-like member, which is extremely advantageous for improving tire characteristics.

本発明の一実施形態を示す帯状部材の外観形状検査装置の平面図The top view of the external appearance inspection apparatus of the strip | belt-shaped member which shows one Embodiment of this invention 帯状部材の外観形状検査装置の側面図Side view of strip-shaped member appearance shape inspection device 帯状部材の外観形状検査装置のブロック図Block diagram of strip shape appearance inspection device 二次元輪郭データの例Example of 2D contour data 制御装置の動作を示すフローチャートFlow chart showing operation of control device 帯状部材雄の長さ方向に並べられた複数の二次元輪郭データA plurality of two-dimensional contour data arranged in the length direction of the male strip member 検査用データの例Example of inspection data 表示装置に表示された検査用データの例Example of inspection data displayed on a display device 制御装置の動作を示すフローチャートFlow chart showing operation of control device 特徴データの例Example of feature data 図10の輝度データを厚さ単位に変化したデータの例Example of data obtained by changing the luminance data in FIG. 10 in units of thickness 制御装置の動作を示すフローチャートFlow chart showing operation of control device 制御装置の動作を示すフローチャートFlow chart showing operation of control device 検査用データの例Example of inspection data 検査用データの加工例Example of processing inspection data 検査用データの加工例Example of processing inspection data 検査用データの加工例Example of processing inspection data 検査用データの加工例Example of processing inspection data 特徴データの例Example of feature data 制御装置の動作を示すフローチャートFlow chart showing operation of control device 帯状部材の断面図Sectional view of strip-shaped member 検査用データの例Example of inspection data 検査用データの加工例Example of processing inspection data 検査用データの加工例Example of processing inspection data 検査用データの加工例Example of processing inspection data 検査用データの加工例Example of processing inspection data 特徴データの例Example of feature data 制御装置の動作を示すフローチャートFlow chart showing operation of control device 検査用データの例Example of inspection data 検査用データの加工例Example of processing inspection data 検査用データの加工例Example of processing inspection data

本発明の一実施形態の帯状部材の外観形状検査装置及び方法を図1乃至図31を参照しながら説明する。   An apparatus and method for inspecting the appearance of a belt-like member according to an embodiment of the present invention will be described with reference to FIGS.

この帯状部材の外観形状検査装置は、それぞれ成形ドラム1の外周面と所定の距離をおいて配置された一対の検出装置10と、各検出装置10をそれぞれ支持するセンサブラケット20と、各センサブラケット20を成形ドラム1の軸方向に移動自在に支持する第1ベース30と、第1ベース30を成形ドラム1の径方向に移動可能に支持する第2ベース40とを備えている。各検出装置10はレーザー等の光を用いた周知の二次元変位計であり、本実施形態では成形ドラム1の径方向に光が照射され、成形ドラム1の外周面に巻付けられている帯状部材の幅方向複数位置における帯状部材の厚さ方向の二次元輪郭データを検出可能である。   The strip-shaped member appearance shape inspection device includes a pair of detection devices 10 disposed at a predetermined distance from the outer peripheral surface of the forming drum 1, a sensor bracket 20 that supports each detection device 10, and each sensor bracket. A first base 30 that supports 20 so as to be movable in the axial direction of the forming drum 1 and a second base 40 that supports the first base 30 so as to be movable in the radial direction of the forming drum 1 are provided. Each detection device 10 is a well-known two-dimensional displacement meter using light such as a laser. In this embodiment, light is irradiated in the radial direction of the forming drum 1 and is wound around the outer peripheral surface of the forming drum 1. It is possible to detect two-dimensional contour data in the thickness direction of the belt-like member at a plurality of positions in the width direction of the member.

また、この外観形状検査装置は、成形ドラム1の回転方向の位置を検出する回転方向位置検出装置としての周知のロータリーエンコーダ50及びカウンタ51と、成形ドラム1の回転方向の0°の位置を検出する原点検出装置60とを備えている。   In addition, this external shape inspection apparatus detects a known rotary encoder 50 and counter 51 as a rotational direction position detecting device for detecting the rotational position of the forming drum 1 and a 0 ° position in the rotational direction of the forming drum 1. The origin detection device 60 is provided.

成形ドラム1は径方向に拡縮可能な周知の構成を有し、帯状部材としてのベルト部材、エッジテープ、トレッド部材等が複数巻付けられて円環ベルト部材が成形され、または、一対のサイドウォール部材、インナーライナー部材、カーカス部材等の帯状部材が順次巻付けられて円環状バンド部材が成形されるようになっている。図1及び図2では、成形ドラム1に第1ベルト部材B1及び第2ベルト部材B2が巻付けられている。また、第2ベルト部材B2は第1ベルト部材B1の径方向外側に巻付けられ、第1ベルト部材1Bよりも幅寸法が小さい。   The forming drum 1 has a well-known configuration that can be expanded and contracted in the radial direction, and a belt member, an edge tape, a tread member, or the like as a belt-like member is wound around to form an annular belt member, or a pair of sidewalls Band-shaped members such as a member, an inner liner member, and a carcass member are sequentially wound to form an annular band member. 1 and 2, the first belt member B1 and the second belt member B2 are wound around the forming drum 1. Further, the second belt member B2 is wound around the outer side in the radial direction of the first belt member B1, and the width dimension is smaller than that of the first belt member 1B.

各検出装置10は検査対象物との距離を線状の検出範囲DA内で検出するようになっており、本実施形態では、前述のように、成形ドラム1の外周面に巻付けられている帯状部材の幅方向複数位置における帯状部材の厚さ方向の二次元輪郭データを検出可能である。各ブラケット20はそれぞれ第1ベース30に成形ドラム1の軸方向(成形ドラム1に巻付けられた帯状部材の幅方向)に移動可能に支持され、第1ベース30の内部に設けられたボールネジ30a及びボールネジ30aを駆動するベース用モータ30bによって成形ドラム1の軸方向に移動するようになっている。第2ベース40は周知のエアーシリンダやメカニカルシリンダから成る一対のシリンダ41を介して第1ベース30を成形ドラム1の径方向に移動可能に支持している。   Each detection device 10 is configured to detect the distance to the inspection object within the linear detection range DA, and in this embodiment, is wound around the outer peripheral surface of the forming drum 1 as described above. It is possible to detect two-dimensional contour data in the thickness direction of the belt-like member at a plurality of positions in the width direction of the belt-like member. Each bracket 20 is supported by the first base 30 so as to be movable in the axial direction of the molding drum 1 (in the width direction of the belt-like member wound around the molding drum 1), and a ball screw 30a provided inside the first base 30. And it moves to the axial direction of the forming drum 1 by the motor 30b for the base which drives the ball screw 30a. The second base 40 supports the first base 30 so as to be movable in the radial direction of the molding drum 1 via a pair of cylinders 41 made of a known air cylinder or mechanical cylinder.

ロータリーエンコーダ50は成形ドラム1の回転に伴ってパルス波を出力するように構成されている。また、カウンタ51はロータリーエンコーダ50に接続され、カウンタ51によってロータリーエンコーダ50のパルス波をカウントすることにより、成形ドラム1の回転方向位置が検出されるようになっている。   The rotary encoder 50 is configured to output a pulse wave as the molding drum 1 rotates. The counter 51 is connected to the rotary encoder 50, and the counter 51 counts the pulse wave of the rotary encoder 50 so that the rotational direction position of the forming drum 1 is detected.

原点検出装置60は周知の近接スイッチ等から成り、成形ドラム1の回転方向0°の位置に設けられた例えば凹部を検出するようになっている。   The origin detection device 60 includes a known proximity switch or the like, and detects, for example, a concave portion provided at a position of the molding drum 1 in the rotation direction of 0 °.

各検出装置10、カウンタ51及び原点検出装置60は周知のコンピュータから成る制御装置70に接続されている。また、制御装置70は、周知のハードディスク等から成る記憶装置71、周知の液晶画面を有する表示装置72、及び周知のキーボード等から成る入力装置73に接続されている。一方、成形ドラム1は回転駆動のためのモータ1a及びモータ1aを制御する成形ドラム制御装置1bを有し、成形ドラム制御装置1bは制御装置70に接続されている。また、第1ベース30のベース用モータ30b及び第2ベース40の各シリンダ41も制御装置70に接続されている。また、成形ドラム制御装置1bは円環ベルト部材を成形する際にモータ1aを制御するようになっている。   Each detection device 10, the counter 51, and the origin detection device 60 are connected to a control device 70 composed of a known computer. The control device 70 is connected to a storage device 71 composed of a known hard disk, a display device 72 having a known liquid crystal screen, and an input device 73 composed of a known keyboard. On the other hand, the forming drum 1 has a motor 1 a for rotational driving and a forming drum control device 1 b for controlling the motor 1 a, and the forming drum control device 1 b is connected to the control device 70. The base motor 30 b of the first base 30 and each cylinder 41 of the second base 40 are also connected to the control device 70. The forming drum control device 1b controls the motor 1a when forming the annular belt member.

以上のように構成された帯状部材の外観形状検査装置では、拡径した状態の成形ドラム1に例えば第1ベルト部材B1、第2ベルト部材B2、エッジテープ、トレッド部材等の帯状部材が順次巻付けられて円環状ベルト部材が成形される際や、成形ドラム1に例えば一対のサイドウォール部材、インナーライナー部材、カーカス部材等の帯状部材が順次巻付けられて円環状バンド部材が成形される際に、各帯状部材について外観形状を検査するようになっている。先ず、第1ベルト部材B1の外観形状を検査する場合の制御装置70の動作を図5のフローチャートを参照しながら説明する。   In the appearance inspection apparatus for the belt-shaped member configured as described above, the belt-shaped members such as the first belt member B1, the second belt member B2, the edge tape, and the tread member are sequentially wound around the molding drum 1 in an enlarged state. When an annular belt member is formed by being attached, or when a belt-shaped member such as a pair of sidewall members, an inner liner member, and a carcass member is sequentially wound around the forming drum 1 to form an annular band member. In addition, the appearance of each belt-like member is inspected. First, the operation of the control device 70 when inspecting the external shape of the first belt member B1 will be described with reference to the flowchart of FIG.

先ず、成形ドラム1bから例えば第1ベルト部材B1等の帯状部材の巻付完了の信号を受信すると(S1)、ベース用モータ30a及び各シリンダ41により、各検出装置10の位置をタイヤ種類毎且つ帯状部材の種類毎に記憶装置71に格納されている所定位置に移動させる(S2)。これにより、例えば、各検出装置10が成形ドラム1の軸方向中央から所定距離LDだけ離れた位置に配置される。また、制御装置70は、成形ドラム制御装置1bによってモータ1aを回転させる(S3)。これにより、成形ドラム1が所定の速度で回転し始める。   First, when a signal indicating completion of winding of a belt-like member such as the first belt member B1 is received from the forming drum 1b (S1), the position of each detection device 10 is set for each tire type by the base motor 30a and each cylinder 41. It moves to the predetermined position stored in the memory | storage device 71 for every kind of strip | belt-shaped member (S2). Thereby, for example, each detection device 10 is arranged at a position separated from the axial center of the forming drum 1 by a predetermined distance LD. Moreover, the control apparatus 70 rotates the motor 1a by the forming drum control apparatus 1b (S3). Thereby, the forming drum 1 starts to rotate at a predetermined speed.

続いて、原点検出装置60によって成形ドラム1の回転方向0°の位置に設けられた凹部が検出されると(S4)、各検出装置10により、第1ベルト部材B1の幅方向両端部における厚さ方向の二次元輪郭データを成形ドラム1が360°回転するまで連続的に検出させ(S5)、各二次元輪郭データをロータリーエンコーダ50及びカウンタ51によって検出される成形ドラム1の回転方向位置データと対応するように記憶装置71に記憶させる(S6)。   Subsequently, when the origin detection device 60 detects the concave portion provided at the position of 0 ° in the rotation direction of the forming drum 1 (S4), the thicknesses at both ends in the width direction of the first belt member B1 are detected by each detection device 10. Two-dimensional contour data in the vertical direction are continuously detected until the forming drum 1 rotates 360 ° (S5), and each two-dimensional contour data is detected by the rotary encoder 50 and the counter 51 in the rotational direction position data of the forming drum 1. Is stored in the storage device 71 so as to correspond to (S6).

ここで、連続的とは、例えば成形ドラム1が0°、2°、4°、…360°の回転方向位置になった時にそれぞれ二次元輪郭データを検出することを言う。尚、所定時間おきに二次元輪郭データを検出する場合でも連続的であり、その他の方法によって回転方向の複数位置において輪郭データを検出する場合も連続的である。また、各検出装置10によって検出される第1ベルト部材B1の幅方向端部における厚さ方向の二次元輪郭データの例を図4に示す。図4における位置Mは、成形ドラム1の軸方向中央から前記所定距離LDだけ離れた位置である。また、図4に示すように、各二次元輪郭データは帯状部材の幅方向複数位置における帯状部材の厚さ方向のデータである。   Here, “continuous” means that, for example, two-dimensional contour data is detected when the forming drum 1 is in a rotational direction position of 0 °, 2 °, 4 °,. Note that the two-dimensional contour data is continuously detected every predetermined time, and the contour data is continuously detected at a plurality of positions in the rotation direction by other methods. Moreover, the example of the two-dimensional outline data of the thickness direction in the width direction edge part of 1st belt member B1 detected by each detection apparatus 10 is shown in FIG. A position M in FIG. 4 is a position away from the center in the axial direction of the forming drum 1 by the predetermined distance LD. Further, as shown in FIG. 4, each two-dimensional contour data is data in the thickness direction of the strip member at a plurality of positions in the width direction of the strip member.

ステップS6による検出が終了すると(S7)、成形ドラム制御装置1bによってモータ1bの回転を停止させる(S8)。   When the detection in step S6 ends (S7), the rotation of the motor 1b is stopped by the forming drum control device 1b (S8).

次に、各二次元輪郭データを撮像順に帯状部材の長さ方向に並べて検査用データを作成する(S9)。本実施形態では、例えば図6に示すように、各二次元輪郭データを撮像順に帯状部材の長さ方向に並べた後、例えば図7に示すように、並べられた二次元輪郭データの各厚さ方向のデータを所定の色調基準に基づいて例えば256階調に輝度階調処理することにより、前記検査用データを作成する。ここで、図4及び図6の帯状部材厚さ方向のデータの数値は、実際の厚さ(mm)であっても良く、その他をあらわすものであっても良いが、本実施形態では実際の厚さと等しい。また、図7で256階調に階調処理する際に、図4の厚さ方向の0を256階調の0とし、厚さ方向の30を256階調の255とすることも可能であるが、本実施形態では、第1ベルト部材B1の上端部の位置(本実施形態では略10.5の位置)に対して±2.5mmの範囲(帯状部材の厚さTに対して±T/3以上±T以下の範囲が好ましい)を256階調階調処理している。尚、前記第1ベルト部材B1の上端部の位置(例えば10.5)は、タイヤ種類毎且つ帯状部材の種類毎に記憶装置71に格納されている。 Next, inspection data is created by arranging the two-dimensional contour data in the length direction of the belt-like member in the order of imaging (S9). In the present embodiment, for example, as shown in FIG. 6, after each two-dimensional contour data is arranged in the length direction of the band-shaped member in the imaging order, each thickness of the arranged two-dimensional contour data is shown, for example, as shown in FIG. 7. The inspection data is created by subjecting the vertical data to luminance gradation processing, for example, to 256 gradations based on a predetermined color tone standard. Here, the numerical value of the data in the direction of the thickness of the belt-shaped member in FIGS. 4 and 6 may be the actual thickness (mm) or may represent the other. Equal to thickness. Further, when gradation processing is performed with 256 gradations in FIG. 7, it is possible to set 0 in the thickness direction in FIG. 4 to 0 in 256 gradations and 30 in the thickness direction to 255 in 256 gradations. However, in this embodiment, a range of ± 2.5 mm (± T with respect to the thickness T of the belt-like member) with respect to the position of the upper end portion of the first belt member B1 (position of approximately 10.5 in this embodiment). / 3 or more ± T is preferably in a range of about) to 256 gradations are gradation processing. The position (for example, 10.5) of the upper end portion of the first belt member B1 is stored in the storage device 71 for each tire type and each belt-like member type.

ステップS9による検査用データの作成が終了すると、図7のように階調処理された各二次元輪郭データを撮像順に並べ、図8のように表示装置72に表示させる(S10)。図8において、横方向は帯状部材の長さ方向(成形ドラムの回転方向)であり、縦方向は帯状部材の幅方向である。 When the creation of inspection data in step S9 is completed, the two-dimensional contour data subjected to gradation processing as shown in FIG. 7 are arranged in the order of imaging and displayed on the display device 72 as shown in FIG. 8 (S10). In FIG. 8, the horizontal direction is the length direction of the strip member (the rotating direction of the forming drum), and the vertical direction is the width direction of the strip member.

続いて、帯状部材(第1ベルト部材B1)の厚さ方向の振れ量の判定(S11)、帯状部材の有無の判定(S12)、帯状部材の幅方向への振れ量の判定(S13)、帯状部材の幅方向への蛇行量の判定(S14)、帯状部材の長さ方向端部同士のスプライス量の判定(S15)をスタートさせる。尚、ステップS11〜S15の判定は帯状部材の種類毎に実施の有無を設定することができ、例えば、各ベルト部材B1,B2の場合は、ステップS11、ステップS12、ステップS13及びステップS15の判定を行い、トレッド部材の場合は、ステップS11、ステップS12、ステップS14及びステップS15の判定を行い、カーカス部材の場合はステップS11、ステップS12、ステップS13及びステップS15の判定を行うように設定する。 Subsequently, determination of the amount of deflection in the thickness direction of the strip-shaped member (first belt member B1) (S11), determination of the presence or absence of the strip-shaped member (S12), determination of the amount of deflection of the strip-shaped member in the width direction (S13), Determination of the amount of meandering in the width direction of the band-shaped member (S14) and determination of the amount of splice between the lengthwise ends of the band-shaped member (S15) are started. In addition, the determination of step S11-S15 can set the presence or absence of implementation for every kind of strip | belt-shaped member, for example, determination of step S11, step S12, step S13, and step S15 in the case of each belt member B1, B2. In the case of a tread member, the determinations of Step S11, Step S12, Step S14 and Step S15 are performed, and in the case of a carcass member, the determinations of Step S11, Step S12, Step S13 and Step S15 are performed.

また、本実施形態では、成形ドラム1に帯状部材が巻付けられる度に前記ステップS1からの処理が行われるようになっている。このため、全ての帯状部材の外観形状の検査が行われることになり、タイヤ特性の向上を図る上で極めて有利である。   Further, in this embodiment, every time the belt-like member is wound around the forming drum 1, the processing from the step S1 is performed. For this reason, inspection of the external shape of all the strip-shaped members is performed, which is extremely advantageous in improving tire characteristics.

続いて、帯状部材の厚さ方向の振れ量の判定を行う場合の制御装置70の動作を図9のフローチャートを参照しながら説明する。   Next, the operation of the control device 70 when determining the amount of deflection in the thickness direction of the belt-like member will be described with reference to the flowchart of FIG.

先ず、前記ステップS9によって作成された検査用データ(256階調に輝度階調処理された画像データ)において、図8に示すように、一方の検出装置10によって検出された二次元輪郭データでは、帯状部材の幅方向所定位置P1(例えば40mmの位置)において、他方の検出装置10によって検出された二次元輪郭データでは、帯状部材の幅方向所定位置P2(例えば20mmの位置)において、輝度データ(帯状部材の厚さ方向のデータ)を帯状部材の長さ方向の連続する所定範囲(例えば成形ドラム回転方向の360°の範囲)で抽出する(S101)。抽出されたデータは例えば図10に示すようなデータとなり、このデータを特徴データとして扱う。 First, in the inspection data created in step S9 (image data subjected to luminance gradation processing to 256 gradations), as shown in FIG. 8, in the two-dimensional contour data detected by one detection device 10, In the two-dimensional contour data detected by the other detection device 10 at the predetermined position P1 in the width direction of the strip member (for example, a position of 40 mm), the luminance data (at the predetermined position P2 in the width direction of the strip member at the position of 20 mm, for example) The data in the thickness direction of the belt-shaped member) is extracted in a predetermined continuous range in the length direction of the belt-shaped member (for example, a range of 360 ° in the rotation direction of the forming drum) (S101). The extracted data is, for example, data as shown in FIG. 10, and this data is handled as feature data.

続いて、図10に示すような抽出された特徴データにおいて、輝度の最大値と最小値を求め(S102)、輝度の最大値と最小値との差を、前記ステップS9の逆を行うことにより実際の厚さ単位(mm)に変換し(S103)、ステップS103での変換後の値と所定の閾値とを比較し(S104)、変換後の値が所定の閾値以下である場合は正常と判定し(S105)、変換後の値が所定の閾値を超える場合は異常と判断し(S106)、異常の場合は例えば表示装置72によって所定の表示を行う(S107)。この場合、ステップS103で求めた値が帯状部材の厚さ方向の振れ量となる。尚、本実施形態では、ステップS103で求めた値と所定の閾値とを比較したものを示したが、輝度の最大値と最小値との差を閾値と比較することも可能である。   Subsequently, in the extracted feature data as shown in FIG. 10, the maximum value and the minimum value of the luminance are obtained (S102), and the difference between the maximum value and the minimum value of the luminance is performed by reversing the step S9. The actual thickness unit (mm) is converted (S103), the value after the conversion in step S103 is compared with a predetermined threshold value (S104), and if the converted value is equal to or less than the predetermined threshold value, it is normal. A determination is made (S105), and if the converted value exceeds a predetermined threshold value, it is determined that there is an abnormality (S106), and if it is abnormal, for example, a predetermined display is performed by the display device 72 (S107). In this case, the value obtained in step S103 is the amount of deflection in the thickness direction of the belt-shaped member. In the present embodiment, the value obtained in step S103 is compared with the predetermined threshold value. However, the difference between the maximum value and the minimum value of the luminance can be compared with the threshold value.

尚、図11に示すように、図10の全ての輝度データを実際の厚さ単位(mm)に変換し、特徴データの全体を帯状部材の厚さ方向の振れ量として扱うことも可能である。この場合、帯状部材の厚さ方向の振れ量が帯状部材の長さ方向に亘ってどの様に変化するかを特徴データによって容易且つ確実に把握することができるので、帯状部材の外観形状が帯状部材の長さ方向にどの様に変化しているかを知る上で極めて有効である。また、帯状部材の振れ量や、振れ量が帯状部材の長さ方向(成形ドラム周方向)にどの様に変化しているかは、タイヤ特性のRVF等に影響を与える。   As shown in FIG. 11, it is also possible to convert all the luminance data in FIG. 10 into actual thickness units (mm) and handle the entire feature data as the amount of deflection in the thickness direction of the belt-shaped member. . In this case, it is possible to easily and reliably grasp how the amount of deflection in the thickness direction of the band-shaped member changes over the length direction of the band-shaped member. This is extremely effective in knowing how the length of the member changes. Further, the amount of deflection of the belt-shaped member and how the amount of deflection changes in the length direction of the belt-shaped member (the circumferential direction of the forming drum) affects the RVF of the tire characteristics.

続いて、帯状部材の有無の判定を行う場合の制御装置70の動作を図12のフローチャートを参照しながら説明する。   Next, the operation of the control device 70 when determining the presence or absence of a belt-like member will be described with reference to the flowchart of FIG.

先ず、前記ステップS9によって作成された検査用データ(256階調に輝度階調処理された画像データ)において、図8に示すように、一方の検出装置10によって検出された二次元輪郭データでは、帯状部材の幅方向所定位置P1(例えば40mmの位置)において、他方の検出装置10によって検出された二次元輪郭データでは、帯状部材の幅方向所定位置P2(例えば20mmの位置)において、輝度データ(帯状部材の厚さ方向のデータ)を帯状部材の長さ方向の連続する所定範囲(例えば成形ドラム回転方向の360°の範囲)で抽出する(S111)。抽出されたデータは例えば図10に示すようなデータとなり、このデータを特徴データとして扱う。 First, in the inspection data created in step S9 (image data subjected to luminance gradation processing to 256 gradations), as shown in FIG. 8, in the two-dimensional contour data detected by one detection device 10, In the two-dimensional contour data detected by the other detection device 10 at the predetermined position P1 in the width direction of the strip member (for example, a position of 40 mm), the luminance data (at the predetermined position P2 in the width direction of the strip member at the position of 20 mm, for example) The data in the thickness direction of the belt-shaped member) is extracted in a predetermined range (for example, a range of 360 ° in the rotation direction of the forming drum) in the length direction of the belt-shaped member (S111). The extracted data is, for example, data as shown in FIG. 10, and this data is handled as feature data.

続いて、図10に示すような抽出された特徴データにおいて、輝度の平均値を求め(S112)、ステップS112で求めた平均値を、前記ステップS9の逆を行うことにより実際の厚さ単位(mm)に変換し(S113)、ステップS113での変換後の値と所定の閾値とを比較し(S114)、変換後の値が所定の閾値以上である場合は正常と判定し(S115)、変換後の値が所定の閾値未満の場合は異常と判断し(S116)、異常の場合は例えば表示装置72によって所定の表示を行う(S117)。これにより、帯状部材の巻付け忘れを特徴データによって容易且つ確実に検知することができる。   Subsequently, in the extracted feature data as shown in FIG. 10, an average value of luminance is obtained (S112), and the average value obtained in step S112 is converted into an actual thickness unit ( mm) (S113), the value after the conversion in step S113 is compared with a predetermined threshold (S114), and if the value after the conversion is equal to or greater than the predetermined threshold, it is determined as normal (S115). If the converted value is less than the predetermined threshold value, it is determined that there is an abnormality (S116). If the value is abnormal, for example, the display device 72 performs a predetermined display (S117). Thereby, it is possible to easily and reliably detect forgetting to wind the belt-like member from the feature data.

続いて、帯状部材の幅方向への振れ量の判定を行う場合の制御装置70の動作を図13のフローチャートを参照しながら説明する。 Next, the operation of the control device 70 when determining the amount of deflection in the width direction of the belt-like member will be described with reference to the flowchart of FIG.

先ず、前記ステップS9によって作成された検査用データ(256階調に輝度階調処理された画像データ)、例えば図14に示すような検査用データにおいて、PrewittフィルタやSobelフィルタ等を用いて周知のエッジ強調処理を行い、または、所定の輝度以上(例えば輝度25以上)の範囲を抽出することにより、図15に示すように、検査用データ上で帯状部材があらわれている領域ARを抽出する(S121)。この時、帯状部材以外の領域AR1もノイズとして抽出される可能性があるので、領域を一定程度小さくする領域縮小処理を行い、または、所定の面積以下の領域を削除する処理を行うことにより、図16に示すように、帯状部材の領域AR以外の領域AR1を削除する(S122)。また、図16のAR2に示すように、帯状部材の長さ方向端部同士のスプライス部において、帯状部材の幅方向端部の一部が鋭角状になっている場合や、AR3に示すように、帯状部材の領域内のデータが欠けている場合があるので、領域を一定程度大きくする領域拡大処理を行い、または、領域AR内の各ピクセルの大きさをそれぞれ一定程度大きくする領域拡大処理を行うことにより、図17に示すように、鋭角状の部分やデータが欠けている部分を削除する(S123)。 First, in the inspection data (image data subjected to the luminance gradation processing to 256 gradations) created in step S9, for example, inspection data as shown in FIG. 14, it is well known by using a Prewitt filter, a Sobel filter, or the like. By performing edge emphasis processing or extracting a range of a predetermined luminance or higher (for example, luminance of 25 or higher), as shown in FIG. 15, an area AR where the band-like member appears on the inspection data is extracted (see FIG. 15). S121). At this time, since there is a possibility that the area AR1 other than the belt-shaped member may be extracted as noise, by performing an area reduction process for reducing the area to a certain extent, or by performing a process for deleting an area having a predetermined area or less, As shown in FIG. 16, the area AR1 other than the area AR of the belt-like member is deleted (S122). In addition, as shown by AR2 in FIG. 16, in the splice portion between the longitudinal ends of the belt-like member, when a part of the widthwise end of the belt-like member is acute, or as shown by AR3 Since the data in the area of the belt-shaped member may be missing, the area enlargement process for enlarging the area to a certain extent is performed, or the area enlargement process for enlarging the size of each pixel in the area AR by a certain extent. By doing so, as shown in FIG. 17, an acute angle portion or a portion lacking data is deleted (S123).

続いて、図18に示すように、帯状部材の領域ARから境界線ALのみを抽出する(S124)。ここで、境界線ALは帯状部材の幅方向端部位置をあらわす。また、成形ドラム1の各回転方向位置で帯状部材の半幅を求める(S125)。帯状部材の半幅は、図18の位置Mが成形ドラム1の軸方向中央から前記所定距離LDだけ離れた位置であることから、計算で求めることが可能である。求められた帯状部材の幅は例えば図19のようなデータとなり、このデータを特徴データとして扱う。   Then, as shown in FIG. 18, only the boundary line AL is extracted from the area AR of the strip-shaped member (S124). Here, the boundary line AL represents the position in the width direction end of the belt-shaped member. Further, the half width of the belt-like member is obtained at each rotational position of the forming drum 1 (S125). The half width of the belt-like member can be obtained by calculation because the position M in FIG. 18 is a position away from the center in the axial direction of the forming drum 1 by the predetermined distance LD. The obtained width of the belt-like member is, for example, data as shown in FIG. 19, and this data is handled as feature data.

続いて、各検出装置10について求められた成形ドラム1の各回転方向位置のそれぞれで半幅を加算することにより、成形ドラム1の各回転方向位置における帯状部材の全幅を求める(S126)。   Subsequently, the full width of the belt-like member at each rotational position of the forming drum 1 is obtained by adding half widths at each rotational position of the forming drum 1 obtained for each detection device 10 (S126).

続いて、図19に示すような抽出された特徴データにおいて、帯状部材の全幅の最大値と最小値との差を求め(S127)、ステップS127で求めた値と所定の閾値とを比較し(S128)、閾値以下である場合は正常と判定し(S129)、閾値を超える場合は異常と判断し(S130)、異常の場合は例えば表示装置72によって所定の表示を行う(S131)。この場合、ステップS127で求めた値が帯状部材の幅方向への振れ量となる。 Subsequently, in the extracted feature data as shown in FIG. 19, the difference between the maximum value and the minimum value of the full width of the belt-like member is obtained (S127), and the value obtained in step S127 is compared with a predetermined threshold value ( S128), if it is equal to or less than the threshold value, it is determined as normal (S129), if it exceeds the threshold value, it is determined as abnormal (S130), and if it is abnormal, for example, a predetermined display is performed by the display device 72 (S131). In this case, the value obtained in step S127 is the amount of deflection in the width direction of the belt-shaped member.

尚、図19に示されるような特徴データの全体を帯状部材の幅方向への振れ量として扱うことも可能であり、また、ステップS126で求めたように、成形ドラム1の各回転方向位置でそれぞれ求めた帯状部材の全幅を帯状部材の幅方向への振れ量として扱うことも可能であり、これらの場合、帯状部材の幅方向への振れ量が帯状部材の長さ方向に亘ってどの様に変化するかを特徴データによって容易且つ確実に把握することができるので、帯状部材の外観形状が帯状部材の長さ方向にどの様に変化しているかを知る上で極めて有効である。また、ステップS127で求められた値や、帯状部材の幅方向への振れ量が帯状部材の長さ方向(成形ドラム周方向)にどの様に変化しているかは、タイヤ特性のLFD等に影響を与える。 Note that it is possible to treat the entire feature data as shown in FIG. 19 as the amount of deflection in the width direction of the belt-like member, and at each rotational direction position of the forming drum 1 as determined in step S126. It is also possible to treat the total width of the obtained band-shaped member as the amount of deflection in the width direction of the band-shaped member. In these cases, how the amount of deflection in the width direction of the band-shaped member extends over the length direction of the band-shaped member. Since it can be easily and reliably grasped by the feature data, it is extremely effective in knowing how the appearance shape of the belt-like member changes in the length direction of the belt-like member. Further, the value obtained in step S127 and how the amount of runout in the width direction of the belt-shaped member changes in the length direction of the belt-shaped member (the circumferential direction of the forming drum) affects the LFD of the tire characteristics. give.

続いて、帯状部材の幅方向への蛇行量の判定を行う場合の制御装置70の動作を図20のフローチャートを参照しながら説明する。尚、帯状部材の幅方向への蛇行量の判定は、例えばトレッド部材等の帯状部材について行われ、この判定が行われる帯状部材の厚さ方向一方の面の幅方向所定位置には、帯状部材の長さ方向に亘って延びる溝GRが設けられている(図21参照)。また、この溝GRは、該帯状部材を押出成形する際の口金に設けられた突起によって成形される。また、口金によって帯状部材の厚さ方向一方の面に溝GRが形成されると、溝GRの幅方向両側が帯状部材の厚さ方向一方の面から厚さ方向に少し盛り上がり、帯状部材の長さ方向に亘って延びる幅方向一対の凸状部CVが成形される。 Next, the operation of the control device 70 when determining the amount of meandering in the width direction of the belt-like member will be described with reference to the flowchart of FIG. The determination of the amount of meandering in the width direction of the band-shaped member is performed on the band-shaped member such as a tread member, and the band-shaped member is located at a predetermined position in the width direction of one surface of the band-shaped member where the determination is performed. A groove GR extending in the length direction is provided (see FIG. 21). Further, the groove GR is formed by a protrusion provided on a base when the strip-like member is extruded. Further, when the groove GR is formed on one surface in the thickness direction of the belt-shaped member by the base, both sides in the width direction of the groove GR are slightly raised in the thickness direction from one surface in the thickness direction of the belt-shaped member, and the length of the belt-shaped member is increased. A pair of convex portions CV extending in the width direction is formed.

この帯状部材の幅方向への蛇行量の判定を行う場合は、先ず、前記ステップS2〜ステップS6で、各検出装置10のうち一方を用いて、帯状部材の厚さ方向一方の面の溝GRの位置の二次元輪郭データを検出するようにする。 When determining the amount of meandering in the width direction of the strip-shaped member, first, in one of the detection devices 10 in steps S2 to S6, the groove GR on one surface in the thickness direction of the strip-shaped member is used. The two-dimensional contour data at the position of is detected.

続いて、帯状部材の幅方向への蛇行量の判定が開始されると、先ず、前記ステップS9によって作成された検査用データ(256階調に輝度階調処理された画像データ)、例えば図22に示すような検査用データにおいて、動的二値化処理を行う(S141)。動的二値化処理は、例えば、成形ドラム回転方向のそれぞれの位置で帯状部材厚さ方向データの平均値を求めるとともに、検査用データ上の各帯状部材の厚さデータと前記平均値との差を求めることにより行う。これにより、帯状部材の厚さ方向一方の面に発生している凹凸が前記平均値との差となってあらわれる。 Subsequently, when the determination of the amount of meandering in the width direction of the belt-shaped member is started, first, inspection data (image data subjected to luminance gradation processing to 256 gradations) created in step S9, for example, FIG. The dynamic binarization process is performed on the inspection data as shown in (S141). The dynamic binarization process, for example, obtains an average value of the strip member thickness direction data at each position in the forming drum rotation direction, and calculates the thickness data of each strip member on the inspection data and the average value. Do this by finding the difference. Thereby, the unevenness | corrugation which generate | occur | produced in the thickness direction one surface of a strip | belt-shaped member appears as a difference with the said average value.

続いて、検査用データ上の各帯状部材の厚さデータについて求めた各平均値の差のデータのうち所定の大きさ以上の範囲を抽出することにより、図23に示すように、検査用データ上で各凸状部CVの領域ARを抽出する(S142)。この場合、各凸状部CVの領域AR以外の領域AR1もノイズとして抽出される可能性があり、また、各凸状部CVの領域ARが成形ドラム1の回転方向に分断される可能性もあるので、先ず、領域を一定程度成形ドラム1の回転方向に大きくする領域拡大処理を行い(S143)、図24に示すように、各凸状部CVの領域ARを成形ドラム1の回転方向に連続させ、また、領域を一定程度小さくする領域縮小処理を行い、または、所定の面積以下の領域を削除する処理を行うことにより、図25に示すように、各凸状部CVの領域AR以外の領域AR1を削除する(S144)。   Subsequently, by extracting a range of a predetermined size or more from the difference data of the average values obtained for the thickness data of each strip member on the inspection data, as shown in FIG. 23, the inspection data Above, the area | region AR of each convex-shaped part CV is extracted (S142). In this case, the region AR1 other than the region AR of each convex portion CV may be extracted as noise, and the region AR of each convex portion CV may be divided in the rotation direction of the molding drum 1. Therefore, first, a region enlargement process is performed to enlarge the region to a certain extent in the rotation direction of the molding drum 1 (S143), and the region AR of each convex portion CV is moved in the rotation direction of the molding drum 1 as shown in FIG. As shown in FIG. 25, by performing a region reduction process that continuously reduces the region to a certain extent or a process that deletes a region having a predetermined area or less, the region other than the region AR of each convex portion CV Area AR1 is deleted (S144).

次に、図26に示すように、領域AR以外の領域RARを抽出するとともに(S145)、図27に示すように、領域RARのうち所定の面積以下の領域RARを抽出するとともにその領域を帯状部材の幅方向に縮小する縮小処理を行い、縮小線ALを抽出する(S146)。このように求められた縮小線ALの帯状部材幅方向の位置データ(図27)を特徴データとして扱う。   Next, as shown in FIG. 26, a region RAR other than the region AR is extracted (S145), and as shown in FIG. 27, a region RAR having a predetermined area or less is extracted and the region is strip-shaped. A reduction process for reducing in the width direction of the member is performed, and a reduction line AL is extracted (S146). The position data (FIG. 27) of the reduction line AL obtained in this way in the width direction of the strip-shaped member is handled as feature data.

続いて、図27に示すような抽出された特徴データにおいて、帯状部材幅方向の最大値と最小値との差を求め(S147)、ステップS147で求めた値と所定の閾値とを比較し(S148)、閾値以下である場合は正常と判定し(S149)、閾値を超える場合は異常と判断し(S150)、異常の場合は例えば表示装置72によって所定の表示を行う(S151)。この場合、ステップS147で求めた値が帯状部材の幅方向への蛇行量となる。   Subsequently, in the extracted feature data as shown in FIG. 27, a difference between the maximum value and the minimum value in the band member width direction is obtained (S147), and the value obtained in step S147 is compared with a predetermined threshold value ( S148), if it is equal to or less than the threshold, it is determined to be normal (S149), if it exceeds the threshold, it is determined to be abnormal (S150), and if it is abnormal, for example, the display device 72 performs a predetermined display (S151). In this case, the value obtained in step S147 is the amount of meandering in the width direction of the belt-shaped member.

尚、図27に示されるような特徴データの全体を帯状部材の幅方向への蛇行量として扱うことも可能であり、この場合、帯状部材の幅方向への蛇行量が帯状部材の長さ方向に亘ってどの様に変化するかを特徴データによって容易且つ確実に把握することができるので、帯状部材の外観形状が帯状部材の長さ方向にどの様に変化しているかを知る上で極めて有効である。また、ステップS147で求められた値や、帯状部材の幅方向への蛇行量が帯状部材の長さ方向(成形ドラム周方向)にどの様に変化しているかは、タイヤ特性のLFD等に影響を与える。   It is also possible to treat the entire feature data as shown in FIG. 27 as the meandering amount in the width direction of the belt-like member. In this case, the meandering amount in the width direction of the belt-like member is the length direction of the belt-like member. It is very effective in knowing how the external shape of the belt-like member changes in the length direction of the belt-like member because it can be easily and reliably grasped by the feature data. It is. Further, the value obtained in step S147 and how the amount of meandering in the width direction of the belt-like member changes in the length direction of the belt-like member (the circumferential direction of the forming drum) affects the LFD of the tire characteristics. give.

以上のように、本実施形態によれば、検査用データから抽出された前記各特徴データは帯状部材の厚さや、帯状部材の幅方向端部位置等が、帯状部材の長さ方向にどの様に変化するかを示すことになるので、帯状部材の外観形状が帯状部材の長さ方向にどの様に変化しているかを知ることができ、タイヤ特性の向上を図る上で極めて有利である。   As described above, according to the present embodiment, the feature data extracted from the inspection data indicates that the thickness of the strip member, the width direction end position of the strip member, and the like in the length direction of the strip member. Therefore, it is possible to know how the appearance of the belt-like member changes in the length direction of the belt-like member, which is extremely advantageous for improving tire characteristics.

続いて、帯状部材の長さ方向端部同士のスプライス量の判定を行う場合の制御装置70の動作を図28のフローチャートを参照しながら説明する。尚、帯状部材の長さ方向端部同士のスプライス量の判定は例えばカーカス部材等の帯状部材について行われる。   Next, the operation of the control device 70 when determining the splice amount between the lengthwise ends of the belt-like member will be described with reference to the flowchart of FIG. Note that the determination of the amount of splice between the longitudinal ends of the belt-shaped member is performed on the belt-shaped member such as a carcass member.

この帯状部材の長さ方向端部同士のスプライス量の判定を行う場合は、先ず、前記ステップS9によって作成された検査用データ(256階調に輝度階調処理された画像データ)、例えば図29に示すような検査用データにおいて、帯状部材の幅方向所定位置P3(例えば40mmの位置)で、帯状部材の厚さ方向のデータを帯状部材の長さ方向の連続する所定範囲(例えば成形ドラム回転方向の360°の範囲)で平均することにより、輝度データの平均値を求める(S161)。尚、図29は成形ドラム回転方向の20°の範囲を表示したものである。また、ステップ161で求めた平均値に対して例えば±2mmの範囲(帯状部材の厚さTに対して±T/3以上±T以下の範囲が好ましい)を256階調に階調処理する(S162)。これにより、他の部分に比べて厚くなっているスプライス部とその他の部分との輝度の差が大きくなる。 When determining the amount of splice between the lengthwise ends of the band-shaped member, first, inspection data (image data subjected to luminance gradation processing to 256 gradations) created in step S9, for example, FIG. In the data for inspection as shown in FIG. 4, the data in the thickness direction of the band-shaped member is converted into a predetermined range in the length direction of the band-shaped member (for example, rotation of the forming drum) at the predetermined position P3 (for example, 40 mm) in the width direction of the band-shaped member. The average value of the luminance data is obtained by averaging in a 360 ° range) (S161). FIG. 29 shows the range of 20 ° in the direction of rotation of the forming drum. Further, (preferably in the range of less than ± T / 3 or more ± T the thickness T of the belt-shaped member) range, for example ± 2 mm with respect to the average value calculated in step 161 to gradation processing in 256 gradations ( S162). As a result, the difference in luminance between the splice portion that is thicker than the other portions and the other portions is increased.

続いて、PrewittフィルタやSobelフィルタ等を用いて周知のエッジ強調処理を行い、または、所定の輝度以上(例えば輝度25以上)の範囲を抽出することにより、図30に示すように、検査用データ上でスプライス部の領域ARを抽出する(S163)。この時、スプライス部以外の領域AR1もノイズとして抽出される可能性があるので、領域を一定程度小さくする領域縮小処理を行い、または、所定の面積以下の領域を削除する処理を行うことにより、図31に示すように、帯状部材の領域AR以外の領域AR1を削除する(S164)。   Subsequently, by performing well-known edge emphasis processing using a Prewitt filter, a Sobel filter, or the like, or by extracting a range of a predetermined luminance or higher (for example, luminance of 25 or higher), as shown in FIG. The splice region AR is extracted (S163). At this time, since the area AR1 other than the splice part may be extracted as noise, the area reduction process for reducing the area to a certain extent or the process for deleting the area of a predetermined area or less is performed. As shown in FIG. 31, the area AR1 other than the area AR of the belt-shaped member is deleted (S164).

続いて、帯状部材の幅方向所定位置(例えば前記P3の位置)において領域ARの帯状部材長さ方向の画素数を求め(S165)、帯状部材長さ方向の画素数、成形ドラム1の回転方向の角度、及び成形ドラム1の半径から、前記幅方向所定位置における領域ARの帯状部材長さ方向の寸法を求め(S166)、ステップS166で求めた値と所定の閾値とを比較し(S167)、閾値以下である場合は正常と判定し(S168)、閾値を超える場合は異常と判断し(S169)、異常の場合は例えば表示装置72によって所定の表示を行う(S170)。この場合、ステップS166で求めた値が帯状部材の長さ方向端部同士のスプライス量となる。   Subsequently, the number of pixels in the band member length direction of the region AR is obtained at a predetermined position in the width direction of the band member (for example, the position of P3) (S165), the number of pixels in the band member length direction, and the rotation direction of the forming drum 1 From the angle and the radius of the forming drum 1, the dimension of the region AR in the longitudinal direction of the region AR at the predetermined position in the width direction is obtained (S166), and the value obtained in step S166 is compared with a predetermined threshold value (S167). If it is equal to or less than the threshold value, it is determined as normal (S168), and if it exceeds the threshold value, it is determined as abnormal (S169). In this case, the value obtained in step S166 is the splice amount between the end portions in the length direction of the band-shaped member.

このように、本実施形態によれば、スプライス量を容易且つ確実に確認することができ、タイヤ特性の向上を図る上で極めて有利である。即ち、従来はスプライス量を自動的に容易且つ確実に確認する手段が無かったので、作業者が目視等によって確認しており、確認に手間がかかるとともに、確認精度の向上を図ることが難しかったが、本実施形態によれば、スプライス量の確認に手間がかからず、また、確認精度の向上を図ることも可能となる。   Thus, according to the present embodiment, the amount of splice can be easily and reliably confirmed, which is extremely advantageous in improving tire characteristics. That is, in the past, there was no means for automatically and reliably confirming the amount of splice, so the operator confirmed it visually, and it took time to confirm and it was difficult to improve the accuracy of confirmation. However, according to the present embodiment, it takes less time to confirm the splice amount, and it is possible to improve the confirmation accuracy.

尚、本実施形態では、成形ドラム1に巻付けられた帯状部材において、二次元輪郭データを帯状部材の長さ方向に連続して検出したものを示した。これに対し、例えば、タイヤを成形するための帯状部材が成形ドラム1に巻付けられる前にプレート上に載置されている段階で、その帯状部材から二次元輪郭データを帯状部材の長さ方向に連続して検出し、その検出結果に対して前述と同様の処理を行うことも可能である。   In the present embodiment, the two-dimensional contour data continuously detected in the length direction of the belt-like member in the belt-like member wound around the forming drum 1 is shown. On the other hand, for example, at the stage where the belt-shaped member for molding the tire is placed on the plate before being wound around the molding drum 1, the two-dimensional contour data is obtained from the belt-shaped member in the length direction of the belt-shaped member. It is also possible to detect continuously and perform the same processing as described above on the detection result.

また、本実施形態では、各検出装置10を二次元変位計から構成したものを示したが、二次元変位計の代わりに、スリット光を照射する光源と、スリット光が帯状部材に照射されて成る照射線を撮像する撮像装置とを設け、周知の光切断法によって帯状部材から二次元輪郭データを検出することも可能である。   In the present embodiment, each detection device 10 is configured by a two-dimensional displacement meter. However, instead of the two-dimensional displacement meter, a light source that irradiates slit light and slit light is irradiated to the belt-shaped member. It is also possible to provide an image pickup device for picking up the irradiation line and to detect two-dimensional contour data from the belt-like member by a known light cutting method.

1…成形ドラム、10…二次元変位計、20…センサブラケット、30…第1ベース、30a…ボールネジ、30b…ベース用モータ、40…第2ベース、41…シリンダ、50…ロータリーエンコーダ、51…カウンタ、60…原点検出装置、70…制御装置、71…記憶装置、72…表示装置、73…入力装置、B1…第1ベルト部材、B2…第2ベルト部材。   DESCRIPTION OF SYMBOLS 1 ... Molding drum, 10 ... Two-dimensional displacement meter, 20 ... Sensor bracket, 30 ... 1st base, 30a ... Ball screw, 30b ... Motor for base, 40 ... 2nd base, 41 ... Cylinder, 50 ... Rotary encoder, 51 ... Counter, 60 ... Origin detecting device, 70 ... Control device, 71 ... Storage device, 72 ... Display device, 73 ... Input device, B1 ... First belt member, B2 ... Second belt member.

Claims (13)

帯状部材の外観形状を検査する帯状部材の外観形状検査方法において、
帯状部材の外観形状の輪郭を帯状部材の幅方向複数位置における帯状部材の厚さ方向の二次元輪郭データとして抽出可能な抽出手段を用い、帯状部材の外観形状の二次元輪郭データを帯状部材の長さ方向の複数個所で抽出する検出工程と、
検出工程によって検出された二次元輪郭データを帯状部材の長さ方向に並べた後、並べられた二次元輪郭データを所定の色調基準に基づいて階調処理し、階調処理された各厚さ方向のデータから成る画像データを検査用データとして作成する検査用データ作成工程と、
検査用データ作成工程で作成された検査用データから、各二次元輪郭データが示す帯状部材の外観形状の輪郭が帯状部材の長さ方向にどの様に変化するかを示す帯状部材の外観形状の特徴データを抽出する特徴データ抽出工程とを含む
ことを特徴とする帯状部材の外観形状検査方法。
In the appearance shape inspection method of the band-shaped member for inspecting the appearance shape of the band-shaped member,
Using extraction means that can extract the contour of the outer shape of the belt-like member as two-dimensional contour data in the thickness direction of the belt-like member at a plurality of positions in the width direction of the belt-like member, the two-dimensional contour data of the outer shape of the belt-like member is A detection process for extracting at multiple points in the length direction;
After arranging the two-dimensional contour data detected by the detection process in the length direction of the belt-shaped member, the arranged two-dimensional contour data is subjected to gradation processing based on a predetermined color standard, and each gradation processed thickness Inspection data creation process for creating image data consisting of direction data as inspection data,
From the inspection data created in the inspection data creation process, the appearance of the strip member indicating how the contour of the strip member indicated by each two-dimensional contour data changes in the length direction of the strip member. And a feature data extraction step for extracting feature data.
前記検出工程を、厚さ方向一方の面の幅方向所定位置に長さ方向に延びる溝または凸部が形成された帯状部材の厚さ方向一方の面の二次元輪郭データを帯状部材の長さ方向の複数個所で抽出するように構成し、
前記特徴データ抽出工程を、前記検査用データ作成工程で作成された検査用データから帯状部材の溝または突部の幅方向位置を帯状部材の長さ方向に連続する所定範囲で抽出するとともに、該抽出したデータを前記特徴データとするように構成し、
特徴データに基づき、帯状部材の幅方向への蛇行量を求め、求めた蛇行量と所定の閾値とを比較する比較工程をさらに含む
ことを特徴とする請求項1に記載の帯状部材の外観形状検査方法。
In the detection step, the two-dimensional contour data of one surface in the thickness direction of the belt-shaped member formed with a groove or convex portion extending in the length direction at a predetermined position in the width direction on one surface in the thickness direction Configured to extract at multiple locations in the direction,
The feature data extraction step extracts the width direction position of the groove or protrusion of the strip member from the inspection data created in the inspection data creation step in a predetermined range continuous in the length direction of the strip member, Configure the extracted data as the feature data,
2. The external shape of the band-shaped member according to claim 1, further comprising a comparison step of obtaining a meandering amount in the width direction of the band-shaped member based on the feature data, and comparing the obtained meandering amount with a predetermined threshold value. Inspection method.
前記比較工程では、前記特徴データ抽出工程で抽出された複数の幅方向位置データの最大値と最小値の差を、帯状部材の幅方向への蛇行量として算出する
ことを特徴とする請求項2に記載の帯状部材の外観形状検査方法。
3. The comparison step, wherein a difference between a maximum value and a minimum value of a plurality of width direction position data extracted in the feature data extraction step is calculated as a meandering amount in the width direction of the belt-shaped member. The external shape inspection method of the strip | belt-shaped member of description.
前記特徴データ抽出工程を、前記検査用データ作成工程で作成された検査用データから帯状部材の幅方向の所定位置における帯状部材の厚さ方向のデータを帯状部材の長さ方向の連続する所定範囲で抽出するとともに、該抽出したデータを前記特徴データとするように構成し、
特徴データに基づき、帯状部材の厚さ方向への振れ量を求め、求めた振れ量と所定の閾値とを比較する比較工程をさらに含む
ことを特徴とする請求項1に記載の帯状部材の外観形状検査方法。
The feature data extracting step is a predetermined range in which the data in the thickness direction of the band-shaped member at a predetermined position in the width direction of the band-shaped member is continuously in the length direction of the band-shaped member And extracting the extracted data as the feature data,
The appearance of the band-shaped member according to claim 1, further comprising a comparison step of obtaining a deflection amount in the thickness direction of the strip-shaped member based on the feature data, and comparing the determined deflection amount with a predetermined threshold value. Shape inspection method.
前記比較工程では、前記特徴データ抽出工程で抽出された複数の厚み方向データの最大値と最小値の差を、帯状部材の厚み方向への振れ量として算出する
ことを特徴とする請求項に記載の帯状部材の外観形状検査方法。
Wherein the comparison step, the difference between the maximum value and the minimum value of a plurality of thickness direction data extracted by the feature data extraction step, the claim 4, characterized in that calculated as the shake amount in the thickness direction of the belt-shaped member A method of inspecting the appearance of the belt-shaped member as described.
特徴データの各厚さ方向のデータの平均値を所定の閾値と比較することにより帯状部材の有無を判定する判定工程を備えた
ことを特徴とする請求項4または5の何れかに記載の帯状部材の外観検査方法。
6. The strip according to claim 4, further comprising a determination step of determining the presence or absence of a strip member by comparing an average value of data in each thickness direction of the feature data with a predetermined threshold value. Member appearance inspection method.
前記特徴データ抽出工程によって抽出された特徴データに基づき、帯状部材の厚さ方向の振れ量及び/または帯状部材の幅方向への蛇行量を求め、求めた量と所定の閾値とを比較する比較工程をさらに含む
ことを特徴とする請求項1記載の帯状部材の外観形状検査方法。
Based on the feature data extracted by the feature data extraction step, the amount of deflection in the thickness direction of the strip member and / or the amount of meandering in the width direction of the strip member is obtained, and the comparison is performed by comparing the obtained amount with a predetermined threshold value. The method according to claim 1, further comprising a step.
帯状部材の外観形状を検査する帯状部材の外観形状検査装置において、
帯状部材の外観形状の輪郭を帯状部材の幅方向複数位置における帯状部材の厚さ方向の二次元輪郭データとして検出する検出手段と、
検出手段によって検出された二次元輪郭データを帯状部材の長さ方向に並べた後、並べられた二次元輪郭データを所定の色調基準に基づいて階調処理し、階調処理された各厚さ方向のデータから成る画像データを検査用データとして作成する検査用データ作成手段と、
検査用データ作成手段で作成された検査用データから、各二次元輪郭データが示す帯状部材の外観形状の輪郭が帯状部材の長さ方向にどの様に変化するかを示す帯状部材の外観形状の特徴データを抽出する特徴データ抽出手段とを備えた
ことを特徴とする帯状部材の外観形状検査装置。
In the appearance shape inspection device for the band-shaped member for inspecting the appearance shape of the band-shaped member,
Detecting means for detecting the outline of the outer shape of the belt-like member as two-dimensional contour data in the thickness direction of the belt-like member at a plurality of positions in the width direction of the belt-like member;
After arranging the two-dimensional contour data detected by the detecting means in the length direction of the belt-shaped member, the arranged two-dimensional contour data is subjected to gradation processing based on a predetermined color tone standard, and each gradation processed thickness Inspection data creation means for creating image data composed of direction data as inspection data;
From the inspection data created by the inspection data creation means, the appearance of the belt-shaped member indicating how the contour of the belt-shaped member indicated by each two-dimensional contour data changes in the length direction of the belt-shaped member. An apparatus for inspecting the appearance of a belt-like member, comprising: feature data extracting means for extracting feature data.
前記検出手段を、厚さ方向一方の面の幅方向所定位置に長さ方向に延びる溝または凸部が形成された帯状部材の厚さ方向一方の面の二次元輪郭データを帯状部材の長さ方向の複数個所で抽出するように構成し、
前記特徴データ抽出手段を、前記検査用データ作成手段で作成された検査用データから帯状部材の溝または突部の幅方向位置を帯状部材の長さ方向に連続する所定範囲で抽出するとともに、該抽出したデータを前記特徴データとするように構成し、
特徴データに基づき、帯状部材の幅方向への蛇行量を求め、求めた蛇行量と所定の閾値とを比較する比較手段をさらに含む
ことを特徴とする請求項に記載の帯状部材の外観形状検査装置。
The detection means uses the two-dimensional contour data of one surface in the thickness direction of the belt-shaped member formed with a groove or projection extending in the length direction at a predetermined position in the width direction on one surface in the thickness direction. Configured to extract at multiple locations in the direction,
The feature data extraction unit extracts the width direction position of the groove or the protrusion of the strip member from the inspection data created by the inspection data creation unit in a predetermined range continuous in the length direction of the strip member, Configure the extracted data as the feature data,
The external shape of the band-shaped member according to claim 8 , further comprising a comparison unit that obtains a meandering amount in the width direction of the band-shaped member based on the feature data and compares the obtained amount of meandering with a predetermined threshold value. Inspection device.
前記比較手段は、前記特徴データ抽出手段で抽出された複数の幅方向位置データの最大値と最小値の差を、帯状部材の幅方向への蛇行量として算出する
ことを特徴とする請求項に記載の帯状部材の外観形状検査装置。
Said comparing means according to claim 9, characterized in that to calculate the difference between the maximum value and the minimum value of a plurality of widthwise position data extracted by the feature data extraction unit, as a meandering amount in the width direction of the belt-shaped member An appearance shape inspection apparatus for a band-shaped member according to claim 1.
前記特徴データ抽出手段を、前記検査用データ作成手段で作成された検査用データから帯状部材の幅方向の所定位置における帯状部材の厚さ方向のデータを帯状部材の長さ方向の連続する所定範囲で抽出するとともに、該抽出したデータを前記特徴データとするように構成し、
特徴データに基づき、帯状部材の厚さ方向への振れ量を求め、求めた振れ量と所定の閾値とを比較する比較手段をさらに含む
ことを特徴とする請求項に記載の帯状部材の外観形状検査装置。
The feature data extracting means converts the data in the thickness direction of the belt-like member at a predetermined position in the width direction of the belt-like member from the inspection data created by the inspection data creating means into a predetermined range in the length direction of the belt-like member. And extracting the extracted data as the feature data,
The appearance of the band-shaped member according to claim 8 , further comprising a comparison unit that obtains the amount of deflection in the thickness direction of the band-shaped member based on the characteristic data and compares the calculated amount of deflection with a predetermined threshold value. Shape inspection device.
前記比較手段では、前記特徴データ抽出手段で抽出された複数の厚み方向データの最大値と最小値の差を、帯状部材の厚み方向への振れ量として算出する
ことを特徴とする請求項11に記載の帯状部材の外観形状検査方法。
In the comparison means, the difference between the maximum value and the minimum value of a plurality of thickness direction data extracted by the feature data extraction means, in claim 11, characterized in that calculated as the shake amount in the thickness direction of the belt-shaped member A method of inspecting the appearance of the belt-shaped member as described.
特徴データの各厚さ方向のデータの平均値を所定の閾値と比較することにより帯状部材の有無を判定する判定手段を備えた
ことを特徴とする請求項11または12の何れかに記載の帯状部材の外観検査装置。
The strip according to any one of claims 11 and 12 , further comprising determination means for determining the presence or absence of a strip member by comparing an average value of data in each thickness direction of the feature data with a predetermined threshold value. Appearance inspection device for members.
JP2010134879A 2010-06-14 2010-06-14 Appearance shape inspection direction of belt-shaped member and apparatus therefor Expired - Fee Related JP5574169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010134879A JP5574169B2 (en) 2010-06-14 2010-06-14 Appearance shape inspection direction of belt-shaped member and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134879A JP5574169B2 (en) 2010-06-14 2010-06-14 Appearance shape inspection direction of belt-shaped member and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2012002522A JP2012002522A (en) 2012-01-05
JP5574169B2 true JP5574169B2 (en) 2014-08-20

Family

ID=45534702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134879A Expired - Fee Related JP5574169B2 (en) 2010-06-14 2010-06-14 Appearance shape inspection direction of belt-shaped member and apparatus therefor

Country Status (1)

Country Link
JP (1) JP5574169B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159202B2 (en) * 2013-08-28 2017-07-05 住友ゴム工業株式会社 Belt ply inspection device and tire manufacturing method using the same
JP6433822B2 (en) * 2015-03-03 2018-12-05 東洋ゴム工業株式会社 The width direction edge part position detection method of a strip | belt-shaped member.
JP6433824B2 (en) * 2015-03-05 2018-12-05 東洋ゴム工業株式会社 Width direction end position detection method of strip-shaped member
JP6575229B2 (en) * 2015-08-25 2019-09-18 住友ゴム工業株式会社 Method for measuring shape of rubber laminate and method for producing pneumatic tire using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2992154B2 (en) * 1992-01-10 1999-12-20 富士電機株式会社 Appearance inspection device
JP2004354258A (en) * 2003-05-29 2004-12-16 Toyo Tire & Rubber Co Ltd Method for inspecting sheet member junction section for manufacturing pneumatic tire
JP2004351810A (en) * 2003-05-29 2004-12-16 Toyo Tire & Rubber Co Ltd Device and method for monitoring side edge position of belt-like sheet material
JP5273354B2 (en) * 2008-06-09 2013-08-28 横浜ゴム株式会社 Width direction end position measuring method and apparatus for belt-like member

Also Published As

Publication number Publication date
JP2012002522A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5726045B2 (en) Tire shape inspection method and tire shape inspection device
JP6789292B2 (en) How and equipment to inspect tires
JP5302701B2 (en) Tire shape inspection method, tire shape inspection device
JP5969906B2 (en) Measuring method and measuring device
JP5574169B2 (en) Appearance shape inspection direction of belt-shaped member and apparatus therefor
JP2011141260A (en) Device and method for inspecting tyre shape
JP5302702B2 (en) Tire shape inspection method, tire shape inspection device
JP5781481B2 (en) Tire shape inspection method and tire shape inspection device
EP2735433B1 (en) Bead filler testing device, program for bead filler testing, and bead filler testing method
JP5974787B2 (en) Edge defect detection method and edge defect detection apparatus for steel strip coil
EP2985566B1 (en) Data generation method and data generation apparatus
JP5273354B2 (en) Width direction end position measuring method and apparatus for belt-like member
JP5749525B2 (en) Tire size measuring method and tire size measuring device
EP3078961B1 (en) Tire inspection method and device therefor
US7614292B2 (en) Method and device for detecting defect in outer shape of tire side portion
WO2015083442A1 (en) Data processing method and data processing device
JP2014190825A (en) Data processing method of tire shape inspection device, data processing program of tire shape inspection device, and data processing device of tire shape inspection device
JP2014190805A (en) Data processing method of tire shape inspection device, data processing program of tire shape inspection device, and data processing device of tire shape inspection device
JP4204967B2 (en) Tire inspection device
JP6848284B2 (en) Spew identification method, bead part inspection method, and bead part inspection device
JP6891429B2 (en) Linear stripe pattern removal method, tire inner surface inspection method, and tire inner surface inspection device
JP2017211208A (en) Defect detection method for tire
KR102204905B1 (en) Filler connection part inspection method
WO2016084543A1 (en) Tire inspection device and tire inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R150 Certificate of patent or registration of utility model

Ref document number: 5574169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees