JP4204967B2 - Tire inspection device - Google Patents

Tire inspection device Download PDF

Info

Publication number
JP4204967B2
JP4204967B2 JP2003426269A JP2003426269A JP4204967B2 JP 4204967 B2 JP4204967 B2 JP 4204967B2 JP 2003426269 A JP2003426269 A JP 2003426269A JP 2003426269 A JP2003426269 A JP 2003426269A JP 4204967 B2 JP4204967 B2 JP 4204967B2
Authority
JP
Japan
Prior art keywords
peak
waveform
tire
radial position
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003426269A
Other languages
Japanese (ja)
Other versions
JP2005181253A (en
Inventor
孝広 後藤
大毅 國武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003426269A priority Critical patent/JP4204967B2/en
Publication of JP2005181253A publication Critical patent/JP2005181253A/en
Application granted granted Critical
Publication of JP4204967B2 publication Critical patent/JP4204967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤを装着した検査用リムを回転する手段と、トレッド外表面の半径方向位置を測定する位置センサとを具えたタイヤ検査装置に関し、この半径方向位置の周方向変化からトレッド表面の凹凸を検出するものに関する。   The present invention relates to a tire inspection apparatus comprising means for rotating an inspection rim mounted with a tire and a position sensor for measuring a radial position of a tread outer surface. The present invention relates to detecting irregularities.

タイヤを装着した検査用リムを回転するリム回転手段と、所定の位置に取付けられ、トレッド外表面の半径方向位置を測定する位置センサとを具えたタイヤ検査装置として、タイヤの回転下で前記位置センサから取り込まれた半径方向位置をもとに、その周方向変化の一次調和成分の振幅であるランナウトを測定するタイヤ検査装置が知られており(例えば、特許文献1参照。)、このタイヤ検査装置によれば、このランナウトを測定することによりランナウトの値が所定の範囲にない場合には不合格品として選別することができる。
特開平7−243947号公報
A tire inspection apparatus comprising: a rim rotating means for rotating an inspection rim on which a tire is mounted; and a position sensor mounted at a predetermined position and measuring a radial position of a tread outer surface. There is known a tire inspection apparatus that measures the runout that is the amplitude of the first harmonic component of the circumferential change based on the radial position taken from the sensor (see, for example, Patent Document 1). According to the apparatus, when the runout value is not within a predetermined range by measuring this runout, it can be selected as a rejected product.
JP 7-243947 A

ところで、タイヤに対してより高い品質保証が求められる昨今の情勢において、タイヤの局所的な凹凸を検出することが必要になってきており、例えば、タイヤ一本分に裁断されたトレッドを成型ドラム上で巻回してグリーンタイヤを成型した時に形成されるトレッド接合部において、その幅方向一部分が他の部分より厚かったり薄かったりする場合があり、このようなトレッド接合部における不均一は、このタイヤが加硫されても凹凸として残り応力集中による故障を招くおそれがあるので、人の感応によって凹凸の検査を行っているものの、人手による検査は能率が悪く、また、その信頼性の程度を測ることが難しく問題となっている。   By the way, in the recent situation where higher quality assurance is required for tires, it is necessary to detect local unevenness of the tire. For example, a tread cut into one tire is formed into a molding drum. In the tread joint formed when the green tire is formed by winding the upper part, a part of the width direction may be thicker or thinner than the other part. Even if vulcanized, there is a risk of failure due to residual stress concentration as unevenness, but inspection of unevenness is performed by human sensitivity, but manual inspection is inefficient and measures the degree of reliability It is difficult and problematic.

しかしながら、先に述べた、従来のタイヤ検査装置では、トレッド表面の半径方向位置の周方向変化からタイヤのランナウトを検出することができるものの、このような、トレッド表面の局所的な凹凸を検出することができず、前出の人手による凹凸検査の自動化に供することができなかった。   However, although the conventional tire inspection apparatus described above can detect the runout of the tire from the circumferential change in the radial position of the tread surface, it detects such local irregularities on the tread surface. It was not possible to automate the above-described inspection of irregularities manually.

本発明は、このような問題点に鑑みてなされたものであり、局所的な凹凸の異常を検出することのできるタイヤ検査装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a tire inspection apparatus capable of detecting local irregularities.

<1>本発明は、タイヤを装着した検査用リムを回転するリム回転手段と、所定の位置に取付けられ、トレッド外表面の半径方向位置を測定する位置センサとを具えたタイヤ検査装置において、
タイヤの回転下で前記位置センサから所定サンプリングタイムで前記半径方向位置データを取り込み、その半径方向位置の周方向変化から、トレッド表面の凹凸を検出する凹凸検出手段を具え
半径方向位置データを取り込む時点でのタイヤ回転角度を横軸に、取り込まれた半径方向位置データを縦軸にして、位置センサから取り込まれたデータをプロットしてできる波形を半径方向位置波形と呼び、この半径方向位置波形からその一次調和成分を差し引いた波形を差分波形と呼ぶとともに、この差分波形において、相前後する二つのデータの差となる変分に関し、正負一方の符号の変分の出現の後、他方の符号の変分が所定回数連続して現れ始める点をピーク開始点とし、ピーク開始点の出現の後、一方の符号の変分が所定回数連続して現れ始める点をピーク点とし、ピーク点の出現の後、他方の符号の変分が所定回数連続して現れ始める点をピーク終了点として、ピーク点を含むピーク開始点からピーク終了点までの領域をピーク部分と呼ぶとき、前記凹凸検出手段は、前記半径方向位置波形からその一次調和成分を抽出して前記差分波形を求め、この差分波形から、360度のタイヤ回転角度範囲にあるすべてのピーク部分を抽出してそれらの幅と高さとを求め、これらの幅および高さの両方が予め定められた所定範囲に含まれる場合、異常凹凸を検出した旨の信号を出力する処理を行うものとするタイヤ検査装置である。
<1> The present invention relates to a tire inspection apparatus comprising: a rim rotating means for rotating an inspection rim equipped with a tire; and a position sensor attached to a predetermined position and measuring a radial position of an outer surface of the tread.
Incorporating the radial position data at a predetermined sampling time from the position sensor under the rotation of the tire, comprising unevenness detecting means for detecting unevenness on the tread surface from the circumferential change of the radial position ,
The waveform obtained by plotting the data acquired from the position sensor with the tire rotation angle at the time of capturing the radial position data on the horizontal axis and the captured radial position data on the vertical axis is called the radial position waveform. The waveform obtained by subtracting the primary harmonic component from this radial position waveform is called a differential waveform, and in this differential waveform, the variation of the sign of one of the positive and negative signs appears with respect to the variation that is the difference between two successive data. After that, the peak start point is the point at which the variation of the other code begins to appear a predetermined number of times, and the peak point is the point at which the variation of one code begins to appear a predetermined number of times after the appearance of the peak start point. After the appearance of the peak point, the peak from the peak start point to the peak end point including the peak point is defined as the peak end point where the variation of the other sign begins to appear continuously a predetermined number of times. When calling the minute, the unevenness detecting means extracts the primary harmonic component from the radial position waveform to obtain the difference waveform, and from this difference waveform, all peak portions in the 360 ° tire rotation angle range are obtained. Tires that perform extraction and obtain their width and height and, when both of these width and height are included in a predetermined range, output a signal that abnormal irregularities have been detected Inspection equipment.

<2>本発明は、<1>において、前記半径方向位置波形から一次調和成分を抽出し、その振幅からランナウトを求めるランナウト測定手段を具えてなるタイヤ検査装置である。 <2> The present invention is the tire inspection apparatus according to <1>, further including a runout measurement unit that extracts a first harmonic component from the radial position waveform and obtains a runout from the amplitude.

<3>本発明は、<1>もしくは<2>において、前記位置センサは、トレッド幅方向中央部、および、両ショルダ部を含む、少なくとも三カ所における前記半径方向位置を測定するものであるタイヤ検査装置である。 <3> The present invention provides the tire according to <1> or <2>, wherein the position sensor measures at least three radial positions including a tread width direction central portion and both shoulder portions. Inspection equipment.

<1>の発明によれば、凹凸検出手段を具えるので、局所的な凹凸の異常を検出することができ、しかも、前述のような処理を行うので、問題となりうるトレッド表面の凹凸を検出することができる。 According to the invention <1>, since the unevenness detecting means is provided , local unevenness of the unevenness can be detected, and furthermore, since the above-described processing is performed, unevenness on the tread surface which may be a problem is detected. can do.

<2>の発明によれば、ランナウト測定手段を具えるので、一つのリム回転手段と、一つの位置センサとを用いて、ランナウトとトレッド表面凹凸の両方を検出することができ、これらを別個に設けた場合に対比して設備コストを大幅に低減することが出きる。 According to the invention of <2>, since the runout measuring means is provided, both runout and tread surface irregularities can be detected using one rim rotating means and one position sensor, and these are separately detected. The equipment cost can be greatly reduced compared with the case where it is provided.

<3>の発明によれば、トレッド幅方向中央部、および、トレッド厚みがもっとも厚く、そのためトレッド接合の不均一が発生しやすい両ショルダ部を含む、少なくとも三カ所における前記半径方向位置を測定することができるので、トレッドの幅方向の広い範囲にわたって凹凸を検出することができ、品質保証をより確実なものにすることができる。 According to the invention of <3>, the radial position in at least three locations including the center portion in the tread width direction and the shoulder portions where the tread thickness is the largest and therefore uneven tread joining is likely to occur is measured. Therefore, the unevenness can be detected over a wide range in the width direction of the tread, and quality assurance can be further ensured.

本発明の実施形態について、図に基づいて説明する。図1は本発明に係る実施形態のタイヤ検査装置を示すものであり、図1(a)はその正面図、図1(b)は平面図である。タイヤ検査装置1は、検査対象となるタイヤTを装着した検査用リムRを回転させる、例えばサーボモータよりなるリム回転手段2と、トレッド表面上の点の半径方向位置を測定する位置センサ3、4とを具える。これらの位置センサ3、4は、図に示すところにおいては、検出ローラ3a、4aをタイヤトレッド表面に当接させ、検出ローラ3a、4aの当接面の、所定位置からの半径方向変位量を検出するような接触式のもので構成され、この変位量からトレッド表面の半径方向位置を算出することができる。なお、図中5は、リム回転手段2と位置センサ3、4とを搭載する共通ベッドを示す。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a tire inspection apparatus according to an embodiment of the present invention. FIG. 1 (a) is a front view and FIG. 1 (b) is a plan view. A tire inspection apparatus 1 rotates an inspection rim R on which a tire T to be inspected is mounted, for example, a rim rotation means 2 made of a servo motor, a position sensor 3 for measuring a radial position of a point on a tread surface, 4 is provided. As shown in the figure, these position sensors 3 and 4 bring the detection rollers 3a and 4a into contact with the surface of the tire tread, and determine the amount of radial displacement of the contact surface of the detection rollers 3a and 4a from a predetermined position. It is configured by a contact type that detects, and the radial position of the tread surface can be calculated from the amount of displacement. In the figure, reference numeral 5 denotes a common bed on which the rim rotating means 2 and the position sensors 3 and 4 are mounted.

位置センサ3はタイヤトレッドの幅方向中央における半径方向位置を測定するものであり、他の二つの位置センサ4はそれぞれ、左右のショルダ部の半径方向位置を測定するものである。ここで、ショルダ部の半径位置を測定する位置センサ4は、タイヤのサイズに応じて、サイズ毎に予め定められたショルダ部の幅方向位置を測定できるよう、位置センサ4の方向と位置とを調整できるよう構成される。なお、図においては、接触式の位置センサを示したが、非接触式のものを用いることもできる。   The position sensor 3 measures the radial position at the center in the width direction of the tire tread, and the other two position sensors 4 measure the radial positions of the left and right shoulder portions, respectively. Here, the position sensor 4 that measures the radial position of the shoulder portion determines the direction and position of the position sensor 4 so that the position in the width direction of the shoulder portion that is predetermined for each size can be measured according to the size of the tire. Configured to be adjustable. In the drawing, a contact type position sensor is shown, but a non-contact type position sensor can also be used.

図2は、リム回転手段によりタイヤを回転させて、タイヤ回転下でのトレッド部表面の半径方向位置データを取り込んで異常凹凸を検出するとともにランナウトを測定してランナウトの異常を検出する処理を示すフローチャートである。このフローチャートに示した処理は、3個のセンサ3、4のそれぞれについて行われる処理であり、以下に、トレッドの幅方向中央に対応する位置センサ3からのデータに基づいて行われる処理を例にとって説明する。まず、ステップs1で、リム回転手段2によりタイヤTを回転させ、その回転下で検出ローラ3aをトレッド表面に当接させ、所定サンプリングタイムで、各位置センサ3からトレッド表面の半径方向位置データを入力するとともに、図示しないタイヤ回転角度センサからタイヤの回転角度を表わすデータを入力する。タイヤ一周分に対応するデータ数としては、3000〜6000個とするのが、多大の処理時間を要することなく所要の凹凸検出の精度を確保する上で好ましい。   FIG. 2 shows a process in which the tire is rotated by the rim rotating means, the position data in the radial direction of the tread portion surface under the rotation of the tire is taken to detect abnormal irregularities, and the runout is measured to detect the runout abnormality. It is a flowchart. The processing shown in this flowchart is processing performed for each of the three sensors 3 and 4, and the processing performed based on data from the position sensor 3 corresponding to the center in the width direction of the tread will be described below as an example. explain. First, in step s1, the tire T is rotated by the rim rotating means 2, the detection roller 3a is brought into contact with the tread surface under the rotation, and the radial position data of the tread surface is obtained from each position sensor 3 at a predetermined sampling time. At the same time, data representing a tire rotation angle is input from a tire rotation angle sensor (not shown). The number of data corresponding to one round of the tire is preferably 3000 to 6000 in order to ensure the required unevenness detection accuracy without requiring much processing time.

ステップs2では、サンプリングタイムの間隔毎に取り込んだそれぞれのデータから、縦軸にトレッド表面の半径方向位置を、横軸にタイヤ回転角度をとって、タイヤ一回転分に対応するトレッド表面の半径方向位置波形を算出するが、位置センサ3から取り込んだデータがトレッド表面の位置そのものであり、タイヤ回転角度センサから取り込んだデータがタイヤの回転角度そのものある場合は、ステップs2を省略することができる。図3(a)に示す波形CV1は、半径方向位置波形の一例である。   In step s2, the radial direction of the tread surface corresponding to one rotation of the tire is obtained by taking the radial position of the tread surface on the vertical axis and the tire rotation angle on the horizontal axis from the respective data taken at every sampling time interval. Although the position waveform is calculated, if the data acquired from the position sensor 3 is the position of the tread surface itself and the data acquired from the tire rotation angle sensor is the tire rotation angle itself, step s2 can be omitted. A waveform CV1 shown in FIG. 3A is an example of a radial position waveform.

続いて、ステップs3では、ノイズ除去処理を行う。この処理は、所定の凹凸以外のものをノイズとしてノイズによって所定の凹凸検出性能が低下することを防止するためのもので、例えば、FFT処理によってトレッドパターン等によって生じる高周波数成分をカットしてノイズを除去する。図3(b)に示す波形CV2は、図3(a)の半径方向位置波形CV1をノイズ除去処理を施した波形を示す。   Subsequently, in step s3, noise removal processing is performed. This processing is for preventing noise from deteriorating the predetermined unevenness detection performance by using noise other than the predetermined unevenness as an example. For example, noise is obtained by cutting high frequency components generated by a tread pattern or the like by FFT processing. Remove. A waveform CV2 shown in FIG. 3B is a waveform obtained by performing noise removal processing on the radial position waveform CV1 of FIG.

続いて、ステップs4で、フーリエ演算処理により、図4(a)に示すように、ノイズを除去した波形CV2からその一次調和成分CV3を算出し、ステップs5で、図4(b)に示すような、波形CV2からCV3を差し引いた差分波形CV4を算出する。続いて、ステップs6で、図5(a)で示す、差分波形CV4の最小値をオフセット量Fとして、差分波形CV4からこのオフセット量Fを差し引くオフセット処理を行って、図5(b)に示す波形CV5を得る。   Subsequently, in step s4, as shown in FIG. 4A, the primary harmonic component CV3 is calculated from the waveform CV2 from which noise has been removed, and in step s5, as shown in FIG. 4B. The differential waveform CV4 obtained by subtracting CV3 from the waveform CV2 is calculated. Subsequently, in step s6, the offset value F is subtracted from the differential waveform CV4 using the minimum value of the differential waveform CV4 shown in FIG. A waveform CV5 is obtained.

次に、ステップs7で、ピーク検出処理を行う。この処理は、図6に示すように、相前後する二つのデータの差となる変分に関し、正負一方の符号の変分δの出現の後、他方の符号の変分δが所定回数連続して現れ始める点をピーク開始点Pとし、ピーク開始点Pの出現の後、一方の符号の変分δが所定回数連続して現れ始める点をピーク点Pとし、ピーク点Pの出現の後、他方の符号の変分δが所定回数連続して現れ始める点をピーク終了点Pとして、これらの点P、P、Pを検出する処理を行うとともに、これらの点P、P、Pのすべてが検出された場合には、ピーク点Pを含むピーク開始点Pからピーク終了点Pまでの領域をピーク部分として特定する処理を行う。 Next, in step s7, peak detection processing is performed. In this process, as shown in FIG. 6, with respect to a variation that is a difference between two adjacent data, after the occurrence of a variation δ 1 of one of the positive and negative signs, the variation δ 2 of the other sign is a predetermined number of times. points begin to appear in succession as the peak start point P 1, after the appearance of the peak start point P 1, and variational [delta] 3 of one code is the peak point P 0 points begin to appear in succession a predetermined number of times, the peak point After the appearance of P 0, the point at which the variation δ 4 of the other code begins to appear continuously a predetermined number of times is set as the peak end point P 2 , and processing for detecting these points P 0 , P 1 , P 2 is performed. When all of these points P 0 , P 1 , and P 2 are detected, a process of specifying a region from the peak start point P 1 including the peak point P 0 to the peak end point P 2 as a peak portion is performed. Do.

なお、変分とは、所定サンプリングタイムで相前後する二つのデータの差分をいい、正の変分とは、後のデータが前のデータより大きいものをいい、図6の場合は、負の変分を、一方の符号の変分とするピーク部分を示す。   Note that variation refers to the difference between two data that follow each other at a predetermined sampling time, and positive variation refers to the later data that is greater than the previous data. In the case of FIG. The peak part which makes a variation the variation of one code | symbol is shown.

さらに、上記手順によってピーク部分を抽出したのち、前記ピーク開始点Pを仮ピーク開始点とし、前記ピーク終了点Pを仮ピーク終了点とし、これらの仮ピーク開始点および仮ピーク終了点の間の最大値もしくは最小値を与える点をピーク点であると再定義しなおし、再定義されたピーク点から、仮ピーク開始点の方に向かってサーチして、一方の符号の変分δの後、他方の符号の変分δが所定回数連続して現れ始める点をピーク開始点と再定義しなおし、また、再定義されたピーク点から、仮ピーク終了点の方に向かってサーチして、一方の符号の変分δが所定回数連続して現れ始める点をピーク終了点と再定義しなおしてもよく、このことにより、ピーク部分の抽出をより確実に行うことができる。 Further, after extracting the peak portion by the above procedure, the peak start point P 1 is set as the temporary peak start point, the peak end point P 1 is set as the temporary peak end point, and these temporary peak start point and temporary peak end point are The point giving the maximum value or the minimum value is redefined as the peak point, and the search is performed from the redefined peak point toward the temporary peak start point, and the variation δ 1 of one sign is performed. After that, the point at which the variation δ 2 of the other code begins to appear continuously a predetermined number of times is redefined as the peak start point, and the search is performed from the redefined peak point toward the temporary peak end point. Then, the point at which the variation δ 4 of one code begins to appear continuously a predetermined number of times may be redefined as the peak end point, which makes it possible to more reliably extract the peak portion.

ピークが検出された場合、ステップs8〜s11において、所定の値W1、W2およびHに対して、ピークの幅が下限値W1を越えるとともに上限値W2未満でであり、かつピークの高さがHを越えた範囲にあるかをチェックし、もしピークがその範囲内であるならば、s11に示すように異常凹凸処理を行う。異常凹凸処理s11は、例えば、ピークの高さと幅、ピークに対応するタイヤ回転角度、タイヤ識別符号等を図示しない表示装置に出力するとともに、このタイヤを異常タイヤとしてラインの外に排出すべきとの命令を出力する処理を意味する。   When a peak is detected, in steps s8 to s11, the peak width exceeds the lower limit value W1 and is lower than the upper limit value W2 with respect to the predetermined values W1, W2, and H, and the peak height is H If the peak is within the range, abnormal unevenness processing is performed as shown in s11. The abnormal unevenness processing s11 outputs, for example, a peak height and width, a tire rotation angle corresponding to the peak, a tire identification code, and the like to a display device (not shown) and discharges the tire as an abnormal tire out of the line. This means the process of outputting the command.

また、ここで、ピークの高さは、ピーク点と、ピーク開始点もしくはピーク終了点との高さ方向の差として定義され、一方ピークの幅は、ピーク開始点とピーク終了点との幅方向の差として定義されるものとする。   Also, here, the peak height is defined as the difference in height between the peak point and the peak start point or peak end point, while the peak width is the width direction between the peak start point and the peak end point. Shall be defined as the difference between

そして、このピーク検出処理s7からステップs11までの処理は、ステップs12で示すように、タイヤの回転角度360度の全領域について行う。   Then, the processing from the peak detection processing s7 to step s11 is performed for the entire region of the tire rotation angle of 360 degrees as shown in step s12.

続いて、ステップs4で求めた一次調和成分から、ステップs13で示すように、その振幅として算出されるランナウトを求め、ステップs14で示すように、このランナウトが所定の上限値RR1を越えるものである場合には、ステップs15で示す異常ランナウト処理を行うが、この異常ランナウト処理は、例えば、ランナウトの値、ランナウトの位相、タイヤ識別符号等を表示装置に出力するとともに、このタイヤを異常タイヤとしてラインの外に排出させる命令を出力する処理を意味する。   Subsequently, the run-out calculated as the amplitude is obtained from the primary harmonic component obtained in step s4 as shown in step s13, and this run-out exceeds the predetermined upper limit value RR1 as shown in step s14. In this case, the abnormal run-out process shown in step s15 is performed. This abnormal run-out process outputs, for example, a run-out value, a run-out phase, a tire identification code, and the like to the display device, and uses this tire as an abnormal tire line. This means processing to output a command to be discharged out of the box.

なお、図2に示すs1〜s15のステップのうち、s1〜s12のステップは、凹凸検出処理手段が処理を行い、s13〜s15は、ランナウト測定手段が処理を行うものである。   Of the steps s1 to s15 shown in FIG. 2, the steps s1 to s12 are processed by the unevenness detection processing means, and the steps s13 to s15 are processed by the runout measuring means.

本発明に係る実施形態のタイヤ検査装置を示す正面図および平面図である。It is the front view and top view which show the tire inspection apparatus of embodiment which concerns on this invention. タイヤ検査装置の行う処理を示すフローチャートである。It is a flowchart which shows the process which a tire inspection apparatus performs. 半径方向位置波形と、この波形をノイズ除去処理した波形とを示す図である。It is a figure which shows the radial direction position waveform and the waveform which carried out the noise removal process of this waveform. 一次調和成分の波形と、差分波形とを示す図である。It is a figure which shows the waveform of a primary harmonic component, and a difference waveform. オフセット処理を施した差分波形を示す図である。It is a figure which shows the difference waveform which performed the offset process. ピーク検出処理を説明する図である。It is a figure explaining a peak detection process.

符号の説明Explanation of symbols

1 タイヤ検査装置
2 リム回転手段
3、4 位置センサ
3a、4a 検出ローラ
5 共通ベッド
DESCRIPTION OF SYMBOLS 1 Tire inspection apparatus 2 Rim rotation means 3, 4 Position sensor 3a, 4a Detection roller 5 Common bed

Claims (3)

タイヤを装着した検査用リムを回転するリム回転手段と、所定の位置に取付けられ、トレッド外表面の半径方向位置を測定する位置センサとを具えたタイヤ検査装置において、
タイヤの回転下で前記位置センサから所定サンプリングタイムで前記半径方向位置データを取り込み、その半径方向位置の周方向変化から、トレッド表面の凹凸を検出する凹凸検出手段を具え
半径方向位置データを取り込む時点でのタイヤ回転角度を横軸に、取り込まれた半径方向位置データを縦軸にして、位置センサから取り込まれたデータをプロットしてできる波形を半径方向位置波形と呼び、この半径方向位置波形からその一次調和成分を差し引いた波形を差分波形と呼ぶとともに、この差分波形において、相前後する二つのデータの差となる変分に関し、正負一方の符号の変分の出現の後、他方の符号の変分が所定回数連続して現れ始める点をピーク開始点とし、ピーク開始点の出現の後、一方の符号の変分が所定回数連続して現れ始める点をピーク点とし、ピーク点の出現の後、他方の符号の変分が所定回数連続して現れ始める点をピーク終了点として、ピーク点を含むピーク開始点からピーク終了点までの領域をピーク部分と呼ぶとき、前記凹凸検出手段は、前記半径方向位置波形からその一次調和成分を抽出して前記差分波形を求め、この差分波形から、360度のタイヤ回転角度範囲にあるすべてのピーク部分を抽出してそれらの幅と高さとを求め、これらの幅および高さの両方が予め定められた所定範囲に含まれる場合、異常凹凸を検出した旨の信号を出力する処理を行うものとするタイヤ検査装置。
In a tire inspection apparatus comprising rim rotation means for rotating an inspection rim mounted with a tire, and a position sensor attached at a predetermined position and measuring a radial position of an outer surface of the tread,
Incorporating the radial position data at a predetermined sampling time from the position sensor under the rotation of the tire, comprising unevenness detecting means for detecting unevenness on the tread surface from the circumferential change of the radial position ,
The waveform obtained by plotting the data acquired from the position sensor with the tire rotation angle at the time of capturing the radial position data on the horizontal axis and the captured radial position data on the vertical axis is called the radial position waveform. The waveform obtained by subtracting the primary harmonic component from this radial position waveform is called a differential waveform, and in this differential waveform, the variation of the sign of one of the positive and negative signs appears with respect to the variation that is the difference between two successive data. After that, the peak start point is the point at which the variation of the other code begins to appear a predetermined number of times, and the peak point is the point at which the variation of one code begins to appear a predetermined number of times after the appearance of the peak start point. After the appearance of the peak point, the peak from the peak start point to the peak end point including the peak point is defined as the peak end point where the variation of the other sign begins to appear continuously a predetermined number of times. When calling the minute, the unevenness detecting means extracts the primary harmonic component from the radial position waveform to obtain the difference waveform, and from this difference waveform, all peak portions in the 360 ° tire rotation angle range are obtained. Tires that perform extraction and obtain their width and height and, when both of these width and height are included in a predetermined range, output a signal that abnormal irregularities have been detected Inspection device.
前記半径方向位置波形から一次調和成分を抽出し、その振幅からランナウトを求めるランナウト測定手段を具えてなる請求項1に記載のタイヤ検査装置。 The tire inspection apparatus according to claim 1 , further comprising runout measurement means for extracting a first harmonic component from the radial position waveform and obtaining a runout from the amplitude. 前記位置センサは、トレッド幅方向中央部、および、両ショルダ部を含む、少なくとも三カ所における前記半径方向位置を測定するものである請求項1もしくは2に記載のタイヤ検査装置。 3. The tire inspection apparatus according to claim 1 , wherein the position sensor measures the radial position at at least three locations including a center portion in a tread width direction and both shoulder portions.
JP2003426269A 2003-12-24 2003-12-24 Tire inspection device Expired - Fee Related JP4204967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426269A JP4204967B2 (en) 2003-12-24 2003-12-24 Tire inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426269A JP4204967B2 (en) 2003-12-24 2003-12-24 Tire inspection device

Publications (2)

Publication Number Publication Date
JP2005181253A JP2005181253A (en) 2005-07-07
JP4204967B2 true JP4204967B2 (en) 2009-01-07

Family

ID=34785848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426269A Expired - Fee Related JP4204967B2 (en) 2003-12-24 2003-12-24 Tire inspection device

Country Status (1)

Country Link
JP (1) JP4204967B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017919B2 (en) * 2006-04-24 2012-09-05 マツダ株式会社 Inspection apparatus and inspection method
WO2010071657A1 (en) * 2008-12-19 2010-06-24 Michelin Recherche Et Technique, S.A. Filtering method to eliminate tread features in geometric tire measurements
US8712720B2 (en) 2008-12-19 2014-04-29 Michelin Recherche at Technigue S.A. Filtering method for improving the data quality of geometric tire measurements
EP2580567B1 (en) 2010-06-14 2019-05-29 Compagnie Générale des Etablissements Michelin Method for prediction and control of harmonic components of tire uniformity parameters
JP5553712B2 (en) * 2010-09-01 2014-07-16 横浜ゴム株式会社 Tire performance measuring method and tire performance measuring apparatus

Also Published As

Publication number Publication date
JP2005181253A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
EP2789970B1 (en) Tire shape inspection method and tire shape inspection apparatus
US5060173A (en) Method and apparatus for detecting defects in pneumatic tire
JP5302701B2 (en) Tire shape inspection method, tire shape inspection device
US10006836B2 (en) Method and apparatus for detecting defects on tyres in a tyre production process
US4934184A (en) Method of detecting defects in pneumatic tire in non-destructive manner
EP2851650B1 (en) Tire shape inspection method and tire shape inspection device
JP5974787B2 (en) Edge defect detection method and edge defect detection apparatus for steel strip coil
JPS6230361B2 (en)
US6705156B2 (en) Cross-correlation method for identification and removal of machine contribution from tire uniformity measurements
JP4204967B2 (en) Tire inspection device
JP5273354B2 (en) Width direction end position measuring method and apparatus for belt-like member
US9815248B2 (en) Method and device for detecting material bonding problems inside tire
JPH0242306A (en) Inspecting device for side wall of tire
US9797715B2 (en) Gage for verifying profile of part and method of verifying profile of part
US7614292B2 (en) Method and device for detecting defect in outer shape of tire side portion
JPH01152335A (en) Abnormality diagnostic apparatus for roller bearing
EP1329709B1 (en) Method to detect defects in the shape of a rolled product and relative device
JP4466831B2 (en) Green tire surface inspection equipment
JP5574169B2 (en) Appearance shape inspection direction of belt-shaped member and apparatus therefor
JP2979228B2 (en) How to measure tire uniformity
WO2006112409A1 (en) Method for correcting irregularities data of surface of rotator
KR20180037671A (en) How to profile deviation analysis for the finished tire tread
JP3046530B2 (en) Method and apparatus for detecting weld bead of steel pipe
US20140297224A1 (en) Data processing method of tire shape inspecting device
JPH09207240A (en) Device for measuring joint amount of band-like member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees