JP5572206B2 - LNG carrier independent tank support structure system - Google Patents

LNG carrier independent tank support structure system Download PDF

Info

Publication number
JP5572206B2
JP5572206B2 JP2012271484A JP2012271484A JP5572206B2 JP 5572206 B2 JP5572206 B2 JP 5572206B2 JP 2012271484 A JP2012271484 A JP 2012271484A JP 2012271484 A JP2012271484 A JP 2012271484A JP 5572206 B2 JP5572206 B2 JP 5572206B2
Authority
JP
Japan
Prior art keywords
lng
tube
tank
air
hull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012271484A
Other languages
Japanese (ja)
Other versions
JP2013124100A (en
Inventor
キム,ウル−ヨン
ハ,シム−シク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HD Hyundai Heavy Industries Co Ltd
Original Assignee
Hyundai Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Heavy Industries Co Ltd filed Critical Hyundai Heavy Industries Co Ltd
Publication of JP2013124100A publication Critical patent/JP2013124100A/en
Application granted granted Critical
Publication of JP5572206B2 publication Critical patent/JP5572206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/24Means for preventing unwanted cargo movement, e.g. dunnage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/70Reinforcements for carrying localised loads, e.g. propulsion plant, guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/12Supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B2025/087Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid comprising self-contained tanks installed in the ship structure as separate units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/28Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for deck loads
    • B63B2025/285Means for securing deck containers against unwanted movements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、LNG船の独立型タンク支持構造システムに係り、さらに詳しくは、海上でLNGを運送するために極低温状態のLNGを貯留したタンクがLNG船に内設されるに際して、LNGの重さ及びタンク自重、船体運動に起因する荷重などによってタンク及びLNG船の船体に変形が発生することを極力抑えるためのLNG船の独立型タンク支持構造システムに関する。   The present invention relates to a stand-alone tank support structure system for an LNG ship, and more specifically, when a tank storing LNG in a cryogenic state for transporting LNG at sea is installed in the LNG ship, The present invention relates to an independent tank support structure system for an LNG ship for minimizing deformation of the tank and the LNG ship hull due to the weight of the tank and the load caused by the hull motion.

一般に、LNG船に設けられた独立型LNGタンクは、図1に示すMOSS型LNGタンク100と、図2に示すSPB型LNGタンク200と、に大別できる。   In general, the independent LNG tank provided in the LNG ship can be roughly classified into a MOSS type LNG tank 100 shown in FIG. 1 and an SPB type LNG tank 200 shown in FIG.

極低温のLNGを貯留するために、LNGタンクは主としてアルミニウムから製作し、その外壁に保温材(インシュレーション)を設けて熱損失を防ぐ。   In order to store the cryogenic LNG, the LNG tank is mainly made of aluminum, and a heat insulating material (insulation) is provided on the outer wall to prevent heat loss.

前記MOSS型LNGタンク100は、LNG船の船体400にスカート450の支持によって設けられる。   The MOSS type LNG tank 100 is provided on the hull 400 of the LNG ship by supporting a skirt 450.

このため、タンクにLNGを満たすと、タンクの自重とLNGの重さが全てスカート450を介して船体400に伝わり、このとき、タンクの赤道部300と船体400のスカート450の配設部などの構造的な不連続部に局部的に大きな荷重がかかり、構造が破損する可能性が大幅に高くなる。   For this reason, when the tank is filled with LNG, the tank's own weight and the weight of the LNG are all transmitted to the hull 400 via the skirt 450. At this time, the tank equator 300 and the arrangement of the skirt 450 of the hull 400, etc. A large load is locally applied to the structural discontinuity, and the possibility that the structure is damaged is greatly increased.

すなわち、全ての荷重がスカート450を介して伝わるため、タンクの赤道部300は荷重によってタンクが高さ方向に延び、幅方向には収縮が起きて座屈が発生すると共に、高い応力増大が来たされる。   In other words, since all the load is transmitted through the skirt 450, the tank equatorial section 300 extends in the height direction due to the load, contracts in the width direction, buckles, and increases in stress. It will be done.

また、過度な荷重に耐えるために、スカート450だけではなく、船体400にも構造的な補強を施すことを余儀なくされ、しかも、過度な荷重に起因して、LNG積載量をさらに増やせるタンクを製造することが困難である。   In addition, in order to withstand an excessive load, not only the skirt 450 but also the hull 400 must be structurally strengthened, and a tank capable of further increasing the LNG load due to the excessive load is manufactured. Difficult to do.

上記の問題点は、MOSS型LNGタンク100のみならず、SPB型LNGタンク200にも見られる。   The above-mentioned problems are observed not only in the MOSS type LNG tank 100 but also in the SPB type LNG tank 200.

上述した問題点を解消するために、本発明は、LNGを貯留したタンクと前記タンクが設けられたLNG船の船体との結合部位における、LNGの重さ及びタンク自重、船体運動に起因する荷重などによる変形を防ぐことのできるLNG船の独立型タンク支持構造システムを提供するところにその目的がある。   In order to solve the above-described problems, the present invention provides a load caused by the weight of the LNG, the tank's own weight, and the hull movement at the joint portion between the tank storing the LNG and the hull of the LNG ship provided with the tank. An object of the present invention is to provide a stand-alone tank support structure system for an LNG ship that can prevent deformation due to the above.

また、本発明の他の目的は、タンクとLNG船の船体との結合部位の変形を防ぐことにより、目的地までLNGを安全に輸送することのできるLNG船の独立型タンク支持構造システムを提供するところにある。   Another object of the present invention is to provide an independent tank support structure system for an LNG ship that can safely transport LNG to a destination by preventing deformation of the joint portion between the tank and the hull of the LNG ship. There is a place to do.

さらに、本発明のさらに他の目的は、タンクとLNG船の船体との結合部位の変形を防ぐことにより、従来のLNG積載量よりも多量のLNG積載量を保有するタンクを製造することのできるLNG船の独立型タンク支持構造システムを提供するところにある。   Furthermore, still another object of the present invention is to prevent the deformation of the joint portion between the tank and the hull of the LNG ship, thereby making it possible to manufacture a tank having a larger LNG load than the conventional LNG load. An independent tank support structure system for an LNG ship is provided.

上述した諸目的を達成するために、本発明に係るLNG船の独立型タンク支持構造システムは、LNG船のLNGを積載する独立型(球型または角型)LNGタンクとLNG船の船体との結合部位の変形を防ぐために、LNGタンクと船体との間の空間部に挿設されてLNGタンクを等分布支持力で支持するチューブと、船体の両底部の内部にそれぞれ挿設されて前記チューブの内部に空気を供給する両圧縮器と、前記両圧縮器及びチューブにそれぞれ連結されて空気をチューブに流入させる両パイプと、前記両パイプの任意の個所にそれぞれ設けられてチューブの内部への空気の流入量を調節する両調節弁と、前記チューブの内部への空気の流入量が所定値を超えた場合に空気の超過流入量を測定して表示する圧力計と、前記圧力計から空気の超過流入量を感知するセンス部と、前記センス部の信号を受信し、空気の超過流入量分をチューブの外部に流出する減圧弁と、前記両圧縮器にそれぞれ連結されたパイプを継合するための継ぎ管と、を備え、前記チューブ(T)は外チューブ及び内チューブからなる二重チューブであり、前記継ぎ管の真ん中には、両圧縮器の連動により二重チューブ内の空気圧が等しくなるように統制弁がさらに配備されることを特徴とする。 In order to achieve the above-described objects, an independent tank support structure system for an LNG ship according to the present invention includes an independent (spherical or square ) LNG tank on which an LNG of an LNG ship is loaded, and a hull of the LNG ship. In order to prevent deformation of the coupling site, a tube inserted in the space between the LNG tank and the hull to support the LNG tank with an evenly distributed supporting force, and a tube inserted into both bottoms of the hull respectively. Both compressors for supplying air into the interior, both pipes connected to the compressors and the tubes respectively to allow air to flow into the tubes, and provided at arbitrary locations on the pipes to the inside of the tubes. Both control valves for adjusting the inflow amount of air, a pressure gauge for measuring and displaying the excess inflow amount of air when the inflow amount of air into the tube exceeds a predetermined value, Engagement a sense unit for sensing the excess inflow, receives a signal of the sense portion, a pressure reducing valve for discharging the excess inflow amount of air to the outside of the tube, a pipe coupled respectively the both compressor And the tube (T) is a double tube composed of an outer tube and an inner tube. In the middle of the joint tube, the air pressure in the double tube is caused by the interlocking of both compressors. A control valve is further provided to be equal .

本発明に係るLNG船の独立型タンク支持構造システムによれば、LNGを貯留したタンクがLNG船に内設されるに際して、LNG荷重及びタンク荷重によってタンクと船体との結合部位の変形を防ぐことができるという効果がある。   According to the independent tank support structure system for an LNG ship according to the present invention, when a tank storing LNG is installed in the LNG ship, the LNG load and the tank load prevent deformation of the joint portion between the tank and the hull. There is an effect that can be.

また、前記タンクと船体との結合部位の変形が防がれて、LNGを目的地まで安定的に輸送することができる。   Further, deformation of the joint portion between the tank and the hull is prevented, and LNG can be stably transported to the destination.

さらに、タンクを等分布支持力で支持し、且つ、空気を用いることから、タンクと船体との結合部位を軽量化させることができて建造費及び材料費が節減され、しかも、応力集中部が生じないことから、構造的に安全である。   In addition, since the tank is supported with an evenly distributed support force and air is used, the connecting portion between the tank and the hull can be reduced in weight, and the construction cost and material cost can be reduced. It is structurally safe because it does not occur.

加えて、従来のLNGタンクよりも大きなLNGタンクを製造することができて、LNG積載量を増やすことができる。   In addition, a LNG tank larger than the conventional LNG tank can be manufactured, and the LNG load can be increased.

従来のMOSS型LNGタンクの配置及びタンク支持構造を示す断面図である。It is sectional drawing which shows arrangement | positioning and the tank support structure of the conventional MOSS type | mold LNG tank. 従来のSPB型LNGタンクの配置及びタンク支持構造を示す断面図である。It is sectional drawing which shows arrangement | positioning and the tank support structure of the conventional SPB type LNG tank. 本発明に係る赤道部が延びてタンク容量が増えた球型(MOSS型)LNGタンクの配置構造に単体チューブを設けて示す断面図(LNGをタンクに積載しなかった場合)である。FIG. 5 is a cross-sectional view showing a spherical tube (MOSS type) LNG tank arrangement structure in which the equator portion according to the present invention is extended and a tank capacity is increased (in the case where the LNG is not loaded on the tank). 図3において、LNGをタンクに積載した状態を示す断面図である。In FIG. 3, it is sectional drawing which shows the state which loaded LNG on the tank. 本発明に係る球型(MOSS型)LNGタンクの配置構造に、安全性を図るために、外チューブ及び内チューブからなる二重チューブを設けて示す断面図である。FIG. 4 is a cross-sectional view showing a spherical (MOSS type) LNG tank arrangement structure according to the present invention with a double tube including an outer tube and an inner tube for safety. 本発明に係る角型(SPB型)LNGタンクの配置構造に単体チューブを設けて示す断面図である(LNGをタンクに積載しなかった場合)。It is sectional drawing which provides a single-piece tube in the arrangement structure of a square type (SPB type) LNG tank concerning the present invention (when LNG is not loaded in a tank). 図6において、LNGをタンクに積載した状態を示す断面図である。In FIG. 6, it is sectional drawing which shows the state which loaded LNG on the tank.

LNG(液化天然ガス)船の場合、気体状態の天然ガスを−163℃まで下げて液化させることで体積比が1/600まで減って一度に多量のLNGを運搬することになるが、LNG船を用いて天然ガスを運搬するには、港口またはガス田に大規模の低温液化設備が必要であり、LNG船の船艙の温度を−163℃に維持するために船艙保温装置も必要であり、しかも、所定の温度を維持するために冷却装置も必要である。   In the case of an LNG (liquefied natural gas) ship, the volume ratio is reduced to 1/600 by lowering the natural gas in the gaseous state to -163 ° C and liquefying, and a large amount of LNG is transported at one time. In order to transport natural gas using LNG, a large-scale low-temperature liquefaction facility is required at the port entrance or gas field, and a ship thermal insulation device is also required to maintain the temperature of the LNG ship's ship at -163 ° C. Moreover, a cooling device is also required to maintain a predetermined temperature.

また、液化されたLNGをLNG船に積載する場合には、LNGを貯留可能なタンクを船体に設けることになるが、このとき、タンクは、スカートの支持によって船体に支えられている状態で設けられる。   When liquefied LNG is loaded on an LNG ship, a tank capable of storing LNG is provided on the hull. At this time, the tank is provided in a state supported by the hull by the support of the skirt. It is done.

前記タンクは、MOSS型(球型)タンク(図1参照)と、SPB型(角型)タンク(図2参照)と、に大別できる。 The tank can be roughly classified into a MOSS type (spherical type) tank (see FIG. 1) and an SPB type (square type) tank (see FIG. 2).

したがって、本発明に係るLNG船の独立型タンク支持構造システムは、前記球型(Spherical type)または角型(Prismatic type)のタンクが船体に支えられた状態で設けられるときに適用される技術である。 Accordingly, the independent tank support structure system for an LNG ship according to the present invention is a technique applied when the spherical (Spherical type) or prismatic (Prismatic type) tank is provided in a state supported by the hull. is there.

以下、添付図面に基づき、本発明に係るLNG船の独立型タンク支持構造システムについて説明する。   Hereinafter, an independent tank support structure system for an LNG ship according to the present invention will be described with reference to the accompanying drawings.

図3は、球型のLNGタンク10にLNGを積載しなかった状態を示すものである。本発明は、LNGタンク10が船体20に支えられている構造を採用しており、LNGタンク10の外部にはLNGタンクカバー5が包設され、LNGタンク10の両側部がスカート25と係合され、前記スカート25は、船体20と係合された状態となってLNGタンク10の荷重がスカート25に集中することを補完するためにLNGタンク10と船体20との間の空間にチューブT(単体チューブ33)が設けられ、前記チューブ33の内部に空気を供給するための圧縮器30が船体20の両底部の内部に一つずつ挿設され、前記両圧縮器30から放出された空気をチューブ33の内部に流入させるための搬送路となるパイプ31の一方の側部がそれぞれの圧縮器30に連結され、チューブ33に他方の側部が連結され、前記両パイプ31の任意の個所には圧縮器30から放出された空気をチューブ33の内部に所定量に調節して流入させるための調節弁32がそれぞれ連結され、チューブ33の内部に流入した空気量が所定値を超えたときには、超えた空気量の数値が一目で分かるように圧力計35が設けられ、前記圧力計35から超過空気流入量を感知するセンス部36が設けられ、前記センス部36の信号を受信して超過空気量をチューブ33から流出させる減圧弁37が設けられ、前記減圧弁37を介して流出される超過空気量を外部に排出する排出パイプ38が船体20の両側部にそれぞれ設けられることを特徴とする。 FIG. 3 shows a state in which LNG is not loaded on the spherical LNG tank 10. The present invention employs a structure in which the LNG tank 10 is supported by the hull 20. The LNG tank cover 5 is provided outside the LNG tank 10, and both sides of the LNG tank 10 engage with the skirt 25. The skirt 25 is engaged with the hull 20 and the tube T (in the space between the LNG tank 10 and the hull 20 is supplemented to compensate for the load of the LNG tank 10 being concentrated on the skirt 25. A single tube 33) is provided, and compressors 30 for supplying air to the inside of the tube 33 are inserted one by one inside the bottoms of the hull 20, and the air discharged from both the compressors 30 is supplied. One side part of the pipe 31 which becomes a conveyance path for flowing into the inside of the tube 33 is connected to each compressor 30, and the other side part is connected to the tube 33. 1 is connected to a regulating valve 32 for allowing the air discharged from the compressor 30 to flow into the tube 33 by adjusting it to a predetermined amount, and the amount of air flowing into the tube 33 is predetermined. When the value is exceeded, a pressure gauge 35 is provided so that the numerical value of the excess air amount can be seen at a glance, a sensing unit 36 for sensing the excess air inflow amount from the pressure gauge 35 is provided, and the signal of the sensing unit 36 And a discharge pipe 38 for discharging the excess air amount that flows out through the pressure reduction valve 37 to the outside is provided on each side of the hull 20. It is characterized by being able to.

このため、LNGタンク10内にLNGが液化状態で積載される場合に、図4に示すように、LNGタンク10と船体20との間のチューブ33に空気が流入した状態となってLNGタンク10の下部をチューブ33が支えて、LNGタンク10の荷重がスカート25に伝わることを軽減し、LNGタンク10、スカート25、船体20に囲まれたチューブ33に圧縮空気層を形成してLNGタンク10の重さを等分布支持力で支持してLNGタンク10の荷重を船体20に柔軟に伝達する。   For this reason, when LNG is loaded in a liquefied state in the LNG tank 10, as shown in FIG. 4, air flows into the tube 33 between the LNG tank 10 and the hull 20, and the LNG tank 10. The tube 33 supports the lower portion of the LNG tank 10 to reduce the transmission of the load of the LNG tank 10 to the skirt 25, and a compressed air layer is formed in the tube 33 surrounded by the LNG tank 10, the skirt 25, and the hull 20 to form the LNG tank 10. The weight of the LNG tank 10 is flexibly transmitted to the hull 20 by supporting the weight of the LNG tank 10 with an evenly distributed supporting force.

すなわち、LNGタンク10にLNGが満たされていない状態ではスカート25だけでLNGタンク10を支持し、LNGタンク10にLNGが積載されれば、圧縮器30において生成された空気をパイプ31を介して船体20とLNGタンク10との間のチューブ33の内部空間に注入する。   That is, when the LNG tank 10 is not filled with LNG, the LNG tank 10 is supported only by the skirt 25, and if LNG is loaded on the LNG tank 10, the air generated in the compressor 30 is passed through the pipe 31. It injects into the internal space of the tube 33 between the hull 20 and the LNG tank 10.

もちろん、空気を注入するチューブ33空間は密閉空間にし、LNGタンク10の荷重に十分に耐えるように船体20を構成する。   Of course, the space of the tube 33 into which air is injected is a sealed space, and the hull 20 is configured so as to sufficiently withstand the load of the LNG tank 10.

また、圧縮空気の量を調節する調節弁32は、圧縮器30から供給される空気量を調節してチューブ33の内部に流入させ、圧力計35は、チューブ33の内部に空気の超過流入量がある場合には一目で分かるようにそれを数値で表示し、センス部36は、前記圧力計35から空気の超過流入量を感知したときには、減圧弁37をして空気の超過流入量分をチューブの外部に流出せしめ、前記減圧弁37は、センス部36から信号を受信して空気の超過流入量分をチューブ33の外部に排出するが、このとき、排出された空気の超過流入量は、排出パイプ38を通って外部に流出される。   The adjustment valve 32 that adjusts the amount of compressed air adjusts the amount of air supplied from the compressor 30 to flow into the tube 33, and the pressure gauge 35 has an excess inflow amount of air into the tube 33. If there is, it is displayed numerically so that it can be seen at a glance. When the sensing unit 36 senses the excess inflow of air from the pressure gauge 35, it uses the pressure reducing valve 37 to indicate the excess inflow of air. The pressure reducing valve 37 receives the signal from the sensing unit 36 and discharges the excess air inflow to the outside of the tube 33. At this time, the excess inflow of the discharged air is And flows out through the discharge pipe 38.

前記センス部36は、0.5bar以上またはそれ以下の圧力差を感知して減圧弁を作動・調節する。   The sensing unit 36 operates and adjusts the pressure reducing valve by sensing a pressure difference of 0.5 bar or more.

このような構成を有する本発明のLNG船の独立型タンク支持構造システムによれば、LNGタンク10及び船体20に局部的に発生し得る破損が防がれて、究極的にはより大容量のLNGタンク10を船体20に設けて天然ガスを多量運送可能な船体20を提供することが可能になる。   According to the independent tank support structure system for an LNG ship of the present invention having such a configuration, damage that may occur locally in the LNG tank 10 and the hull 20 is prevented, and ultimately a larger capacity is achieved. By providing the LNG tank 10 in the hull 20, it is possible to provide the hull 20 capable of transporting a large amount of natural gas.

本発明に係るLNG船の独立型タンク支持構造システムには、図5に示すように、LNGタンク10と船体20との間に外チューブ34a及び内チューブ34bからなる二重チューブ34が選択的に設けられる。   In the independent tank support structure system for an LNG ship according to the present invention, as shown in FIG. 5, a double tube 34 comprising an outer tube 34a and an inner tube 34b is selectively provided between the LNG tank 10 and the hull 20. Provided.

前記二重チューブ34は、外チューブ34aに内チューブ34bを包設せしめた状態で係合されたものであってもよく、結束手段によって外チューブ34a及び内チューブ34bが係合されたものであってもよい。   The double tube 34 may be engaged with the inner tube 34b wrapped around the outer tube 34a, and the outer tube 34a and the inner tube 34b are engaged by a binding means. May be.

また、前記二重チューブ34が設けられる場合には、両圧縮器30に連結された両パイプ31を継合するための継ぎ管39がさらに付設され、前記継ぎ管39の真ん中には統制弁40がさらに付設される。   When the double tube 34 is provided, a joint pipe 39 for joining the pipes 31 connected to the compressors 30 is further provided, and a control valve 40 is provided in the middle of the joint pipe 39. Is additionally provided.

このため、両圧縮器30のうちの一方の圧縮器30から供給された空気はパイプ31に沿って外チューブ34aに流入し、他方の圧縮器30から供給された空気はパイプ31に沿って内チューブ34bに流入し、このとき、両圧縮器30から供給された空気の一部は両パイプ31に流入していて前記両パイプ31に連結された継ぎ管39に流入し、前記継ぎ管39の真ん中に連結された統制弁40によりそれ以上の空気の流れが遮断される。   Therefore, the air supplied from one of the compressors 30 flows into the outer tube 34 a along the pipe 31, and the air supplied from the other compressor 30 flows along the pipe 31 to the inner side. At this time, a part of the air supplied from both compressors 30 flows into both pipes 31 and flows into the joint pipes 39 connected to both pipes 31. Further air flow is blocked by a control valve 40 connected in the middle.

終局的には、外チューブ34a及び内チューブ34bに働く圧力が等しくなるが、これは、前記外チューブ34aと内チューブ34bとの間の圧力差がないことを意味する。すなわち、圧力がゼロである。   Ultimately, the pressures acting on the outer tube 34a and the inner tube 34b are equal, which means that there is no pressure difference between the outer tube 34a and the inner tube 34b. That is, the pressure is zero.

このため、両圧縮器30から供給される空気圧が等しくなるように作動を連動させると共に、統制弁が設けられているため、必要に応じて、統制弁を開いて外チューブ34aと内チューブ34bとの間の圧力差を減らすことにより、空気圧が等しくなる。   For this reason, the operation is interlocked so that the air pressure supplied from both compressors 30 becomes equal, and a control valve is provided. Therefore, if necessary, the control valve is opened and the outer tube 34a and the inner tube 34b By reducing the pressure difference between the two, the air pressure becomes equal.

LNGタンク10を支持するために、圧縮器10からの送出に必要とされる空気圧は、最大5〜10barであればよい。   In order to support the LNG tank 10, the air pressure required for delivery from the compressor 10 may be 5 to 10 bar at maximum.

上記のような構成を有する本発明のLNG船の独立型タンク支持構造システムは、図6及び図7に示すように、角型LNGタンク10と船体20との間の空間部にも同様に適用可能であるということはいうまでもない。 As shown in FIGS. 6 and 7, the independent tank support structure system for an LNG ship according to the present invention having the above-described configuration is similarly applied to the space between the square LNG tank 10 and the hull 20. Needless to say, it is applicable.

5 LNGタンクカバー
10 LNGタンク
15 赤道部
20 船体
25 スカート
30 圧縮器
31 パイプ
32 調節弁
33 チューブ
34 重チューブ
34a 外チューブ
34b 内チューブ
35 圧力計
36 センス部
37 減圧弁
38 排出パイプ
39 継ぎ管
40 統制弁
T チューブ
100 MOSS型LNGタンク
200 SPB型LNGタンク
300 赤道部
400 船体
450 スカート
5 LNG tank cover 10 LNG tank 15 Equatorial section 20 Hull 25 Skirt 30 Compressor 31 Pipe 32 Control valve 33 Tube 34 Heavy tube 34a Outer tube 34b Inner tube 35 Pressure gauge 36 Sense section 37 Pressure reducing valve 38 Discharge pipe 39 Joint pipe 40 Control Valve T Tube 100 MOSS type LNG tank 200 SPB type LNG tank 300 Equatorial section 400 Hull 450 Skirt

Claims (1)

LNG船のLNGを積載する独立型(球型または角型)LNGタンクとLNG船の船体との結合部位の変形を防ぐために、LNGタンクと船体との間の空間部に挿設されてLNGタンクを等分布支持力で支持するチューブ(T)と、
船体の両底部の内部にそれぞれ挿設されて前記チューブ(T)の内部に空気を供給する両圧縮器と、
前記両圧縮器及びチューブ(T)にそれぞれ連結されて空気をチューブ(T)に流入させる両パイプと、
前記両パイプの任意の個所にそれぞれ設けられてチューブ(T)の内部への空気の流入量を調節する両調節弁と、
前記チューブ(T)の内部への空気の流入量が所定値を超えた場合に空気の超過流入量を測定して表示する圧力計と、
前記圧力計から空気の超過流入量を感知するセンス部と、
前記センス部の信号を受信し、空気の超過流入量分をチューブ(T)の外部に流出する減圧弁と、
前記両圧縮器にそれぞれ連結されたパイプを継合するための継ぎ管と、
を備え
前記チューブ(T)は外チューブ及び内チューブからなる二重チューブであり、
前記継ぎ管の真ん中には、両圧縮器の連動により二重チューブ内の空気圧が等しくなるように統制弁がさらに配備されることを特徴とするLNG船の独立型タンク支持構造システム。
In order to prevent deformation of the joint portion between the independent ( spherical or square ) LNG tank on which the LNG of the LNG ship is loaded and the hull of the LNG ship, the LNG tank is inserted into a space between the LNG tank and the hull. A tube (T) for supporting the
Both compressors that are respectively inserted in the bottoms of the hull and supply air to the inside of the tube (T);
Both pipes connected to the compressor and the tube (T), respectively, for allowing air to flow into the tube (T);
Both control valves respectively provided at arbitrary locations of the pipes for adjusting the amount of air flowing into the tube (T);
A pressure gauge that measures and displays the excess inflow of air when the inflow of air into the tube (T) exceeds a predetermined value;
A sensing unit that senses an excess inflow of air from the pressure gauge;
A pressure reducing valve that receives the signal of the sense unit and flows out the excess inflow of air to the outside of the tube (T);
A joint pipe for joining pipes respectively connected to the compressors;
Equipped with a,
The tube (T) is a double tube comprising an outer tube and an inner tube,
An independent tank support structure system for an LNG ship , wherein a control valve is further provided in the middle of the joint pipe so that the air pressure in the double tube is equalized by interlocking the two compressors .
JP2012271484A 2011-12-13 2012-12-12 LNG carrier independent tank support structure system Expired - Fee Related JP5572206B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0133753 2011-12-13
KR1020110133753A KR101414787B1 (en) 2011-12-13 2011-12-13 Independent Self Supporting Tank System of LNG Carrrier

Publications (2)

Publication Number Publication Date
JP2013124100A JP2013124100A (en) 2013-06-24
JP5572206B2 true JP5572206B2 (en) 2014-08-13

Family

ID=48775595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012271484A Expired - Fee Related JP5572206B2 (en) 2011-12-13 2012-12-12 LNG carrier independent tank support structure system

Country Status (3)

Country Link
JP (1) JP5572206B2 (en)
KR (1) KR101414787B1 (en)
CN (1) CN203345163U (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004955B2 (en) 2013-01-25 2016-10-12 三菱重工業株式会社 Ship equipped with spherical tank and construction method thereof
CN103791235A (en) * 2014-02-19 2014-05-14 中船圣汇装备有限公司 Marine LNG (Liquefied Natural Gas) storage tank system
JP2015217749A (en) 2014-05-15 2015-12-07 川崎重工業株式会社 Ship body support structure of liquefied gas tank, and liquefied gas carrier
CN106275282A (en) * 2015-05-18 2017-01-04 江南造船(集团)有限责任公司 C-type flow container supporting structure on liquefied gas carrier deck
KR101600375B1 (en) 2015-08-13 2016-03-07 이강민 Gas storage having a wind pressure resistance reducing means for ship
JP6634090B2 (en) * 2015-10-20 2020-01-22 川崎重工業株式会社 Marine double shell tanks and ships
CN105292384B (en) * 2015-11-13 2017-07-25 舟山长宏国际船舶修造有限公司 A kind of antifreeze liquefied natural gas LNG goods tank ship
JP2018069980A (en) * 2016-10-31 2018-05-10 川崎重工業株式会社 Tank cover for ship and ship equipped therewith
KR101987984B1 (en) * 2017-08-21 2019-06-12 삼성중공업 주식회사 Apparatus for reducing flooding for ship
CN107672742A (en) * 2017-09-22 2018-02-09 江苏江海船舶设备制造有限公司 A kind of ship air bottle protective cradle
CN109555965A (en) * 2018-11-27 2019-04-02 张枫 A kind of hydraulic gas sledge dress gasification storage tank
CN111619756B (en) * 2020-04-17 2023-04-25 沪东中华造船(集团)有限公司 Method for controlling structural deformation and precision in construction of LNG filling ship
JP7079383B2 (en) * 2020-08-24 2022-06-01 三菱造船株式会社 Ship
JP7073458B2 (en) * 2020-08-24 2022-05-23 三菱造船株式会社 Ship
CN117662989B (en) * 2023-12-07 2024-05-10 康利源科技(天津)股份有限公司 Self-adjusting marine LNG tank body stabilizing system
CN117405296B (en) * 2023-12-15 2024-03-01 康利源科技(天津)股份有限公司 LNG marine anti-moving block balance performance monitoring system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067699A (en) 1960-03-21 1962-12-11 Cleveland Technical Ct Inc Loading system
JPH01240396A (en) * 1988-03-22 1989-09-25 Kayseven Co Ltd Method and device for fixing cargo and structure for attaching air bag in said device
US5271350A (en) 1992-05-28 1993-12-21 Newburger Babette B Oil tanker apparatus
JP2000085682A (en) * 1998-09-11 2000-03-28 Takayoshi Asai Heat-insulative support device for flat-bottomed tank, and method of inspecting and repairing it
KR100924099B1 (en) * 2007-08-31 2009-10-29 한국과학기술원 Cargo containment system of lng ship and construction method thereof

Also Published As

Publication number Publication date
KR101414787B1 (en) 2014-07-03
CN203345163U (en) 2013-12-18
JP2013124100A (en) 2013-06-24
KR20130066961A (en) 2013-06-21

Similar Documents

Publication Publication Date Title
JP5572206B2 (en) LNG carrier independent tank support structure system
EP3576983B1 (en) Compressed natural gas storage and transportation system
US20020046773A1 (en) Methods and apparatus for compressible gas
KR101788750B1 (en) Offshore structure and it's loading/unloading method, and cool down method of lng storage tank
JP6726201B2 (en) Method for cooling liquefied gas
CA2871631A1 (en) Cold box design for core replacement
CN109469998A (en) refrigerating device and temperature control module thereof
KR101419824B1 (en) Container for storing liquefied natural gas
KR101826900B1 (en) Cargo storage tank and piping system of the same
KR20190054846A (en) Double wall pressure vessel
KR101125103B1 (en) Apparatus for connecting liquefied gas storage tanks and floating marine structure having the apparatus
Swanger et al. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations
KR101125106B1 (en) Apparatus for connecting liquefied gas storage tanks and floating marine structure having the apparatus
KR20110126575A (en) Pump arrangement structure for lng storage tank and marine structure having the pump arrangement structure
KR101125104B1 (en) Apparatus for connecting liquefied gas storage tanks and floating marine structure having the apparatus
KR20120132952A (en) Insulation box of lng cargo containment system
KR101551797B1 (en) Lng cargocontainment and its insulation capability enhancing method
KR20130114865A (en) Method for installing insulation on insulation box of a lng storage tank
KR101599297B1 (en) Floating structure with a transfer pipe line
KR101125105B1 (en) Apparatus for connecting liquefied gas storage tanks and floating marine structure having the apparatus
KR20100100057A (en) Balasting system and floating marine structure having the system
KR200462375Y1 (en) Apparatus for collecting leakage of an independence type storage tank
KR20140087794A (en) Method for controlling pressure of cryogenic tank
KR101433100B1 (en) Apparatus for connecting liquefied gas storage tanks
KR101599292B1 (en) Loading and unloading apparatus for storage tanks and floating structure having the apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140627

R150 Certificate of patent or registration of utility model

Ref document number: 5572206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees