JP5571981B2 - Leather flooring - Google Patents
Leather flooring Download PDFInfo
- Publication number
- JP5571981B2 JP5571981B2 JP2010057563A JP2010057563A JP5571981B2 JP 5571981 B2 JP5571981 B2 JP 5571981B2 JP 2010057563 A JP2010057563 A JP 2010057563A JP 2010057563 A JP2010057563 A JP 2010057563A JP 5571981 B2 JP5571981 B2 JP 5571981B2
- Authority
- JP
- Japan
- Prior art keywords
- leather
- sheet
- silver
- fiber
- base layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009408 flooring Methods 0.000 title claims description 61
- 239000010985 leather Substances 0.000 title description 9
- 239000000835 fiber Substances 0.000 claims description 162
- 229920000642 polymer Polymers 0.000 claims description 114
- 239000000463 material Substances 0.000 claims description 75
- 229920001410 Microfiber Polymers 0.000 claims description 68
- 229910052709 silver Inorganic materials 0.000 claims description 51
- 239000004332 silver Substances 0.000 claims description 51
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 49
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 45
- 239000010410 layer Substances 0.000 claims description 45
- 239000004745 nonwoven fabric Substances 0.000 claims description 41
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 33
- 239000002344 surface layer Substances 0.000 claims description 28
- 239000011162 core material Substances 0.000 claims description 27
- 239000006185 dispersion Substances 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 15
- 238000009413 insulation Methods 0.000 claims description 11
- 239000012943 hotmelt Substances 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 6
- 239000003292 glue Substances 0.000 claims description 4
- 238000009958 sewing Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 41
- 238000000034 method Methods 0.000 description 32
- 238000002844 melting Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- 238000001035 drying Methods 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 16
- 229920002635 polyurethane Polymers 0.000 description 14
- 239000004814 polyurethane Substances 0.000 description 14
- 239000012855 volatile organic compound Substances 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 12
- -1 polyethylene terephthalate Polymers 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- 238000009987 spinning Methods 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 238000003795 desorption Methods 0.000 description 7
- 229920001225 polyester resin Polymers 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000004645 polyester resin Substances 0.000 description 6
- 239000000986 disperse dye Substances 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 238000007731 hot pressing Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 238000004080 punching Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000004043 dyeing Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 239000002649 leather substitute Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- 239000004831 Hot glue Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- FJQXCDYVZAHXNS-UHFFFAOYSA-N methadone hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 FJQXCDYVZAHXNS-UHFFFAOYSA-N 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000007127 saponification reaction Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- KIQKWYUGPPFMBV-UHFFFAOYSA-N diisocyanatomethane Chemical class O=C=NCN=C=O KIQKWYUGPPFMBV-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004044 disperse dyeing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012681 fiber drawing Methods 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006012 semi-aromatic polyamide Polymers 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001248 thermal gelation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Floor Finish (AREA)
- Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
Description
本発明は、皮革調の床材に関する。さらに詳しくは、床材自体が揮発性有機化合物を含有せず、また、床材の製造時にも揮発性有機化合物を発生させない製造方法に関し、得られた床材の表面に付着した水分が急速に吸収、拡散するといった、乾燥速度が著しく速い皮革調の床材に関する。 The present invention relates to a leather-like flooring. More specifically, the floor material itself does not contain a volatile organic compound, and the production method does not generate a volatile organic compound during the production of the floor material. The present invention relates to a leather-like flooring material that absorbs and diffuses and has a remarkably fast drying rate.
従来、床材としては、主に木、PVC等の皮革調、天然いぐさの表皮材を使用しているが、クッション性に乏しく、また接触したときに冷たく、また濡れた状態で長時間肌が接触するには不適当な場合がある。さらに素材によっては硬く、歩行の際に滑りやすい場合もある。 Conventionally, the floor material is mainly leather, such as wood and PVC, and the skin material of natural rush, but it has poor cushioning properties, and when touched it is cold and wet for a long time. May be inappropriate for contact. Furthermore, some materials are hard and may be slippery when walking.
また、畳材においては、表皮材として天然い草が主に使用されているが、そのカット面のほつれを予防するために縁を縫い付けるといった余分な作業を行う必要があった。
上記問題を解決するために、芯材の少なくとも片面に設けられるクッション材と、このクッション材を覆うように取り付けられた基布上にさらにレザー状の皮膜が形成された皮革調の床材が提案されている(特許文献1を参照)。しかしながら、レザー状の皮膜や基布を製造するに際し、従来の製造方法では、揮発性有機化合物(Volatile Organic Compounds、以下VOCと略す場合もある。)を原料や製法として用いることが避けられず、またそれにより、皮革調仕上げ材を用いた床材に揮発性有機化合物が残留してしまうといった問題があった。そして、皮革調仕上げ材に用いる皮革様シートは一般的にPVC系や有機溶剤を使用したポリウレタン系合成皮革を表皮材として使用しており、VOC低減等に関する記載はなく、環境へ負荷をかける問題を含むものであった。また、従来のレザー状の皮膜や基布(材)では、長時間に渡るクッション性の維持や、表面に付着した水分が急速に吸収、拡散するといった、乾燥速度に劣るため、肌触りがべとべとした触感を有するものであった。
In tatami mats, natural grass is mainly used as the skin material, but it is necessary to perform extra work such as sewing edges to prevent fraying of the cut surface.
In order to solve the above problems, a cushion material provided on at least one side of the core material and a leather-like floor material in which a leather-like film is further formed on a base fabric attached to cover the cushion material are proposed. (See Patent Document 1). However, when manufacturing a leather-like film or base fabric, in the conventional manufacturing method, it is inevitable to use a volatile organic compound (hereinafter sometimes abbreviated as VOC) as a raw material or a manufacturing method. In addition, there is a problem that volatile organic compounds remain on the floor material using the leather-like finish material. And, the leather-like sheet used for leather-like finishing materials generally uses polyurethane-based synthetic leather using PVC or organic solvent as the skin material, and there is no description about VOC reduction, etc. Was included. In addition, conventional leather-like films and fabrics (materials) are inferior in drying speed, such as maintaining cushioning properties for a long time and absorbing and diffusing moisture adhering to the surface quickly, making the skin feel sticky It had a tactile sensation.
本発明は、皮革調の外観を有し、床材としてのクッション性、高級感、歩行性安定性を満たし、VOCの使用による環境への負荷を激減させることを課題とする。さらに床材の表面に付着した水分が急速に吸収、拡散するといった、乾燥速度が著しく速い皮革調床材を提供する。 It is an object of the present invention to have a leather-like appearance, satisfy a cushioning property as a flooring material, a high-class feeling, and a walking stability, and drastically reduce the environmental load due to the use of VOCs. Furthermore, the present invention provides a leather-like flooring material having a remarkably fast drying rate, in which moisture adhering to the surface of the flooring material is rapidly absorbed and diffused.
本発明者らは鋭意研究を重ねた結果、上記課題を解決する皮革調床材を見出し本発明に至った。
すなわち、本発明は、以下の〔1〕〜〔8〕を提供する。
〔1〕芯材および該芯材の表面に形成された銀付調、スエード調、又は半銀付調皮革様シートからなる皮革調床材であって、以下(1)〜(4)を満足することを特徴とする皮革調床材。
(1)銀付調、スエード調、又は半銀付調皮革様シートが絡合不織布およびその内部に高分子弾性体が含浸された基材からなる、
(2)皮革調床材中に存在するジメチルホルムアミド(DMF)濃度が10ppm以下である、
(3)半銀付調皮革様シートは、ホットメルト糊又は縫い付けにより芯材と積層されている、及び
(4)銀付調またはスエード調皮革様シートは、ホットメルト糊により芯材と積層されている。
〔2〕銀付調皮革様シートが繊維銀面を有する銀付調皮革様シートであって、前記銀付調皮革様シートが極細長繊維からなる繊維束が3次元的に交絡した絡合不織布とその内部に含有された高分子弾性体からなり、下記条件(1)〜(3):
(1)前記極細長繊維の平均繊度が0.001〜2dtexである、
(2)前記極細長繊維の繊維束の平均繊度が0.5〜10dtexである、および
(3)前記皮革様シートを厚さ方向に、表面層、基体層1、基体層2、基体層3および裏面層の5層にこの順に等分割したときに、表面層を形成する極細長繊維同士は少なくとも一部融着して繊維銀面を形成しているが、基体層2、基体層3および裏面層を形成する極細長繊維同士は融着していない、
を同時に満足する皮革様シートからなる前記〔1〕に記載の皮革調床材。
〔3〕半銀付調皮革様シートが、表面に銀面部と立毛が混在する半銀付調皮革様シートであって、前記半銀付調皮革様シートが極細長繊維からなる繊維束が3次元的に交絡した絡合不織布とその内部に含有された高分子弾性体からなり、下記条件(1)〜(3):
(1)前記極細長繊維の平均繊度が0.001〜2dtexである、
(2)前記極細長繊維の繊維束の平均繊度が0.5〜10dtexである、および
(3)前記半銀付調皮革様シートを厚さ方向に、表面層、基体層1、基体層2、基体層3および裏面層の5層にこの順に等分割したときに、表面層を形成する極細長繊維は極細繊維同士が一部融着されて銀面を形成しているが、基体層2、基体層3および裏面層を形成する極細長繊維同士は融着していない、
を同時に満足する皮革様シートからなる前記〔1〕に記載の皮革調床材。
〔4〕スエード調皮革様シートが、極細長繊維からなる繊維束が3次元的に交絡した絡合不織布とその内部に含有された高分子弾性体からなり、下記条件(1)〜(2):
(1)前記極細長繊維の平均繊度が0.001〜2dtexである、
(2)前記極細長繊維の繊維束の平均繊度が0.5〜10dtexである
を同時に満足する半銀付調皮革様シートからなる前記〔1〕に記載の皮革調床材。
〔5〕皮革調床材中に存在するトルエン濃度が50ppm以下である、前記〔1〕〜〔4〕のいずれか1に記載の皮革調床材。
〔6〕皮革調床材中に存在するトルエン濃度が0.05ppm以下である、前記〔5〕に記載の皮革調床材。
〔7〕前記芯材が畳、畳表を除いた芯材(畳床)、及びインシュレーションボードから選ばれる少なくとも一つの芯材である前記〔1〕〜〔6〕のいずれか1に記載の皮革調床材。
〔8〕インシュレーションボードの密度が0.5g/cm3以下の芯材である前記〔1〕〜〔7〕のいずれか1に記載の皮革調床材。
As a result of intensive studies, the present inventors have found a leather-like flooring material that solves the above-mentioned problems and have reached the present invention.
That is, the present invention provides the following [1] to [8].
[1] A leather-like floor material comprising a core material and a silver-like, suede-like, or semi-silver-tone leather-like sheet formed on the surface of the core material, and satisfies the following (1) to (4) A leather-like flooring material.
(1) Silver-tone, suede-tone, or semi-silver-tone leather-like sheet is composed of a entangled nonwoven fabric and a base material impregnated with a polymer elastic body therein,
(2) The dimethylformamide (DMF) concentration present in the leather-finished flooring material is 10 ppm or less.
(3) The semi-silvered leather-like sheet is laminated with the core material by hot melt glue or sewing, and (4) The silver-finished or suede leather-like sheet is laminated with the core material by hot-melt glue. Has been.
[2] A silver-coated leather-like sheet having a fiber silver surface, wherein the silver-coated leather-like sheet is an entangled nonwoven fabric in which fiber bundles made of ultrafine fibers are entangled three-dimensionally And a polymer elastic body contained therein, the following conditions (1) to (3):
(1) The average fineness of the ultrafine fibers is 0.001 to 2 dtex.
(2) The average fineness of the fiber bundle of the ultrafine fibers is 0.5 to 10 dtex, and (3) the leather-like sheet in the thickness direction is surface layer, base layer 1, base layer 2, base layer 3 And the back surface layer in equal order in this order, the ultrafine fibers forming the surface layer are fused at least partially to form a fiber silver surface, but the base layer 2, base layer 3 and The ultra-thin fibers forming the back layer are not fused together,
The leather-like flooring material according to [1], comprising a leather-like sheet that satisfies the above requirements.
[3] A semi-silvered leather-like sheet is a semi-silvered leather-like sheet in which a silver surface portion and napping are mixed on the surface, and the semi-silvered leather-like sheet has 3 fiber bundles made of ultrafine fibers. It consists of a entangled nonwoven fabric dimensionally entangled and a polymer elastic body contained therein, and the following conditions (1) to (3):
(1) The average fineness of the ultrafine fibers is 0.001 to 2 dtex.
(2) The average fineness of the fiber bundle of the ultrafine fibers is 0.5 to 10 dtex, and (3) the semi-silvered leather-like sheet in the thickness direction, surface layer, base layer 1, base layer 2 When the base layer 3 and the back surface layer are equally divided in this order, the ultrafine fibers forming the surface layer are partly fused together to form a silver surface. The very long fibers forming the base layer 3 and the back layer are not fused together.
The leather-like flooring material according to [1], comprising a leather-like sheet that satisfies the above requirements.
[4] The suede-like leather-like sheet is composed of an entangled nonwoven fabric in which fiber bundles made of ultrafine fibers are entangled three-dimensionally and a polymer elastic body contained therein, and the following conditions (1) to (2) :
(1) The average fineness of the ultrafine fibers is 0.001 to 2 dtex.
(2) The leather-like flooring material according to the above [1], comprising a semi-silvered-toned leather-like sheet that simultaneously satisfies the average fineness of the fiber bundle of the ultrafine long fibers of 0.5 to 10 dtex.
[5] The leather-like flooring material according to any one of [1] to [4], wherein the toluene concentration in the leather-like flooring material is 50 ppm or less.
[6] The leather-like flooring material according to [5] above, wherein the toluene concentration present in the leather-like flooring material is 0.05 ppm or less.
[7] The leather according to any one of [1] to [6], wherein the core material is at least one core material selected from tatami mats, a core material (tatami floor) excluding a tatami surface, and an insulation board. Conditioning material.
[8] The leather-like flooring material according to any one of [1] to [7], which is a core material having an insulation board density of 0.5 g / cm 3 or less.
本発明の皮革調床材は、床材自体が揮発性有機化合物を含有せず、また、床材の製造時にも揮発性有機化合物を発生させない。そして、得られた床材の表面に水分が付着しても、水分が急速に吸収、拡散し、床材として水分が吸収されるため、滑ることがなく、歩行性に優れたものであって、また肌触りのべとつき感を低減することができる。 In the leather-like flooring material of the present invention, the flooring material itself does not contain a volatile organic compound, and does not generate a volatile organic compound during the production of the flooring material. And even if moisture adheres to the surface of the obtained flooring material, moisture is absorbed and diffused rapidly, and moisture is absorbed as the flooring material. Moreover, the feeling of stickiness of the touch can be reduced.
本発明の皮革調床材の芯材としては、床材になり得る公知の素材を用いることが可能である。
例えば、一般的に木材などの植物繊維を成型した繊維板であり、インシュレーションボード称されるものが用いられる。また、ポリウレタンやポリスチレン等で代表される高分子弾性体からなるフォーム、または無孔板、繊維布帛、紙、セラミックやコルク、畳もしくは畳表を除いた芯材(畳床)等を用いることが可能である。中でも、天然の芯材を用いることが、VOCを抑制する点で好ましく、特に畳、畳床またはインシュレーションボードを用いることが、クッション性に優れ、また本発明の皮革調床材との組み合せによる違和感等が低減できる点でより好ましい。また、インシュレーションボードを用いる場合は、その密度が0.5g/cm3以下であることが、床材製造時の取り扱い容易性や、クッション性に優れる点で好ましく、0.1g/cm3以上であることが、床材の潰れ難さや強度が良好な点で好ましい。
As a core material of the leather-like floor material of the present invention, a known material that can be a floor material can be used.
For example, it is generally a fiberboard obtained by molding plant fibers such as wood, and what is called an insulation board is used. It is also possible to use a foam made of a polymer elastic body represented by polyurethane, polystyrene, or the like, or a non-porous plate, fiber fabric, paper, core material (tatami floor) excluding ceramic, cork, tatami mat or tatami mat. It is. Among them, it is preferable to use a natural core material from the viewpoint of suppressing VOC. In particular, use of a tatami mat, a tatami floor or an insulation board is excellent in cushioning properties, and is in combination with the leather-like floor material of the present invention. This is more preferable because it can reduce discomfort and the like. Moreover, when using an insulation board, it is preferable that the density is 0.5 g / cm 3 or less from the viewpoint of easy handling at the time of flooring production and excellent cushioning properties, and 0.1 g / cm 3 or more. It is preferable that the floor material is difficult to be crushed and has good strength.
次に、本発明の皮革調床材の芯材の表面に用いる皮革様シートについて説明する。
本発明の皮革様シートが銀付調皮革様シートの場合、特に本発明の目的の一つである床材の表面に水分が付着しても、水分が急速に吸収、拡散され、床材として水分を吸収して、滑ることがなく、歩行性に優れたものであって、また肌触りのべとつき感を低減することができるためには、銀付調皮革様シートの表面が、繊維が高密度に集合した繊維表面からなる繊維銀面調の皮革様シートであることが好ましい。当該繊維銀面調の皮革様シートは、以下の工程を順次行うことにより製造することができる。
(1)海成分が水溶性成分からなる海島型長繊維を用いて、極細繊維束形成性長繊維からなる長繊維ウェブを製造する工程、
(2)前記長繊維ウェブに絡合処理を施し、絡合ウェブを製造する工程、
(3)前記絡合ウェブ中の極細繊維束形成性長繊維から海成分を除去して、該極細繊維形成性長繊維を平均繊度0.001〜2dtexの極細長繊維を複数本含む平均単繊度0.5〜10dtexの繊維束に変換し、絡合不織布を製造する工程、
(4)高分子弾性体と前記極細長繊維の質量比が0.001〜0.6となるように、前記絡合不織布に前記高分子弾性体の水分散体を付与し、熱を加えて高分子弾性体を前記絡合不織布の少なくとも表面に移行させ、凝固して皮革様シートを製造する工程、および
(5)前記皮革様シートの少なくとも前記表面を海島型長繊維の紡糸温度よりも50℃以上低く、かつ、前記高分子弾性体の融点以下の温度で熱プレスし、銀面を形成する工程
(6)前記繊維銀面上に高分子弾性体の水分散体または水溶液をグラビア塗布し、熱を加えて高分子弾性体を乾燥、凝固させる任意の工程、〔但し、工程(4)を工程(3)の前に行ってもよい〕。
Next, the leather-like sheet used for the surface of the core material of the leather-like flooring material of the present invention will be described.
When the leather-like sheet of the present invention is a silver-finished leather-like sheet, even if moisture adheres to the surface of the flooring, which is one of the objects of the present invention, moisture is rapidly absorbed and diffused as a flooring. In order to absorb moisture, do not slip, have excellent walking properties, and reduce the feeling of stickiness of the touch, the surface of the silver-finished leather-like sheet has a high density of fibers. It is preferably a leather-like sheet having a fiber silver surface composed of the fiber surfaces assembled together. The leather-like sheet of the fiber silver surface tone can be produced by sequentially performing the following steps.
(1) A process for producing a long fiber web composed of ultrafine fiber bundle-forming long fibers using sea-island long fibers whose sea components are water-soluble components;
(2) A step of performing an entanglement treatment on the long fiber web to produce an entangled web;
(3) An average single fineness including a plurality of ultrafine fibers having an average fineness of 0.001 to 2 dtex by removing sea components from the ultrafine fiber bundle-forming long fibers in the entangled web. A step of converting to a fiber bundle of 0.5 to 10 dtex and producing an entangled nonwoven fabric,
(4) A water dispersion of the polymer elastic body is applied to the entangled nonwoven fabric so that the mass ratio of the polymer elastic body and the ultrafine long fibers is 0.001 to 0.6, and heat is applied. A step of transferring a polymer elastic body to at least the surface of the entangled nonwoven fabric and solidifying it to produce a leather-like sheet; and (5) at least the surface of the leather-like sheet is set to 50 above the spinning temperature of sea-island long fibers. Step of forming a silver surface by hot pressing at a temperature lower than or equal to 0 ° C. and below the melting point of the polymer elastic body (6) Gravure-coating an aqueous dispersion or aqueous solution of the polymer elastic body on the fiber silver surface Any step of applying heat to dry and solidify the polymer elastic body [however, step (4) may be performed before step (3)].
以下、各工程について詳述する。 Hereinafter, each process is explained in full detail.
工程(1)では、海成分が水溶性成分からなる海島型長繊維を用いて、極細繊維束形成性長繊維からなる長繊維ウェブを製造する。海島型長繊維は少なくとも2種類のポリマーからなる多成分系複合繊維であって、海成分ポリマー中にこれとは異なる種類の島成分ポリマーが分散した断面を有する。海島型長繊維は、絡合ウェブ構造体に形成した後、高分子弾性体を含浸させる前に海成分ポリマーを抽出または分解して除去することで、残った島成分ポリマーからなる極細長繊維が複数本集まった繊維束に変換される。 In the step (1), a long-fiber web made of ultrafine fiber bundle-forming long fibers is produced using sea-island long fibers whose sea components are water-soluble components. The sea-island long fiber is a multicomponent composite fiber composed of at least two types of polymers, and has a cross section in which different types of island component polymers are dispersed in the sea component polymer. After the sea island type long fiber is formed into the entangled web structure, the sea component polymer is extracted or decomposed and removed before impregnating the polymer elastic body. It is converted into a bundle of multiple fibers.
島成分ポリマーとしては、特に限定されるものではないが、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエステル弾性体等のポリエステル系樹脂またはそれらの変性物;ナイロン6、ナイロン66、ナイロン610、ナイロン12、芳香族ポリアミド、半芳香族ポリアミド、ポリアミド弾性体等のポリアミド系樹脂またはそれらの変性物;ポリプロピレンなどのポリオレフィン系樹脂;ポリエステル系ポリウレタンなどのポリウレタン系樹脂など、公知の繊維形成性の水不溶性熱可塑性ポリマーが挙げられる。これらの中でも、PET、PTT、PBT、及びこれらの変性ポリエステル等のポリエステル系樹脂は、熱処理により収縮しやすく、充実感のある風合いを有し、耐磨耗性、耐光性、形態安定性などの実用的性能が優れた製品が得られる点で特に好ましい。また、ナイロン6、ナイロン66等のポリアミド系樹脂はポリエステル系樹脂に比べて吸湿性があってしなやかな極細長繊維が得られるので、膨らみ感のある柔らかな風合いを有する。 The island component polymer is not particularly limited, but is a polyester resin such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyester elastic body, or a modified product thereof; Polyamide resins such as nylon 6, nylon 66, nylon 610, nylon 12, aromatic polyamide, semi-aromatic polyamide, polyamide elastic body or their modified products; polyolefin resins such as polypropylene; polyurethane resins such as polyester polyurethane And known fiber-forming water-insoluble thermoplastic polymers. Among these, polyester resins such as PET, PTT, PBT, and these modified polyesters are easily shrunk by heat treatment, have a solid texture, wear resistance, light resistance, shape stability, etc. This is particularly preferable in that a product having excellent practical performance can be obtained. Further, since polyamide resins such as nylon 6 and nylon 66 have hygroscopicity and supple ultrafine fibers can be obtained compared to polyester resins, they have a soft texture with a feeling of swelling.
島成分ポリマーの融点は160℃以上であるのが好ましく、融点が180〜330℃であり結晶性であるのがより好ましい。なお、本発明でいうポリマーの融点とは、後述するように示差走査熱量計の2nd Runでの吸熱ピーク(融点ピーク)のトップ温度である。本発明で使用する島成分ポリマーは示差走査熱量計での1st Run測定において、融点ピークの他にも吸熱ピーク(以下、副吸熱ピークと称する場合がある)を有することが好ましい。副吸熱ピークを有すると、島成分ポリマーの融点以上に昇温しなくても、表面を構成する極細繊維同士が一部融着して銀面(繊維銀面)を形成し易く、良好な表面物性および天然皮革並の柔軟な風合いを兼ね備えた繊維銀面からなる銀付調皮革様シートや一部の繊維銀面を有する半銀付調皮革様シートが得られる。 The melting point of the island component polymer is preferably 160 ° C. or higher, more preferably 180 to 330 ° C. and crystalline. The melting point of the polymer in the present invention is the top temperature of the endothermic peak (melting point peak) at 2nd Run of the differential scanning calorimeter as will be described later. The island component polymer used in the present invention preferably has an endothermic peak (hereinafter sometimes referred to as a sub-endothermic peak) in addition to a melting point peak in 1st Run measurement with a differential scanning calorimeter. If it has a sub-endothermic peak, even if the temperature does not rise above the melting point of the island component polymer, the ultrafine fibers that make up the surface are partly fused together to form a silver surface (fiber silver surface), and a good surface A silver-finished leather-like sheet comprising a fiber silver surface having both physical properties and a soft texture comparable to that of natural leather, and a semi-silvered leather-like sheet having a part of the fiber silver surface are obtained.
島成分ポリマーの副吸熱ピークの温度は、融点よりも30℃以上低いことが、風合いを損なうことなく極細繊維同士を融着処理しやすい点で好ましく、50℃以上低いことがより好ましい。副吸熱ピークの温度の下限は特に限定しないが、融点よりも160℃以上低い場合でも問題なく製造することができる。 The temperature of the sub-endothermic peak of the island component polymer is preferably 30 ° C. or more lower than the melting point because it is easy to fuse the ultrafine fibers without impairing the texture, and more preferably 50 ° C. or more. The lower limit of the temperature of the secondary endothermic peak is not particularly limited, but it can be produced without any problem even when it is 160 ° C. or more lower than the melting point.
融点ピークと副吸熱ピークを有する島成分ポリマーとしては、前述したポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂およびポリウレタン系樹脂の変性物が好ましく用いられる。中でも表面物性、風合い、および極細繊維融着性を兼ね備える点で、変性ポリエステル系樹脂がより好ましく、イソフタル酸変性ポリエステル系樹脂がさらに好ましい。但し、上記変性ポリマーは公知の方法により部分配向(POY)されていることが副吸熱ピークを維持し易い点で好ましい。 As the island component polymer having a melting point peak and a sub-endothermic peak, modified products of the above-described polyester resins, polyamide resins, polyolefin resins and polyurethane resins are preferably used. Among them, a modified polyester resin is more preferable, and an isophthalic acid modified polyester resin is more preferable in that it has surface physical properties, texture, and ultrafine fiber fusion. However, it is preferable that the modified polymer is partially oriented (POY) by a known method from the viewpoint of maintaining a secondary endothermic peak.
海島型長繊維を極細長繊維の繊維束に変換する際に、海成分ポリマーは、水、温水、熱水等の水または水酸化ナトリウム水溶液などのアルカリ性分解剤により抽出または分解除去される。従って、海成分ポリマーは水に対する溶解性または分解剤による分解性が島成分ポリマーよりも大きいことが必要である。海島型長繊維の紡糸安定性の点から島成分ポリマーとの親和性が小さく、かつ、紡糸条件において溶融粘度及び/又は表面張力が島成分ポリマーより小さいことが好ましい。このような条件を満たす水溶性成分である限り海成分ポリマーは特に限定されず、例えば、水溶性変性ポリエステルやポリビニルアルコール系樹脂などが用いられる。有機溶剤を用いることなくVOCを抑制した皮革様シートを製造することができるので、海成分ポリマーに水溶性変性ポリエステルや水溶性熱可塑性ポリビニルアルコール(水溶性PVA)を用いるのが特に好ましい。 When the sea-island long fibers are converted into ultrafine fiber bundles, the sea component polymer is extracted or decomposed and removed by an alkaline decomposing agent such as water, water such as hot water or hot water, or an aqueous sodium hydroxide solution. Accordingly, the sea component polymer needs to be more soluble in water or more decomposable by the decomposing agent than the island component polymer. From the viewpoint of spinning stability of the sea-island long fibers, it is preferable that the affinity with the island component polymer is small, and that the melt viscosity and / or surface tension is smaller than the island component polymer under the spinning conditions. The sea component polymer is not particularly limited as long as it is a water-soluble component that satisfies such conditions, and for example, water-soluble modified polyester, polyvinyl alcohol resin, or the like is used. Since a leather-like sheet in which VOC is suppressed can be produced without using an organic solvent, it is particularly preferable to use water-soluble modified polyester or water-soluble thermoplastic polyvinyl alcohol (water-soluble PVA) as the sea component polymer.
水溶性PVAのケン化度は90〜99.99モル%が好ましく、93〜99.98モル%がより好ましく、94〜99.97モル%がさらに好ましく、96〜99.96モル%が特に好ましい。ケン化度が90モル%以上であると、熱安定性が良く、熱分解やゲル化することなく満足な溶融紡糸を行うことができ、生分解性も良好である。更に後述する共重合モノマーによって水溶性が低下することがなく、極細繊維化が容易になる。ケン化度が99.99モル%よりも大きい水溶性PVAは安定に製造することが難しい。 The saponification degree of the water-soluble PVA is preferably 90 to 99.99 mol%, more preferably 93 to 99.98 mol%, further preferably 94 to 99.97 mol%, and particularly preferably 96 to 99.96 mol%. . When the degree of saponification is 90 mol% or more, thermal stability is good, satisfactory melt spinning can be performed without thermal decomposition or gelation, and biodegradability is also good. Further, the water-solubility is not lowered by the copolymerization monomer described later, and ultrafine fibers can be easily formed. Water-soluble PVA having a degree of saponification of greater than 99.99 mol% is difficult to produce stably.
従来の皮革様シートの製造においては、極細繊維束形成性長繊維を任意の繊維長にカットして得たステープルにより繊維ウェブを製造していたが、本発明では、スパンボンド法などにより紡糸した海島型長繊維(極細繊維束形成性長繊維)をカットすることなく長繊維ウェブにする。海島型長繊維は前記の海成分ポリマーと島成分ポリマーを複合紡糸用口金から押出すことにより溶融紡糸する。紡糸温度(口金温度)は海島型長繊維を構成するポリマーのそれぞれの融点よりも高く、180〜350℃が融点ピークと副吸熱ピークを存在させ易い点で好ましい。口金から吐出した溶融状態の海島型長繊維を冷却装置により冷却した後、エアジェットノズルなどの吸引装置を用いて、目的の繊度となるように1000〜6000m/分の引取り速度に相当する速度の高速気流により牽引細化し、移動式ネットなどの捕集面上に堆積させて実質的に無延伸の長繊維からなるウェブを形成する。
必要に応じて、得られた長繊維ウェブをプレス等により部分的に圧着して形態を安定化させてもよい。このような長繊維ウェブ製造方法は、従来の短繊維を用いる繊維ウェブ製造方法では必須の原綿供給装置、開繊装置、カード機などの一連の大型設備を必要としないので生産上有利である。また、長繊維ウェブおよびそれを用いて得られる皮革様シートは連続性の高い長繊維からなるので、従来一般的であった短繊維ウェブおよびそれを用いて製造した皮革様シートに比べて、強度などの物性、芯材表面に積層した場合に皮革様シートの周囲をカットしても繊維屑が発生し難い点、カット端部のほつれ防止処理が必要でない点においても優れている。
In the production of a conventional leather-like sheet, a fiber web was produced from staples obtained by cutting ultrafine fiber bundle-forming long fibers into an arbitrary fiber length, but in the present invention, the fiber web was spun by a spunbond method or the like. A sea fiber type long fiber (ultrafine fiber bundle forming long fiber) is formed into a long fiber web without cutting. The sea-island long fibers are melt-spun by extruding the sea component polymer and the island component polymer from a composite spinning die. The spinning temperature (die temperature) is higher than the melting point of each of the polymers constituting the sea-island long fibers, and 180 to 350 ° C. is preferable in that a melting point peak and a secondary endothermic peak are likely to exist. After the molten sea-island long fibers discharged from the die are cooled by a cooling device, using a suction device such as an air jet nozzle, a speed corresponding to a take-up speed of 1000 to 6000 m / min so as to achieve a desired fineness The web is made of substantially unstretched long fibers by being pulled and thinned by a high-speed air current and deposited on a collection surface such as a movable net.
If necessary, the obtained long fiber web may be partially crimped by a press or the like to stabilize the form. Such a long fiber web manufacturing method is advantageous in production because it does not require a series of large equipment such as a raw cotton supply device, a fiber opening device, and a card machine, which is essential in the conventional fiber web manufacturing method using short fibers. In addition, since the long fiber web and the leather-like sheet obtained using the same are composed of continuous fibers having high continuity, the strength is higher than that of the conventional short fiber web and the leather-like sheet produced using the same. It is also excellent in that it is difficult to generate fiber waste even if the periphery of the leather-like sheet is cut when laminated on the surface of the core material, and that no fraying prevention treatment is necessary at the cut end.
海島型長繊維の平均断面積は30〜800μm2であるのが好ましい。海島型長繊維の断面において、海成分ポリマーと島成分ポリマーの平均面積比(ポリマー体積比に相当)は5/95〜70/30が好ましい。得られた長繊維ウェブの目付は10〜1000g/m2が好ましい。 The average cross-sectional area of the sea-island long fibers is preferably 30 to 800 μm 2 . In the cross section of the sea-island long fiber, the average area ratio (corresponding to the polymer volume ratio) of the sea component polymer and the island component polymer is preferably 5/95 to 70/30. The basis weight of the obtained long fiber web is preferably 10 to 1000 g / m 2 .
本発明において、長繊維とは、繊維長が通常3〜80mm程度である短繊維よりも長い繊維長を有する繊維であり、短繊維のように、例えば絡合処理工程までに意図的に切断されていない繊維をいう。そして、極細繊維化する前の長繊維の繊維長は100mm以上が好ましく、技術的に製造可能であり、かつ、物理的に切れない限り、数m、数百m、数kmあるいはそれ以上の繊維長であってもよい。 In the present invention, the long fiber is a fiber having a fiber length longer than a short fiber having a fiber length of usually about 3 to 80 mm, and is intentionally cut by, for example, an entanglement treatment step like the short fiber. The fiber that is not. And, the fiber length of the long fiber before forming into ultrafine fibers is preferably 100 mm or more, as long as it is technically manufacturable and physically cut, it is several m, several hundred m, several km or more. It may be long.
工程(2)では、前記長繊維ウェブに絡合処理を施して絡合ウェブを得る。前記長繊維ウェブを、必要に応じてクロスラッパー等を用いて厚さ方向に複数層重ね合わせた後、両面から同時または交互に少なくとも1つ以上のバーブが貫通する条件でニードルパンチする。パンチング密度は、300〜5000パンチ/cm2の範囲が好ましく、より好ましくは500〜3500パンチ/cm2の範囲である。上記範囲内であると、充分な絡合が得られ、海島型長繊維のニードルによる損傷が少ない。該絡合処理により、海島型長繊維同士が三次元的に絡合し、厚さ方向に平行な断面において海島型長繊維が平均600〜4000個/mm2の密度で存在する、海島型長繊維が極めて緻密に集合した絡合ウェブが得られる。長繊維ウェブにはその製造から絡合処理までのいずれかの段階で油剤を付与してもよい。必要に応じて、70〜150℃の温水に浸漬するなどの収縮処理によって、長繊維ウェブの絡合状態をより緻密にしてもよい。また、熱プレス処理を行うことで海島型長繊維同士をさらに緻密に集合させ、長繊維ウェブの形態を安定にしてもよい。ただし、本発明では、後述のように極細長繊維を構成する島成分ポリマーの副吸熱ピークを利用して低温で銀面(繊維銀面)を形成させるため、該副吸熱ピークが消失しないような温度条件を選ぶ必要がある。絡合ウェブの目付は100〜2000g/m2あるのが、床材としての強度やクッション性に優れる点で好ましい。 In the step (2), the long fiber web is subjected to an entanglement process to obtain an entangled web. The long fiber web is overlapped with a plurality of layers in the thickness direction using a cross wrapper or the like, if necessary, and then needle punched under the condition that at least one barb penetrates from both sides simultaneously or alternately. The punching density is preferably in the range of 300 to 5000 punch / cm 2 , more preferably in the range of 500 to 3500 punch / cm 2 . When it is within the above range, sufficient entanglement is obtained, and the sea island type long fiber is less damaged by the needle. By the entanglement treatment, the sea-island long fibers are entangled three-dimensionally, and the sea-island long fibers are present at an average density of 600 to 4000 / mm 2 in a cross section parallel to the thickness direction. An entangled web in which the fibers are gathered very densely is obtained. The long fiber web may be provided with an oil agent at any stage from its production to the entanglement treatment. If necessary, the entangled state of the long fiber web may be made denser by a shrinking treatment such as immersing in warm water of 70 to 150 ° C. Moreover, sea-island type long fibers may be gathered more densely by performing a heat press treatment, and the form of the long fiber web may be stabilized. However, in the present invention, since the silver surface (fiber silver surface) is formed at a low temperature using the secondary endothermic peak of the island component polymer constituting the ultrafine fiber as described later, the secondary endothermic peak does not disappear. It is necessary to select temperature conditions. It is preferable that the basis weight of the entangled web is 100 to 2000 g / m 2 in terms of excellent strength and cushioning properties as a flooring material.
工程(3)では、海成分ポリマーを除去することにより極細繊維束形成性長繊維(海島型長繊維)を極細化して極細長繊維の繊維束からなる絡合不織布を製造する。海成分ポリマーを除去する方法としては、島成分ポリマーの非溶剤または非分解剤であり、かつ、海成分ポリマーの溶剤または分解剤で絡合ウェブを処理する方法が本発明においては好ましく採用される。島成分ポリマーがポリアミド系樹脂やポリエステル系樹脂である場合、海成分ポリマーとしては、前記水溶性PVAであれば温水が、また、海成分ポリマーが易アルカリ分解性の変性ポリエステルであれば水酸化ナトリウム水溶液などのアルカリ性分解剤が使用される。海成分ポリマーの除去は人工皮革分野において従来採用されている方法により行えばよく、特に制限されない。本発明においては、抽出処理の際に有機溶剤を用いることが無い為、環境負荷が少なく、VOCの発生を抑制する点、また、労働衛生上好ましいので、海成分ポリマーとして前記水溶性PVAを使用し、これを、有機溶媒を使用することなく85〜100℃の熱水中で100〜600秒間処理し、除去率が95質量%以上(100%を含む)になるまで抽出除去し、極細繊維束形成性長繊維を島成分ポリマーからなる極細長繊維の繊維束に変換するのが好ましい。
必要に応じて、極細繊維束形成性長繊維を極細化する前または極細化と同時に、下記式:
[(収縮処理前の面積−収縮処理後の面積)/収縮処理前の面積]×100
で表される面積収縮率が好ましくは25%以上、より好ましくは30〜75%になるように収縮処理を行って高密度化してもよい。収縮処理により形態保持性がより良好になり、繊維の素抜けが防止され、また、後述する微細空隙を所定数形成することが容易になることで、床材としてのクッション性が長期的に低下せず、また物性的にも優れた物となる。
In the step (3), the sea component polymer is removed to make the ultrafine fiber bundle-forming long fibers (sea-island type long fibers) ultrafine to produce an entangled nonwoven fabric made of ultrafine fiber bundles. As a method for removing the sea component polymer, a method of treating the entangled web with the non-solvent or non-decomposing agent of the island component polymer and the solvent or decomposing agent of the sea component polymer is preferably employed in the present invention. . When the island component polymer is a polyamide-based resin or a polyester-based resin, the sea component polymer is warm water if the water-soluble PVA, and sodium hydroxide if the sea component polymer is an easily alkali-degradable modified polyester. An alkaline decomposing agent such as an aqueous solution is used. The removal of the sea component polymer may be carried out by a method conventionally employed in the artificial leather field, and is not particularly limited. In the present invention, since no organic solvent is used in the extraction process, the environmental load is small, the occurrence of VOC is suppressed, and since it is preferable for occupational health, the water-soluble PVA is used as a sea component polymer. Then, this is treated in hot water at 85 to 100 ° C. for 100 to 600 seconds without using an organic solvent, and extracted and removed until the removal rate becomes 95% by mass or more (including 100%). It is preferable to convert the bundle-forming long fibers into fiber bundles of ultrafine fibers made of island component polymers.
If necessary, before or simultaneously with ultrafine fiber bundle forming long fibers, the following formula:
[(Area before shrinkage treatment−Area after shrinkage treatment) / Area before shrinkage treatment] × 100
The shrinkage treatment may be performed to increase the density so that the area shrinkage ratio represented by is preferably 25% or more, more preferably 30 to 75%. Shrinkage treatment improves shape retention, prevents fibers from coming out, and makes it easy to form a predetermined number of micro voids, which will be described later, resulting in a long-term decrease in cushioning as a flooring material. In addition, the product is excellent in physical properties.
極細化前に行う場合、水蒸気雰囲気下で絡合ウェブを収縮処理するのが好ましい。水蒸気による収縮処理は、例えば、絡合ウェブに海成分に対して30〜200質量%の水分を付与し、次いで、相対湿度が70%以上、より好ましくは90%以上、温度が60〜130℃の加熱水蒸気雰囲気下で60〜600秒間加熱処理することが好ましい。上記条件で収縮処理すると、水蒸気で可塑化された海成分ポリマーが島成分ポリマーにより構成される長繊維の収縮力で圧搾・変形するので緻密化が容易になる。次いで、収縮処理した絡合ウェブを85〜100℃、好ましくは90〜100℃の熱水中で100〜600秒間処理して海成分ポリマーを溶解除去する。また、海成分ポリマーの除去率が95質量%以上になるように、水流抽出処理してもよい。水流の温度は80〜98℃が好ましく、水流速度は2〜100m/分が好ましく、処理時間は1〜20分が好ましい。 When it is carried out before ultrathinning, it is preferable to shrink the entangled web in a steam atmosphere. In the shrinkage treatment with water vapor, for example, 30 to 200% by mass of moisture is given to the entangled web with respect to the sea component, and then the relative humidity is 70% or more, more preferably 90% or more, and the temperature is 60 to 130 ° C. It is preferable to heat-treat for 60 to 600 seconds in a heated steam atmosphere. When the shrinkage treatment is performed under the above conditions, the sea component polymer plasticized with water vapor is compressed and deformed by the shrinkage force of the long fibers composed of the island component polymer, so that densification becomes easy. Next, the entangled web subjected to the shrinkage treatment is treated in hot water at 85 to 100 ° C., preferably 90 to 100 ° C. for 100 to 600 seconds to dissolve and remove the sea component polymer. Moreover, you may perform a water flow extraction process so that the removal rate of a sea component polymer may be 95 mass% or more. The temperature of the water flow is preferably 80 to 98 ° C., the water flow speed is preferably 2 to 100 m / min, and the treatment time is preferably 1 to 20 minutes.
収縮処理と極細化を同時に行う方法としては、例えば、絡合ウェブを65〜90℃の熱水中に3〜300秒間浸漬した後、引き続き、85〜100℃、好ましくは90〜100℃の熱水中で100〜600秒間処理する方法が挙げられる。前段階で、極細繊維束形成性長繊維が収縮すると同時に海成分ポリマーが圧搾される。圧搾された海成分ポリマーの一部は繊維から溶出する。そのため、海成分ポリマーの除去により形成される空隙がより小さくなるので、より緻密化した絡合不織布が得られる。 As a method for simultaneously performing the shrinkage treatment and the ultrathinning, for example, after the entangled web is immersed in hot water at 65 to 90 ° C. for 3 to 300 seconds, it is subsequently heated at 85 to 100 ° C., preferably 90 to 100 ° C. The method of processing for 100 to 600 seconds in water is mentioned. In the preceding stage, the sea component polymer is squeezed simultaneously with the shrinkage of the ultrafine fiber bundle-forming long fibers. Part of the compressed sea component polymer elutes from the fiber. Therefore, the void formed by the removal of the sea component polymer becomes smaller, so that a denser entangled nonwoven fabric can be obtained.
任意に行われる収縮処理および海成分ポリマー除去により、好ましくは140〜3000g/m2の目付を有する絡合不織布が得られる。前記絡合不織布中の繊維束の平均繊度は0.5〜10dtex、好ましくは0.7〜5dtexである。極細長繊維の平均繊度は0.001〜2dtex、好ましくは0.002〜0.2dtexである。前記範囲内であると、得られる皮革様シートの緻密性、その表層部の不織布構造の緻密性が向上する。極細長繊維の平均繊度および繊維束の平均繊度が上記範囲内である限り繊維束中の極細長繊維の本数は特に制限されないが、一般的には5〜1000本であることが、表面を構成する繊維密度が極めて高くなり、表面物性や吸水性を兼ね備える点、床材としての強度やクッション性に優れる点で好ましい。 An entangled nonwoven fabric having a basis weight of preferably 140 to 3000 g / m 2 is obtained by an optional shrinkage treatment and sea component polymer removal. The average fineness of the fiber bundle in the entangled nonwoven fabric is 0.5 to 10 dtex, preferably 0.7 to 5 dtex. The average fineness of the ultrafine fibers is 0.001 to 2 dtex, preferably 0.002 to 0.2 dtex. Within the above range, the density of the resulting leather-like sheet and the density of the nonwoven fabric structure of the surface layer portion are improved. The number of ultrafine fibers in the fiber bundle is not particularly limited as long as the average fineness of the ultrafine fibers and the average fineness of the fiber bundle are within the above ranges, but generally the surface is constituted by 5 to 1000 fibers. The fiber density is extremely high, and it is preferable in that it has surface properties and water absorption, and is excellent in strength and cushioning properties as a flooring material.
前記絡合不織布の湿潤時の剥離強力は4kg/25mm以上であることが好ましく、4〜15kg/25mmであることがより好ましい。剥離強力は極細長繊維の繊維束の三次元絡合の度合いの目安である。上記範囲内であると、絡合不織布および得られる皮革調床材としての表面摩耗が少なく、形態保持性および充実感が良好である。後述するように、高分子弾性体を付与する前に絡合不織布を分散染料で染色してもよい。湿潤時の剥離強力が上記範囲内であると、染色時の繊維の素抜けやほつれ、床材としてのほつれを防止することができる。 The wet peel strength of the entangled nonwoven fabric is preferably 4 kg / 25 mm or more, more preferably 4 to 15 kg / 25 mm. The peel strength is a measure of the degree of three-dimensional entanglement of the fiber bundle of ultrafine fibers. When it is within the above range, the surface wear as an entangled nonwoven fabric and the resulting leather-like flooring material is small, and the form retainability and fullness are good. As will be described later, the entangled nonwoven fabric may be dyed with a disperse dye before applying the polymer elastic body. When the peel strength when wet is within the above range, it is possible to prevent loosening and fraying of fibers during dyeing and fraying as a flooring material.
前記絡合不織布を構成する極細繊維束形成性長繊維を極細繊維束に変換する工程(3)から工程(6)の間で、極細繊維がポリエステル系繊維の場合には、必要に応じて、絡合不織布を分散染料で染色してもよい。分散染料による染色は過酷な条件(高温、高圧)で行われるため、高分子弾性体を付与する前に染色(先染め)すると極細繊維の破断などが生じることが多い。本発明では極細繊維が長繊維であるので先染めが可能となる。前記した収縮処理により極細長繊維は高収縮して分散染色条件に十分耐える強度を持つので、先染めする場合には収縮処理することが好ましい。 Between the step (3) and the step (6) of converting the ultrafine fiber bundle forming long fiber constituting the entangled nonwoven fabric into the ultrafine fiber bundle, when the ultrafine fiber is a polyester fiber, if necessary, The entangled nonwoven fabric may be dyed with a disperse dye. Dyeing with disperse dyes is carried out under severe conditions (high temperature and high pressure), and therefore, when dyeing (pre-dying) before applying a polymer elastic body, breakage of ultrafine fibers often occurs. In the present invention, since the ultrafine fibers are long fibers, it is possible to dye them in advance. The ultra-thin fibers are highly contracted by the above-described shrinkage treatment and have a strength sufficient to withstand the disperse dyeing conditions.
工程(4)では、前記絡合不織布に高分子弾性体の水分散体または水溶液を付与し、熱を加えながら高分子弾性体を表面、または後述するように2枚製造する場合には表面および裏面に移行させ、その後、凝固させて皮革様シートを製造する。高分子弾性体としては、人工皮革製造に従来用いられているポリウレタン弾性体、アクリロニトリル系高分子弾性体、オレフィン系高分子弾性体、ポリエステル弾性体、(メタ)アクリル系高分子弾性体などから選ばれる少なくとも1種の弾性体を用いることができるが、ポリウレタン弾性体及び/又は(メタ)アクリル系高分子弾性体が特に好ましい。 In the step (4), an aqueous dispersion or an aqueous solution of a polymer elastic body is applied to the entangled nonwoven fabric, and the surface of the polymer elastic body or two sheets as described later is applied while applying heat. The leather-like sheet is produced by transferring to the back side and then solidifying. The polymer elastic body is selected from polyurethane elastic bodies, acrylonitrile polymer elastic bodies, olefin polymer elastic bodies, polyester elastic bodies, (meth) acrylic polymer elastic bodies and the like conventionally used for artificial leather production. At least one kind of elastic body can be used, and a polyurethane elastic body and / or a (meth) acrylic polymer elastic body is particularly preferable.
ポリウレタン弾性体としては、高分子ポリオール、有機ポリイソシアネート、及び、必要に応じて鎖伸長剤を所望の割合で、溶融重合法、塊状重合法、溶液重合法などにより重合して得られる公知の熱可塑性ポリウレタンが好ましい。 The polyurethane elastic body includes a known heat obtained by polymerizing a polymer polyol, an organic polyisocyanate, and, if necessary, a chain extender in a desired ratio by a melt polymerization method, a bulk polymerization method, a solution polymerization method, or the like. Plastic polyurethane is preferred.
前記高分子弾性体は水溶液または水分散体として前記絡合不織布に含浸させる。水溶液または水分散体中の高分子弾性体含量は0.1〜60質量%が好ましい。高分子弾性体の水溶液または水分散体は、凝固後の高分子弾性体と極細長繊維の質量比が0.001〜0.6、好ましくは0.005〜0.6、より好ましくは0.01〜0.5になるように含浸させる。 The entangled nonwoven fabric is impregnated with the polymer elastic body as an aqueous solution or water dispersion. The polymer elastic body content in the aqueous solution or water dispersion is preferably 0.1 to 60% by mass. In the aqueous solution or dispersion of the polymer elastic body, the mass ratio of the polymer elastic body after solidification to the ultrafine fibers is 0.001 to 0.6, preferably 0.005 to 0.6, more preferably 0.00. Impregnation so as to be 01 to 0.5.
高分子弾性体の水溶液または水分散体を絡合不織布に含浸させる方法は特に制限されないが、例えば、浸漬などにより絡合不織布内部に均一に含浸する方法、表面と裏面に塗布する方法などが挙げられる。従来の人工皮革の製造においては、感熱ゲル化剤などを使用して、含浸した高分子弾性体が絡合不織布の表面と裏面に移行(マイグレーション)するのを防止し、高分子弾性体を絡合不織布中で均一に凝固させている。しかし、本発明においては、含浸した高分子弾性体を絡合不織布の少なくとも表面に移行(マイグレーション)させ、その後凝固させて、高分子弾性体の存在量を厚み方向に略連続的に勾配させるのが好ましい。すなわち、本発明の繊維銀面からなる銀付調、スエード調、又は半銀付調皮革様シートにおいて、高分子弾性体は厚み方向中央部では疎に、表層部では密に存在するのが表面物性、特にスエード調皮革様シートの場合、立毛繊維の耐素抜け性や耐ピリング性に優れる点や天然皮革様の触感に優れる点で好ましく、表面層の存在量が下面層よりも密であることがより好ましい。このような分布勾配を得るために、本発明では、高分子弾性体の水溶液または水分散体を含浸させた後、マイグレーション防止手段を講じることなく、絡合不織布の少なくとも表面を好ましくは110〜150℃で、好ましくは0.5〜30分間加熱する。このような加熱により水分が表面から蒸散し、それに伴って高分子弾性体を含む水分が表層部に移行し、高分子弾性体が表面近傍で凝固する。マイグレーションのための加熱は、乾燥装置中などにおいて熱風を表面に吹きつけることにより行うのが好ましい。 The method of impregnating the entangled nonwoven fabric with the aqueous solution or water dispersion of the polymer elastic body is not particularly limited, and examples thereof include a method of uniformly impregnating the entangled nonwoven fabric by dipping and the like, a method of applying to the front and back surfaces, etc. It is done. In the production of conventional artificial leather, a thermosensitive gelling agent is used to prevent the impregnated polymer elastic body from migrating to the front and back surfaces of the entangled nonwoven fabric. It is solidified uniformly in the composite nonwoven fabric. However, in the present invention, the impregnated polymer elastic body is migrated to at least the surface of the entangled nonwoven fabric, and then solidified so that the abundance of the polymer elastic body is substantially continuously gradient in the thickness direction. Is preferred. That is, in the silver-tone, suede-tone, or semi-silver-tone leather-like sheet comprising the fiber silver surface of the present invention, the surface of the polymer elastic body is sparse in the central portion in the thickness direction and dense in the surface layer portion. In the case of a physical property, particularly in the case of a suede-like leather-like sheet, it is preferable in terms of excellent resistance to pulling out of napped fibers and pilling resistance and excellent in the feel of natural leather. It is more preferable. In order to obtain such a distribution gradient, in the present invention, at least the surface of the entangled nonwoven fabric is preferably 110 to 150 without impregnating the migration after impregnating the aqueous solution or dispersion of the polymer elastic body. Heat at 0 ° C., preferably for 0.5-30 minutes. Due to such heating, moisture evaporates from the surface, and accordingly, moisture including the polymer elastic body moves to the surface layer portion, and the polymer elastic body coagulates in the vicinity of the surface. Heating for migration is preferably performed by blowing hot air on the surface in a drying apparatus or the like.
工程(5)では、工程(4)で得た皮革様シート(凝固した高分子弾性体を含有する絡合不織布)の少なくとも前記表面を、前記海島型長繊維の紡糸温度よりも50℃以上低く、かつ、前記高分子弾性体の融点以下の温度で熱プレスする。これにより銀面が形成される。銀面が形成される限り特に限定されないが、加熱温度は130℃以上であるのが好ましい。熱プレスは、例えば、加熱した金属ロールによって行われ、1〜1000N/mmの線圧で熱プレスするのが好ましい。なお、熱プレス温度が上記温度(海島型長繊維の紡糸温度よりも50℃以上低い温度)よりも高い場合は、極細長繊維を構成するポリマー同士の融着が大きくなり、表面層より内部、例えば基体層2を構成する極細長繊維同士が融着するため、板状の非常に硬いものになってしまう。一方、熱プレス温度が前記高分子弾性体の融点以上の場合は、高分子弾性体が溶融し、プレス機に接着するため、平滑な銀面は得られず、また、生産性も不良となる。なお、得られる床材表面付近のウエット感を低減させ、水分を内部に効率的に拡散・蒸散させるには、該熱プレスを表面層の断面に存在する空隙孔の面積が、基体層3と裏面層の断面に存在する空隙孔の面積の80%以下にするように行うことが、吸水拡散性と表面強度を兼ね備える点で好ましい。そのためには、表面層のみの熱プレスか、表面と裏面に高分子弾性体をマイグレーションさせて両面熱プレス後に厚さ方向に2分割(スライス処理)することが好ましい。 In step (5), at least the surface of the leather-like sheet (entangled nonwoven fabric containing a solidified polymer elastic body) obtained in step (4) is at least 50 ° C. lower than the spinning temperature of the sea-island long fibers. And it heat-presses at the temperature below melting | fusing point of the said polymeric elastic body. Thereby, a silver surface is formed. Although it does not specifically limit as long as a silver surface is formed, It is preferable that heating temperature is 130 degreeC or more. The hot pressing is performed, for example, with a heated metal roll, and is preferably hot pressed at a linear pressure of 1 to 1000 N / mm. In addition, when the hot press temperature is higher than the above temperature (a temperature lower than the spinning temperature of the sea-island long fiber by 50 ° C. or more), the fusion between the polymers constituting the ultra-fine long fibers increases, For example, since the ultra-thin fibers constituting the base layer 2 are fused, the plate-like layer becomes extremely hard. On the other hand, when the hot press temperature is equal to or higher than the melting point of the polymer elastic body, the polymer elastic body melts and adheres to the press machine, so that a smooth silver surface cannot be obtained and the productivity is also poor. . In order to reduce the wet feeling near the surface of the obtained flooring material and to efficiently diffuse and evaporate moisture inside, the area of the pores existing in the cross section of the surface layer of the hot press is the same as that of the base layer 3 It is preferable to carry out so that it may be 80% or less of the area of the void hole which exists in the cross section of a back surface layer from the point which combines water absorption diffusivity and surface strength. For that purpose, it is preferable to heat press only the surface layer, or to migrate the polymer elastic body to the front and back surfaces and divide into two in the thickness direction (slice processing) after double-side hot pressing.
このように本発明の銀面の形成方法は、高分子弾性体を含浸後の絡合不織布表面に高分子弾性体をさらに塗布し凝固する方法または高分子弾性体のフィルムを貼付する従来の方法とは異なる。すなわち、本発明においては、絡合不織布に高分子弾性体の水溶液または水分散体を含浸し、高分子弾性体を表面及び裏面にマイグレーションさせた後凝固し、高分子弾性体を中心部より表面及び裏面近傍により密に存在させ、次いで、表面を熱プレスすることにより銀面を形成する。或は、両面を熱プレスした後に厚み方向に分割して銀面を形成した皮革様シートを2枚製造することが可能になることから、効率的に製造可能な点で好ましい。これらの方法によれば、銀面をより低温で形成することができるが、その理由は極細長繊維に存在する副吸熱ピークによる極細繊維の部分的な融着に起因していると考えられる。従来の塗布または貼付により形成した銀面はプラスチック感、ゴム感が強く、また、表面に付着した水分の吸収速度を低下させるが、本発明の方法により得られた銀面は天然皮革様の外観、低反発性、充実感を有するのみならず、表面に付着した水分を急速に吸収、拡散させる。上記のようにして得られた繊維銀面を有する銀付調皮革様シートの厚さは0.1mm〜6mmであることが好ましい。 Thus, the method for forming a silver surface of the present invention is a method of further applying and solidifying a polymer elastic body on the surface of an entangled nonwoven fabric impregnated with a polymer elastic body, or a conventional method of attaching a film of a polymer elastic body. Is different. That is, in the present invention, the entangled nonwoven fabric is impregnated with an aqueous solution or dispersion of a polymer elastic body, the polymer elastic body is migrated to the front and back surfaces, and then solidified, so that the polymer elastic body is surfaced from the center. Then, the silver surface is formed by causing the surface to be present more densely in the vicinity of the back surface and then hot pressing the surface. Alternatively, two leather-like sheets having a silver surface formed by hot pressing on both sides and then divided in the thickness direction can be produced, which is preferable in terms of efficient production. According to these methods, the silver surface can be formed at a lower temperature, and the reason is considered to be due to partial fusion of the ultrafine fibers due to the secondary endothermic peak existing in the ultrafine fibers. The silver surface formed by conventional coating or pasting has a strong plastic feeling and rubber feeling, and reduces the absorption rate of moisture adhering to the surface, but the silver surface obtained by the method of the present invention has a natural leather-like appearance. Not only has low resilience and fullness, but also quickly absorbs and diffuses moisture adhering to the surface. The thickness of the silvered leather-like sheet having the fiber silver surface obtained as described above is preferably 0.1 mm to 6 mm.
必要に応じて工程(6)で、前記繊維銀面上に高分子弾性体の水分散体または水溶液をグラビア塗布し、熱を加えて高分子弾性体を乾燥、凝固させる任意の工程を行うのが好ましい。特に、表面層に選択的に塗布した場合、エンボス模様の固定性が良好となり、製品となっても使用中にその模様が消失し難い傾向がある。そして、繊維銀面上に、上記した高分子弾性体の水溶液または水分散体を固形分として2 〜30g/m2グラビア塗布し、90〜140℃の熱風を吹きつけて乾燥、凝固させて銀擦り調の外観を付与することが好ましい。
更に、工程(7)として、前記工程(6)の後で下記工程(8)として、グラビア塗布面を70〜250℃の平滑面に接触させる工程を含むことが、表面のツヤ出し及び2色感を付与させる点で好ましい。接触時間は特に限定しないが、70〜250℃の金属ロールに0.1〜300秒接触させることが上記効果を発現し易い点で好ましい。高分子弾性体、およびその水溶液または水分散体の詳細は上記した通りである。
If necessary, in step (6), an aqueous dispersion or aqueous solution of the polymer elastic body is gravure coated on the fiber silver surface, and an optional step of drying and solidifying the polymer elastic body by applying heat is performed. Is preferred. In particular, when it is selectively applied to the surface layer, the embossed pattern has a good fixability, and even if it is a product, the pattern tends not to disappear during use. Then, 2-30 g / m 2 gravure is applied on the fiber silver surface as an aqueous solution or dispersion of the above-mentioned polymer elastic body as a solid, and dried and solidified by blowing hot air at 90-140 ° C. It is preferable to give a rubbing appearance.
Furthermore, the step (7) includes the step of bringing the gravure-coated surface into contact with a smooth surface at 70 to 250 ° C. as the following step (8) after the step (6). It is preferable at the point which gives a feeling. The contact time is not particularly limited, but contact with a metal roll at 70 to 250 ° C. for 0.1 to 300 seconds is preferable in that the above effect is easily exhibited. Details of the polymer elastic body and its aqueous solution or water dispersion are as described above.
上記方法により製造された繊維銀面からなる銀付調皮革様シートの表面層を形成する極細長繊維同士は、工程(5)の加圧加熱により少なくとも一部融着している。そして、本発明では、極細長繊維の融着により銀面が形成され、高分子弾性体がその形態を保持している。一方、基体層2を形成する極細長繊維同士は融着していない。「一部融着」とは、極細長繊維同士が長さ方向に部分的に融着している状態、および、繊維束のある断面において一部の極細長繊維同士が融着している状態を表す。 The ultrafine fibers forming the surface layer of the silver-finished leather-like sheet made of the fiber silver surface produced by the above method are fused at least partially by the pressure heating in the step (5). And in this invention, a silver surface is formed by fusion | melting of an ultra-thin long fiber, and the polymer elastic body has hold | maintained the form. On the other hand, the ultrafine fibers forming the base layer 2 are not fused. “Partially fused” means a state in which the ultrafine fibers are partially fused in the length direction, and a state in which a part of the ultrafine fibers are fused in a cross section of the fiber bundle. Represents.
また、表面層の繊維束の内部は高分子弾性体で充填されており、かつ、繊維束の外周は高分子弾性体で完全に覆われていることが好ましい。極細繊維の一部は融着している。基体層2が高分子弾性体を含む場合、極細長繊維同士、繊維束同士、および極細長繊維と繊維束が高分子弾性体を介して接着しているが、繊維束の内部は高分子弾性体で充填されておらず、また、繊維束の外周は高分子弾性体により完全には覆われておらず一部が覆われているだけであることが好ましい。 Moreover, it is preferable that the inside of the fiber bundle of the surface layer is filled with a polymer elastic body, and the outer periphery of the fiber bundle is completely covered with the polymer elastic body. Some of the ultrafine fibers are fused. When the base layer 2 includes a polymer elastic body, the ultra long fibers, the fiber bundles, and the ultra long fibers and the fiber bundle are bonded via the polymer elastic body. It is preferable that the outer periphery of the fiber bundle is not completely covered with the polymer elastic body but is only partially covered with the body.
本発明の繊維銀面からなる銀付調皮革様シートは、極細繊維で囲まれた最大幅0.1〜50μm、最小幅10μm以下の微細空隙が表面1cm2当り8000個以上であることが好ましい。
また、押圧荷重12kPa(gf/cm2)、摩耗回数5万回で測定したマーチンデール法での表面磨耗減量が30mg以下であることが好ましい。
The silver-finished leather-like sheet comprising the fiber silver surface of the present invention preferably has 8000 or more fine pores per 1 cm 2 of surface having a maximum width of 0.1 to 50 μm and a minimum width of 10 μm or less surrounded by ultrafine fibers. .
Moreover, it is preferable that the surface abrasion loss by the Martindale method measured by pressing load 12kPa (gf / cm < 2 >) and the frequency | count of abrasion 50,000 times is 30 mg or less.
微細空間が上記範囲より広いと表面感が良くなく、凸凹が目立ってしまう。上記の構成であると、0.2cc/cm2/sec以上の通気性、および、30℃、80%RHで1000g/m2・24hr以上の通湿度が得られるので好ましい。上記微小空隙は、8000〜100000個であることが良好な通気性および通湿度を得る上で好ましい。微小空隙のサイズや個数は、電子顕微鏡を用いて測定することができる。 When the fine space is wider than the above range, the surface feeling is not good, and the unevenness becomes conspicuous. The above configuration is preferable because air permeability of 0.2 cc / cm 2 / sec or more and moisture permeability of 1000 g / m 2 · 24 hr or more at 30 ° C. and 80% RH can be obtained. In order to obtain good air permeability and moisture permeability, it is preferable that the number of the microvoids is 8000 to 100,000. The size and number of the microvoids can be measured using an electron microscope.
前記極細繊維で囲まれた最大幅0.1〜50μm、最小幅10μm以下の微細空隙が表面1cm2当り8000個以上存在するように、海島型長繊維の島の数を12〜1000とすることが好ましい。 The number of islands of sea-island type long fibers should be 12 to 1000 so that there are 8000 or more fine voids surrounded by the ultrafine fibers with a maximum width of 0.1 to 50 μm and a minimum width of 10 μm or less per 1 cm 2 of surface. Is preferred.
また、押圧荷重12kPa、摩耗回数5万回で測定したマーチンデール法での表面磨耗減量が30mg以下であると、実使用時の表面磨耗量が少なく、外観変化も少なく、耐久性が良好になるので好ましい。 Further, when the weight loss by the Martindale method measured at a pressure load of 12 kPa and a wear frequency of 50,000 times is 30 mg or less, the surface wear amount during actual use is small, the appearance change is small, and the durability is improved. Therefore, it is preferable.
一方、スエード調皮革様シートを製造する場合、上記繊維銀面からなる銀付調皮革様シートを製造する途中の絡合不織布を製造する工程以降で、高分子弾性体を付与した後、表面を起毛処理してスエード調皮革様シートとすることができる。毛羽立てる方法としては公知の方法を用いてよく、例えばサンドペーパーや針布等を用いたバフがけを用いることができる。 On the other hand, when producing a suede-like leather-like sheet, after the step of producing an entangled nonwoven fabric in the middle of producing a silver-finished leather-like sheet comprising the above-mentioned fiber silver surface, after applying a polymer elastic body, the surface is applied. It can be made into a suede-like leather-like sheet by raising. As a method for fluffing, a known method may be used. For example, buffing using sandpaper or a needle cloth can be used.
また、半銀付調皮革様シートの表面形成方法は、公知の方法を用いることが可能であるが、上記工程(3)または工程(4)の後で、任意に起毛処理を行って、工程(5)に準じて表面の一部に加熱プレスを行って、表面の繊維同士を一部融着させて銀面を部分的に形成する方法が、表面の耐磨耗性や吸水性・吸湿性に優れる点で好ましく用いられる。さらに、加熱プレスの方法としては本発明の銀付調皮革様シートの銀面を形成する方法に準じて行えばよいが、用いる金属ロールの形状について、表面の繊維の一部を融着するような凹凸形状を有するものを用いることが好ましい。加えて、上記半銀付調皮革様シートに高分子弾性体の水分散体または水溶液をグラビア塗布し、熱を加えて高分子弾性体を乾燥、凝固させる任意の工程を行うのが好ましい。特に、表面層に選択的に塗布した場合、エンボス模様の固定性が良好となり、製品となっても使用中にその模様が消失し難い傾向がある。そして、半銀面上に、上記した高分子弾性体の水溶液または水分散体を固形分として2〜30g/m2グラビア塗布し、90〜140℃の熱風を吹きつけて乾燥、凝固させて半銀調の外観を付与することが好ましい。 Moreover, the surface formation method of a semi-silvered leather-like sheet can use a publicly known method, but after the step (3) or step (4), an optional raising treatment is performed, According to (5), a method of forming a silver surface by partially pressing the surface of the surface and partially fusing the fibers on the surface is the surface wear resistance, water absorption and moisture absorption. It is preferably used in terms of excellent properties. Furthermore, the heating press may be carried out in accordance with the method for forming the silver surface of the silver-finished leather-like sheet of the present invention, but the shape of the metal roll to be used is fused with some of the fibers on the surface. It is preferable to use one having a rough shape. In addition, it is preferable to subject the semi-silvered leather-like sheet to a gravure coating with an aqueous dispersion or an aqueous solution of a polymer elastic body, and then apply heat to dry and solidify the polymer elastic body. In particular, when it is selectively applied to the surface layer, the embossed pattern has a good fixability, and even if it is a product, the pattern tends not to disappear during use. Then, on the semi-silver surface, 2-30 g / m 2 gravure of the above-mentioned aqueous solution or dispersion of the polymer elastic body as a solid content is applied, dried by hot air of 90-140 ° C., solidified, and semi-solidified. It is preferable to give a silvery appearance.
このようにして得られた皮革様シートを芯材上に積層しホットメルト接着剤を使用して貼り合わせるか、縫い付けにより皮革調床材とする。
ここでのホットメルト接着剤としては、パウダー状、フィルム状、ネット状、メルトガンに収容されたものを用いることが可能であり、接着剤成分としては、ポリウレタン系、ナイロン系、ポリエチレン系、オレフィン系が好ましい。
The leather-like sheet thus obtained is laminated on a core material and bonded together using a hot melt adhesive, or a leather-like flooring material is obtained by sewing.
As the hot melt adhesive here, it is possible to use a powder form, a film form, a net form, or one contained in a melt gun, and as an adhesive component, polyurethane, nylon, polyethylene, olefin Is preferred.
貼り合わせた皮革様シート裏面は、極細繊維束間の平均空隙サイズが10〜40μmの範囲にある更に極細繊維発生型繊維が極細繊維化された極細長繊維絡合シートであり、ホットメルト接着剤の沈み込みによって、インシュレーションの芯材との剥離強力に優れる。 The attached leather-like sheet back is an ultra-fine fiber entangled sheet in which an ultra-fine fiber-generating fiber having an average gap size between ultra-fine fiber bundles in the range of 10 to 40 μm is made into ultra-fine fibers, and a hot melt adhesive Due to the sinking, the peel strength from the insulation core material is excellent.
本発明の皮革調床材は、環境負荷を低減する観点から、皮革調床材中に存在するジメチルホルムアミド(DMF)濃度が10ppm以下である必要がある。
また、同様の観点からトルエン濃度は50ppm以下であることが好ましく、さらに0.05ppm以下であることが特に好ましい。
From the viewpoint of reducing environmental burden, the leather-like flooring material of the present invention needs to have a dimethylformamide (DMF) concentration of 10 ppm or less present in the leather-like flooring material.
From the same viewpoint, the toluene concentration is preferably 50 ppm or less, more preferably 0.05 ppm or less.
以下、実施例により、本発明を説明するが、本発明はこれら実施例に限定されるものではない。実施例中で記載される部および%は、特にことわりのない限り質量基準である。
なお各特性は以下の方法で測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples. The parts and% described in the examples are based on mass unless otherwise specified.
Each characteristic was measured by the following method.
(1)極細長繊維の平均繊度
皮革様シートを形成している極細長繊維(20個)の断面積を走査型電子顕微鏡(倍率:数百倍〜数千倍程度)により測定し平均断面積を求めた。この平均断面積と繊維を形成するポリマーの密度から平均繊度を計算した。
(1) Average fineness of ultrafine fibers The cross-sectional area of ultrafine fibers (20) forming the leather-like sheet was measured with a scanning electron microscope (magnification: several hundred to several thousand times) and the average cross-sectional area Asked. The average fineness was calculated from the average cross-sectional area and the density of the polymer forming the fiber.
(2)繊維束の平均繊度
絡合不織布を形成している繊維束の中から選び出した平均的な繊維束(20個)を走査型電子顕微鏡(倍率:数百倍〜数千倍程度)で観察し、その外接円の半径を測定して平均断面積を求めた。この平均断面積が繊維を形成するポリマーで充填されているとし、該ポリマーの密度から繊維束の平均繊度を計算した。
(2) Average fineness of fiber bundles An average fiber bundle (20 pieces) selected from the fiber bundles forming the entangled nonwoven fabric is scanned with a scanning electron microscope (magnification: several hundred to several thousand times). The average cross-sectional area was determined by observing and measuring the radius of the circumscribed circle. Assuming that this average cross-sectional area is filled with the polymer forming the fiber, the average fineness of the fiber bundle was calculated from the density of the polymer.
(3)融点
示差走査熱量計(TA3000、メトラー社製)を用いて、窒素雰囲気下、昇温速度10℃/分で室温からポリマー種類に応じて300〜350℃まで昇温後、直ちに室温まで冷却し、再度直ちに昇温速度10℃/分で300〜350℃まで昇温したとき(2nd Run)に得られた吸熱ピーク(融点ピーク)のピークトップ温度を求めた。
(3) Melting point Using a differential scanning calorimeter (TA3000, manufactured by Mettler), the temperature was raised from room temperature to 300 to 350 ° C. according to the polymer type in a nitrogen atmosphere at a heating rate of 10 ° C./min, and then immediately to room temperature. After cooling, the peak top temperature of the endothermic peak (melting point peak) obtained when the temperature was increased again to 300 to 350 ° C. at a rate of temperature increase of 10 ° C./min (2nd Run) was determined.
(4)副吸熱ピーク温度
示差走査熱量計(TA3000、メトラー社製)を用いて、窒素雰囲気下、昇温速度10℃/分で室温から昇温速度10℃/分で300〜350℃まで昇温したとき(1st Run)に得られた吸熱ピークの内、上記融点ピークよりも低温側のピークのトップ温度を求めた。
(4) Sub-endothermic peak temperature Using a differential scanning calorimeter (TA3000, manufactured by Mettler), the temperature was increased from room temperature at a heating rate of 10 ° C / min to 300 to 350 ° C at a heating rate of 10 ° C / min in a nitrogen atmosphere. Among the endothermic peaks obtained when heated (1st Run), the top temperature of the peak on the lower temperature side than the melting point peak was determined.
(5)繊維銀面からなる銀付調皮革様シートの微細空隙の幅と個数、表面層の断面に存在する空隙孔の面積と基体層3および裏面層の断面に存在する空隙孔の面積の比率
繊維銀面からなる銀付調皮革様シートの表面を走査型電子顕微鏡(倍率:800倍〜2000倍程度)により観察し極細繊維で囲まれた不定形(20個)空隙の巾を計測し、最大巾と最小幅を求めた。ついで、一定面積(100μm×100μm)中に存在する微細空隙の個数を計測して表面1cm2当りに換算した。また、銀付調皮革様シートの表面層と基体層3および裏面層の断面を走査型電子顕微鏡(倍率:800倍〜2000倍程度)により観察し、任意20箇所(表面層20箇所と基体層3を10箇所+裏面層10箇所)を抽出し、一定面積(100μm×100μm)中に存在する極細繊維および高分子弾性体以外の空間で囲まれた空隙孔の面積比で比較した。
(5) The width and number of fine voids of the grain-finished leather-like sheet comprising a fiber silver surface, the area of voids existing in the cross section of the surface layer, and the area of voids existing in the cross section of the base layer 3 and the back layer Ratio The surface of a silver-finished leather-like sheet consisting of fiber silver surfaces is observed with a scanning electron microscope (magnification: 800 to 2000 times), and the width of irregular (20) voids surrounded by ultrafine fibers is measured. The maximum width and minimum width were determined. Subsequently, the number of fine voids existing in a certain area (100 μm × 100 μm) was measured and converted per 1 cm 2 of the surface. Moreover, the cross section of the surface layer of the leather-like sheet with silver, the base layer 3 and the back layer was observed with a scanning electron microscope (magnification: about 800 to 2000 times) and arbitrarily 20 locations (the surface layer 20 locations and the base layer). 3 was extracted at 10 locations + 10 locations on the back surface layer, and compared by the area ratio of pores surrounded by spaces other than ultrafine fibers and polymer elastic bodies existing in a certain area (100 μm × 100 μm).
(6)見掛け密度
試料を縦16cm×横16cmに切り取り、天秤にて重量を少数第3位まで秤量し、目付(g/m2)を求めた。次に厚さをJISL1096:1999 8.5に準拠して圧接子径8mm、圧荷重240g/m2で測定し、該目付けと厚さから見かけ密度を計算した。
(6) Apparent density A sample was cut into a length of 16 cm and a width of 16 cm, and the weight was weighed to the third decimal place with a balance to determine the basis weight (g / m 2 ). Next, the thickness was measured according to JIS L1096: 1999 8.5 with a press contact diameter of 8 mm and a pressure load of 240 g / m 2 , and the apparent density was calculated from the basis weight and thickness.
(7)吸水拡散速度
15cm×15cmの皮革様シートの中央部に水を0.3ccスポット状に滴下し、温度:27℃、湿度:52%の温調室に放置して吸水時間と吸水後の拡散面積(単位:cm2)を測定した。
(7) Water absorption diffusion rate Water is dripped into the center of a 15cm x 15cm leather-like sheet in the form of a 0.3cc spot and left in a temperature-controlled room at a temperature of 27 ° C and a humidity of 52%. The diffusion area (unit: cm 2 ) was measured.
(8)乾燥速度
皮革様シートのサンプル(7cm×7cm)に水1ccを吸水させ、温度:27℃、湿度:52%の温調室に放置して各時間での重量を測定し、残存水分率を計算した。
(8) Drying speed A leather-like sheet sample (7 cm x 7 cm) absorbs 1 cc of water, and is left in a temperature-controlled room at a temperature of 27 ° C and a humidity of 52%, and the weight at each time is measured. The rate was calculated.
(9)残留ジメチルホルムアミド(DMF)濃度および残留トルエン濃度
皮革調床材のサンプルを捕集バッグによる試料採取し、その試料を4cm×0.3cmに試料をカット(1.2cm2)した後、加熱脱着装置(Turbomatrix TD、パーキンエルマー社製)により、加熱脱着させたものを、捕集チューブを通り、トラップチューブで吸着させる。
その後、GC/MS(ガスクロマトグラフ質量分析法)にて定量をおこなった。
加熱脱着装置およびGC/MSの詳細設定条件は下記に示す。
加熱脱着装置条件
装置名:Turbomatrix TD(パーキンエルマー社製)
1.捕集チューブ
脱着温度:100℃
脱着流量:30ml/min
脱着時間:10min
人口スプリット:90ml/min
2.トラップチューブ
吸着剤:Tenax TA
トラップ温度:5℃
脱着温度:260℃
出口スプリット:20ml/min
カラム圧:120kPa
GC/MS条件
装置名:Agilent5975
カラム:DB-5MS(30m−0.25mm−1.0μm)
オーブン:50℃(1分保持)→250℃、10℃/分
MSイオン源:El+,230℃
(9) Residual dimethylformamide (DMF) concentration and residual toluene concentration After collecting a sample of leather-like flooring material with a collection bag and cutting the sample into 4 cm x 0.3 cm (1.2 cm 2 ), Heat desorbed by a thermal desorption apparatus (Turbomatrix TD, manufactured by Perkin Elmer) passes through the collection tube and is adsorbed by the trap tube.
Then, it quantified by GC / MS (gas chromatograph mass spectrometry).
Detailed setting conditions of the heat desorption apparatus and GC / MS are shown below.
Heat desorption equipment conditions Equipment name: Turbomatrix TD (manufactured by PerkinElmer)
1. Collection tube Desorption temperature: 100 ° C
Desorption flow rate: 30 ml / min
Desorption time: 10 min
Population split: 90ml / min
2. Trap tube Adsorbent: Tenax TA
Trap temperature: 5 ° C
Desorption temperature: 260 ° C
Outlet split: 20 ml / min
Column pressure: 120 kPa
GC / MS conditions Device name: Agilent5975
Column: DB-5MS (30m-0.25mm-1.0μm)
Oven: 50 ° C. (1 minute hold) → 250 ° C., 10 ° C./min MS ion source: El +, 230 ° C.
実施例1
上記変性PVA(水溶性熱可塑性ポリビニルアルコール:海成分)と、変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ−ト(島成分)を、海成分/島成分が25/75(質量比)となるように260℃で溶融複合紡糸用口金(島数:25島/繊維)より吐出した。紡糸速度が3700m/minとなるようにエジェクター圧力を調整し、平均繊度が2.0デシテックスの海島型長繊維をネット上に捕集し、目付37g/m2の長繊維ウェブを得た。
Example 1
The modified PVA (water-soluble thermoplastic polyvinyl alcohol: sea component), isophthalic acid-modified polyethylene terephthalate (island component) having a modification degree of 6 mol%, and the sea component / island component is 25/75 (mass ratio). It was discharged from a die for melt composite spinning (number of islands: 25 islands / fiber) at 260 ° C. The ejector pressure was adjusted so that the spinning speed was 3700 m / min, and sea-island long fibers having an average fineness of 2.0 dtex were collected on a net to obtain a long fiber web having a basis weight of 37 g / m 2 .
上記長繊維ウェブに油剤を付与し、クロスラッピングにより8枚重ねて総目付が296g/m2の重ね合わせウェブを作製し、更に針折れ防止油剤をスプレーした。次いで、針先端から第1バーブまでの距離が3.2mmの6バーブ針を用い、針深度8.3mmにて両面から交互に2400パンチ/cm2でニードルパンチし、絡合ウェブを作成した。このニードルパンチ処理による面積収縮率は80%であり、ニードルパンチ後の絡合ウェブの目付は375g/m2であった。 An oil agent was applied to the above-mentioned long fiber web, 8 sheets were overlapped by cross-wrapping to produce an overlap web having a total weight of 296 g / m 2 , and sprayed with a needle breakage preventing oil agent. Next, using a 6 barb needle with a distance of 3.2 mm from the tip of the needle to the first barb, needle punching was alternately performed at 2400 punch / cm 2 from both sides at a needle depth of 8.3 mm to create an entangled web. The area shrinkage due to the needle punching process was 80%, and the basis weight of the entangled web after the needle punching was 375 g / m 2 .
絡合ウェブを巻き取りライン速度10m/分で70℃熱水中に20秒間浸漬して面積収縮を生じさせた。ついで95℃の熱水中で繰り返しディップニップ処理を実施して変性PVAを溶解除去し、極細長繊維を25本含む、平均繊度2.4デシテックスの繊維束が3次元的に交絡した絡合不織布を作成した。乾燥後に測定した面積収縮率は50〜55%であり、目付は520g/m2、見掛け密度は0.47g/cm3であった。また、剥離強力は、10.0kg/25mmであった。次いで、5%owfの分散染料により茶色に染色した。工程通過性(染色時の繊維の素抜けやほつれ、バフィング時の繊維の抜け等がない)は良好で、発色の良好な極細長繊維からなる絡合不織布を得た。該絡合不織布を構成する極細長繊維の副吸熱ピークを測定した結果、118℃に観測され、融点ピーク(232℃)と副吸熱ピークの面積比は14:1であった。 The entangled web was immersed in hot water at 70 ° C. for 20 seconds at a winding line speed of 10 m / min to cause area shrinkage. Next, repeated dip nip treatment was performed in 95 ° C. hot water to dissolve and remove the modified PVA, and an entangled nonwoven fabric in which fiber bundles having an average fineness of 2.4 dtex and containing 25 ultrafine fibers were entangled three-dimensionally. It was created. The area shrinkage rate measured after drying was 50 to 55%, the basis weight was 520 g / m 2 , and the apparent density was 0.47 g / cm 3 . The peel strength was 10.0 kg / 25 mm. It was then dyed brown with 5% owf disperse dye. An entangled nonwoven fabric made of ultra-long fibers having good processability (no fiber omission and fraying during dyeing, no fiber omission during buffing, etc.) and good color development was obtained. As a result of measuring the secondary endothermic peak of the ultra-thin fibers constituting the entangled nonwoven fabric, it was observed at 118 ° C., and the area ratio of the melting point peak (232 ° C.) to the secondary endothermic peak was 14: 1.
該絡合不織布をバフィングにより厚みを1.00mmに調整した後、ソフトセグメントがポリへキシレンカーボネートジオールとポリメチルペンタンジオールの70:30の混合物からなり、ハードセグメントが主として水添メチレンジイソシアネートからなるポリウレタン(融点が180〜190℃、損失弾性率のピーク温度が−15℃、130℃での熱水膨潤率が35%の高分子弾性体)を用いて固形分濃度が10質量%の水分散体を調製した。この水分散体を高分子弾性体と極細長繊維の質量比が0.4:99.6となるように上記の染色された絡合不織布に含浸した後、120℃の熱風を表面から吹きつけて乾燥すると同時に高分子弾性体を表面および裏面に移行させ、凝固させた。 After the thickness of the entangled nonwoven fabric is adjusted to 1.00 mm by buffing, the soft segment is made of a 70:30 mixture of polyhexylene carbonate diol and polymethylpentane diol, and the hard segment is mainly made of hydrogenated methylene diisocyanate. (Polymer elastic body having a melting point of 180 to 190 ° C., a loss elastic modulus peak temperature of −15 ° C. and a hot water swelling ratio of 130% at 35 ° C.) and an aqueous dispersion having a solid content concentration of 10% by mass Was prepared. The water dispersion is impregnated into the dyed entangled nonwoven fabric so that the mass ratio of the polymer elastic body and the extra long fibers is 0.4: 99.6, and then hot air at 120 ° C. is blown from the surface. At the same time, the polymer elastic body was transferred to the front and back surfaces and solidified.
得られた絡合不織布の表面に毛穴シボ模様を有する172℃の金属ロールを用いて線圧100N/mmで熱圧着し(裏面は非加熱のゴムロールに接触)、表面層の繊維の一部を融着させて毛穴シボ模様を有する銀面を形成し、水系ポリウレタンをグラビアにて固形分付着量で10g/m2転写し、110℃の熱風を表面から吹きつけて乾燥し、凝固させて銀付調皮革様シートを得た。また、表面の電子顕微鏡観察の結果、表面には極細繊維で囲まれた最大幅0.1〜50μm、最小幅10μm以下の微細空隙が1cm2当り35000個以上存在し、表面層の断面に存在する空隙孔の断面積は、基体層3と裏面層の断面に存在する空隙孔の断面積の25%の比率であった。押圧荷重12kPa(gf/cm2)、摩耗回数5万回で測定したマーチンデール法での表面磨耗減量は0mgであった。銀付調皮革様シートの吸水拡散速度は、滴下完了直後に1.3cm2であった面積が、しみ込み完了後に既に、17.5cm2と拡散し、3分後には28.9cm2に広範囲に拡散した。また、乾燥速度は、50分後に残存水分率が20%となり、90分後には0%であった。 The surface of the obtained entangled nonwoven fabric was thermocompression bonded at a linear pressure of 100 N / mm using a metal roll at 172 ° C. having a pore texture pattern (the back surface was in contact with a non-heated rubber roll), and some of the fibers in the surface layer were A silver surface having pores and a wrinkle pattern is formed by fusing, the aqueous polyurethane is transferred by gravure at a solid content of 10 g / m 2 , dried by blowing hot air at 110 ° C. from the surface, solidified, and silver A textured leather-like sheet was obtained. Moreover, as a result of observation of the surface with an electron microscope, the surface has 35,000 or more fine voids per cm 2 surrounded by ultrafine fibers and having a maximum width of 0.1 to 50 μm and a minimum width of 10 μm or less. The cross-sectional area of the void holes was a ratio of 25% of the cross-sectional area of the void holes existing in the cross section of the base layer 3 and the back layer. The surface abrasion loss by the Martindale method measured with a pressing load of 12 kPa (gf / cm 2 ) and a wear frequency of 50,000 was 0 mg. Water absorption rate of diffusion of the grain-finished leather-like sheet was 1.3 cm 2 immediately after completion of the addition area, already after penetration complete, diffuse 17.5cm 2, extensively 28.9Cm 2 after 3 minutes Diffused. The drying rate was 20% after 50 minutes and 0% after 90 minutes.
得られた繊維銀面からなる銀付調皮革様シートを、ホットメルト糊剤を用いて、密度0.35g/cm3のインシュレーションボードの芯材と貼り合わせて皮革調床材とした。
得られた皮革調床材は銀擦り調で意匠性に優れ、肌触りの良い天然皮革様の低反発性、充実感および柔軟性を有しており、クッション性、吸水拡散性および乾燥速度に優れていた。さらに表面の染料マイグレーションおよび摩擦堅牢度も良好なものであった。残存DMF濃度および残存トルエン濃度、吸水拡散性および乾燥速度についてまとめて表1に示す。
The obtained leather-finished leather-like sheet composed of the fiber silver surface was bonded to a core material of an insulation board having a density of 0.35 g / cm 3 using a hot melt paste to obtain a leather-like flooring material.
The obtained leather-like flooring material has a silver rubbing tone and excellent design, has a low rebound, fullness and flexibility similar to natural leather, and has excellent cushioning, water absorption and drying speed. It was. Furthermore, surface dye migration and fastness to friction were also good. The residual DMF concentration and residual toluene concentration, water absorption diffusivity and drying rate are summarized in Table 1.
実施例2
実施例1で、インシュレーションボードに変えて畳みの芯材(い草の畳表による畳)を用い、実施例1で得られた絡合不織布の表面を、毛穴シボ模様を有する金属ロールで銀面を形成することなく、サンドペーパーで起毛処理を行ってスエード調皮革様シートを得た以外は実施例1と同様の皮革調床材を作製した。
得られた皮革調床材はスエード調の外観に優れ、肌触りの良い天然皮革様の低反発性、充実感および柔軟性を有しており、クッション性、吸水拡散性および乾燥速度に優れていた。さらに表面の染料マイグレーションおよび摩擦堅牢度も良好なものであった。残存DMF濃度および残存トルエン濃度、吸水拡散性および乾燥速度についてまとめて表1に示す。
Example 2
In Example 1, instead of the insulation board, a tatami core material (tatami mat with tatami mat surface) was used, and the surface of the entangled nonwoven fabric obtained in Example 1 was silver-coated with a metal roll having a pore-texture pattern. A leather-like flooring material similar to that of Example 1 was produced, except that a suede-like leather-like sheet was obtained by carrying out napping with sandpaper without forming.
The obtained leather-like flooring material was excellent in suede-like appearance, had a low resilience, fullness and flexibility of natural leather like a good touch, and was excellent in cushioning, water-absorbing diffusibility and drying speed . Furthermore, surface dye migration and fastness to friction were also good. The residual DMF concentration and residual toluene concentration, water absorption diffusivity and drying rate are summarized in Table 1.
実施例3
実施例1で得られた絡合不織布の表面をさらに深い凹凸シボ(シボの凹凸高低差約100μm)模様を有する金属ロールで一部の繊維同士を融着して実施例1よりも銀面部分の面積を減少させて半銀付調の皮革様シートを得た以外は実施例1と同様の皮革調床材を作製した。
得られた皮革調床材は半銀調の外観に優れ、肌触りの良い天然皮革様の低反発性、充実感および柔軟性を有しており、クッション性、吸水拡散性および乾燥速度に優れていた。残存DMF濃度および残存トルエン濃度、吸水拡散性および乾燥速度についてまとめて表1に示す。
Example 3
The surface of the entangled nonwoven fabric obtained in Example 1 is fused with a part of the fibers with a metal roll having a deeper concavo-convex texture (texture concavo-convex height difference of about 100 μm). A leather-like flooring material similar to that of Example 1 was produced except that the leather-like sheet with a semi-silver tone was obtained by reducing the area of the above.
The obtained leather-like flooring material has an excellent semi-silver-like appearance, and has a low resilience, fullness and flexibility similar to those of a natural leather that is soft to the touch, and is excellent in cushioning, water-absorbing diffusibility, and drying speed. It was. The residual DMF concentration and residual toluene concentration, water absorption diffusivity and drying rate are summarized in Table 1.
比較例1
ポリエチレンテレフタレート(PET)を島成分およびポリエチレンを海成分とする海島型繊維を製造した後、湿熱延伸、機械捲縮、油剤付与およびカットにより、単繊維繊度が平均約4デシテックスで平均繊維長が約51mmの短繊維を製造した。
Comparative Example 1
After production of sea-island type fiber with polyethylene terephthalate (PET) as an island component and polyethylene as a sea component, wet fiber drawing, mechanical crimping, oiling and cutting provide an average single fiber fineness of about 4 decitex and an average fiber length of about A 51 mm short fiber was produced.
次にこの短繊維をカードで開繊し、クロスラップウェバーでウェブとし、さらにフェルト針によるニードルパンチング機を用いて1500パンチ/cm2の三次元絡合処理を施して、絡合ウェブを製造した。 Next, this short fiber was opened with a card, made into a web with a cross wrap webber, and further subjected to a three-dimensional entanglement treatment of 1500 punch / cm 2 using a needle punching machine with a felt needle to produce an entangled web. .
得られた絡合ウェブに、ポリウレタン[ポリ(3−メチル−1,5−ペンタンアジペート)とポリエチレングリコールからなる数平均分子量2,000の高分子ジオール、4,4’−ジフェニルメタンジイソシアネートおよび1,4−ブタンジオールを用いて形成したポリウレタン]のジメチルホルムアミド(以下、DMFと略することもある。)溶液を含浸した。次いで、それをDMF/水の混合浴中にて多孔質状態で湿式凝固させて、絡合ウェブ中のDMFを水で置換した後、さらに90℃のトルエン浴中にて海島型繊維中のポリエチレンを抽出除去して、PETの極細繊維を形成させた。続いて、絡合ウェブ中のトルエンを水で置換乾燥して、目付けが420g/m2、厚みが1.2mm、繊維:ポリウレタンの質量比が65:35である皮革様シートを製造した。これにより得られた皮革様シートにおいては、PET製の極細繊維束とポリウレタンとの接着が実質的に生じておらず、極細繊維束の動きの自由度が高いものであった。 The resulting entangled web was coated with polyurethane [poly (3-methyl-1,5-pentaneadipate) and polyethylene glycol, a polymer diol having a number average molecular weight of 2,000, 4,4′-diphenylmethane diisocyanate and 1,4. -Polyurethane formed using butanediol] was impregnated with a dimethylformamide (hereinafter sometimes abbreviated as DMF) solution. Next, it was wet-coagulated in a porous state in a DMF / water mixed bath to replace DMF in the entangled web with water, and then in polyethylene in sea-island fibers in a 90 ° C. toluene bath. Was extracted to form ultrafine fibers of PET. Subsequently, toluene in the entangled web was substituted and dried with water to produce a leather-like sheet having a basis weight of 420 g / m 2 , a thickness of 1.2 mm, and a fiber: polyurethane mass ratio of 65:35. In the leather-like sheet obtained in this way, adhesion between the ultrafine fiber bundle made of PET and polyurethane did not substantially occur, and the freedom of movement of the ultrafine fiber bundle was high.
一方、離型紙にポリウレタン溶液(ME−8115LP(大日精化工業(株)製)を塗布、乾燥し乾燥後厚み50μmのフィルム(最終的に銀面となる)を形成した。このフィルムにポリウレタン(2液型)接着剤〔TA−105(DIC(株)製)〕を乾燥後の厚みが100μmになるように塗布し接着層を形成した。接着層が半乾燥、粘着性が残っている状態で、上記皮革様シートの表面に貼り合わせた。さらに40〜50℃の雰囲気中で3日間のエージングを行った後、離型紙を剥離し、銀付調皮革様シートを得た。得られた銀付調皮革様シートの吸水拡散速度は、滴下完了直後に1.3cm2であった面積がしみ込まず殆ど拡散しない状態であった。また、乾燥速度は、120分後でも50%以上存在し、殆ど乾燥に寄与する構造ではなかった。 On the other hand, a polyurethane solution (ME-8115LP (manufactured by Dainichi Seika Kogyo Co., Ltd.)) was applied to a release paper, dried and dried to form a 50 μm-thick film (which finally becomes a silver surface). Two-component adhesive) [TA-105 (manufactured by DIC Corporation)] was applied to a thickness of 100 μm after drying to form an adhesive layer.The adhesive layer was semi-dry and remained tacky Then, after aging for 3 days in an atmosphere at 40 to 50 ° C., the release paper was peeled off to obtain a silvered leather-like sheet. The water-absorbing diffusion rate of the silver-finished leather-like sheet was 1.3 cm 2 immediately after the completion of dripping and the area was not soaked and hardly diffused, and the drying rate was more than 50% even after 120 minutes. , Almost no structure that contributes to drying It was.
得られた銀付調皮革様シートと実施例2と同様にホットメルト糊剤を用いて畳の芯材と貼り合わせて皮革調床材とした。
得られた皮革調床材は意匠性に優れ、天然皮革様の低反発性、充実感および柔軟性を有しており、クッション性はあるものの、表1に示すように複数のVOCが検出され、吸水拡散性等に劣るものであった。
The obtained leather-like leather-like sheet and a hot melt paste were used in the same manner as in Example 2 to form a leather-like flooring material.
The obtained leather-like flooring material is excellent in design, has low resilience, fullness and flexibility as natural leather, and has cushioning properties, but multiple VOCs are detected as shown in Table 1. The water absorption diffusivity was inferior.
比較例2
比較例1で得られた皮革様シートの表面をサンドペーパーで起毛処理をおこない、分散染料により染色処理したスエード調皮革様シートを得た。その表材を実施例1同様、ホットメルト糊剤を用いて、密度0.35g/cm3のインシュレーションボードの芯材と貼り合わせて皮革調床材とした。
Comparative Example 2
The surface of the leather-like sheet obtained in Comparative Example 1 was brushed with sandpaper to obtain a suede-like leather-like sheet dyed with a disperse dye. As in Example 1, the surface material was bonded to the core material of an insulation board having a density of 0.35 g / cm 3 by using a hot melt paste to obtain a leather-like flooring material.
本発明の床材は、感性面の性能と物性面での性能とをいずれも高いレベルで兼備し、VOC発生量が低く、環境性、クッション性、吸水拡散性に優れた住宅用床材として好適に利用することができるものである。また、廃棄の際の分別作業が不要でそのまま焼却処分も可能である。 The flooring of the present invention is a residential flooring that has both high performance in terms of sensitivity and physical properties, low VOC generation, and excellent environmental performance, cushioning properties, and water diffusibility. It can be used suitably. In addition, separation work at the time of disposal is unnecessary and incineration can be performed as it is.
Claims (10)
(1)銀付調、スエード調、又は半銀付調皮革様シートが絡合不織布およびその内部に高分子弾性体が含浸された基材からなり、
かつ、該絡合不織布が、極細長繊維からなる繊維束が3次元的に交絡したもので、該極細長繊維の平均繊度が0.001〜0.2dtexであり、さらに、該極細長繊維からなる繊維束の平均繊度が0.5〜10dtexである、
(2)皮革調床材中に存在するジメチルホルムアミド(DMF)濃度が10ppm以下である、
(3)半銀付調皮革様シートは、ホットメルト糊又は縫い付けにより芯材と積層されている、及び
(4)スエード調または銀付調皮革様シートは、ホットメルト糊により芯材と積層されている。 A leather-like flooring material comprising a core material and a silver-tone, suede-tone, or semi-silver-tone leather-like sheet formed on the surface of the core material, and satisfying the following (1) to (4) Characteristic leather-like flooring.
(1) grain-finished, suede, or semi grain-finished leather-like sheet is Ri Do from the entangled nonwoven fabric and substrate inside the elastic polymer is impregnated,
And, the entangled nonwoven fabric is a three-dimensionally entangled fiber bundle made of ultrafine fibers, the average fineness of the ultrafine fibers is 0.001 to 0.2 dtex, and further from the ultrafine fibers The fiber bundle has an average fineness of 0.5 to 10 dtex,
(2) The dimethylformamide (DMF) concentration present in the leather-finished flooring material is 10 ppm or less.
(3) The semi-silvered leather-like sheet is laminated with the core material by hot-melt glue or sewing, and (4) the suede-like or silver-finished leather-like sheet is laminated with the core material by the hot-melt glue. Has been.
(5)前記銀付調皮革様シートを厚さ方向に、表面層、基体層1、基体層2、基体層3および裏面層の5層にこの順に等分割したときに、表面層を形成する極細長繊維同士は少なくとも一部融着して繊維銀面を形成しているが、基体層2、基体層3および裏面層を形成する極細長繊維同士は融着していない、
を満足する銀付調皮革様シートからなる請求項1に記載の皮革調床材。 The silver-finished leather-like sheet is a silver-finished leather-like sheet having a fiber silver surface, and the silver-coated leather-like sheet has the following condition ( 5 ):
( 5 ) A surface layer is formed when the above-mentioned silver-finished leather-like sheet is equally divided in this order into a surface layer, a base layer 1, a base layer 2, a base layer 3 and a back layer in the thickness direction. The ultrafine fibers are fused at least partially to form a fiber silver surface, but the ultrafine fibers forming the base layer 2, the base layer 3 and the back layer are not fused.
The leather-like flooring material according to claim 1, comprising a silver-finished leather-like sheet that satisfies the requirements.
(6)前記半銀付調皮革様シートを厚さ方向に、表面層、基体層1、基体層2、基体層3および裏面層の5層にこの順に等分割したときに、表面層を形成する極細長繊維は極細繊維同士が一部融着されて銀面を形成しているが、基体層2、基体層3および裏面層を形成する極細長繊維同士は融着していない、
を満足する半銀付調皮革様シートからなる請求項1に記載の皮革調床材。 The semi-silvered leather-like sheet is a semi-silvered leather-like sheet in which a silver surface portion and napping are mixed on the surface, and the semi-silvered leather-like sheet has the following condition ( 6 ):
( 6 ) A surface layer is formed when the semi-silvered textured leather-like sheet is equally divided in this order into five layers of a surface layer, a base layer 1, a base layer 2, a base layer 3 and a back layer in the thickness direction. The ultrafine fibers are partly fused together to form a silver surface, but the ultrafine fibers forming the base layer 2, the base layer 3 and the back layer are not fused.
The leather-like flooring material according to claim 1, comprising a half-silvered leather-like sheet satisfying
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010057563A JP5571981B2 (en) | 2009-11-13 | 2010-03-15 | Leather flooring |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009259972 | 2009-11-13 | ||
JP2009259972 | 2009-11-13 | ||
JP2010057563A JP5571981B2 (en) | 2009-11-13 | 2010-03-15 | Leather flooring |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011122423A JP2011122423A (en) | 2011-06-23 |
JP5571981B2 true JP5571981B2 (en) | 2014-08-13 |
Family
ID=44286554
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010057563A Active JP5571981B2 (en) | 2009-11-13 | 2010-03-15 | Leather flooring |
JP2010057562A Active JP5571980B2 (en) | 2009-11-13 | 2010-03-15 | Flooring |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010057562A Active JP5571980B2 (en) | 2009-11-13 | 2010-03-15 | Flooring |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5571981B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023189269A1 (en) * | 2022-03-28 | 2023-10-05 | 東レ株式会社 | Artificial leather and production method therefor, and composite artificial leather |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2567905Y2 (en) * | 1992-02-27 | 1998-04-08 | 東レ株式会社 | Floor material |
JP4104725B2 (en) * | 1998-03-03 | 2008-06-18 | 啓司 岩本 | Flooring |
JP3989727B2 (en) * | 2001-12-28 | 2007-10-10 | 日華化学株式会社 | Manufacturing method of flooring material for artificial leather with silver and artificial leather with silver |
-
2010
- 2010-03-15 JP JP2010057563A patent/JP5571981B2/en active Active
- 2010-03-15 JP JP2010057562A patent/JP5571980B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011122422A (en) | 2011-06-23 |
JP5571980B2 (en) | 2014-08-13 |
JP2011122423A (en) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4847472B2 (en) | Artificial leather base material and artificial leather using the base material | |
US9752260B2 (en) | Base material for artificial leather and process for producing the same | |
JP5593379B2 (en) | Leather-like sheet | |
JP4913678B2 (en) | Substrate for artificial leather and method for producing the same | |
KR102188219B1 (en) | Nubuck-leather-like sheet and manufacturing process therefor | |
JP5571981B2 (en) | Leather flooring | |
KR20180103307A (en) | High density artificial leather having excellent surface touch and method for manufacturing the same | |
JP6087073B2 (en) | Silver-like artificial leather and method for producing the same | |
JP2012117154A (en) | Leather-like sheet excellent in air permeability and method for producing the leather-like sheet | |
JP2013011038A (en) | Leather-like sheet and method for manufacturing the same | |
JP2007203686A (en) | Leather-like material and its manufacturing method | |
JP5941675B2 (en) | Leather-like sheet | |
JP5959394B2 (en) | Artificial leather with silver | |
JP2011156037A (en) | Bath mat | |
JP2012036523A (en) | Leather-like sheet and method for producing leather-like sheet | |
JP2013047405A (en) | Substrate for artificial leather and method for producing the same | |
JP2011058107A (en) | Base material of artificial leather, and method of producing the same | |
JP2011058109A (en) | Base material of artificial leather, and method of producing the same | |
JP6564656B2 (en) | Designable sheet and method for producing the designed sheet | |
JP2011058108A (en) | Base material of artificial leather, and method of producing the same | |
JPWO2009028610A1 (en) | Leather-like sheet and method for producing the same | |
JP2022034525A (en) | Artificial leather substrate, artificial piloerection leather substrate, and method of producing artificial leather substrate | |
JP2011214196A (en) | Grained artificial leather with needle hole and production method therefor | |
JP2011184814A (en) | Semi-grained artificial leather and method for producing the same | |
JP2011157641A (en) | Oil-touch leather-like sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20111117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111117 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140603 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140627 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5571981 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |