JP5017919B2 - Inspection apparatus and inspection method - Google Patents

Inspection apparatus and inspection method Download PDF

Info

Publication number
JP5017919B2
JP5017919B2 JP2006119785A JP2006119785A JP5017919B2 JP 5017919 B2 JP5017919 B2 JP 5017919B2 JP 2006119785 A JP2006119785 A JP 2006119785A JP 2006119785 A JP2006119785 A JP 2006119785A JP 5017919 B2 JP5017919 B2 JP 5017919B2
Authority
JP
Japan
Prior art keywords
tire
wheel
evaluation
shake
shake amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006119785A
Other languages
Japanese (ja)
Other versions
JP2007292563A (en
Inventor
和彦 美本
康之 菅
郁男 鬼村
幸浩 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2006119785A priority Critical patent/JP5017919B2/en
Publication of JP2007292563A publication Critical patent/JP2007292563A/en
Application granted granted Critical
Publication of JP5017919B2 publication Critical patent/JP5017919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はタイヤとホイールの組付け状態を検査する検査技術に関するものである。   The present invention relates to an inspection technique for inspecting an assembled state of a tire and a wheel.

車両において、タイヤとホイールとの組付け状態が適正でないと車両走行時に車両の振動が激しくなったり、或いは、車両の直進性が悪くなる場合がある。このため、車両の品質管理の1つとしてタイヤとホイールとの組付け状態の検査が行なわれている。このようなタイヤ検査の方法としては、作業員が目視で判定する方法がある。しかし、目視での判定は作業員の個人差によってばらつきがあり、均一な品質管理が難しい。   In the vehicle, if the assembled state of the tire and the wheel is not appropriate, the vehicle may vibrate when the vehicle travels, or the straightness of the vehicle may deteriorate. For this reason, inspection of the assembly state of the tire and the wheel is performed as one of the quality control of the vehicle. As such a tire inspection method, there is a method in which an operator visually determines. However, visual judgment varies depending on individual differences among workers, and uniform quality control is difficult.

また、タイヤの検査方法として、タイヤのユニフォーミティ試験機を用いてホイールを組付けたタイヤを該試験機のローラに当てながら回転させ、ローラに装着されているロードセルにより、X軸、Y軸、Z軸方向の力成分を測定し、RFV(上下荷重の変動成分)、LFV(左右横力の変動成分)、LFD(左右横力の直進成分)の測定値を算出し、組付け状態の検査を行なうことも可能である。しかし、この検査方法は測定結果を算出するのに時間を要し、車両の生産ラインでタイヤとホイールの組付け状態を全数検査するのに用いることは困難である。更に、特許文献1のようにタイヤ検査を自動化する技術が提案されている。特許文献1に記載の装置は互いに組みつけられたタイヤとホイールとをその回転軸回りに回転させながら、タイヤの側面の径方向の外形形状をタイヤの全周に渡って計測し、その計測結果に基づき組付け状態を判定するものである。
特許第3677245号公報
Further, as a tire inspection method, a tire having a wheel assembled using a tire uniformity tester is rotated while being applied to the roller of the tester, and the load cell attached to the roller is used to rotate the X axis, the Y axis, Measures the force component in the Z-axis direction, calculates the measured values of RFV (up-and-down load fluctuation component), LFV (left-right lateral force fluctuation component), and LFD (right-and-left lateral force straight component), and checks assembly It is also possible to perform. However, this inspection method takes time to calculate the measurement result, and it is difficult to use it for inspecting all the assembled states of tires and wheels on the vehicle production line. Further, a technique for automating tire inspection as in Patent Document 1 has been proposed. The device described in Patent Document 1 measures the radial outer shape of the side surface of the tire over the entire circumference of the tire while rotating the tire and the wheel assembled to each other around the rotation axis, and the measurement result The assembly state is determined based on the above.
Japanese Patent No. 3677245

しかし、特許文献1のものはリム近傍のある1箇所の振れ量等を計測して組付け状態を判定するものであり、検査精度が必ずしも高くない。また、タイヤやホイールそのものに不具合が生じている場合があり、リム近傍のある1箇所の振れ量等を検査するのみではこのような不具合を発見できない場合もある。   However, the technique disclosed in Patent Document 1 measures the amount of shake or the like at one location in the vicinity of the rim to determine the assembled state, and the inspection accuracy is not necessarily high. Further, there may be a problem with the tire or the wheel itself, and there may be a case where such a problem cannot be found only by inspecting a certain amount of deflection in the vicinity of the rim.

従って、本発明の目的は、タイヤとホイールの組付け状態をより高精度で、かつ短時間に検査することにある。   Accordingly, an object of the present invention is to inspect the assembled state of a tire and a wheel with higher accuracy and in a short time.

本発明によれば、タイヤとホイールの組付け状態を検査する検査装置において、互いに組みつけられたタイヤとホイールとをその回転軸回りに回転させる回転手段と、前記回転手段により回転する前記タイヤの側面の径方向の外形形状を前記タイヤの全周に渡って計測する計測手段と、前記計測手段の計測結果に基づき、前記タイヤの側面の径方向の複数の部位における振れ量を算出する振れ量算出手段と、前記振れ量算出手段により算出された前記複数の部位の前記振れ量の中から選択される複数の前記振れ量に基づき、前記タイヤと前記ホイールの組付け状態を評価する複数種類の評価値を算出する評価値算出手段と、を備え、前記複数種類の評価値は、車両の振動に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の上下の振れ、車両の振動と直進性に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の左右の振れ、及び、車両の直進性に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の左右の振れの中心位置を示す値であることを特徴とする検査装置が提供される。 According to the present invention, in the inspection apparatus for inspecting the assembled state of the tire and the wheel, the rotating means for rotating the tire and the wheel assembled to each other around the rotation axis thereof, and the tire rotated by the rotating means Measuring means for measuring the outer shape in the radial direction of the side surface over the entire circumference of the tire, and an amount of deflection for calculating the amount of deflection at a plurality of radial positions on the side surface of the tire based on the measurement result of the measuring means A plurality of types of evaluation means for evaluating an assembly state of the tire and the wheel based on a plurality of the shake amounts selected from the shake amounts of the plurality of portions calculated by the calculation means and the shake amount calculation means and an evaluation value calculation means for calculating an evaluation value, the plurality of types of evaluation value is an evaluation factor affecting the vibration of the vehicle, on the time of rotation of the tire and the wheel Of the tire and the wheel, which is an evaluation element that affects the vibration of the vehicle, the vibration of the vehicle and the straightness, the left and right vibration during rotation of the tire and the wheel, and the straightness of the vehicle. There is provided an inspection apparatus characterized in that it is a value indicating the center position of left and right shake during rotation .

この検査装置では、前記振れ量算出手段により算出された前記複数の部位の前記振れ量の中から選択される複数の前記振れ量に基づき、前記評価値が算出される。前記評価値を定めるパラメータを複数部位の前記振れ量とすることで、検査精度を向上し、また、タイヤやホイールそのものの不具合も検査可能となると共に短時間で検査が行なえる。更に、前記評価値算出手段が、複数種類の前記評価値を算出することで、タイヤとホイールの組付け状態を多面的に評価することができる。   In this inspection apparatus, the evaluation value is calculated based on the plurality of shake amounts selected from the shake amounts of the plurality of portions calculated by the shake amount calculation unit. By setting the parameter for determining the evaluation value as the amount of shake at a plurality of locations, the inspection accuracy can be improved, and it is possible to inspect defects of the tire and the wheel themselves, and the inspection can be performed in a short time. Furthermore, the evaluation value calculation means calculates a plurality of types of evaluation values, so that the assembled state of the tire and the wheel can be evaluated in a multifaceted manner.

また、この構成によれば、タイヤとホイールの組付け状態が車両の走行性能に与える影響を多面的に評価することができる Moreover, according to this structure, the influence which the assembly | attachment state of a tire and a wheel has on the driving | running | working performance of a vehicle can be evaluated in many ways .

本発明においては、前記評価値算出手段は、前記評価値の種類に応じて予め定められている、前記複数の部位の中から選択される特定の部位の最大振れ量、又は、前記タイヤの側面の径方向の一定の範囲における最大振れ量の積分値、の少なくともいずれかに基づいて前記評価値を算出する構成を採用することができる。この構成によれば、複数種類の前記評価値をより適切に算出できる。また、前記評価値に応じて、前記タイヤの側面の径方向の一定の範囲における最大振れ量の積分値をその算出に導入することで前記評価値をより適切に算出できる。   In the present invention, the evaluation value calculation means is determined in advance according to the type of the evaluation value, and the maximum runout amount of a specific part selected from the plurality of parts, or the side surface of the tire It is possible to employ a configuration in which the evaluation value is calculated based on at least one of the integral values of the maximum shake amount in a certain range in the radial direction. According to this configuration, it is possible to more appropriately calculate a plurality of types of evaluation values. Further, the evaluation value can be calculated more appropriately by introducing an integral value of the maximum runout amount in a certain range in the radial direction of the side surface of the tire in accordance with the evaluation value.

また、本発明においては、前記振れ量算出手段により算出される前記振れ量には、前記回転軸方向に沿う横振れ量と、前記径方向に沿う縦振れ量と、が含まれる構成を採用できる。この構成によれば、タイヤとホイールの組付け状態を多面的に評価することができる In the present invention, the shake amount calculated by the shake amount calculation unit may include a lateral shake amount along the rotational axis direction and a vertical shake amount along the radial direction. . According to this configuration, the assembled state of the tire and the wheel can be evaluated from multiple aspects .

た、本発明によれば、タイヤとホイールの組付け状態を検査する検査方法において、互いに組みつけられたタイヤとホイールとをその回転軸回りに回転させながら、前記タイヤの側面の径方向の外形形状を前記タイヤの全周に渡って計測する計測工程と、前記計測工程の計測結果に基づき、前記タイヤの側面の径方向の複数の部位における振れ量を算出する振れ量算出工程と、前記振れ量算出工程により算出された前記複数の部位の前記振れ量の中から選択される複数の前記振れ量に基づき、前記タイヤと前記ホイールの組付け状態を評価する複数種類の評価値を算出する評価値算出工程と、を備え、前記複数種類の評価値は、車両の振動に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の上下の振れ、車両の振動と直進性に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の左右の振れ、及び、車両の直進性に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の左右の振れの中心位置を示す値であることを特徴とする検査方法が提供される。この検査方法も上述した検査装置と同様の効果が得られる。 Also, according to the present invention, in the inspection method for inspecting the assembled state of the tire and the wheel, while rotating the tire and wheel are assembled together in the rotary axis, the radial direction of the side surface of the tire A measuring step for measuring the outer shape over the entire circumference of the tire, a deflection amount calculating step for calculating a deflection amount in a plurality of portions in the radial direction of the side surface of the tire based on the measurement result of the measuring step, and A plurality of types of evaluation values for evaluating an assembly state of the tire and the wheel are calculated based on the plurality of shake amounts selected from the shake amounts of the plurality of portions calculated by the shake amount calculation step. and an evaluation value calculating step, the plurality of types of evaluation value is an evaluation factor affecting the vibration of the vehicle, deflection of the upper and lower during rotation of the tire and the wheel, straight and vibration of the vehicle The center position of the left and right runout during rotation of the tire and the wheel, and the center position of the left and right runout during rotation of the tire and the wheel, which is an evaluation element that affects the straight traveling performance of the vehicle. An inspection method is provided that is a value indicating This inspection method can achieve the same effect as the above-described inspection apparatus.

以上述べた通り、本発明によれば、タイヤとホイールの組付け状態をより高精度で、かつ短時間に検査することができる。   As described above, according to the present invention, the assembled state of the tire and the wheel can be inspected with higher accuracy and in a short time.

<装置の構成>
本発明の一実施形態に係る検査装置10のブロック図である。検査装置10はタイヤTとホイールWの組付け状態を検査する装置であって、互いに組みつけられたタイヤTとホイールWとをその回転軸回りに回転させる回転装置20と、回転装置20により回転するタイヤTの側面の径方向(r)の外形形状をタイヤTの全周に渡って計測する計測装置30と、コンピュータ40とを備える。
<Device configuration>
1 is a block diagram of an inspection apparatus 10 according to an embodiment of the present invention. The inspection device 10 is a device that inspects the assembled state of the tire T and the wheel W, and the rotation device 20 that rotates the tire T and the wheel W that are assembled to each other around the rotation axis, and the rotation device 20 rotates the rotation device 20. A measuring device 30 that measures the outer shape of the side surface of the tire T in the radial direction (r) over the entire circumference of the tire T and a computer 40 are provided.

回転装置20は、鉛直方向(Z)回りに回転するスピンドル21と、スピンドル21の駆動源となるモータ22と、スピンドル21の上端に設けられた支持部23とを備える。支持部23はタイヤTの側面が水平になるようにホイールWの中心の取付孔に嵌合する。回転装置20は、また、支持部24を備え、支持部24は支持部23と同心で不図示の昇降機構により上下に昇降するよう設けられホイールWの取付孔に上側から嵌合する。しかして、回転装置20は、支持部23及び24によりホイールW及びタイヤTの位置決めを行い、スピンドル21の回転によりタイヤT及びホイールWを水平姿勢で、鉛直方向(Z)回りに回転させる。回転装置20は更にロータリエンコーダ等の回転センサ25を備える。回転センサ25はタイヤT及びホイールWの回転角度を検出するためのセンサであり、本実施形態ではモータ22の出力軸の回転角度を検出する。   The rotating device 20 includes a spindle 21 that rotates about a vertical direction (Z), a motor 22 that is a drive source of the spindle 21, and a support portion 23 that is provided at the upper end of the spindle 21. The support portion 23 is fitted into the center mounting hole of the wheel W so that the side surface of the tire T is horizontal. The rotating device 20 also includes a support portion 24, which is concentric with the support portion 23 and is provided so as to be moved up and down by an unillustrated lifting mechanism and is fitted into a mounting hole of the wheel W from above. Accordingly, the rotating device 20 positions the wheel W and the tire T by the support portions 23 and 24, and rotates the tire T and the wheel W in the horizontal posture around the vertical direction (Z) by the rotation of the spindle 21. The rotating device 20 further includes a rotation sensor 25 such as a rotary encoder. The rotation sensor 25 is a sensor for detecting the rotation angle of the tire T and the wheel W. In this embodiment, the rotation sensor 25 detects the rotation angle of the output shaft of the motor 22.

計測装置30は本実施形態の場合、タイヤTの表側(上側)側面、裏側(下側)側面の径方向(r)の外形形状を計測すべく、タイヤTの表側、裏側に対峙する位置にそれぞれ配設され、合計2つ配設されている。計測装置30は、本実施形態の場合、レーザ光の照射ユニット31と、撮像ユニット32と、を備える。照射ユニット31はタイヤTの側面から鉛直方向(Z)に所定距離を置いて配設され、タイヤTの側面に垂直に、タイヤTの径方向(r)に沿うスリット光を照射する。撮像ユニット32はCCDセンサ及び光学系からなり、タイヤTの側面の、スリット光の照射領域を撮影する。撮影された画像30aはタイヤTの側面の径方向断面形状の外周部分の輪郭(外形形状)を示すことになる。なお、計測装置30としては、この他にも、例えば、レーザ距離計をタイヤTの径方向に走査させる装置も採用可能である。   In the case of this embodiment, the measuring device 30 is located at a position facing the front side and the back side of the tire T in order to measure the outer shape in the radial direction (r) of the front side (upper side) side surface and the back side (lower side) side surface of the tire T. A total of two are provided. In the present embodiment, the measurement device 30 includes a laser light irradiation unit 31 and an imaging unit 32. The irradiation unit 31 is arranged at a predetermined distance from the side surface of the tire T in the vertical direction (Z), and irradiates slit light along the radial direction (r) of the tire T perpendicular to the side surface of the tire T. The imaging unit 32 includes a CCD sensor and an optical system, and images the slit light irradiation area on the side surface of the tire T. The photographed image 30a shows the outline (outer shape) of the outer peripheral portion of the radial cross-sectional shape of the side surface of the tire T. In addition to this, as the measuring device 30, for example, a device that scans a laser distance meter in the radial direction of the tire T can also be employed.

計測装置30はタイヤT及びホイールWの回転角度に応じてタイヤTの側面の外形形状を撮影し、例えば、10度単位でタイヤTの全周に渡って撮影する。10度単位で撮影した場合、得られる画像は36枚となる。これらの画像は、タイヤTの側面の径方向(r)の外形形状を2次元座標(Z−r平面)で表すデータに変換される。図2はタイヤTの側面の径方向(r)の外形形状を2次元座標で表したデータであり、タイヤT及びホイールWの各回転角度におけるデータを重ねて表示したものである。図2におけるデータの線の幅がタイヤTの側面の振れを表している。   The measuring device 30 shoots the outer shape of the side surface of the tire T according to the rotation angle of the tire T and the wheel W, and shoots the entire circumference of the tire T in units of 10 degrees, for example. When the image is taken in units of 10 degrees, 36 images are obtained. These images are converted into data representing the outer shape in the radial direction (r) of the side surface of the tire T in two-dimensional coordinates (Zr plane). FIG. 2 is data in which the outer shape of the side surface of the tire T in the radial direction (r) is expressed in two-dimensional coordinates, and the data at each rotation angle of the tire T and the wheel W are displayed in an overlapping manner. The width of the data line in FIG. 2 represents the runout of the side surface of the tire T.

図1に戻り、コンピュータ40は後述する検査処理を実行するCPU41と、一時的なデータ等が格納されるRAM42と、固定的なデータ、プログラム等が格納されるROM43と、後述する検査処理のプログラムや計測装置30の計測結果であるデータをハードディスクに格納するるハードディスクドライブ(HDD)44と、を備える。なお、RAM42、ROM43及びHDD44は他の種類の記憶手段でもよい。   Returning to FIG. 1, the computer 40 executes a later-described inspection process CPU 41, a RAM 42 that stores temporary data and the like, a ROM 43 that stores fixed data and programs, and a later-described inspection process program. And a hard disk drive (HDD) 44 for storing data, which is a measurement result of the measuring device 30, in the hard disk. The RAM 42, ROM 43, and HDD 44 may be other types of storage means.

インターフェース(I/F)45aはモータ22の駆動回路(不図示)、回転センサ25、及び、計測装置30とCPU41とのデータのやり取りを行なう入出力インターフェースである。I/F45bは、キーボード、マウス等の入力デバイスである操作ユニット46とCPU41とのデータのやり取りを行なう入力インターフェースである。操作ユニット46は後述する検査処理の実行の指示や、各種の設定等をユーザが行なうためのユニットである。I/F45cはディスプレイ47とCPU41とのデータのやり取りを行なう出力インターフェイスである。ディスプレイ47は検査結果等を表示する表示装置である。   The interface (I / F) 45 a is an input / output interface for exchanging data between the drive circuit (not shown) of the motor 22, the rotation sensor 25, and the measurement device 30 and the CPU 41. The I / F 45b is an input interface for exchanging data between the operation unit 46, which is an input device such as a keyboard and a mouse, and the CPU 41. The operation unit 46 is a unit for the user to instruct execution of inspection processing, which will be described later, and various settings. The I / F 45c is an output interface for exchanging data between the display 47 and the CPU 41. The display 47 is a display device that displays inspection results and the like.

<検査の概要>
本実施形態では計測装置30の計測結果に基づき、まず、タイヤTの側面の径方向(r)の複数の部位における振れ量を算出する。次に、算出された複数の部位の振れ量の中から選択される複数の振れ量に基づき、タイヤTとホイールWの組付け状態を評価する複数種類の評価値を算出する。そして、その評価値に応じて組付け状態の良否を判定する。
<Outline of inspection>
In the present embodiment, based on the measurement result of the measurement device 30, first, the shake amount at a plurality of portions in the radial direction (r) of the side surface of the tire T is calculated. Next, a plurality of types of evaluation values for evaluating the assembled state of the tire T and the wheel W are calculated based on the plurality of shake amounts selected from the calculated shake amounts of the plurality of parts. And the quality of an assembly state is determined according to the evaluation value.

図3(a)は本実施形態における評価値の説明図である。本実施形態ではタイヤTの車両実装時におけるタイヤTの回転時の上下方向の振れに関するY1、左右の振れに関するY2及び左右の振れの中心に関するY3の3種類の評価値を用いる。評価値Y1は車両の振動に影響する評価要素である。評価値Y2は車両の振動と直進性に影響する評価要素である。評価値Y3は車両の直進性に影響する評価要素であり、タイヤTの左右の中心からタイヤTの左右の振れの中心がずれていれば車両が斜行することに着目したものである。上記評価値Y1、Y2、Y3はタイヤT単体のRFV、LFV、LFDの値と、タイヤTとホイールWを組付けた状態でのRFV、LFV、LFDの値の差、すなわち、RFV、LFV、LFDの変化量に相当するものである。   FIG. 3A is an explanatory diagram of evaluation values in the present embodiment. In the present embodiment, three types of evaluation values are used: Y1 related to vertical deflection during rotation of the tire T when the tire T is mounted on the vehicle, Y2 related to horizontal deflection, and Y3 related to the center of horizontal deflection. The evaluation value Y1 is an evaluation element that affects the vibration of the vehicle. The evaluation value Y2 is an evaluation factor that affects the vibration and straightness of the vehicle. The evaluation value Y3 is an evaluation factor that affects the straight traveling performance of the vehicle. The evaluation value Y3 focuses on the fact that the vehicle is skewed if the center of the left and right deflection of the tire T is deviated from the center of the left and right of the tire T. The evaluation values Y1, Y2, and Y3 are the differences between the RFV, LFV, and LFD values of the tire T alone and the RFV, LFV, and LFD values when the tire T and the wheel W are assembled, that is, RFV, LFV, This corresponds to the amount of change in LFD.

これらの評価値Y1〜Y3を算出する式は、本実施形態の場合、回帰分析により求め、上記RFV、LFV、LFDの変化量と相関性がある。回帰分析に用いる重回帰式は本実施形態では評価値Y1〜Y3を従属変数とした以下の式を用いる。
評価値Y=a1・A1+・・・+ak・Ak+b1・B1+・・・+bm・Bm+c1・C1+・・・+cn・Cn+D
ここで、a、b、cは回帰係数であり、Dは定数である。また、A、B、Cは独立変数であり、それぞれ以下の通りである。
In the case of the present embodiment, the equations for calculating these evaluation values Y1 to Y3 are obtained by regression analysis, and are correlated with the above-described changes in RFV, LFV, and LFD. In the present embodiment, the multiple regression equation used for the regression analysis uses the following equation with the evaluation values Y1 to Y3 as dependent variables.
Evaluation value Y = a 1 · A 1 + ··· + a k · A k + b 1 · B 1 + ··· + b m · B m + c 1 · C 1 + ··· + c n · C n + D
Here, a, b, and c are regression coefficients, and D is a constant. A, B, and C are independent variables and are as follows.

図3(b)は独立変数A〜Cの説明図である。同図において、最大値及び最小値は計測装置20の計測結果の最大値、最小値(タイヤTの側面の径方向(r)の任意の位置における鉛直方向(Z)の最大値、最小値)である。独立変数AはタイヤTの側面の径方向(r)のある特定の部位における、径方向(r)に沿う最大振れ量(縦振れ量)であり、車両実装時で言うとその部位での上下方向の最大振れ量である。独立変数BはタイヤTの側面の径方向(r)のある特定の部位における、タイヤTの回転軸方向(Z方向)に沿う最大振れ量(横振れ量)であり、車両実装時で言うとその部位での左右方向の最大振れ量である。独立変数CはタイヤTの側面の径方向(r)の一定の範囲における最大振れ量の積分値、つまり、横振れ量の積分値である。なお、上記式における回帰係数及び独立変数の添え字はタイヤTの側面の径方向(r)の各部位を特定する数字である。   FIG. 3B is an explanatory diagram of the independent variables A to C. In the figure, the maximum value and the minimum value are the maximum value and minimum value of the measurement result of the measuring device 20 (maximum value and minimum value in the vertical direction (Z) at an arbitrary position in the radial direction (r) of the side surface of the tire T). It is. The independent variable A is the maximum runout amount (vertical runout amount) along the radial direction (r) in a specific portion of the side surface of the tire T in the radial direction (r). This is the maximum amount of deflection in the direction. The independent variable B is the maximum runout amount (lateral runout amount) along the rotation axis direction (Z direction) of the tire T at a specific portion in the radial direction (r) of the side surface of the tire T. It is the maximum amount of shake in the left-right direction at that part. The independent variable C is an integral value of the maximum shake amount in a certain range in the radial direction (r) of the side surface of the tire T, that is, an integral value of the lateral shake amount. In addition, the regression coefficient and the subscript of the independent variable in the above formula are numbers specifying each part in the radial direction (r) of the side surface of the tire T.

回帰係数a〜cは予め実験により算出する。実験は、例えば、互いに組付けた同種のタイヤT及びホイールWの良品と不良品とをサンプルとして数十点用意する。不良品は、例えば、タイヤTとホイールWとの間に異物を噛ませて、組付け状態が不適切であるサンプルを意図的に作製する。異物は厚さが異なるものを複数種類用意し、複数種類の不良品を作成する。   The regression coefficients a to c are calculated in advance by experiments. In the experiment, for example, dozens of good and defective products of the same type of tire T and wheel W assembled with each other are prepared as samples. For example, a defective product is intentionally produced by biting a foreign object between the tire T and the wheel W and improperly assembled. A plurality of types of foreign matters having different thicknesses are prepared, and a plurality of types of defective products are created.

数十点のサンプルのそれぞれについて、検査装置10又はこれと同種の装置により、タイヤTの側面の径方向(r)の外形形状を計測し、また、前述のユニフォーミティ試験機を用いてサンプルのタイヤTとホイールWを組付けた状態でのRFV、LFV、LFDの値を測定する。外形形状の計測結果から、各独立変数A〜Cを算出し、評価値Y1〜Y3毎に、上記の重回帰式にタイヤT単体のRFV、LFV、LFDの値と上記組付けた状態でのRFV、LFV、LFDの測定値との差、すなわち、RFV、LFV、LFDの変化量をそれぞれYに代入すると共に各独立変数A〜Cを代入する。代入した重回帰式から最小二乗法等により各回帰係数a〜cを算定する。また、各評価値Y1〜Y3に影響の少ない独立変数の項は削除する。なお、上記重回帰式に、タイヤT単体のRFV、LFV、LFDの値と上記組付けた状態でのRFV、LFV、LFDの測定値との差、すなわち、RFV、LFV、LFDの変化量をそれぞれYに代入することで、タイヤTとホイールWの組付け状態における重回帰式の精度(妥当性)を高めることができる。   For each of several tens of samples, the outer shape in the radial direction (r) of the side surface of the tire T is measured by the inspection device 10 or a device of the same type, and the above-described uniformity tester is used to measure the sample. The values of RFV, LFV, and LFD when the tire T and the wheel W are assembled are measured. From the measurement results of the outer shape, the independent variables A to C are calculated, and for each of the evaluation values Y1 to Y3, the values of the RFV, LFV, and LFD of the tire T alone and the above-described assembled state are added to the multiple regression equation. Differences from the measured values of RFV, LFV, and LFD, that is, changes in RFV, LFV, and LFD are substituted for Y, and independent variables A to C are substituted. Regression coefficients a to c are calculated from the substituted multiple regression equation by the least square method or the like. In addition, the terms of independent variables that have little influence on the evaluation values Y1 to Y3 are deleted. In the multiple regression equation, the difference between the RFV, LFV, and LFD values of the tire T alone and the measured values of RFV, LFV, and LFD in the assembled state, that is, the amount of change in RFV, LFV, and LFD By substituting each for Y, the accuracy (validity) of the multiple regression equation in the assembled state of the tire T and the wheel W can be increased.

以上により各評価値Y1〜Y3毎に回帰係数を得て、重回帰式を得る。本発明の発明者が行なった実験では、あるタイヤとホイールとについて重回帰式は例えば以下のように得られた。なお、下記の式の独立変数の内容を図4(a)及び(b)に示す。図4(a)はタイヤTの表側の側面の外形形状、図4(b)はタイヤTの裏側の側面の外形形状である。
評価値:Y1=c11・C1+c12・C2+D1 (式1)
評価値:Y2=c21・C1+c22・C2−b21・B1+b22・B2+D2 (式2)
評価値:Y3=c31・C2+c32・C3−a1・A1+D3 (式3)
サンプルのタイヤTの側面の幅(組付け状態で見える幅)はおよそ7cm程度であり、独立変数A1はタイヤTの表側側面の、ホイールW近傍の縦振れ量である。独立変数B1はタイヤTの表側側面の、ホイールWから5cm程度の部位の横振れ量である。独立変数B2はタイヤTの裏側側面の、ホイールWから4cm程度の部位の横振れ量である。独立変数C1乃至C3はタイヤTの表側側面の横振れ量の積分値であり、順にホイールWから約1cm〜1.5cm、約1.5cm〜2cm、約4cm〜4.5cmの範囲の横振れ量の積分値である。
Thus, a regression coefficient is obtained for each evaluation value Y1 to Y3, and a multiple regression equation is obtained. In an experiment conducted by the inventor of the present invention, a multiple regression equation for a tire and a wheel was obtained as follows, for example. In addition, the content of the independent variable of the following formula | equation is shown to Fig.4 (a) and (b). 4A shows the outer shape of the front side surface of the tire T, and FIG. 4B shows the outer shape of the rear side surface of the tire T.
Evaluation value: Y1 = c 11 · C 1 + c 12 · C 2 + D 1 (Formula 1)
Evaluation value: Y2 = c 21 · C 1 + c 22 · C 2 -b 21 · B 1 + b 22 · B 2 + D 2 ( Equation 2)
Evaluation value: Y3 = c 31 · C 2 + c 32 · C 3 -a 1 · A 1 + D 3 ( Equation 3)
The width of the side surface of the sample tire T (the width seen in the assembled state) is about 7 cm, and the independent variable A1 is the vertical runout amount in the vicinity of the wheel W on the front side surface of the tire T. The independent variable B1 is a lateral runout amount of a portion of the front side surface of the tire T that is about 5 cm from the wheel W. The independent variable B <b> 2 is a lateral runout amount of a portion of the tire T on the back side surface of the wheel W about 4 cm from the wheel W. The independent variables C1 to C3 are integral values of the lateral runout amount of the front side surface of the tire T, and the lateral runout in the range of about 1 cm to 1.5 cm, about 1.5 cm to 2 cm, and about 4 cm to 4.5 cm from the wheel W in order. This is the integral value of the quantity.

各回帰係数の具体的な値は特に示さないが以下の関係があった。
11>c12
22>b21>c21>c22
1>c31>c32
なお、D1、D2、D3は回帰分析により算出された定数である。このようにして回帰係数が定められた上記の各重回帰式はHDD44に予め格納されることになる。
Although the specific value of each regression coefficient is not shown in particular, it has the following relationship.
c 11 > c 12
b 22 > b 21 > c 21 > c 22
a 1 > c 31 > c 32
D 1 , D 2 , and D 3 are constants calculated by regression analysis. The multiple regression equations having the regression coefficients thus determined are stored in the HDD 44 in advance.

<検査処理>
次に、上記式1〜式3を用いて検査装置10による検査の手順について説明する。図5はCPU41が実行する検査処理のフローチャートである。互いに組み付けられたタイヤT及びホイールWが回転装置20にセットされるとCPU41は図5の処理を実行する。S1では回転装置20を作動させてタイヤT及びホイールWを一定の速度で回転させる。S2では回転センサ25の検知結果を参照し、タイヤT及びホイールWの回転角度が計測角度であるかの判定を行なう。該当する場合はS3へ進み、該当しない場合は待ちとなる。
<Inspection process>
Next, an inspection procedure by the inspection apparatus 10 will be described using the above formulas 1 to 3. FIG. 5 is a flowchart of the inspection process executed by the CPU 41. When the tire T and the wheel W assembled to each other are set in the rotating device 20, the CPU 41 executes the process of FIG. In S1, the rotating device 20 is operated to rotate the tire T and the wheel W at a constant speed. In S2, with reference to the detection result of the rotation sensor 25, it is determined whether the rotation angle of the tire T and the wheel W is a measurement angle. If applicable, the process proceeds to S3, and if not applicable, the process waits.

S3では計測装置30によりタイヤTの径方向(r)の外形形状を計測する。S4では計測データをHDD44に保存する。S5ではタイヤTの全周について計測装置30により計測を行なったか否かを判定する。該当する場合はS6へ進み、該当しない場合はS2へ戻る。S6では回転装置20によるタイヤT及びホイールWの回転を停止する。   In S <b> 3, the outer shape of the tire T in the radial direction (r) is measured by the measuring device 30. In S4, the measurement data is stored in the HDD 44. In S5, it is determined whether or not the measurement device 30 has measured the entire circumference of the tire T. If applicable, the process proceeds to S6, and if not, the process returns to S2. In S6, the rotation of the tire T and the wheel W by the rotating device 20 is stopped.

S7ではS4で保存した計測データに基づき、タイヤTの側面の径方向(r)の複数の部位における振れ量を算出する。振れ量は上記式1〜式3で用いる独立変数を定めるために必要な分のみでよい。S8ではS7で算出された複数の部位の振れ量の中から評価値Y1〜Y3に応じて振れ量を選択して各独立変数A1、B1、B2、C1乃至C3を設定し、HDD44に格納された上記式1〜式3にこれを代入して、評価値Y1〜Y3を算出する。   In S7, based on the measurement data stored in S4, the amount of deflection at a plurality of portions in the radial direction (r) of the side surface of the tire T is calculated. The amount of deflection is only required for determining the independent variables used in the above equations 1 to 3. In S8, the shake amount is selected according to the evaluation values Y1 to Y3 from the shake amounts of the plurality of parts calculated in S7, and the independent variables A1, B1, B2, C1 to C3 are set and stored in the HDD 44. The evaluation values Y1 to Y3 are calculated by substituting this into the above equations 1 to 3.

S9では組付け状態の良否判定を行なう。ここでは、評価値Y1、Y2が予め設定したそれぞれの閾値を超えたら不良品、閾値以下であれば良品と判定し、評価値Y3が予め設定した所定範囲の閾値内であれば良品、所定範囲の閾値より外れていれば不良品と判定する。S10ではS9の判定結果をディスプレイ47に表示する。判定結果は各評価値Y1〜Y3毎に表示することができる。検査者はこの評価結果を見てそのタイヤT及びホイールWを使用するか否かを決定することになる。   In S9, whether the assembled state is good or bad is determined. Here, if the evaluation values Y1 and Y2 exceed the preset threshold values, the product is determined to be defective, and if the evaluation value Y3 is equal to or less than the threshold value, it is determined to be a non-defective product. If it is outside the threshold value, it is determined as a defective product. In S10, the determination result of S9 is displayed on the display 47. The determination result can be displayed for each evaluation value Y1 to Y3. The inspector determines whether or not to use the tire T and the wheel W by looking at the evaluation result.

このように本実施形態の検査装置10では、評価値Y1〜Y3を定めるパラメータ(独立変数)をタイヤTの径方向(r)の複数部位の振れ量とすることで、検査精度を向上することができる。また、複数部位の振れ量を見ることで、単なる組付けミスの発見のみならず、タイヤTやホイールWそのものの不具合も検査可能となる。更に、複数種類の評価値Y1〜Y3を算出することで、タイヤTとホイールWの組付け状態を多面的に評価することができる。また、ユニフォーミティ試験機と比べて短時間で検査が行なえ、全数検査も可能となる。   As described above, in the inspection apparatus 10 according to the present embodiment, the inspection accuracy is improved by setting the parameters (independent variables) for determining the evaluation values Y1 to Y3 as the amounts of deflection of a plurality of portions in the radial direction (r) of the tire T. Can do. Further, by looking at the amount of shake at a plurality of locations, not only a simple assembly error can be found, but also defects in the tire T and the wheel W themselves can be inspected. Furthermore, the assembly state of the tire T and the wheel W can be evaluated in a multifaceted manner by calculating a plurality of types of evaluation values Y1 to Y3. In addition, the inspection can be performed in a short time compared to the uniformity testing machine, and 100% inspection can be performed.

また、評価値Y1〜Y3を定めるパラメータ(独立変数)として、最大振れ量(縦振れ量、横振れ量)の他に径方向(r)の一定の範囲における最大振れ量の積分値という、評価値と相関関係にあるパラメータを見出し、評価値Y1〜Y3の種類に応じてこれらを用いることで、評価値Y1〜Y3をより適切に算出できる。   Further, as a parameter (independent variable) for determining the evaluation values Y1 to Y3, an evaluation value that is an integrated value of the maximum shake amount in a certain range in the radial direction (r) in addition to the maximum shake amount (vertical shake amount and lateral shake amount). The evaluation values Y1 to Y3 can be calculated more appropriately by finding parameters correlated with the values and using these in accordance with the types of the evaluation values Y1 to Y3.

また、評価値Y1〜Y3を定めるパラメータ(独立変数)として、縦振れ量、横振れ量を用いることで、タイヤTの上下、左右の振れ、左右の振れの中心といったタイヤTとホイールWの組付け状態を多面的に評価することができる。   Further, by using the vertical runout amount and the lateral runout amount as parameters (independent variables) for determining the evaluation values Y1 to Y3, a set of the tire T and the wheel W such as the center of the top and bottom, left and right runout, and left and right runout of the tire T is used. The attached state can be evaluated from multiple aspects.

また、本発明においては、評価値Y1〜Y3として、タイヤT及びホイールWの回転時の上下の振れ(Y1)、左右の振れ(Y2)及び左右の振れの中心位置(Y3)を採用することでタイヤとホイールの組付け状態が車両の走行性能に与える影響を多面的に評価することができる。   Further, in the present invention, as the evaluation values Y1 to Y3, the vertical deflection (Y1), the horizontal deflection (Y2), and the central position (Y3) of the horizontal deflection when the tire T and the wheel W are rotated are adopted. Thus, it is possible to evaluate the influence of the assembled state of the tire and the wheel on the running performance of the vehicle from various aspects.

本発明の一実施形態に係る検査装置10のブロック図である。1 is a block diagram of an inspection apparatus 10 according to an embodiment of the present invention. タイヤTの側面の径方向の外形形状を2次元座標で表したデータである。This is data representing the outer shape in the radial direction of the side surface of the tire T in two-dimensional coordinates. (a)は評価値Y1乃至Y3の説明図、(b)は独立変数の説明図である。(A) is explanatory drawing of evaluation value Y1 thru | or Y3, (b) is explanatory drawing of an independent variable. (a)及び(b)は独立変数の説明図である。(A) And (b) is explanatory drawing of an independent variable. 検査装置10のCPU41が実行する処理の例を示すフローチャートである。It is a flowchart which shows the example of the process which CPU41 of the test | inspection apparatus 10 performs.

10 検査装置
20 回転装置
30 計測装置
T タイヤ
W ホイール
DESCRIPTION OF SYMBOLS 10 Inspection apparatus 20 Rotating apparatus 30 Measuring apparatus T Tire W Wheel

Claims (4)

タイヤとホイールの組付け状態を検査する検査装置において、
互いに組みつけられたタイヤとホイールとをその回転軸回りに回転させる回転手段と、
前記回転手段により回転する前記タイヤの側面の径方向の外形形状を前記タイヤの全周に渡って計測する計測手段と、
前記計測手段の計測結果に基づき、前記タイヤの側面の径方向の複数の部位における振れ量を算出する振れ量算出手段と、
前記振れ量算出手段により算出された前記複数の部位の前記振れ量の中から選択される複数の前記振れ量に基づき、前記タイヤと前記ホイールの組付け状態を評価する複数種類の評価値を算出する評価値算出手段と、
を備え
前記複数種類の評価値は、車両の振動に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の上下の振れ、車両の振動と直進性に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の左右の振れ、及び、車両の直進性に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の左右の振れの中心位置を示す値であることを特徴とする検査装置。
In an inspection device that inspects the assembled state of a tire and a wheel,
Rotating means for rotating the tire and the wheel assembled to each other around the rotation axis;
Measuring means for measuring a radial outer shape of a side surface of the tire rotated by the rotating means over the entire circumference of the tire;
Based on the measurement result of the measuring means, a shake amount calculating means for calculating a shake amount in a plurality of portions in the radial direction of the side surface of the tire;
Based on a plurality of the shake amounts selected from the shake amounts of the plurality of parts calculated by the shake amount calculation means, a plurality of types of evaluation values for evaluating an assembly state of the tire and the wheel are calculated. Evaluation value calculating means for
Equipped with a,
The plurality of types of evaluation values are evaluation elements that affect the vibration of the vehicle, and the tires and the evaluation points that affect the vertical vibration of the tire and the wheel, the vibration of the vehicle, and the straightness. Inspection device characterized in that it is a value indicating a center position of left and right runout during rotation of the tire and the wheel, which is an evaluation factor that affects left and right runout during rotation of the wheel and straightness of the vehicle .
前記評価値算出手段は、
前記評価値の種類に応じて予め定められている、前記複数の部位の中から選択される特定の部位の最大振れ量、又は、前記タイヤの側面の径方向の一定の範囲における最大振れ量の積分値、の少なくともいずれかに基づいて前記評価値を算出することを特徴とする請求項1に記載の検査装置。
The evaluation value calculation means includes
Predetermined according to the type of the evaluation value, the maximum runout amount of a specific portion selected from the plurality of portions, or the maximum runout amount in a certain radial range of the side surface of the tire The inspection apparatus according to claim 1, wherein the evaluation value is calculated based on at least one of integral values.
前記振れ量算出手段により算出される前記振れ量には、前記回転軸方向に沿う横振れ量と、前記径方向に沿う縦振れ量と、が含まれることを特徴とする請求項1又は2に記載の検査装置。   The shake amount calculated by the shake amount calculation means includes a lateral shake amount along the rotation axis direction and a vertical shake amount along the radial direction. The inspection device described. タイヤとホイールの組付け状態を検査する検査方法において、
互いに組みつけられたタイヤとホイールとをその回転軸回りに回転させながら、前記タイヤの側面の径方向の外形形状を前記タイヤの全周に渡って計測する計測工程と、
前記計測工程の計測結果に基づき、前記タイヤの側面の径方向の複数の部位における振れ量を算出する振れ量算出工程と、
前記振れ量算出工程により算出された前記複数の部位の前記振れ量の中から選択される複数の前記振れ量に基づき、前記タイヤと前記ホイールの組付け状態を評価する複数種類の評価値を算出する評価値算出工程と、
を備え
前記複数種類の評価値は、車両の振動に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の上下の振れ、車両の振動と直進性に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の左右の振れ、及び、車両の直進性に影響する評価要素である、前記タイヤ及び前記ホイールの回転時の左右の振れの中心位置を示す値であることを特徴とする検査方法。
In the inspection method for inspecting the assembly state of tires and wheels,
A measurement step of measuring the outer shape in the radial direction of the side surface of the tire over the entire circumference of the tire while rotating the tire and the wheel assembled with each other around the rotation axis;
Based on the measurement result of the measurement step, a shake amount calculation step for calculating a shake amount in a plurality of portions in the radial direction of the side surface of the tire,
Based on a plurality of the shake amounts selected from the shake amounts of the plurality of parts calculated in the shake amount calculation step, a plurality of types of evaluation values for evaluating an assembly state of the tire and the wheel are calculated. An evaluation value calculation step to perform,
Equipped with a,
The plurality of types of evaluation values are evaluation elements that affect the vibration of the vehicle, and the tires and the evaluation points that affect the vertical vibration of the tire and the wheel, the vibration of the vehicle, and the straightness. Inspection method characterized in that it is a value indicating a center position of left and right runout during rotation of the tire and the wheel, which is an evaluation factor that affects left and right runout during rotation of the wheel and straightness of the vehicle .
JP2006119785A 2006-04-24 2006-04-24 Inspection apparatus and inspection method Expired - Fee Related JP5017919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119785A JP5017919B2 (en) 2006-04-24 2006-04-24 Inspection apparatus and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119785A JP5017919B2 (en) 2006-04-24 2006-04-24 Inspection apparatus and inspection method

Publications (2)

Publication Number Publication Date
JP2007292563A JP2007292563A (en) 2007-11-08
JP5017919B2 true JP5017919B2 (en) 2012-09-05

Family

ID=38763313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119785A Expired - Fee Related JP5017919B2 (en) 2006-04-24 2006-04-24 Inspection apparatus and inspection method

Country Status (1)

Country Link
JP (1) JP5017919B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1391808B1 (en) * 2008-10-31 2012-01-27 Sicam Srl MALE DISPENSER FOR THE ASSEMBLY AND DISASSEMBLY OF VEHICLE WHEELS
IT1402050B1 (en) * 2010-07-30 2013-08-28 Sicam Srl METHOD FOR DETECTION OF THE CONFORMATION AND / OR DIMENSIONS OF A WHEEL IN CARS OR SIMILAR MACHINES
JP5749042B2 (en) * 2011-03-08 2015-07-15 株式会社ブリヂストン Measuring method, measuring apparatus and measuring program for measuring offset of cap tread of green tire
ES2438390B1 (en) * 2012-06-12 2014-10-27 Bellota Agrisolutions, S.L. MACHINE AND METHOD OF DATA ACQUISITION TO MEASURE THE ALABEO AND CONCAVITY OF AGRICULTURAL DISCS.
KR102533592B1 (en) * 2021-09-27 2023-05-17 넥센타이어 주식회사 Device that detects changes in the shape of a tire using transmission and reception of infrared rays

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616005B2 (en) * 1990-08-29 1994-03-02 住友ゴム工業株式会社 Tire deflection measurement device
JP3602805B2 (en) * 2000-03-29 2004-12-15 中央精機株式会社 Familiar processing equipment for tire assemblies
JP4611488B2 (en) * 2000-04-21 2011-01-12 本田技研工業株式会社 Wheel runout measurement method
JP3677245B2 (en) * 2002-02-07 2005-07-27 株式会社バンザイ Tire fitting measuring device
JP2004077464A (en) * 2002-06-20 2004-03-11 Yokohama Rubber Co Ltd:The Tire failure detection device and detection method
JP4204967B2 (en) * 2003-12-24 2009-01-07 株式会社ブリヂストン Tire inspection device

Also Published As

Publication number Publication date
JP2007292563A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP6087163B2 (en) System for characterizing a tire uniformity machine and method of using the characterization
JP5968919B2 (en) Method and apparatus for detecting defects distributed in transparent container material
JP5017919B2 (en) Inspection apparatus and inspection method
JP2007106090A (en) Method and instrument for inspecting pneumatic tire in process of manufacturing
EP2851650B1 (en) Tire shape inspection method and tire shape inspection device
JP2008096152A (en) Radial run out measuring apparatus and radial run out measuring method
JP6559637B2 (en) Tire uniformity machine characterization system and method
KR20130134394A (en) Inspection device of tire tread using machine vision and inspection method thereof
US9625353B2 (en) Shape inspection device
JP2011191249A (en) Monitoring method in balance test and dynamic balance measuring device
JP2014095660A (en) Correction method of uniformity waveform of tire
TWI466206B (en) Edge inspection and metrology
JP2864993B2 (en) Surface profile measuring device
KR101287924B1 (en) System for measuring defect and method therefor
KR101004148B1 (en) apparatus and method of analyzing tire shape
JP2006349597A (en) Device and method for measuring tire uniformity
JP5228731B2 (en) Vehicle wheel position measuring device by image processing
KR20140113061A (en) Sideslip test system and method for vehicle
WO2024038625A1 (en) Welding data collection method
JP3743476B2 (en) Line flow fan shape inspection apparatus and shape inspection method thereof
JP2009198370A (en) Noncontact type position measuring device by image processing
CN108169323A (en) A kind of processing method of polymorphic structure workpiece eddy current signal
KR101015581B1 (en) Tire structure transformation measurement apparatus using X-ray
KR20190012479A (en) Device Of Inspecting Tire Bead Circularity
JP5781397B2 (en) Circular shape measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5017919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees