JP5569027B2 - Carboxy group-containing polyimide resin solution, powder and production method thereof - Google Patents

Carboxy group-containing polyimide resin solution, powder and production method thereof Download PDF

Info

Publication number
JP5569027B2
JP5569027B2 JP2010035944A JP2010035944A JP5569027B2 JP 5569027 B2 JP5569027 B2 JP 5569027B2 JP 2010035944 A JP2010035944 A JP 2010035944A JP 2010035944 A JP2010035944 A JP 2010035944A JP 5569027 B2 JP5569027 B2 JP 5569027B2
Authority
JP
Japan
Prior art keywords
polyimide resin
organic solvent
carboxy group
containing polyimide
resin solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010035944A
Other languages
Japanese (ja)
Other versions
JP2011168743A (en
Inventor
栄寿 一ノ瀬
誠一 宇野
聡子 伊東
均 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2010035944A priority Critical patent/JP5569027B2/en
Publication of JP2011168743A publication Critical patent/JP2011168743A/en
Application granted granted Critical
Publication of JP5569027B2 publication Critical patent/JP5569027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、環境負荷の低い低沸点有機溶媒に溶解したカルボキシ基含有ポリイミド樹脂溶液の製造方法に関する。また、本発明は前記製造方法により得られるカルボキシ基含有ポリイミド樹脂溶液に関する。さらに本発明は該樹脂溶液を製造するために有用な製造中間物であるカルボキシ基含有ポリイミド樹脂粉末およびその製造方法に関する。さらに本発明は、前記樹脂溶液を含む硬化性樹脂組成物、および各種耐熱性コーティング材料や電気絶縁材料、例えばプリント配線基板の層間絶縁材料、ビルドアップ材料、半導体の絶縁材料等、耐熱性接着剤等の分野に有用な硬化物に関する。   The present invention relates to a method for producing a carboxy group-containing polyimide resin solution dissolved in a low-boiling organic solvent having a low environmental load. Moreover, this invention relates to the carboxy-group containing polyimide resin solution obtained by the said manufacturing method. Furthermore, the present invention relates to a carboxyl group-containing polyimide resin powder which is a useful intermediate for producing the resin solution and a method for producing the same. Furthermore, the present invention provides a curable resin composition containing the resin solution, and various heat resistant coating materials and electrical insulating materials, for example, interlayer insulating materials for printed wiring boards, build-up materials, semiconductor insulating materials, and the like, heat resistant adhesives It relates to a cured product useful in such fields.

ポリイミド樹脂は、エンジニアリングプラスチックとしてその優れた耐熱性、機械特性、摺動特性などのために、近年、電気・電子機器用途、自動車部品用途、航空・宇宙産業用途、事務用機器用途などにおいて急速に需要が高まってきている。特に電気・電子機器分野においては、従来のエポキシ樹脂硬化系以上の耐熱性、信頼性、機械物性等を有する面から基材フィルム等に幅広く使用されている。このため近年、こうしたポリイミド樹脂を層間絶縁材料や接着剤、あるいは表面保護コーティング剤、各種レジストなどに使用する検討が進んでいる。電気・電子用途への展開においては、塗装などの工程が必要な為、前駆体であるポリアミック酸の溶液を塗布して溶剤蒸発と脱水によるイミド化によるポリイミド層の形成を行う検討がなされている。しかしながらポリアミック酸は安定性が悪く、かつイミド化には高温が必要な為、使用できる基材、用途等の制限があったり、安定した性能を再現することが難しかったり問題が多い。   Polyimide resin has been rapidly used in engineering and plastics due to its excellent heat resistance, mechanical properties, sliding properties, etc. in recent years in electrical and electronic equipment applications, automotive parts applications, aerospace applications, office equipment applications, etc. Demand is increasing. In particular, in the field of electrical and electronic equipment, it is widely used for substrate films and the like from the viewpoint of heat resistance, reliability, mechanical properties, etc. that are higher than those of conventional epoxy resin curing systems. For this reason, in recent years, studies have been made on the use of such polyimide resins for interlayer insulating materials, adhesives, surface protective coating agents, various resists, and the like. In the development of electrical and electronic applications, a process such as painting is required, so a solution of the precursor polyamic acid is applied and a polyimide layer is formed by imidization by solvent evaporation and dehydration. . However, since polyamic acid has poor stability and high temperature is required for imidization, there are many problems such as limitations on usable substrates and applications, and difficulty in reproducing stable performance.

一方、こうしたポリアミック酸からのアプリケーションではなく、溶剤可溶性ポリイミド樹脂による検討が行われている。一般に、溶剤可溶性ポリイミドは、既にイミド化され有機溶剤に可溶化した構造を有している為、上記の問題点を解決することができる。   On the other hand, studies using solvent-soluble polyimide resins are being conducted instead of such applications from polyamic acids. In general, since the solvent-soluble polyimide has a structure that has already been imidized and solubilized in an organic solvent, the above-described problems can be solved.

この様な溶剤可溶性ポリイミド樹脂として、エーテル系有機溶剤中で分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)と、を反応させて得られるカルボキシ基含有アミドイミド樹脂が知られている(特許文献1)。エーテル系溶剤に溶解した該カルボキシ基含有アミドイミド樹脂を含む硬化性樹脂組成物の硬化塗膜は、耐熱性が高く、機械的強度(高破断強度、高破断伸度)に優れ、かつPCT耐性、はんだ耐熱性に優れるという効果を有する。
しかし、該カルボキシ基含有アミドイミド樹脂は、イミド化反応を進める温度(一般的には140〜160℃)の面で、少なくともイミド化反応の反応温度よりも高沸点の極性溶剤(「高沸点有機溶剤」ということがある)を使用しなければならず、塗装−乾燥−硬化などの工程で、残留溶剤等の問題がある。例えば、乾燥工程が不十分で有機溶剤が残留していると、硬化塗膜に「わき」、「ふくれ」、「はがれ」等の塗膜欠陥が引き起こることから、乾燥条件が高温・長時間となり、工業上さまざまな制約を受けていた。
As such a solvent-soluble polyimide resin, an aliphatic isocyanate compound and / or an alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule in an ether organic solvent, and a tricarboxylic acid anhydride (b1) And / or a carboxy group-containing amidoimide resin obtained by reacting tetracarboxylic anhydride (b2) is known (Patent Document 1). The cured coating film of the curable resin composition containing the carboxy group-containing amideimide resin dissolved in an ether solvent has high heat resistance, excellent mechanical strength (high breaking strength, high breaking elongation), and PCT resistance. It has the effect of excellent solder heat resistance.
However, the carboxy group-containing amidoimide resin is a polar solvent having a boiling point higher than the reaction temperature of the imidization reaction (“high boiling point organic solvent”) in terms of the temperature at which the imidization reaction proceeds (generally 140 to 160 ° C.). ”, And there is a problem of residual solvent and the like in the process of painting-drying-curing. For example, if the drying process is inadequate and the organic solvent remains, film defects such as “waki”, “blowing”, and “peeling” will occur in the cured coating. And was subject to various industrial restrictions.

そこで、本発明者らはイミド化反応の反応温度より低沸点の有機溶剤(「低沸点有機溶剤」ということがある)に溶解した樹脂溶液の検討を行った。しかしながら、上記カルボキシ基含有ポリイミド樹脂は希釈安定性が低く、その結果、単純に高沸点有機溶剤から低沸点有機溶剤へ溶剤置換しても希釈時に溶解していた樹脂が析出する等の問題が生じ、析出物を除去する工程が必要であったり、樹脂溶液中の樹脂濃度をコントロールすることができず、所定の物性値を得られない等の問題があった。また、カルボキシ基含有ポリイミド樹脂に対して、各種変性を行い、溶解性を向上させる方法も、得られた硬化物の耐熱性(Tg、はんだ耐熱性)、線膨張係数などの各種物性が低下し、問題を解決するには至らなかった。   Therefore, the present inventors examined a resin solution dissolved in an organic solvent having a boiling point lower than the reaction temperature of the imidization reaction (sometimes referred to as a “low boiling point organic solvent”). However, the carboxy group-containing polyimide resin has low dilution stability, and as a result, even if the solvent is simply replaced from a high-boiling organic solvent to a low-boiling organic solvent, the resin dissolved at the time of dilution may precipitate. There is a problem that a step of removing the precipitate is necessary, the resin concentration in the resin solution cannot be controlled, and a predetermined physical property value cannot be obtained. In addition, various modifications to the carboxy group-containing polyimide resin to improve the solubility also reduce the various physical properties such as heat resistance (Tg, solder heat resistance) and linear expansion coefficient of the obtained cured product. , Couldn't solve the problem.

特開2001−316469号公報JP 2001-316469 A

そこで本発明が解決しようとする課題は、低沸点有機溶剤に溶解したカルボキシ基含有ポリイミド樹脂溶液、その製造方法を提供することにある。また、本発明は低沸点有機溶剤への希釈安定性に優れたカルボキシ基含有ポリイミド樹脂およびその製造方法を提供することを課題とする。さらに本発明は、低温・短時間の乾燥工程でも「わき」、「ふくれ」、「はがれ」等の塗膜欠陥が少なく、かつ耐熱性(Tg、はんだ耐熱性)、線膨張係数などの各種物性に優れるカルボキシ基含有ポリイミド樹脂を含有する硬化性樹脂組成物および硬化物を提供することを課題とする。   Therefore, the problem to be solved by the present invention is to provide a carboxy group-containing polyimide resin solution dissolved in a low boiling point organic solvent and a method for producing the same. Moreover, this invention makes it a subject to provide the carboxy-group containing polyimide resin excellent in the dilution stability to a low boiling-point organic solvent, and its manufacturing method. Furthermore, the present invention has few coating film defects such as “waki”, “blowing”, and “peeling” even in a low temperature and short drying process, and various physical properties such as heat resistance (Tg, solder heat resistance) and linear expansion coefficient. It is an object of the present invention to provide a curable resin composition and a cured product containing a carboxy group-containing polyimide resin which is excellent in the above.

本発明者らは、上記課題を解決するため鋭意研究した結果、樹脂の物理的形状、具体的には、樹脂を粉末化することによって低沸点有機溶剤への希釈安定性が格段に向上し、その結果、低沸点有機溶剤に溶解したカルボキシ基含有ポリイミド樹脂溶液を提供できることを見いだし上記課題を解決するに至った。   As a result of intensive studies to solve the above problems, the present inventors have significantly improved the physical shape of the resin, specifically, the stability of dilution into a low-boiling organic solvent by pulverizing the resin, As a result, it has been found that a carboxy group-containing polyimide resin solution dissolved in a low-boiling organic solvent can be provided, and has solved the above problems.

すなわち、本発明は、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)と、を反応させて得られるカルボキシ基含有ポリイミド樹脂と有機溶剤(B)とを含むカルボキシ基含有ポリイミド樹脂溶液の製造方法であって、
(1)有機溶剤(A)中または無溶剤中で、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)とを反応させてカルボキシ基含有ポリイミド樹脂を得る合成工程と、
(2)前記カルボキシ基含有ポリイミド樹脂を含む有機溶剤(A)を噴霧させながら該有機溶剤(A)を揮発させてカルボキシ基含有ポリイミド樹脂の粉体を得る造粒工程と、
(3)前記カルボキシ基含有ポリイミド樹脂の粉体を、有機溶剤(B)に溶解させる溶剤溶解工程とを有することを特徴とするカルボキシ基含有ポリイミド樹脂溶液の製造方法を提供する。
また、本発明は、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)と、を反応させて得られるカルボキシ基含有ポリイミド樹脂と有機溶剤とを含むカルボキシ基含有ポリイミド樹脂溶液であって、全有機溶剤中の沸点130℃以下の有機溶剤の割合が99重量%以上であることを特徴とするカルボキシ含有ポリイミド樹脂溶液を提供する。
また、本発明は、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)とを反応させて得られるカルボキシ基含有ポリイミド樹脂粉体を提供する。
また、本発明は、前記のカルボキシ基含有ポリイミド樹脂粉体の製造方法であって、
(1)有機溶剤(A)中で、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)と、を反応させてカルボキシ基含有ポリイミド樹脂を得る合成工程、
(2)前記カルボキシ基含有ポリイミド樹脂を含む有機溶剤(A)を噴霧させながら溶剤を揮発させてカルボキシ基含有ポリイミド樹脂粉体を得る造粒工程と、を有することを特徴とするカルボキシ基含有ポリイミド樹脂粉体の製造方法を提供する。
また、本発明は、前記のカルボキシ基含有ポリイミド樹脂粉体を、有機溶剤(B)に溶解させる溶剤溶解工程を有することを特徴とするカルボキシ基含有ポリイミド樹脂溶液の製造方法を提供する。
また、本発明は、前記製造方法により得られたカルボキシ基含有ポリイミド樹脂溶液と、硬化性樹脂成分とを含有することを特徴とする硬化性樹脂組成物を提供する。
また、本発明は、前記硬化性樹脂組成物を硬化してなる硬化物を提供する。
That is, the present invention relates to an aliphatic isocyanate compound and / or an alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, a tricarboxylic acid anhydride (b1) and / or a tetracarboxylic acid anhydride ( b2), a method for producing a carboxy group-containing polyimide resin solution comprising a carboxy group-containing polyimide resin obtained by reacting with an organic solvent (B),
(1) In an organic solvent (A) or in the absence of a solvent, an aliphatic isocyanate compound and / or an alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, and a tricarboxylic acid anhydride (b1) And / or a synthesis step of reacting with tetracarboxylic anhydride (b2) to obtain a carboxy group-containing polyimide resin,
(2) A granulating step of volatilizing the organic solvent (A) while spraying the organic solvent (A) containing the carboxy group-containing polyimide resin to obtain a powder of the carboxy group-containing polyimide resin;
(3) Provided is a method for producing a carboxy group-containing polyimide resin solution, comprising a solvent dissolving step of dissolving the powder of the carboxy group-containing polyimide resin in an organic solvent (B).
The present invention also relates to an aliphatic isocyanate compound and / or alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, a tricarboxylic acid anhydride (b1) and / or a tetracarboxylic acid anhydride ( b2), a carboxy group-containing polyimide resin solution containing a carboxy group-containing polyimide resin obtained by reacting with an organic solvent, wherein the proportion of the organic solvent having a boiling point of 130 ° C. or lower in the total organic solvent is 99% by weight or more. A carboxy-containing polyimide resin solution is provided.
The present invention also relates to an aliphatic isocyanate compound and / or alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, a tricarboxylic acid anhydride (b1) and / or a tetracarboxylic acid anhydride ( A carboxy group-containing polyimide resin powder obtained by reacting with b2) is provided.
Further, the present invention is a method for producing the carboxy group-containing polyimide resin powder,
(1) In an organic solvent (A), an aliphatic isocyanate compound and / or an alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, a tricarboxylic acid anhydride (b1) and / or tetra A synthesis step of reacting the carboxylic acid anhydride (b2) to obtain a carboxy group-containing polyimide resin;
(2) A granulation step of obtaining a carboxy group-containing polyimide resin powder by volatilizing the solvent while spraying the organic solvent (A) containing the carboxy group-containing polyimide resin. A method for producing a resin powder is provided.
Moreover, this invention provides the manufacturing method of the carboxy group containing polyimide resin solution characterized by having the solvent melt | dissolution process which dissolves the said carboxy group containing polyimide resin powder in the organic solvent (B).
The present invention also provides a curable resin composition comprising a carboxy group-containing polyimide resin solution obtained by the production method and a curable resin component.
Moreover, this invention provides the hardened | cured material formed by hardening | curing the said curable resin composition.

本発明は、低沸点有機溶剤に溶解したカルボキシ基含有ポリイミド樹脂溶液、その製造方法を提供することができる。また、本発明は得られる硬化物の耐熱性(Tg、はんだ耐熱性)、線膨張係数などの各種物性を低下させることなく、低沸点有機溶剤で希釈する際にも樹脂析出を抑制することが可能な製造中間物およびその製造方法を提供することができる。さらに本発明は、低温・短時間の乾燥工程でも「わき」、「ふくれ」、「はがれ」等の塗膜欠陥が少なく、かつ耐熱性(Tg、はんだ耐熱性)、線膨張係数などの各種物性に優れるカルボキシ基含有ポリイミド樹脂含有硬化性樹脂組成物および硬化物を提供することができる。
前記のとおり硬化させる際、低温・短時間の乾燥工程で済むため、環境負荷を低減させることができる。また本発明の樹脂溶液の製造方法は、連続的に製造することができるので工業的に有利である。また、イミド化反応に用いた有機溶剤を回収して再度利用することも可能なため環境負荷をより低くすることができる。
The present invention can provide a carboxy group-containing polyimide resin solution dissolved in a low-boiling organic solvent and a method for producing the same. In addition, the present invention suppresses resin precipitation even when diluted with a low-boiling organic solvent without reducing various physical properties such as heat resistance (Tg, solder heat resistance) and linear expansion coefficient of the obtained cured product. Possible production intermediates and methods for their production can be provided. Furthermore, the present invention has few coating film defects such as “waki”, “blowing”, and “peeling” even in a low temperature and short drying process, and various physical properties such as heat resistance (Tg, solder heat resistance) and linear expansion coefficient. A carboxy group-containing polyimide resin-containing curable resin composition and a cured product can be provided.
When curing as described above, a low-temperature, short-time drying process is sufficient, so that the environmental burden can be reduced. Moreover, since the manufacturing method of the resin solution of this invention can be manufactured continuously, it is industrially advantageous. Moreover, since the organic solvent used for the imidation reaction can be recovered and reused, the environmental load can be further reduced.

本発明に用いるスプレードライを用いたポリイミド樹脂粉末の製造装置の概略図である。It is the schematic of the manufacturing apparatus of the polyimide resin powder using the spray drying used for this invention. 本発明のカルボキシ基含有ポリイミド樹脂粉末の光学顕微鏡写真である。It is an optical microscope photograph of the carboxyl group-containing polyimide resin powder of the present invention.

・カルボキシ基含有ポリイミド樹脂溶液の製造方法
本発明のカルボキシ基含有ポリイミド樹脂溶液は、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)と、を反応させて得られるカルボキシ基含有ポリイミド樹脂粉体を有機溶剤に溶解させてなるカルボキシ基含有ポリイミド樹脂溶液の製造方法であって、
(1)有機溶剤(A)中で、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)とを反応させてカルボキシ基含有ポリイミド樹脂を得る合成工程と、
(2)前記カルボキシ基含有ポリイミド樹脂を含む有機溶剤(A)を噴霧させながら該有機溶剤(A)を揮発させてカルボキシ基含有ポリイミド樹脂の粉体を得る造粒工程と、
(3)前記カルボキシ基含有ポリイミド樹脂の粉体を、有機溶剤(B)に溶解させる溶剤溶解工程とを有することを特徴とする。以下、各工程を詳述する。
-Production method of carboxy group-containing polyimide resin solution The carboxy group-containing polyimide resin solution of the present invention comprises an aliphatic isocyanate compound and / or alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, and a tricarboxylic acid. In a method for producing a carboxy group-containing polyimide resin solution obtained by dissolving a carboxy group-containing polyimide resin powder obtained by reacting an acid anhydride (b1) and / or a tetracarboxylic acid anhydride (b2) in an organic solvent. There,
(1) In an organic solvent (A), an aliphatic isocyanate compound and / or an alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, a tricarboxylic acid anhydride (b1) and / or tetra A synthesis step of obtaining a carboxy group-containing polyimide resin by reacting with a carboxylic acid anhydride (b2);
(2) A granulating step of volatilizing the organic solvent (A) while spraying the organic solvent (A) containing the carboxy group-containing polyimide resin to obtain a powder of the carboxy group-containing polyimide resin;
(3) A solvent dissolving step of dissolving the carboxy group-containing polyimide resin powder in an organic solvent (B). Hereinafter, each process is explained in full detail.

(1)合成工程
第1の工程は、有機溶剤(A)あるいは無溶剤中で、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)とをイミド化反応させてカルボキシ基含有ポリイミド樹脂を得る合成工程である。
(1) Synthesis step The first step is an organic solvent (A) or a solvent-free aliphatic isocyanate compound and / or alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, This is a synthesis step in which a tricarboxylic acid anhydride (b1) and / or a tetracarboxylic acid anhydride (b2) is imidized to obtain a carboxy group-containing polyimide resin.

イミド化反応は、溶剤中あるいは無溶剤中で、イソシアネート化合物(a)の一種類以上と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)のl種以上とを混合し、撹拌を行いながら昇温して行うことが好ましい。反応温度は、好ましくは50℃〜250℃、より好ましくは70℃〜180℃、工業的にはイミド化率(反応率)が高くなる140〜160℃の範囲で行うことが特に好ましい。反応温度が低い場合は反応速度が遅くなりやすく、また反応温度が高い場合は副反応や分解等が起こりやすい。反応は、脱炭酸を伴いながら酸無水物基とイソシアネート基がイミド基を形成する。反応の進行は、赤外スベクトルや、酸価、イソシアネート基の定量等の分析手段により追跡することができる。赤外スペクトルでは、イソシアネート基の特性吸収である2270cm−1が反応とともに減少し、さらに1860cm−1と850cm−1に特性吸収を有する酸無水物基が減少する。一方、725cm−1と1780cm−1と1720cm−1にイミド基の吸収が増加する。反応は、目的とする酸価、粘度、分子量等を確認しながら、温度を下げて終了させても良い。しかしながら、経時の安定性等の面からイソシアネート基が消失するまで反応を続行させることがより好ましい。また、反応中や反応後は、合成される樹脂の物性を損なわない範囲で、触媒、酸化防止剤、界面活性剤、その他溶剤等を添加してもよい。なお、本発明において酸無水物基とは、カルボン酸2分子が分子内脱水縮合して得られた−CO−O−CO−基を指す。 In the imidization reaction, one or more kinds of isocyanate compound (a) and one or more kinds of tricarboxylic acid anhydride (b1) and / or tetracarboxylic acid anhydride (b2) are mixed in a solvent or in the absence of a solvent. The temperature is preferably increased while stirring. The reaction temperature is preferably 50 ° C. to 250 ° C., more preferably 70 ° C. to 180 ° C., and industrially particularly preferably 140 to 160 ° C. in which the imidization rate (reaction rate) increases. When the reaction temperature is low, the reaction rate tends to be slow, and when the reaction temperature is high, side reactions and decomposition tend to occur. While the reaction is accompanied by decarboxylation, the acid anhydride group and the isocyanate group form an imide group. The progress of the reaction can be followed by an analytical means such as an infrared vector, acid value, or isocyanate group quantification. The infrared spectrum, 2270 cm -1 which is the characteristic absorption of an isocyanate group was reduced as the reaction further acid anhydride group is reduced with a characteristic absorption at 1860 cm -1 and 850 cm -1. On the other hand, the absorption of imide groups increases at 725 cm −1 , 1780 cm −1 and 1720 cm −1 . The reaction may be terminated by lowering the temperature while confirming the target acid value, viscosity, molecular weight and the like. However, it is more preferable to continue the reaction until the isocyanate group disappears from the standpoint of stability over time. In addition, during the reaction or after the reaction, a catalyst, an antioxidant, a surfactant, other solvents, and the like may be added as long as the physical properties of the synthesized resin are not impaired. In the present invention, the acid anhydride group refers to a —CO—O—CO— group obtained by intramolecular dehydration condensation of two molecules of carboxylic acid.

本発明に用いるカルボキシ基含有イミド樹脂において、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物、脂環族ソシアネート化合物(a)は、汎用の溶剤に対する溶解性を向上させる必須の材料であり、全イソシアネート原料の70重量%以上あることが好ましい。また、反応時、経時的に結晶化することを考慮すると、全イソシアネート原料の80重量%以上あることが特に好ましい。   In the carboxy group-containing imide resin used in the present invention, the aliphatic isocyanate compound having two or more isocyanate groups in the molecule and the alicyclic socyanate compound (a) are essential materials for improving the solubility in general-purpose solvents. Yes, and preferably 70% by weight or more of the total isocyanate raw material. In consideration of crystallization over time during the reaction, it is particularly preferably 80% by weight or more of the total isocyanate raw material.

かかる脂肪族イソシアネート化合物、脂環族イソシアネート化合物としては、例えば2官能イソシアネートモノマー(a1)として、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、4,4’−ジシクロヘキシルメタンジイソシアネート、水添キシレンジイソシアネート(HXDI)、ノルボヌレンジイソシアネート(NBDI)、リジンジイソシアネート等の脂肪族、脂環族イソシアネート類が挙げられる。また、かかるジイソシアネート類のヌレート体等のイソシアヌレート化物(ポリイソシアネート、(a2))、例えばIPDI3N(イソホロンジイソシアネートのイソシアヌレート型トリイソシアネート)、HDI3N(ヘキサメチレンジイソシアネートのイソシアヌレート型トリイソシアネート)、HXDI3N(水添キシレンジイソシアネートのイソシアヌレート型トリイソシアネート)、NBDI3N(ノルボルナンジイソシアネートのイソシアヌレート型トリイソシアネート)等が挙げられる。さらに、上記イソシアネート化合物のビュレット体や上記イソシアネート化合物と各種ポリオールとのウレタン化反応によって得られるアダクト体も使用できる。特に耐熱性やTg等熱的物性や溶剤溶解性の面で、2官能イソシアネートモノマー(a1)とイソシアヌレート型ポリイソシアネート(a2)との併用、あるいはイソシアヌレート型ポリイソシアネート(a2)の単独使用が好ましい。   Examples of the aliphatic isocyanate compound and alicyclic isocyanate compound include, as a bifunctional isocyanate monomer (a1), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), 4,4′-dicyclohexylmethane diisocyanate, and hydrogenated xylene diisocyanate. Aliphatic and alicyclic isocyanates such as (HXDI), norbornylene diisocyanate (NBDI), and lysine diisocyanate. Further, isocyanurated products (polyisocyanate, (a2)) such as nurate of diisocyanates such as IPDI3N (isoisocyanurate type triisocyanate of isophorone diisocyanate), HDI3N (isocyanurate type triisocyanate of hexamethylene diisocyanate), HXDI3N ( Hydrogenated xylene diisocyanate isocyanurate type triisocyanate), NBDI3N (norbornane diisocyanate isocyanurate type triisocyanate), and the like. Furthermore, the buret body of the said isocyanate compound and the adduct body obtained by the urethanation reaction of the said isocyanate compound and various polyols can also be used. In particular, in terms of heat resistance, thermal properties such as Tg, and solvent solubility, the combined use of the bifunctional isocyanate monomer (a1) and the isocyanurate type polyisocyanate (a2), or the sole use of the isocyanurate type polyisocyanate (a2) is possible. preferable.

また、系の非結晶性を損なわない範囲で芳香族のイソシアネート類(a3)も併用可能であるが、その量としては、全イソシアネート化合物の30%以下、特に20%以下が好ましい。すなわち、「W−NCO」(全イソシアネート化合物(重量))=W(a1)+W(a2)+W(a3)、ただし、W(a1)、W(a2)、W(a3)は、(a1)、(a2)、(a3)それぞれの重量、芳香族のイソシアネート類の使用範囲(重量割合)は、好ましくはW(a3)/{W(al)+W(a2)+W(a3)}≦0.3であり、特に好ましくはW(a3)/{W(a1)+W(a2)+W(a3)}≦0.2である。かかる芳香族のイソシアネート類の代表例としては、p−フェニレンジイソシアネート、m−フェニレンジイソシアネート、p−キシレンジイソシアネート、m−キシレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、3,3’−ジメチルジフェニル−4,4’−ジイソシアネート、3,3’−ジエチルジフェニル−4,4’−ジイソシアネート、m−キシレンジイソシアネート、p−キシレンジイソシアネート、ナフタレンジイソシアネート等挙げられる。同様にこうしたイソシアネートモノマーの一種類以上のビュレット体、またはヌレート体等のポリイソシアネート原料も使用可能であり、さらに上記イソシアネート化合物と各種ポリオールとのウレタン化反応によって得られるアダクト体も使用できる。   Aromatic isocyanates (a3) can be used in combination as long as the non-crystallinity of the system is not impaired, but the amount is preferably 30% or less, particularly preferably 20% or less, based on the total isocyanate compound. That is, “W-NCO” (total isocyanate compound (weight)) = W (a1) + W (a2) + W (a3), where W (a1), W (a2), and W (a3) are (a1) , (A2) and (a3), and the use range (weight ratio) of the aromatic isocyanate is preferably W (a3) / {W (al) + W (a2) + W (a3)} ≦ 0. 3 and particularly preferably W (a3) / {W (a1) + W (a2) + W (a3)} ≦ 0.2. Representative examples of such aromatic isocyanates include p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylene diisocyanate, m-xylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4, 4'-diphenylmethane diisocyanate, 3,3'-dimethyldiphenyl-4,4'-diisocyanate, 3,3'-diethyldiphenyl-4,4'-diisocyanate, m-xylene diisocyanate, p-xylene diisocyanate, naphthalene diisocyanate, etc. It is done. Similarly, polyisocyanate raw materials such as one or more burettes or nurates of such isocyanate monomers can be used, and adducts obtained by urethanization reaction of the isocyanate compound and various polyols can also be used.

本発明では、上述のイソシアネート化合物と特定の酸無水物から直接イミド結合を形成させることにより、安定性等に問題のあるポリアミック酸中間体を経ずに、再現性良く、溶解性の良好な樹脂系を合成できる。   In the present invention, by directly forming an imide bond from the above-mentioned isocyanate compound and a specific acid anhydride, a resin having good reproducibility and good solubility without passing through a polyamic acid intermediate having a problem in stability or the like. The system can be synthesized.

本発明に使用されるトリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)としては、芳香族系の酸無水物化合物が好ましい。具体的には、無水トリメリット酸、ナフタレン−1,2,4−トリカルボン酸無水物等のトリカルボン酸無水物;ピロメリット酸二無水物、ベンゾフェノン−3,3’,4,4’−テトラカルボン酸二無水物、ジフェニルエーテル−3,3’,4,4’−テトラカルボン酸二無水物、ベンセン−1,2,3,4−テトラカルボン酸二無水物、ビフェニル−3,3’4,4’−テトラカルボン酸二無水物、ビフェニル−2,2’3,3’−テトラカルボン酸二無水物、ナフタレン−2,3,6,7−テトラカルボン酸二無水物、ナフタレン−1,2,4,5−テトラカルボン酸二無水物、ナフタレン−1,4,5,8−テトラカルボン酸二無水物、デカヒドロナフタレン−1,4,5,8−テトラカルボン酸二無水物、4,8−ジメチル−1,2,3,5,6,7−ヘキサヒドロナフタレン−1,2,5,6−テトラカルボン酸二無水物、2,6−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,7−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,3,6,7−テトラクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、フェテントレン−1,3,9,10−テトラカルボン酸二無水物、ベリレン−3,4,9,10−テトラカルボン酸二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1一ビス(3,4−ジカルボキシフェニル)エタン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,3−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物等の分子内に芳香族有機基を有するテトラカルボン酸の無水物が挙げられ、これらを1種又は2種以上を用いることが可能である。また、トリカルボン酸の無水物とテトラカルボン酸の無水物を混合して使用してもよい。また場合により、2官能のジカルボン酸化合物、例えばアジピン酸、セバシン酸、フタル酸、フマル酸、マレイン酸及びこれらの酸無水物等を併用することも可能である。
トリカルボン酸無水物と、イソシアネート化合物とのイミド化反応ではアミド結合とイミド結合とを有するポリイミド樹脂を生成する。したがって、本発明のポリイミド樹脂には、アミド結合とイミド結合とを有するポリアミドイミド樹脂も含まれるものとする。
The tricarboxylic acid anhydride (b1) and / or tetracarboxylic acid anhydride (b2) used in the present invention is preferably an aromatic acid anhydride compound. Specifically, tricarboxylic acid anhydrides such as trimellitic anhydride and naphthalene-1,2,4-tricarboxylic acid anhydride; pyromellitic dianhydride, benzophenone-3,3 ′, 4,4′-tetracarboxylic acid Acid dianhydride, diphenyl ether-3,3 ', 4,4'-tetracarboxylic dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, biphenyl-3,3'4,4 '-Tetracarboxylic dianhydride, biphenyl-2,2'3,3'-tetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1,2, 4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, decahydronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 4,8 -Dimethyl-1,2,3,5 6,7-hexahydronaphthalene-1,2,5,6-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloro Naphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, fetentylene-1,3 9,10-tetracarboxylic dianhydride, berylene-3,4,9,10-tetracarboxylic dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-di Carboxyphenyl) methane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1 bis (3,4-dicarboxyphenyl) ethane dianhydride, 2,2- Bis (2,3-dicarbox Cyphenyl) propane dianhydride, 2,3-bis (3,4-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) ) Tetracarboxylic acid anhydrides having an aromatic organic group in the molecule, such as ether dianhydride, may be used, and one or more of these may be used. Further, a tricarboxylic acid anhydride and a tetracarboxylic acid anhydride may be mixed and used. In some cases, bifunctional dicarboxylic acid compounds such as adipic acid, sebacic acid, phthalic acid, fumaric acid, maleic acid and acid anhydrides thereof may be used in combination.
In the imidization reaction between the tricarboxylic acid anhydride and the isocyanate compound, a polyimide resin having an amide bond and an imide bond is generated. Therefore, the polyimide resin of the present invention includes a polyamideimide resin having an amide bond and an imide bond.

前記有機溶剤(A)としては、イミド化反応の反応温度よりも高沸点の極性溶剤であれば公知慣用のものを用いることができ、イミド化反応の反応温度の好適温度範囲との兼ね合いで、沸点70℃以上の有機溶剤を用いることが好ましく、さらに、沸点140℃以上の有機溶剤を用いることがより好ましい。この様な有機溶剤としては窒素原子及び硫黄原子のいずれかを含有する極性溶剤、窒素原子及び硫黄原子のいずれも含有しない極性溶剤のどちらも用いることができる。ただし、窒素原子及び硫黄原子のいずれかを含有する極性溶剤が存在すると、作業環境上の問題が生じやすく、またかかるイソシアネート化合物とトリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)との反応に於いて、分子の成長が妨げられやすくなる傾向にあることから、窒素原子及び硫黄原子のいずれも含有しない極性溶剤が好ましい。   As said organic solvent (A), if it is a polar solvent with a boiling point higher than the reaction temperature of imidation reaction, a well-known and usual thing can be used, In balance with the suitable temperature range of reaction temperature of imidation reaction, It is preferable to use an organic solvent having a boiling point of 70 ° C. or higher, and it is more preferable to use an organic solvent having a boiling point of 140 ° C. or higher. As such an organic solvent, either a polar solvent containing either a nitrogen atom or a sulfur atom, or a polar solvent containing neither a nitrogen atom nor a sulfur atom can be used. However, if there is a polar solvent containing either a nitrogen atom or a sulfur atom, problems in the working environment are likely to occur, and such an isocyanate compound and a tricarboxylic acid anhydride (b1) and / or a tetracarboxylic acid anhydride (b2) ), A polar solvent containing neither a nitrogen atom nor a sulfur atom is preferred.

本発明において窒素原子及び硫黄原子のいずれかを含有する極性溶剤としては、例えば、N−メチル−2−ピロリドン(沸点202℃)、ジメチルアセトアミド(沸点165℃)、ジメチルホルムアミド(153℃)等のアミド類、ジメチルスルホキシド(沸点189℃)、スルホラン(沸点285℃)等のイオウ類、ニトロメタン(101℃)、ニトロエタン等のニトロ類、アセトニトリル(沸点82℃)、プロピオニトリル(沸点97℃)等のニトリル類、テトラメチルウレア(沸点177℃)等の溶剤が挙げられる。
このうち、イミド化反応を140℃以上で行える点で、N−メチル−2−ピロリドン(沸点202℃)、ジメチルアセトアミド(沸点165℃)、ジメチルホルムアミド(153℃)等のアミド類、ジメチルスルホキシド(沸点189℃)、スルホラン(沸点285℃)等のイオウ類、テトラメチルウレア(沸点177℃)等の溶剤を用いることが好ましい。
Examples of the polar solvent containing either a nitrogen atom or a sulfur atom in the present invention include N-methyl-2-pyrrolidone (boiling point 202 ° C.), dimethylacetamide (boiling point 165 ° C.), and dimethylformamide (153 ° C.). Amides, sulfur such as dimethyl sulfoxide (boiling point 189 ° C), sulfolane (boiling point 285 ° C), nitros such as nitromethane (101 ° C), nitroethane, acetonitrile (boiling point 82 ° C), propionitrile (boiling point 97 ° C), etc. Nitriles, tetramethylurea (boiling point 177 ° C.) and the like.
Among these, amides such as N-methyl-2-pyrrolidone (boiling point 202 ° C.), dimethylacetamide (boiling point 165 ° C.), dimethylformamide (153 ° C.), dimethyl sulfoxide ( It is preferable to use a solvent such as sulfur (boiling point 189 ° C.), sulfolane (boiling point 285 ° C.), or tetramethylurea (boiling point 177 ° C.).

本発明において、窒素原子及び硫黄原子のいずれも含有しない極性溶剤は、プロトン性溶剤と非プロトン性溶剤が挙げられ、このうち非プロトン性溶剤であることがより好ましい。例えばクレゾール系溶剤は、プロトンを有するフェノール性溶剤であるが、環境面でやや好ましくなく、イソシアネート化合物と反応して分子成長を阻害しやすい。また、クレゾール溶剤は、イソシアネート基との反応を起こしブロック化剤となりやすい。したがって、熱硬化時に他の硬化成分(例えばエポキシ樹脂など)と反応することで良好な物性が得られ難い。さらにブロック化剤がはずれる場合、使用機器や他の材料の汚染を起こしやすい。またアルコール系溶剤については、イソシアネートあるいは酸無水物と反応するため好ましくない。非プロトン性溶剤としては、例えば水酸基を有さないエーテル系、エステル系、ケトン系等の溶剤が挙げられ、このうち水酸基を有さないエーテル系溶剤が特に好ましい。   In the present invention, examples of the polar solvent containing neither a nitrogen atom nor a sulfur atom include a protic solvent and an aprotic solvent, and among these, an aprotic solvent is more preferable. For example, a cresol solvent is a phenolic solvent having protons, but is somewhat unfavorable in terms of the environment, and easily reacts with an isocyanate compound to hinder molecular growth. In addition, the cresol solvent easily reacts with an isocyanate group to easily become a blocking agent. Therefore, it is difficult to obtain good physical properties by reacting with other curing components (for example, epoxy resin) during thermal curing. Furthermore, if the blocking agent is removed, it is likely to cause contamination of the equipment used and other materials. Also, alcohol solvents are not preferred because they react with isocyanates or acid anhydrides. Examples of the aprotic solvent include ether-based, ester-based, and ketone-based solvents having no hydroxyl group, and among these, ether-based solvents having no hydroxyl group are particularly preferable.

本発明において、窒素原子及び硫黄原子のいずれも含有しない極性溶剤は、エーテル系溶剤であることがより好ましい。エーテル系溶剤は、弱い極性を有し、上述の分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)との反応において優れた反応場を提供する。かかるエーテル系溶剤としては、公知慣用のものが使用可能であるが、例えばテトラヒドロフラン(沸点66℃)等の環状エーテル類、エチレングリコールジメチルエーテル(沸点82℃)、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル(沸点121.4℃)等のエチレングリコールジアルキルエーテル類;ジエチレングリコールジメチルエーテル(沸点162℃)、ジエチレングリコールジエチルエーテル(沸点189℃)、ジエチレングリコールジブチルエーテル(沸点256℃)、トリエチレングリコールジメチルエーテル(沸点216℃)等のポリエチレングリコールジアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート(沸点145℃)等のエチレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールモノエチルエーテルアセテート(沸点217.4℃)、ジエチレングリコールモノブチルエーテルアセテート(沸点246.8℃)等のポリエチレングリコールモノアルキルエーテルアセテート類;プロピレングリコールジメチルエーテル(沸点97℃)等のプロピレングリコールジアルキルエーテル類;ジプロピレングリコールジメチルエーテル(沸点171℃)トリプロピレングリコールジメチルエーテル(沸点215℃)等のポリプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(沸点146.0℃)等のプロピレングリコールモノアルキルエーテルアセテート類;ポリプロピレングリコールモノアルキルエーテルアセテート類;あるいは低分子のエチレン−プロピレン共重合体の如き共重合ポリエーテルグリコールのジアルキルエーテルや、共重合ポリエーテルグリコールのモノアセテートモノアルキルエーテル類;あるいはこうしたポリエーテルグリコールのアルキルエステル類;ポリエーテルグリコールのモノアルキルエステルモノアルキルエーテル類などである。
このうち、イミド化反応を140℃以上で行える点で、ジエチレングリコールジメチルエーテル(沸点162℃)、ジエチレングリコールジエチルエーテル(沸点189℃)、ジエチレングリコールジブチルエーテル(沸点256℃)、トリエチレングリコールジメチルエーテル(沸点216℃)等のポリエチレングリコールジアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート(沸点145℃)等のエチレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールモノエチルエーテルアセテート(沸点217.4℃)、ジエチレングリコールモノブチルエーテルアセテート(沸点246.8℃)等のポリエチレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールジメチルエーテル(沸点171℃)等のポリプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(沸点146.0℃)等のプロピレングリコールモノアルキルエーテルアセテート類;ポリプロピレングリコールモノアルキルエーテルアセテート類あるいは低分子のエチレン−プロピレン共重合体の如き共重合ポリエーテルグリコールのジアルキルエーテルや、共重合ポリエーテルグリコールのモノアセテートモノアルキルエーテル類;あるいはこうしたポリエーテルグリコールのアルキルエステル類;ポリエーテルグリコールのモノアルキルエステルモノアルキルエーテル類などのうち、沸点が140℃以上のものが好ましいものとして挙げられる。
In the present invention, the polar solvent containing neither a nitrogen atom nor a sulfur atom is more preferably an ether solvent. The ether solvent has a weak polarity and has an aliphatic isocyanate compound and / or an alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, a tricarboxylic acid anhydride (b1) and / or Alternatively, it provides an excellent reaction field in the reaction with the tetracarboxylic acid anhydride (b2). As such ether solvents, known and commonly used solvents can be used. For example, cyclic ethers such as tetrahydrofuran (boiling point 66 ° C.), ethylene glycol dimethyl ether (boiling point 82 ° C.), ethylene glycol diethyl ether, ethylene glycol dibutyl ether ( Ethylene glycol dialkyl ethers such as boiling point 121.4 ° C; diethylene glycol dimethyl ether (boiling point 162 ° C), diethylene glycol diethyl ether (boiling point 189 ° C), diethylene glycol dibutyl ether (boiling point 256 ° C), triethylene glycol dimethyl ether (boiling point 216 ° C), etc. Polyethylene glycol dialkyl ethers; ethylene glycol monoalkyl such as ethylene glycol monomethyl ether acetate (boiling point 145 ° C.) Ether acetates; polyethylene glycol monoalkyl ether acetates such as diethylene glycol monoethyl ether acetate (boiling point 217.4 ° C.) and diethylene glycol monobutyl ether acetate (boiling point 246.8 ° C.); propylene glycol dialkyl such as propylene glycol dimethyl ether (boiling point 97 ° C.) Ethers; polypropylene glycol dialkyl ethers such as dipropylene glycol dimethyl ether (boiling point 171 ° C.) tripropylene glycol dimethyl ether (boiling point 215 ° C.); propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate (boiling point 146.0 ° C.) ; Polypropylene glycol monoalkyl ether acetates; Dialkyl ethers of copolymerized polyether glycols such as low molecular weight ethylene-propylene copolymers, monoacetate monoalkyl ethers of copolymerized polyether glycols; or alkyl esters of such polyether glycols; monoalkyls of polyether glycols And ester monoalkyl ethers.
Of these, diethylene glycol dimethyl ether (boiling point 162 ° C.), diethylene glycol diethyl ether (boiling point 189 ° C.), diethylene glycol dibutyl ether (boiling point 256 ° C.), triethylene glycol dimethyl ether (boiling point 216 ° C.) in that the imidization reaction can be carried out at 140 ° C. or higher. Polyethylene glycol dialkyl ethers such as ethylene glycol monomethyl ether acetate (boiling point 145 ° C.) and the like; diethylene glycol monoethyl ether acetate (boiling point 217.4 ° C.), diethylene glycol monobutyl ether acetate (boiling point 246.8) ° C) polyethylene glycol monoalkyl ether acetates, dipropylene glycol dimethyl ether Polypropylene glycol dialkyl ethers (boiling point 171 ° C.); propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate (boiling point 146.0 ° C.); polypropylene glycol monoalkyl ether acetates or low molecular weight ethylene-propylene copolymers Dialkyl ethers of copolymerized polyether glycols such as polymers, monoacetate monoalkyl ethers of copolymerized polyether glycols; or alkyl esters of such polyether glycols; monoalkyl ester monoalkyl ethers of polyether glycols, etc. Among them, those having a boiling point of 140 ° C. or higher are preferred.

ケトン系有機溶剤としては、公知慣用のものが使用可能であるが、例えばシクロヘキサノン(沸点155.7℃)、メチルエチルケトン(沸点79.5℃)等のケトン類が挙げられる。このうち、イミド化反応を140℃以上で行える点で、シクロヘキサノン(沸点155.7℃)、が好ましいものとして挙げられる。   As the ketone organic solvent, known and commonly used solvents can be used, and examples thereof include ketones such as cyclohexanone (boiling point 155.7 ° C.) and methyl ethyl ketone (boiling point 79.5 ° C.). Among these, cyclohexanone (boiling point: 155.7 ° C.) is preferable because imidization reaction can be performed at 140 ° C. or higher.

エステル系有機溶剤としては、公知慣用のものが使用可能であるが、例えば酢酸エチル(沸点78℃)、酢酸プロピル(沸点102℃)、酢酸ブチル(沸点126℃)、酢酸イソブチル(沸点118℃)、酢酸ペンチル(沸点148℃)、酢酸イソペンチル(沸点143℃)、プロピオン酸メチル(沸点78℃)、プロピオン酸エチル(沸点99℃)、プロピオン酸ブチル(沸点145℃)等のエステル類が挙げられる。このうち、イミド化反応を140℃以上で行える点で、酢酸ペンチル(沸点148℃)、酢酸イソペンチル(沸点143℃)、プロピオン酸ブチル(沸点145℃)が好ましいものとして挙げられる。   As the ester organic solvent, known and commonly used solvents can be used. For example, ethyl acetate (boiling point 78 ° C.), propyl acetate (boiling point 102 ° C.), butyl acetate (boiling point 126 ° C.), isobutyl acetate (boiling point 118 ° C.) And esters such as pentyl acetate (boiling point 148 ° C.), isopentyl acetate (boiling point 143 ° C.), methyl propionate (boiling point 78 ° C.), ethyl propionate (boiling point 99 ° C.), and butyl propionate (boiling point 145 ° C.). . Among these, pentyl acetate (boiling point 148 ° C.), isopentyl acetate (boiling point 143 ° C.), and butyl propionate (boiling point 145 ° C.) are preferable in that the imidization reaction can be performed at 140 ° C. or higher.

分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)とを反応させる場合は、脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)のイソシアネート基のモル数(N)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)のカルボキシ基のモル数(M1)及び酸無水物基モル数(M2)が以下の式を満足させることが好ましい。
3>((M1)+(M2))/(N))>1.1。特に好ましくは、2>((M1)+(M2))/(N))>1.2である。このとき、カルボキシ基のモル数(M1)と酸無水物基モル数(M2)の和が、イソシアネート基のモル数(N)より過剰となるように配合すると、反応系中の極性が高くなり反応が潤滑に進行する。上記比率をはずれた場合、例えば1.1以下の場合は、イソシアネート基が残存し安定性等がやや悪くなる傾向がある。また3以上の場合は、酸無水物含有化合物が残存し再結晶等の分離の状態になりやすくなる。
The aliphatic isocyanate compound and / or alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule is reacted with the tricarboxylic acid anhydride (b1) and / or the tetracarboxylic acid anhydride (b2). In this case, the number of moles (N) of the isocyanate group of the aliphatic isocyanate compound and / or the alicyclic isocyanate compound (a) and the carboxy group of the tricarboxylic acid anhydride (b1) and / or the tetracarboxylic acid anhydride (b2). The number of moles (M1) and the number of moles of acid anhydride groups (M2) preferably satisfy the following formula.
3> ((M1) + (M2)) / (N))> 1.1. Particularly preferably, 2> ((M1) + (M2)) / (N))> 1.2. At this time, if the sum of the number of moles of carboxy groups (M1) and the number of moles of acid anhydride groups (M2) is larger than the number of moles of isocyanate groups (N), the polarity in the reaction system increases. The reaction proceeds to lubrication. When the above ratio is deviated, for example, 1.1 or less, the isocyanate group remains and the stability and the like tend to be slightly deteriorated. In the case of 3 or more, the acid anhydride-containing compound remains and tends to be in a state of separation such as recrystallization.

テトラカルボン酸無水物(b2)とトリカルボン酸無水物(b1)の配合割合((b2)/(b1))は、0〜2の割合であることが好ましい。テトラカルボン酸無水物(b2)の配合割合がこの範囲を超えて大きい場合は、イミド結合の濃度が上昇し溶剤溶解性や非結晶性が必ずしも十分でなくなる場合がある。   The blending ratio ((b2) / (b1)) of the tetracarboxylic anhydride (b2) and the tricarboxylic anhydride (b1) is preferably a ratio of 0-2. When the blending ratio of the tetracarboxylic acid anhydride (b2) exceeds this range, the concentration of the imide bond increases and the solvent solubility and non-crystallinity may not always be sufficient.

分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)が、イソシアヌレート型ポリイソシアネート(a2)を含んでなる組成で構成された場合、さらに優れた硬化物性や溶解性の性能を示し好ましい。具体的には、ジイソシアネートモノマー(a1)とイソシアヌレート型ポリイソシアネート(a2)の重量割合がW(a1)/W(a2)が0〜0.5、特に0〜0.3であるとき優れた性能を発揮し好ましい。W(a1)/W(a2)=0の場合は、イソシアネート成分がすべてイソシアヌレート型ポリイソシアネート(a2)であることを意味し、上記テトラカルボン酸無水物(b2)とトリカルボン酸無水物(b1)のモル比((b2)/(b1))が0〜1の範囲で合成が可能である。   When the aliphatic isocyanate compound having two or more isocyanate groups in the molecule and / or the alicyclic isocyanate compound (a) is composed of a composition comprising the isocyanurate type polyisocyanate (a2), it is further excellent. It is preferable because it exhibits cured properties and solubility performance. Specifically, the weight ratio between the diisocyanate monomer (a1) and the isocyanurate type polyisocyanate (a2) is excellent when W (a1) / W (a2) is 0 to 0.5, particularly 0 to 0.3. It is preferable because of its performance. When W (a1) / W (a2) = 0, it means that all isocyanate components are isocyanurate type polyisocyanate (a2), and the tetracarboxylic anhydride (b2) and tricarboxylic anhydride (b1 ) In the range of 0 to 1 ((b2) / (b1)).

本発明の方法により得られるカルボキシ基含有ポリイミド樹脂としては、例えば以下のものが挙げられる。
(例1)脂肪族、脂環族ジイソシアネート類と芳香族トリカルボン酸無水物(b1)の反応により得られる(式1)で表されるイミド樹脂。
Examples of the carboxy group-containing polyimide resin obtained by the method of the present invention include the following.
(Example 1) Imide resin represented by (Formula 1) obtained by reaction of aliphatic and alicyclic diisocyanates and aromatic tricarboxylic acid anhydride (b1).

Figure 0005569027
Figure 0005569027

(Raは、2価の脂肪族、脂環族ジイソシアネート類の残基を示す。nは、繰り返し単位で0〜30である。また、Rbは、以下の構造式(式2)または(式3)で示される構造単位である。   (Ra represents a residue of a divalent aliphatic or alicyclic diisocyanate. N is a repeating unit of 0 to 30. Rb is represented by the following structural formula (Formula 2) or (Formula 3). ).

Figure 0005569027
Figure 0005569027

Figure 0005569027
Figure 0005569027

(Rは、炭素数6〜20の置換基を有しても良い芳香族トリカルボン酸残基である。)Rcは、以下の構造式(式4)で示される構造単位である。 (R 2 is an aromatic tricarboxylic acid residue that may have a substituent having 6 to 20 carbon atoms.) Rc is a structural unit represented by the following structural formula (formula 4).

Figure 0005569027
Figure 0005569027

(Rは、前記と同一である。)) (R 2 is the same as above.))

(例2)例1において芳香族トリカルボン酸無水物(b1)とテトラカルボン酸無水物(b2)を併用した場合、(式5)で表されるイミド樹脂。   (Example 2) An imide resin represented by (Formula 5) when the aromatic tricarboxylic acid anhydride (b1) and the tetracarboxylic acid anhydride (b2) are used in combination in Example 1.

Figure 0005569027
Figure 0005569027

(Rb’は、上記(式2)、(式3)、又は以下の(式6)で表される構造単位であり、   (Rb ′ is a structural unit represented by the above (formula 2), (formula 3), or the following (formula 6),

Figure 0005569027
Figure 0005569027

(Rは、炭素数6〜20の置換基を有していてもよい芳香族テトラカルボン酸無水物残基を示す。)Rc’は、上記(式4)、又は以下の(式7)、(式8)で表される構造単位のものであり、 (R 3 represents an aromatic tetracarboxylic anhydride residue that may have a substituent having 6 to 20 carbon atoms.) Rc ′ is the above (Formula 4) or the following (Formula 7). , (Structural unit 8)

Figure 0005569027
Figure 0005569027

Figure 0005569027
Figure 0005569027

(Rは前記と同一である。)Ra及びnは前記と同一である。) (R 3 is the same as above.) Ra and n are the same as above. )

(例3)脂肪族、脂環族のイソシアヌレート型トリイソシアネートと芳香族トリカルボン酸無水物(b1)の反応により得られる(式9)で表されるイミド樹脂。   (Example 3) An imide resin represented by (formula 9) obtained by reaction of an aliphatic or alicyclic isocyanurate type triisocyanate and an aromatic tricarboxylic acid anhydride (b1).

Figure 0005569027
Figure 0005569027

(Rdは、以下の(式10)で表される3価の有機基であり、   (Rd is a trivalent organic group represented by the following (formula 10),

Figure 0005569027
Figure 0005569027

(Raは前記と同一である。)Rb、Rc、nは前記と同一である。)   (Ra is the same as above.) Rb, Rc, and n are the same as above. )

(例4)脂肪族、脂環族のイソシアヌレート型トリイソシアネートと、芳香族トリカルボン酸無水物(b1)及びテトラカルボン酸無水物(b2)との反応により得られる(式11)で表されるイミド樹脂。   (Example 4) It is represented by (Formula 11) obtained by reaction of an aliphatic or alicyclic isocyanurate type triisocyanate with an aromatic tricarboxylic acid anhydride (b1) and a tetracarboxylic acid anhydride (b2). Imide resin.

Figure 0005569027
Figure 0005569027

(Rb’、Rc’、Rdは前記と同一である。)   (Rb ', Rc' and Rd are the same as described above.)

また、ジイソシアネート化合物とイソシアヌレート型トリイソシアネートを併用した場合は、上記(式1)と(式9)の複合の構造を有することになり、その末端構造としては、(式1)でのRc−Ra−と(式9)での(Rc)2−Rd−の構造が分子末端に存在する。また、主鎖骨格の構造も(式1)での−Ra−Rb−の単位と〈式9)での−Rd(Rc)−Rb−の構造が存在する。さらに非結晶性や溶解性を損なわない程度に芳香族イソシアネート化合物を併用することが可能であるが、その場合は、上記式中のRaが一部2価の芳香族基となる。   Further, when a diisocyanate compound and an isocyanurate type triisocyanate are used in combination, the compound has a composite structure of the above (formula 1) and (formula 9), and the terminal structure thereof is Rc- in (formula 1). The structure of (Rc) 2-Rd- in Ra- and (Formula 9) is present at the molecular end. Further, the structure of the main chain skeleton includes a unit of -Ra-Rb- in (Formula 1) and a structure of -Rd (Rc) -Rb- in <Formula 9>. Furthermore, it is possible to use an aromatic isocyanate compound in combination so as not to impair the non-crystallinity and solubility. In that case, Ra in the above formula partially becomes a divalent aromatic group.

本発明のカルボキシ基含有ポリイミド樹脂の酸価は、60〜200KOHmg/gであることが好ましく、80〜180KOHmg/gであることが特に好ましい。60〜200KOHmg/gであれば、硬化物性として優れた性能を発揮する。   The acid value of the carboxy group-containing polyimide resin of the present invention is preferably 60 to 200 KOHmg / g, and particularly preferably 80 to 180 KOHmg / g. If it is 60-200 KOHmg / g, the performance which was excellent as hardened | cured material property will be demonstrated.

本発明のカルボキシ基含有ポリイミド樹脂の分子量は、溶剤への溶解性が良好であるという事と機械強度に優れる硬化物が得られるという点で、数平均分子量1000〜20000が好ましく、1000〜8000がより好ましい。分子量は、ゲルパーミネーションクロマトグラフィー(GPC)や末端の官能基量の定量分析で測定することができる。
本発明で、数平均分子量の測定は、GPCを用いて、以下の条件により求めた。
測定装置:東ソー株式会社製 HLC−8120GPC、UV8020
カラム :東ソー株式会社製 TFKguardcolumnHXL-L、TFKgel(G1000HXL、G2000HXL、G3000HXL、G4000HXL)
検出器 :RI(示差屈折計)及びUV(254nm)
測定条件:カラム温度 40℃
溶媒 THF
流束 1.0ml/min
標準 :ポリスチレン標準試料にて検量線作成
試料 :樹脂固形分換算で0.1重量%のTHF溶液をマイクロフィルターでろ過したもの(注入量:200μl)
The molecular weight of the carboxy group-containing polyimide resin of the present invention is preferably a number average molecular weight of 1,000 to 20,000, preferably 1,000 to 8,000, in that a cured product having excellent solubility in a solvent and excellent mechanical strength is obtained. More preferred. The molecular weight can be measured by gel permeation chromatography (GPC) or quantitative analysis of the terminal functional group amount.
In the present invention, the number average molecular weight was determined using GPC under the following conditions.
Measuring device: HLC-8120GPC, UV8020 manufactured by Tosoh Corporation
Column: TFKguardcolumnHXL-L, TFKgel (G1000HXL, G2000HXL, G3000HXL, G4000HXL) manufactured by Tosoh Corporation
Detector: RI (differential refractometer) and UV (254 nm)
Measurement conditions: Column temperature 40 ° C
Solvent THF
Flux 1.0ml / min
Standard: Calibration curve prepared with polystyrene standard sample: 0.1% by weight THF solution in terms of resin solid content filtered through microfilter (injection amount: 200 μl)

(2)造粒工程
続く第2の工程は、前記工程で得られた、カルボキシ基含有ポリイミド樹脂を含む有機溶剤(A)の樹脂溶液を噴霧させながら該有機溶剤(A)を揮発させてカルボキシ基含有ポリイミド樹脂の粉体を得る造粒工程である。前記合成工程において、無溶剤下で合成された場合は、有機溶剤(A)に一旦溶解させカルボキシ基含有ポリイミド樹脂を含む有機溶剤(A)の樹脂溶液を得て、前記造粒工程に供する。
(2) Granulation step In the second step, the organic solvent (A) is volatilized by spraying the resin solution of the organic solvent (A) containing the carboxy group-containing polyimide resin obtained in the above step. This is a granulation step for obtaining a powder of a group-containing polyimide resin. In the synthesis step, when synthesized in the absence of a solvent, the resin is once dissolved in the organic solvent (A) to obtain a resin solution of the organic solvent (A) containing the carboxy group-containing polyimide resin, which is subjected to the granulation step.

造粒工程において、カルボキシ基含有ポリイミド樹脂を含む有機溶剤(A)の樹脂溶液を噴霧させながら該有機溶剤(A)を揮発させる方法としては、公知慣用の種々の方法が利用可能である。例えば、スプレードライヤー、薄膜蒸発機、ニーダー等が挙げられるが、スプレードライヤー等を用いて噴霧乾燥する方法が好ましい。   As the method for volatilizing the organic solvent (A) while spraying the resin solution of the organic solvent (A) containing the carboxy group-containing polyimide resin in the granulation step, various known and conventional methods can be used. For example, a spray dryer, a thin film evaporator, a kneader and the like can be mentioned, and a spray drying method using a spray dryer or the like is preferable.

この噴霧乾燥に用いるスプレードライヤーとしては、ディスク式アトマイザーや二流体ノズルを噴霧装置として持っている形式のものが好ましく使用できる。スプレードライヤーの噴霧条件としては、ディスク式アトマイザーの場合、回転数は25000〜30000rpm、流量は30〜70ml/minが好ましい。二流体ノズルの場合、樹脂溶液の粘度は10〜3000mPa・s、流量は0.1〜5Kg/hが好ましい。また、樹脂溶液の温度を30〜130℃の範囲に加熱しておくことが好ましい。
スプレードライヤーの乾燥条件としては、50〜350℃の温度範囲が挙げられる。このようなスプレードライヤー装置としては、スプレードライヤーFGA、スプレードライヤーCL(大川原化工機株式会社製)等が挙げられる。
As the spray dryer used for spray drying, a type having a disk atomizer or a two-fluid nozzle as a spraying device can be preferably used. As spraying conditions of the spray dryer, in the case of a disk-type atomizer, the rotational speed is preferably 25,000 to 30,000 rpm, and the flow rate is preferably 30 to 70 ml / min. In the case of a two-fluid nozzle, the resin solution preferably has a viscosity of 10 to 3000 mPa · s and a flow rate of 0.1 to 5 kg / h. Moreover, it is preferable to heat the temperature of a resin solution in the range of 30-130 degreeC.
Examples of drying conditions for the spray dryer include a temperature range of 50 to 350 ° C. Examples of such a spray dryer device include a spray dryer FGA, a spray dryer CL (manufactured by Okawara Chemical Co., Ltd.), and the like.

上記造粒条件により得られるカルボキシ基含有ポリイミド樹脂中に含まれる有機溶剤(A)の含有率は、0〜20重量%、0〜10重量%とすることが好ましい。もし該含有率が高い場合には、さらに別途乾燥工程を設けて、粒子中の有機溶剤(A)を脱溶媒して、有機溶剤を完全に除去することが好ましい。   The content of the organic solvent (A) contained in the carboxy group-containing polyimide resin obtained under the above granulation conditions is preferably 0 to 20% by weight and 0 to 10% by weight. If the content is high, it is preferable to provide a separate drying step to remove the organic solvent (A) in the particles to completely remove the organic solvent.

上記造粒工程により得られたカルボキシ基含有ポリイミド樹脂粉末を、光学顕微鏡(株式会社キーエンス製「DIGITAL MICROSCOPE VHX」)により定方向径を測定したところ、粒径が0.01〜2000μm、好ましくは1〜100μmの繊維状、球状、楕円状および不定形のいずれかの粒子を90%以上含むことが確認された。   When the unidirectional diameter of the carboxy group-containing polyimide resin powder obtained by the granulation step was measured with an optical microscope (“DIGITAL MICROSCOPE VHX” manufactured by Keyence Corporation), the particle size was 0.01 to 2000 μm, preferably 1. It was confirmed that 90% or more of any one of ˜100 μm fibrous, spherical, elliptical, and amorphous particles was contained.

(3)再溶解工程
続く第3の工程は、前工程で得られたカルボキシ基含有ポリイミド樹脂粉末を、有機溶剤(B)に溶解させる溶解工程である。
(3) Re-dissolution step The following third step is a dissolution step in which the carboxy group-containing polyimide resin powder obtained in the previous step is dissolved in the organic solvent (B).

上記有機溶剤(B)としては、ポリマー組成によってイミド化反応の反応温度が異なってくるが、イミド化反応の反応温度よりも沸点の低い有機溶剤を挙げることができる。たとえばイミド化反応の反応温度より低沸点の有機溶剤(B)としてはメチルエチルケトン(沸点79.5℃)、メチルイソブチルケトン(沸点116℃)、アセトン(沸点56.5℃)等のケトン類、酢酸エチル(沸点77.1℃)、酢酸ブチル(沸点126℃)等のエステル類、テトラヒドロフラン(沸点66℃)、ジオキサン(沸点101℃)等のエーテル類、メタノール(沸点64.7℃)、エタノール(沸点78.4℃)、イソプロピルアルコール(沸点82.4℃)、ブタノール(沸点117℃)等のアルコール類、ヘキサン(沸点69℃)等の脂肪族系有機溶剤、ベンゼン(沸点80.1℃)、トルエン(沸点110.6℃)等の芳香族系有機溶剤、これらの一種又は二種以上の混合溶剤が好ましいものとして挙げられ、イミド化反応の反応温度よりも低い溶媒を適宜選択することができる。
これらのうちで、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、テトラヒドロフランを好ましい有機溶剤として挙げることができる。
As said organic solvent (B), although the reaction temperature of imidation reaction changes with polymer compositions, the organic solvent whose boiling point is lower than the reaction temperature of imidation reaction can be mentioned. For example, as the organic solvent (B) having a boiling point lower than the reaction temperature of the imidization reaction, ketones such as methyl ethyl ketone (boiling point 79.5 ° C.), methyl isobutyl ketone (boiling point 116 ° C.), acetone (boiling point 56.5 ° C.), acetic acid Esters such as ethyl (boiling point 77.1 ° C), butyl acetate (boiling point 126 ° C), ethers such as tetrahydrofuran (boiling point 66 ° C), dioxane (boiling point 101 ° C), methanol (boiling point 64.7 ° C), ethanol ( Boiling point: 78.4 ° C), alcohols such as isopropyl alcohol (boiling point: 82.4 ° C), butanol (boiling point: 117 ° C), aliphatic organic solvents such as hexane (boiling point: 69 ° C), benzene (boiling point: 80.1 ° C) , Aromatic organic solvents such as toluene (boiling point 110.6 ° C.), and one or a mixture of two or more of these are preferred. It can be appropriately selected lower solvent than the reaction temperature of the reaction.
Among these, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, and tetrahydrofuran can be mentioned as preferable organic solvents.

上記有機溶剤(B)としては、イミド化反応の合成溶媒(有機溶剤(A))として使用するのに適さない有機溶剤を使用する事が可能である。例えば該有機溶剤がイミド化反応温度付近で熱分解を生じ、副生成物等を生成するため有機溶剤(A)として使用するのに適さない場合がある有機溶剤として、シクロヘキサノン、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン等が挙げられる。 As said organic solvent (B), it is possible to use the organic solvent which is not suitable for using as a synthetic solvent (organic solvent (A)) of imidation reaction. For example, cyclohexanone, dimethylformamide, dimethylacetamide are organic solvents that may be unsuitable for use as the organic solvent (A) because the organic solvent undergoes thermal decomposition near the imidation reaction temperature and produces by-products. N methylpyrrolidone and the like.

なお、本発明において「希釈安定性」とは、樹脂への有機溶剤の入りやすさを意味し、樹脂を有機溶剤で希釈する際の分散系の安定性を指す。本発明のカルボキシ基含有ポリイミド樹脂粉末は、希釈安定性に優れ、驚くべきことに、室温(18〜35℃)にて前記低沸点有機溶剤で希釈しても、樹脂を析出させることなく、かつ溶液の透明度の変化(濁り)もなく、流動性にも優れる。希釈する際の樹脂溶液の温度は、前記の通り室温で可能であるが、概ね室温から希釈に使用する有機溶剤の沸点以下の範囲で可能であり、高温であるほど再溶解工程を短時間に終了させることができる。   In the present invention, “dilution stability” means the ease of entry of the organic solvent into the resin, and refers to the stability of the dispersion when the resin is diluted with the organic solvent. The carboxy group-containing polyimide resin powder of the present invention is excellent in dilution stability. Surprisingly, even when diluted with the low-boiling organic solvent at room temperature (18 to 35 ° C.), the resin does not precipitate, and There is no change in the transparency (turbidity) of the solution, and the fluidity is excellent. The temperature of the resin solution at the time of dilution can be at room temperature as described above, but can be generally within the range from room temperature to the boiling point of the organic solvent used for dilution, and the higher the temperature, the shorter the re-dissolution step. Can be terminated.

・カルボキシ基含有ポリイミド樹脂溶液
本発明のカルボキシ含有ポリイミド樹脂溶液は、前記第1(合成工程)、第2(造粒工程)、第3(再溶解工程)を有する製造方法により製造される、カルボキシ含有ポリイミド樹脂と沸点130℃以下の有機溶剤(B)とを含むことを特徴とする。全有機溶剤に占める沸点130℃以下の有機溶剤(B)の割合は、99重量%以上、好ましくは99.5重量%以上、さらに好ましくは99.9重量%以上、もっとも好ましいものでは100重量%(有機溶剤(B)以外の有機溶剤の検出限界以下)である。
また、カルボキシ基含有ポリイミド樹脂溶液に対するカルボキシ基含有ポリイミド樹脂の含有率は0.1〜90重量%、好ましくは10〜80重量%、さらに好ましくは20〜70重量%である。
-Carboxy group-containing polyimide resin solution The carboxy-containing polyimide resin solution of the present invention is produced by a production method having the first (synthesis step), second (granulation step), and third (remelting step). It contains a containing polyimide resin and an organic solvent (B) having a boiling point of 130 ° C. or lower. The proportion of the organic solvent (B) having a boiling point of 130 ° C. or less in the total organic solvent is 99% by weight or more, preferably 99.5% by weight or more, more preferably 99.9% by weight or more, and most preferably 100% by weight. (Below the detection limit of organic solvents other than organic solvent (B)).
The content of the carboxy group-containing polyimide resin with respect to the carboxy group-containing polyimide resin solution is 0.1 to 90% by weight, preferably 10 to 80% by weight, and more preferably 20 to 70% by weight.

なお、本発明のカルボキシ基含有ポリイミド樹脂粉末は、前記有機溶剤(A)に対しても優れた希釈安定性を有するため、一旦製造したカルボキシ基含有ポリイミド樹脂粉体を、一旦、有機溶剤(A)に溶解させ、有機溶剤(A)とカルボキシ基含有ポリイミド樹脂とを含む樹脂溶液として製造しておき、保管等しておくことも可能である。この場合、再度、前記した造粒工程と再溶解工程を経ることによって、有機溶剤(B)とカルボキシ基含有ポリイミド樹脂とを含む、本発明のカルボキシ基含有ポリイミド樹脂溶液を製造することができる。   In addition, since the carboxy group-containing polyimide resin powder of the present invention has excellent dilution stability even with respect to the organic solvent (A), the carboxy group-containing polyimide resin powder once manufactured is temporarily treated with the organic solvent (A It is also possible to prepare a resin solution containing the organic solvent (A) and the carboxy group-containing polyimide resin, and store it. In this case, the carboxy group-containing polyimide resin solution of the present invention containing the organic solvent (B) and the carboxy group-containing polyimide resin can be produced by going through the granulation step and the remelting step again.

・硬化性樹脂組成物
本発明の硬化性樹脂組成物は、前記カルボキシ基含有アミドイミド樹脂溶液(C)と硬化性樹脂成分(D)とを含有する。硬化性樹脂成分(D)としては、公知慣用のものが挙げられ、特に限定されるものではないが、たとえば、エポキシ樹脂(D1)、メラミン樹脂(D2)、イソシアネート化合物(D3)、シリケート(D4)、アルコキシシラン化合物(D5)などが挙げられるが、このうちエポキシ樹脂(D1)が好ましい。(C)成分と(D)成分とを含んでなる硬化性樹脂組成物は、被塗装物に塗装、キャスティング等施した後に、乾燥を行い、さらに加熱により硬化させることができる。
乾燥温度は、30〜150℃、乾燥時間は、1〜120(分)の範囲である。特に30〜60℃、1〜5(分)といった低温・短時間の乾燥でも構わない。従来のように高沸点有機溶剤に溶解した樹脂溶液の場合よりも、低温・短時間の乾燥で有機溶剤を除去できるため、硬化塗膜に「わき」、「ふくれ」、「はがれ」等の塗膜欠陥を低減させることができる。
硬化温度は、80℃〜300℃、特に120℃〜250℃が好ましい。また、各種温度でのステップ硬化を行っても良い。また、50℃〜170℃程度の温度で半硬化させたシート状あるいは塗膜状の組成物を貯蔵して、必要な時に上述の硬化温度にて処理を施してもよい。(C)成分と(D)成分との硬化反応は、基本的にカルボキシ基とエポキシ基やアルコキシ基などとの縮合反応であり、かかる(C)成分と(D)成分の種類や配合割合、硬化条件等を選択することにより、優れた物性等を有する硬化性樹脂組成物を得ることができる。
-Curable resin composition The curable resin composition of this invention contains the said carboxy-group-containing amideimide resin solution (C) and curable resin component (D). Examples of the curable resin component (D) include known and commonly used ones, and are not particularly limited. For example, epoxy resin (D1), melamine resin (D2), isocyanate compound (D3), silicate (D4) ), Alkoxysilane compound (D5), etc., among which epoxy resin (D1) is preferred. The curable resin composition comprising the component (C) and the component (D) can be applied to an object to be coated, cast, etc., dried, and further cured by heating.
The drying temperature is 30 to 150 ° C., and the drying time is 1 to 120 (minutes). In particular, drying at a low temperature and a short time of 30 to 60 ° C. and 1 to 5 (min) may be used. Compared to conventional resin solutions dissolved in high-boiling organic solvents, the organic solvent can be removed by drying at a low temperature and for a short time. Film defects can be reduced.
The curing temperature is preferably 80 ° C to 300 ° C, particularly 120 ° C to 250 ° C. Further, step curing at various temperatures may be performed. Alternatively, a sheet-like or film-like composition semi-cured at a temperature of about 50 ° C. to 170 ° C. may be stored and treated at the above-described curing temperature when necessary. The curing reaction between the component (C) and the component (D) is basically a condensation reaction between a carboxy group and an epoxy group or an alkoxy group, and the type and blending ratio of the component (C) and the component (D), By selecting curing conditions and the like, a curable resin composition having excellent physical properties and the like can be obtained.

ここで、前記エポキシ樹脂(D1)としては、分子中に2個以上のエポキシ基を有するエポキシ化合物を含んでなるものであれば公知慣用のエポキシ樹脂を挙げることができる。エポキシ化合物成分は、軟化点50℃以上であることが特に好ましい。軟化点が50℃以上であれば、本発明の硬化性樹脂組成物の物性がより優れたものとなる。   Here, as said epoxy resin (D1), if it contains the epoxy compound which has a 2 or more epoxy group in a molecule | numerator, a well-known and usual epoxy resin can be mentioned. It is particularly preferable that the epoxy compound component has a softening point of 50 ° C or higher. If a softening point is 50 degreeC or more, the physical property of the curable resin composition of this invention will become more excellent.

かかるエポキシ樹脂としては、例えばビスフェノールA型エポキシ、ビスフェノールS型エポキシ、ビスフェノールF型エポキシ、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンと各種フェノール類とを反応させて得られる各種ジシクロペンタジエン変性フェノール樹脂のエポキシ化物、2,2’,6,6’−テトラメチルビフェノールのエポキシ化物、4,4‘−メチレンビス(2,6−ジメチルフェノール)のエポキシ化物、ナフトールやビナフトールあるいはナフトールやビナフトールのノボラック変性等ナフタレン骨格から誘導されたエポキシ、フルオレン骨格のフェノール樹脂をエポキシ化して得られるエポキシ樹脂等の芳香族エポキシ樹脂等が挙げられる。またネオペンチルグリコールジグリシジルエーテル、1、6−へキサンジオールジグリシジルエーテルのごとき脂肪族エポキシ樹脂や、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、ビス−(3,4−エポキシビシクロヘキシル)アジペートのごときシクロヘキセンを酸化させてえられる脂環式エポキシ樹脂、トリグリシジルイソシアヌレートのごときヘテロ環含有のエポキシ樹脂も使用可能である。   Examples of such epoxy resins include bisphenol A type epoxy, bisphenol S type epoxy, bisphenol F type epoxy, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and various diacids obtained by reacting dicyclopentadiene with various phenols. Epoxidized cyclopentadiene-modified phenolic resin, epoxidized 2,2 ′, 6,6′-tetramethylbiphenol, epoxidized 4,4′-methylenebis (2,6-dimethylphenol), naphthol, binaphthol, naphthol, Examples thereof include epoxy derived from a naphthalene skeleton such as a novolak modification of binaphthol, and an aromatic epoxy resin such as an epoxy resin obtained by epoxidizing a phenol resin having a fluorene skeleton. In addition, aliphatic epoxy resins such as neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bis- (3,4- Epoxy bicyclohexyl) An alicyclic epoxy resin obtained by oxidizing cyclohexene such as adipate, and a heterocyclic ring-containing epoxy resin such as triglycidyl isocyanurate can also be used.

また、(メタ)アクリロイル基やビニル基等重合性不飽和二重結合を有するエポキシ化合物の不飽和基を重合させて得られるエポキシ基含有重合系樹脂及びその他の重合性不飽和結合を有するモノマー類との共重合体も使用可能である。   In addition, an epoxy group-containing polymerization resin obtained by polymerizing an unsaturated group of an epoxy compound having a polymerizable unsaturated double bond such as a (meth) acryloyl group or a vinyl group, and other monomers having a polymerizable unsaturated bond Copolymers with can also be used.

かかる(メタ)アクリロイル基とエポキシ基を併せ持つ化合物として、グリシジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレートグリシジルエーテル、ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、4−ヒドロキジブチル(メタ)アクリレートグリシジルエーテル、6−ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテル、5−ヒドロキシ−3−メチルペンチル(メタ)アクリレートグリシジルエーテル、(メタ)アクリル酸−3,4−エポキシシクロヘキシル、ラクトン変成(メタ)アクリル酸−3,4−エポキシシクロヘキシル、ビニルシクロヘキセンオキシドなどが挙げられる。   Examples of the compound having both (meth) acryloyl group and epoxy group include glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate glycidyl ether, hydroxypropyl (meth) acrylate glycidyl ether, 4-hydroxydibutyl (meth) acrylate glycidyl ether. , 6-hydroxyhexyl (meth) acrylate glycidyl ether, 5-hydroxy-3-methylpentyl (meth) acrylate glycidyl ether, (meth) acrylic acid-3,4-epoxycyclohexyl, lactone modified (meth) acrylic acid-3, 4-epoxycyclohexyl, vinylcyclohexene oxide and the like can be mentioned.

前記本発明で用いるポリイミド樹脂とエポキシ樹脂との配合量は、樹脂分の重量比として(ポリイミド樹脂)/(エポキシ樹脂)が1/100から50/1の割合で使用することができ、さらに好ましくは、1/10から20/1である。   The blending amount of the polyimide resin and the epoxy resin used in the present invention can be used in a ratio of (polyimide resin) / (epoxy resin) of 1/100 to 50/1 as a weight ratio of the resin, and more preferably Is from 1/10 to 20/1.

上述の(C)成分と(D1)成分は、各種目的とする物性に対応して自由に配合することが可能であるが、ガラス転移温度(以下、単にTgという)等の熱的物性、耐水性、機械物性等の面で(C)成分のカルボキシ基のモル数n(COOH)と(D1)成分のエポキシ基のモル数n(EPOXY)が、4>n(EPOXY)/n(COOH)>0.8の範囲で配合されることが好ましい。n(EPOXY)/n(COOH)が4以上の場合は硬化塗膜の特性としてTgが得られにくく、また0.8以下の場合は耐水性等で問題を生じる場合がある。   The above component (C) and component (D1) can be freely blended in accordance with various target physical properties, but they have thermal physical properties such as glass transition temperature (hereinafter simply referred to as Tg), water resistance, and the like. In terms of properties and mechanical properties, the number of moles n (COOH) of the carboxy group of the component (C) and the number of moles n (EPOXY) of the epoxy group of the component (D1) are 4> n (EPOXY) / n (COOH) It is preferable to blend in the range of> 0.8. When n (EPOXY) / n (COOH) is 4 or more, it is difficult to obtain Tg as a characteristic of the cured coating film, and when it is 0.8 or less, there may be a problem with water resistance.

熱硬化させる場合は、エポキシ−カルボン酸系の硬化触媒等の併用を行っても良い。かかるエポキシ−カルボン酸系硬化触媒としては、反応促進のための第1級から第3級までのアミンや第4級アンモニュウム塩、ジシアンジアミド、イミダゾール化合物類等の窒素系化合物類、TPP(トリフェニルホスフィン)、アルキル置換されたトリアルキルフォニルホスフィン等のフォスフィン系化合物やその誘導体、これらのフォスホニュウム塩、あるいはジアルキル尿素類、カルボン酸類、フェノール類、またはメチロール基含有化合物類などの公知のエポキシ硬化促進剤等が挙げられ、これらを少量併用する事が可能である。   When heat-curing, an epoxy-carboxylic acid-based curing catalyst or the like may be used in combination. Such epoxy-carboxylic acid curing catalysts include primary to tertiary amines for promoting the reaction, quaternary ammonium salts, nitrogen compounds such as dicyandiamide, imidazole compounds, and TPP (triphenylphosphine). ), Known epoxy curing accelerators such as phosphine compounds such as alkyl-substituted trialkyl phonylphosphine and derivatives thereof, phosphophonium salts thereof, dialkylureas, carboxylic acids, phenols, or methylol group-containing compounds. Etc., and a small amount of these can be used in combination.

前記メラミン樹脂(D2)としては、例えば、アルコキシ化メラミン樹脂が挙げられる。アルコキシ化メラミン樹脂は、メラミンやベンゾグアナミン等のトリアジン環含有のアミノ化合物とホルムアルデヒドとの反応により得られるメチロール化物の一部乃至全部をアルコール化合物との反応により得られるアルコキシ化メラミン樹脂を使用することができる。   Examples of the melamine resin (D2) include alkoxylated melamine resins. As the alkoxylated melamine resin, it is possible to use an alkoxylated melamine resin obtained by reacting a part or all of the methylolated product obtained by reacting a triazine ring-containing amino compound such as melamine or benzoguanamine with formaldehyde. it can.

ここで用いるアルコール化合物としては、炭素原子数が1〜4程度の低級アルコールが使用することができ、具体的には、メトキシメチロール化メラミン樹脂、ブチル化メチロール化メラミン樹脂等使用することができる。分子構造としては、完全にアルコキシ化されても良く、メチロール基が残存していても良く、さらにはイミノ基が残存していても良い。   As the alcohol compound used here, a lower alcohol having about 1 to 4 carbon atoms can be used, and specifically, a methoxymethylol melamine resin, a butylated methylol melamine resin or the like can be used. The molecular structure may be completely alkoxylated, a methylol group may remain, or an imino group may remain.

本発明で用いるアルコキシ化メラミン樹脂の樹脂構造としては、メトキシメチロール化メラミン樹脂がポリイミド樹脂との相溶性と硬化時の硬化性が良好となることから好ましく、さらに好ましくは、メトキシ化率80%以上のメトキシメチロール化メラミン樹脂がより好ましい。   As the resin structure of the alkoxylated melamine resin used in the present invention, the methoxymethylolated melamine resin is preferable because the compatibility with the polyimide resin and the curability at the time of curing are good, and more preferably, the methoxylation rate is 80% or more. More preferred are methoxymethylolated melamine resins.

また、メラミン樹脂の樹脂構造としては、自己縮合して多核体であっても良い。この時の重合度は相溶性や安定性の面で1〜5程度が好ましく、さらに1.2〜3程度がより好ましい。   The resin structure of the melamine resin may be a polynuclear body by self-condensation. The degree of polymerization at this time is preferably about 1 to 5 in terms of compatibility and stability, and more preferably about 1.2 to 3.

本発明で用いるアルコキシ化メラミン樹脂の数平均分子量としては、100〜10000のものが使用できる。好ましくは、300〜2000がポリイミド樹脂との相溶性と硬化時の硬化性の面で好ましく、さらに400〜1000がより好ましい。   The number average molecular weight of the alkoxylated melamine resin used in the present invention may be 100 to 10,000. Preferably, 300 to 2000 is preferable in terms of compatibility with the polyimide resin and curability at the time of curing, and more preferably 400 to 1000.

本発明で用いるアルコキシ化メラミン樹脂としては、メラミンやベンゾグアナミン、ホルマリン及びアルコールを同時に仕込んで反応させても、メラミンやベンゾグアナミンとホルマリンを予め反応させてメチロール化メラミン化合物を得てからアルコール化合物とのアルコキシ化を行っても良い。   As the alkoxylated melamine resin used in the present invention, even if melamine, benzoguanamine, formalin and alcohol are simultaneously charged and reacted, melamine or benzoguanamine and formalin are reacted in advance to obtain a methylolated melamine compound and then alkoxy with the alcohol compound. You may do.

本発明で用いるアルコキシ化メラミン樹脂の市販品としては、例えば、メトキシメチロール化メラミン樹脂としては、具体的には、例えば、日本サイテックインダストリーズ製の商品サイメル300、301、303、305等が挙げられる。また、メチロール基含有のメトキシメチロール化メラミン樹脂としては、例えば、日本サイテックインダストリーズ製の商品サイメル370、771等が挙げられる。イミノ基含有メトキシ化メラミン樹脂としては、例えば、三井サイテック(株)製の商品サイメル325、327、701、703、712等が挙げられる。メトキシ化ブトキシ化メラミン樹脂としては、例えば、日本サイテックインダストリーズ製の商品サイメル232、235、236、238、266、267、285等が挙げられる。ブトキシ化メラミン樹脂としては、例えば、日本サイテックインダストリーズ製の商品ユーバン20SE60等が挙げられる。   Specific examples of commercially available alkoxylated melamine resins used in the present invention include, for example, commercial Cymel 300, 301, 303, 305 and the like manufactured by Nippon Cytec Industries. Examples of the methylol group-containing methoxymethylolated melamine resin include product Cymel 370 and 771 manufactured by Nippon Cytec Industries. Examples of the imino group-containing methoxylated melamine resin include commercial Cymel 325, 327, 701, 703, and 712 manufactured by Mitsui Cytec Co., Ltd. Examples of the methoxylated butoxylated melamine resin include product Cymel 232, 235, 236, 238, 266, 267, 285 manufactured by Nippon Cytec Industries. Examples of the butoxylated melamine resin include product Uban 20SE60 manufactured by Nippon Cytec Industries.

本発明で用いるアルコキシ化メラミン樹脂の使用量は、ポリイミド樹脂の物性とアルコキシ化メラミン樹脂の硬化による相乗効果が得られ、特段優れた機械物性と高Tgを両立することができることからポリイミド樹脂の樹脂固形分換算で100重量部に対し、1〜30重量部配合するのが好ましく、1〜20重量部がより好ましく、1〜10重量部が更に好ましく、2〜7重量部が特に好ましい。   The amount of the alkoxylated melamine resin used in the present invention is a polyimide resin resin because the physical properties of the polyimide resin and the synergistic effect due to the curing of the alkoxylated melamine resin can be obtained, and both excellent mechanical properties and high Tg can be achieved. It is preferable to mix | blend 1-30 weight part with respect to 100 weight part in conversion of solid content, 1-20 weight part is more preferable, 1-10 weight part is still more preferable, 2-7 weight part is especially preferable.

前記イソシアネート化合物(D3)としては、例えば、芳香族系のイソシアネート化合物、脂肪族系のイソシアネート化合物および脂環族系のイソシアネート化合物等が使用できる。好ましくは、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物が好ましい。また、ブロックイソシアネート化合物も使用可能である。   As said isocyanate compound (D3), an aromatic isocyanate compound, an aliphatic isocyanate compound, an alicyclic isocyanate compound, etc. can be used, for example. Preferably, a polyisocyanate compound having two or more isocyanate groups in one molecule is preferable. A blocked isocyanate compound can also be used.

前記シリケート(D4)としては、例えば、メチルシリケート、エチルシリケート、プロピルシリケート、ブチルシリケート等が使用可能である。   As the silicate (D4), for example, methyl silicate, ethyl silicate, propyl silicate, butyl silicate and the like can be used.

上述のアルキルアルコキシシラン(D5)としては、例えば、アルキルトリアルコキシシラン、ジアルキルジアルコキシシラン等が挙げられる。   Examples of the alkylalkoxysilane (D5) include alkyltrialkoxysilane and dialkyl dialkoxysilane.

前記アルキルトリアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン、フェニルトリメトキシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリブトキシシラン等が挙げられる。   Examples of the alkyltrialkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltributoxysilane, Examples thereof include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, and phenyltributoxysilane.

前記ジアルキルジアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジブトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジエチルジブトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジフェニルジブトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジブトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、メチルフェニルジプロポキシシラン、メチルフェニルジブトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン等が挙げられる。   Examples of the dialkyl dialkoxysilane include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, dimethyldibutoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldipropoxysilane, diethyldibutoxysilane, and diphenyldimethoxy. Silane, diphenyldiethoxysilane, diphenyldipropoxysilane, diphenyldibutoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, methylethyldipropoxysilane, methylethyldibutoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane , Methylphenyldipropoxysilane, methylphenyldibutoxysilane, trimethylmethoxysilane, trimethyl ether Kishishiran, triethyl silane, triethyl silane, triphenyl methoxy silane, triphenyl ethoxy silane, and the like.

また、アルキルアルコキシシランの縮合物も使用可能であり例えば、前記したアルキルトリアルコキシシランの縮合物や、ジアルキルジアルコキシシランの縮合物等が挙げられる。   Moreover, the condensate of alkyl alkoxysilane can also be used, for example, the condensate of the above-mentioned alkyl trialkoxysilane, the condensate of dialkyl dialkoxysilane, etc. are mentioned.

さらに本発明の樹脂にはポリエステル、フェノキシ樹脂、PPS樹脂、PPE樹脂、ポリアリレーン樹脂等のバインダー樹脂、フェノール樹脂、多塩基酸無水物、シアネート化合物等の硬化剤あるいは反応性化合物やメラミン、ジシアンジアミド、グアナミンやその誘導体、イミダゾール類、アミン類、水酸基を1個有するフェノール類、有機フォスフィン類、ホスホニュウム塩類、4級アンモニュウム塩類、光カチオン触媒等の硬化触媒や硬化促進剤、さらにフィラー、その他の添加剤として消泡材、レベリング剤、スリップ剤、ぬれ改良剤、沈降防止剤、難燃剤、酸化防止剤、紫外線吸収剤等添加し、ポリイミド樹脂組成物することも可能である。   Further, the resins of the present invention include binder resins such as polyester, phenoxy resin, PPS resin, PPE resin, polyarylene resin, curing agents such as phenol resins, polybasic acid anhydrides, cyanate compounds or reactive compounds, melamine, dicyandiamide, and guanamine. And its derivatives, imidazoles, amines, phenols having one hydroxyl group, organic phosphines, phosphonium salts, quaternary ammonium salts, photocationic catalysts and other curing catalysts, curing accelerators, fillers, and other additives It is also possible to add a defoaming material, a leveling agent, a slip agent, a wetting improver, an anti-settling agent, a flame retardant, an antioxidant, an ultraviolet absorber and the like to form a polyimide resin composition.

また、本発明のポリイミド樹脂には、更に必要に応じて、種々の充填材、有機顔料、無機顔料、体質顔料、防錆剤等を添加し、樹脂組成物とすることができる。これらは単独でも2種以上を併用してもよい。   Moreover, various fillers, organic pigments, inorganic pigments, extender pigments, rust preventives, and the like can be further added to the polyimide resin of the present invention as necessary to obtain a resin composition. These may be used alone or in combination of two or more.

前記充填材としては、例えば、硫酸バリウム、チタン酸バリウム、酸化けい素酸粉、微粒状酸化けい素、シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルムニウム、雲母、アルミナ等が挙げられる。   Examples of the filler include barium sulfate, barium titanate, silicon oxide powder, finely divided silicon oxide, silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, mica, and alumina. Is mentioned.

充填材としては、各種粒子径のものが使用可能であり、本樹脂やその組成物の物性を阻害しない程度に添加することが可能である。かかる適正な量としては、固形分重量で5〜80%重量程度の範囲であり、好ましくは均一に分散してから使用することが好ましい。分散方法としては、公知のロールによる分散やビーズミル、高速分散等により行うことが可能であり、粒子表面を予め分散処理剤で表面改質しても良い。   As the filler, those having various particle sizes can be used, and can be added to such an extent that the physical properties of the present resin and its composition are not impaired. Such an appropriate amount is in the range of about 5 to 80% by weight in terms of solid content, and is preferably used after being uniformly dispersed. As a dispersion method, it is possible to carry out dispersion by a known roll, bead mill, high-speed dispersion or the like, and the surface of the particles may be modified in advance with a dispersion treatment agent.

前記有機顔料としては、アゾ顔料;フタロシアニン・ブルー、フタロシアニン・グリーンの如き銅フタロシアニン系顔料、キナクリドン系顔料等が挙げられる。   Examples of the organic pigment include azo pigments; copper phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green, and quinacridone pigments.

前記無機顔料としては、例えば、黄鉛、ジンククロメート、モリブデート・オレンジの如きクロム酸塩;紺青の如きフェロシアン化物、酸化チタン、亜鉛華、ベンガラ、酸化鉄;炭化クロムグリーンの如き金属酸化物、カドミウムイエロー、カドミウムレッド;硫化水銀の如き金属硫化物、セレン化物;硫酸鉛の如き硫酸塩;群青の如き珪酸塩;炭酸塩、コバルト・バイオレッド;マンガン紫の如き燐酸塩;アルミニウム粉、亜鉛末、真鍮粉、マグネシウム粉、鉄粉、銅粉、ニッケル粉の如き金属粉;カーボンブラック等が挙げられる。   Examples of the inorganic pigment include chromates such as chrome lead, zinc chromate and molybdate orange; ferrocyanides such as bitumen, titanium oxide, zinc white, bengara, iron oxide; metal oxides such as chromium carbide green, Cadmium yellow, cadmium red; metal sulfides such as mercury sulfide; selenides; sulfates such as lead sulfate; silicates such as ultramarine; carbonates, cobalt biored; phosphates such as manganese purple; aluminum powder, zinc dust Metal powders such as brass powder, magnesium powder, iron powder, copper powder and nickel powder; carbon black and the like.

また、その他の着色、防錆、体質顔料のいずれも使用することができる。これらは単独でも2種以上を併用してもよい。   In addition, any of other coloring, rust prevention, and extender pigments can be used. These may be used alone or in combination of two or more.

本発明のポリイミド樹脂ならびに熱硬化性樹脂組成物等の樹脂組成物は本発明のポリイミド樹脂あるいはその樹脂組成物を調製し塗工や成形物とした後、100〜300℃で加熱することで乾燥あるいは硬化させることができる。   Resin compositions such as the polyimide resin and thermosetting resin composition of the present invention are dried by heating at 100 to 300 ° C. after preparing the polyimide resin of the present invention or its resin composition to form a coating or molding. Alternatively, it can be cured.

前記塗膜の形成方法で用いる基材は特に制限無く用いることができる。基材としては、例えば、プラスチック、金属、木材、ガラス、無機材、およびこれら複合材料等が挙げられる。   The substrate used in the method for forming the coating film can be used without any particular limitation. Examples of the substrate include plastic, metal, wood, glass, inorganic material, and composite materials thereof.

以下、実施例を示した本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention showing examples will be described in more detail, but the present invention is not limited to the following examples.

(実施例1)
・合成工程
撹拌装置、温度計、コンデンサーを付けたフラスコにPGMAC(プロピレングリコールモノメチルエーテルアセテート/沸点146℃)1496部、IPDI(イソホロンジイソシアネート)888部(4mol)及び無水トリメリット酸960部(5mol)を加え、140℃まで昇温した。反応は、発泡とともに進行した。この温度で4時間反応させ、ポリイミド樹脂溶液(X1)を得た。系内は薄茶色のクリア液体となり、赤外スペクトルにて特性吸収を測定した結果、イソシアネート基の特性吸収である2270cm−1が完全に消滅し、725cm−1、1780cm−1、1720cm−1にイミド基の吸収が確認された。酸価は、固形分換算で85KOHmg/gで、分子量はポリスチレン換算で数平均分子量1600であった。また、不揮発分35%の薄茶色透明の液体であった。
Example 1
Synthetic process In a flask equipped with a stirrer, thermometer and condenser, 1496 parts PGMAC (propylene glycol monomethyl ether acetate / boiling point 146 ° C.), 888 parts (4 mol) IPDI (isophorone diisocyanate) and 960 parts (5 mol) trimellitic anhydride And heated up to 140 ° C. The reaction proceeded with foaming. Reaction was carried out at this temperature for 4 hours to obtain a polyimide resin solution (X1). The inside of the system became a light brown clear liquid, and as a result of measuring the characteristic absorption in the infrared spectrum, 2270 cm −1, which is the characteristic absorption of the isocyanate group, completely disappeared and became 725 cm −1 , 1780 cm −1 and 1720 cm −1 . Absorption of imide groups was confirmed. The acid value was 85 KOHmg / g in terms of solid content, and the molecular weight was a number average molecular weight of 1600 in terms of polystyrene. Further, it was a light brown transparent liquid having a nonvolatile content of 35%.

・造粒工程
次にこの樹脂溶液(X1)をスプレードライ(大川原化工機株式会社製「スプレードライヤーCL−8i型」、操作条件:液温70℃、乾燥温度85℃、窒素雰囲気、樹脂溶液の粘度150mPa・s、送り量3.6kg/h)を用いて溶剤乾燥した。得られた樹脂粉体を光学顕微鏡(株式会社キーエンス製「DIGITAL MICROSCOPE VHX」)で定方向径を測定したところ、0.1〜100μの大きさが90%以上を占める繊維状、球状、楕円状、不定形な粉であった。また、該樹脂粉末の不揮発分は100%であった。この樹脂粉体(Y1)の溶融温度(T1/2)は、275℃であった。
-Granulation process Next, this resin solution (X1) is spray-dried ("Spray dryer CL-8i type" manufactured by Okawara Kako Co., Ltd.), operating conditions: liquid temperature 70 ° C, drying temperature 85 ° C, nitrogen atmosphere, resin solution The solvent was dried using a viscosity of 150 mPa · s and a feed rate of 3.6 kg / h. When the obtained resin powder was measured for the diameter in a fixed direction with an optical microscope ("DIGITAL MICROSCOPE VHX" manufactured by Keyence Corporation), it was fibrous, spherical, or elliptical with a size of 0.1 to 100 µ accounting for 90% or more. It was an irregular powder. The non-volatile content of the resin powder was 100%. The melting temperature (T1 / 2) of this resin powder (Y1) was 275 ° C.

・再溶解工程
次に、得られたイミド樹脂粉末を25mlガラス瓶に入れ、樹脂粉体(Y1)1部に対してMEK5部を加えた後、室温(25℃)にて攪拌機(株式会社シンキー製「あわとり練太郎 AR−250」)で溶解・希釈してイミド樹脂溶液(Z1)を作製した。
(実施例2)
再溶解工程において、MEKの代わりに酢酸エチルを用いた以外は実施例1と同様にして、ポリイミド樹脂溶液(Z2)を得た。
(実施例3)
再溶解工程において、MEKの代わりにアセトンを用いた以外は実施例1と同様にして、ポリイミド樹脂溶液(Z3)を得た。
-Remelting process Next, the obtained imide resin powder was put into a 25 ml glass bottle, 5 parts of MEK was added to 1 part of the resin powder (Y1), and then stirred at room temperature (25 ° C.) An imide resin solution (Z1) was prepared by dissolving and diluting with “Awatori Netaro AR-250”).
(Example 2)
In the re-dissolution step, a polyimide resin solution (Z2) was obtained in the same manner as in Example 1 except that ethyl acetate was used instead of MEK.
(Example 3)
In the re-dissolution step, a polyimide resin solution (Z3) was obtained in the same manner as in Example 1 except that acetone was used instead of MEK.

(比較例1)
実施例1で得られた不揮発分35%のポリイミド樹脂溶液(X1)を25mlガラス瓶に入れ、樹脂溶液(X1)1部に対してMEK5部を加えた後、実施例1と同様に溶解・希釈してイミド樹脂溶液(Z4)を作製した。
(比較例2)
MEKの代わりに酢酸エチルを用いた以外は比較例1と同様にして、ポリイミド樹脂溶液(Z5)を得た。
(比較例3)
MEKの代わりにアセトンを用いた以外は比較例1と同様にして、ポリイミド樹脂溶液(Z6)を得た。
(Comparative Example 1)
The polyimide resin solution (X1) having a non-volatile content of 35% obtained in Example 1 was placed in a 25 ml glass bottle, 5 parts of MEK was added to 1 part of the resin solution (X1), and then dissolved and diluted as in Example 1. Thus, an imide resin solution (Z4) was produced.
(Comparative Example 2)
A polyimide resin solution (Z5) was obtained in the same manner as in Comparative Example 1 except that ethyl acetate was used instead of MEK.
(Comparative Example 3)
A polyimide resin solution (Z6) was obtained in the same manner as in Comparative Example 1 except that acetone was used instead of MEK.

(測定例1 希釈安定性の評価)
溶解・希釈後のポリイミド樹脂溶液(Z1〜Z6)の外観、樹脂等の析出物の有無、溶液の色、溶液の流動性を観察し、以下の評価基準によって希釈安定性を評価した。その結果を表1に記載した。
(Measurement Example 1 Evaluation of Dilution Stability)
The appearance of the polyimide resin solution (Z1 to Z6) after dissolution and dilution, the presence or absence of precipitates such as resin, the color of the solution, and the fluidity of the solution were observed, and the dilution stability was evaluated according to the following evaluation criteria. The results are shown in Table 1.

(希釈安定性の評価基準)
○:樹脂溶液が透明であり、析出物がなく、流動性があった。
△:流動性があるが、樹脂溶液に析出物があり濁りが発生した。
×:流動性がなく、樹脂溶液に析出物があり濁りが発生した。
(Evaluation criteria for dilution stability)
○: The resin solution was transparent, had no precipitate, and was fluid.
Δ: Although fluid, the resin solution had deposits and turbidity occurred.
X: There was no fluidity, the resin solution had deposits and turbidity occurred.

Figure 0005569027
Figure 0005569027

(実施例4) 熱硬化性樹脂溶液の調製
実施例1で得られた不揮発分35%のポリイミド樹脂溶液(Z1)100部、クレゾールノボラックエポキシ樹脂(エポキシ当量215、軟化点80℃)7.2部(固形分重量比で70/30)、トリフェニルホスフィン(硬化触媒)0.24部を混合して熱硬化性樹脂溶液(W1)を調製した。得られた熱硬化性樹脂溶液(W1)について以下の方法で各種物性を評価した。
(Example 4) Preparation of thermosetting resin solution 100 parts of polyimide resin solution (Z1) having a nonvolatile content of 35% obtained in Example 1, cresol novolac epoxy resin (epoxy equivalent 215, softening point 80 ° C) 7.2 Part (70/30 in solid content weight ratio) and 0.24 part of triphenylphosphine (curing catalyst) were mixed to prepare a thermosetting resin solution (W1). Various physical properties of the obtained thermosetting resin solution (W1) were evaluated by the following methods.

(比較例4)
比較例1で得られた不揮発分5.8%のポリイミド樹脂溶液(Z4)100部、クレゾールノボラックエポキシ樹脂(エポキシ当量215、軟化点80℃)2.5部(固形分重量比で70/30)、トリフェニルホスフィン(硬化触媒)0.08部を混合して熱硬化性樹脂溶液(W2)を調製した。
(Comparative Example 4)
100 parts of a polyimide resin solution (Z4) having a non-volatile content of 5.8% obtained in Comparative Example 1, 2.5 parts of cresol novolac epoxy resin (epoxy equivalent 215, softening point 80 ° C.) (70/30 in weight ratio of solids) ) And 0.08 part of triphenylphosphine (curing catalyst) were mixed to prepare a thermosetting resin solution (W2).

(測定例2 希釈安定性の評価)
熱硬化性樹脂溶液(W1、W2)を、各々、25mlガラス瓶に入れ、樹脂溶液(W1、W2)1部に対して表2に記載した溶剤4部を加えた後、実施例1と同様に溶解・希釈して熱硬化性樹脂溶液を作製し、その際の希釈安定性を測定例1と同様の方法により評価した。その結果を表2に記載した。
(Measurement Example 2 Evaluation of Dilution Stability)
Each of the thermosetting resin solutions (W1, W2) was put in a 25 ml glass bottle, 4 parts of the solvent described in Table 2 was added to 1 part of the resin solution (W1, W2), and then the same as in Example 1. A thermosetting resin solution was prepared by dissolution and dilution, and the dilution stability at that time was evaluated by the same method as in Measurement Example 1. The results are shown in Table 2.

Figure 0005569027
Figure 0005569027

(測定例3 塗装性の評価)
熱硬化性樹脂溶液(W1、W2)を、各々、ブリキ板に0.152ミルのアプリケーターで室温にて塗装した。塗装外観について以下の評価基準で評価した。その結果を表3に記載した。
(Measurement Example 3 Paintability Evaluation)
The thermosetting resin solutions (W1, W2) were each coated on a tin plate at room temperature with a 0.152 mil applicator. The appearance of the coating was evaluated according to the following evaluation criteria. The results are shown in Table 3.

(塗装性の評価基準)
○:透明で表面に光沢がありフラットな面である。
△:不透明であるがフラットな面である。
×:不透明で表面がフラットな面ではない。
(Evaluation criteria for paintability)
○: Transparent, glossy and flat surface.
Δ: Opaque but flat surface.
X: Opaque and not a flat surface.

Figure 0005569027
Figure 0005569027

(測定例5 硬化物の塗膜造膜性)
熱硬化性樹脂溶液(W1、W2)を、各々、乾燥後の膜厚が30μmになるようにブリキ板にアプリケーターにて塗布後、110℃で30分間乾燥させて得た試験片を、室温にて24時間放置し、塗膜外観を以下の評価基準で評価した。その結果を表4に記載した。
(Measurement Example 5: Film-forming property of cured product)
The test pieces obtained by applying the thermosetting resin solutions (W1, W2) to the tin plate with an applicator so that the film thickness after drying was 30 μm were dried at 110 ° C. for 30 minutes. The coating film appearance was evaluated according to the following evaluation criteria. The results are shown in Table 4.

(塗膜造膜性の評価基準)
○:塗膜にクラック等の異常は見られない。
△:塗膜に若干クラックが見られる。
×:塗膜全面にクラックが発生した。
(Evaluation criteria for film-forming properties)
○: No abnormalities such as cracks are observed in the coating film.
Δ: Some cracks are observed in the coating film.
X: Cracks occurred on the entire surface of the coating film.

(測定例6 硬化物のはんだ耐熱性)
熱硬化性樹脂溶液(W1、W2)を、各々、硬化後の膜厚が30μmになるように18ミクロンの銅泊に塗装し、150℃で5分間予備乾燥を行い、Bステージサンプルを作成した。ついで樹脂面に同じ18ミクロンの銅箔を載せ、真空プレス機にて最高到達温度175℃圧力2MPaで60分ラミネートを行った後、室温まで冷却し硬化塗膜を作成した。
(Measurement example 6: Solder heat resistance of cured product)
A thermosetting resin solution (W1, W2) was applied to an 18 micron copper bed so that the film thickness after curing was 30 μm, and pre-dried at 150 ° C. for 5 minutes to prepare a B stage sample. . Next, the same 18-micron copper foil was placed on the resin surface, laminated at a maximum temperature of 175 ° C. under a pressure of 2 MPa for 60 minutes with a vacuum press machine, and then cooled to room temperature to form a cured coating film.

銅貼硬化塗膜を260℃の溶融ハンダ浴に30秒浸漬し、室温に冷却した。このハンダ浴の浸漬操作を合計3回行い、硬化塗膜の外観について以下の評価基準で評価した。その結果を表4に記載した。   The copper-coated cured coating film was immersed in a molten solder bath at 260 ° C. for 30 seconds and cooled to room temperature. This solder bath immersion operation was performed three times in total, and the appearance of the cured coating film was evaluated according to the following evaluation criteria. The results are shown in Table 4.

(はんだ耐熱性の評価基準)
○:塗膜に外観異常は見られない。
△:塗膜にフクレ、はがれ等異常が若干見られる。
×:塗膜全面にフクレ、はがれ等異常が見られる。
(Evaluation criteria for solder heat resistance)
○: Appearance abnormality is not observed in the coating film.
Δ: Abnormalities such as swelling and peeling are slightly observed in the coating film.
X: Abnormalities such as swelling and peeling are observed on the entire surface of the coating film.

(測定例7 硬化物のTgおよび線膨張係数の測定)
熱硬化性樹脂溶液(W1、W2)を、各々、硬化後の膜厚が30μmになるようにブリキ基板上に塗装し、70℃の乾燥機で20分間乾燥した後、200℃で1時間硬化させ冷却した後、剥離した硬化塗膜を幅5mm、長さ30mmに切り出し、測定用試料とした。
(Measurement Example 7: Measurement of Tg and linear expansion coefficient of cured product)
A thermosetting resin solution (W1, W2) was applied onto a tin substrate so that the cured film thickness was 30 μm, dried for 20 minutes with a 70 ° C. dryer, and then cured at 200 ° C. for 1 hour. After cooling, the peeled cured coating film was cut into a width of 5 mm and a length of 30 mm to obtain a measurement sample.

続いて、セイコー電子株式会社製「熱分析システムTMA−SS6000」を用いて、試料長10mm、昇温速度10℃/分、荷重30mNの条件でTMA(Thermal Mechanical Analysis)法により測定した。なお、Tgは、TMA測定での温度−寸法変化曲線からその変極点を求め、その温度をTgとした。さらに線膨張係数に使用した温度域は50〜60℃、及び110〜120℃での試料長の変位より求めた。Tgが高いほど耐熱性に優れ線膨張係数が小さいほど寸法安定性に優れることを示す。その結果を表4に記載した。   Subsequently, using a “thermal analysis system TMA-SS6000” manufactured by Seiko Electronics Co., Ltd., measurement was performed by the TMA (Thermal Mechanical Analysis) method under the conditions of a sample length of 10 mm, a heating rate of 10 ° C./min, and a load of 30 mN. In addition, Tg calculated | required the inflection point from the temperature-dimensional change curve in TMA measurement, and made the temperature Tg. Furthermore, the temperature range used for the linear expansion coefficient was determined from the displacement of the sample length at 50 to 60 ° C and 110 to 120 ° C. It shows that it is excellent in heat resistance, so that Tg is high, and it is excellent in dimensional stability, so that a linear expansion coefficient is small. The results are shown in Table 4.

Figure 0005569027
Figure 0005569027

1・・・ドライヤ本体
2・・・ディスク式アトマイザー
3・・・原料ポンプ
4・・・サイクロン
5・・・バックフィルター
6・・・循環ファン
7・・・有機溶剤回収装置
8・・・冷凍機
9・・・窒素ガスヒーター
10・・・酸素濃度計
A・・・ポリイミド粉体
B・・・窒素ガス
C・・・原液
D・・・排気
E・・・窒素ガス
DESCRIPTION OF SYMBOLS 1 ... Dryer body 2 ... Disc type atomizer 3 ... Raw material pump 4 ... Cyclone 5 ... Back filter 6 ... Circulation fan 7 ... Organic solvent recovery device 8 ... Refrigerator 9 ... Nitrogen gas heater 10 ... Oxygen meter A ... Polyimide powder B ... Nitrogen gas C ... Stock solution D ... Exhaust E ... Nitrogen gas

Claims (15)

分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)と、を反応させて得られるカルボキシ基含有ポリイミド樹脂と有機溶剤(B)とを含むカルボキシ基含有ポリイミド樹脂溶液の製造方法であって、
(1)有機溶剤(A)中または無溶剤中で、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)とを反応させてカルボキシ基含有ポリイミド樹脂を得る合成工程と、
(2)前記カルボキシ基含有ポリイミド樹脂を含む有機溶剤(A)の樹脂溶液を噴霧させながら該有機溶剤(A)を揮発させてカルボキシ基含有ポリイミド樹脂の粉体を得る造粒工程と、
(3)前記カルボキシ基含有ポリイミド樹脂の粉体を、有機溶剤(B)に溶解させる溶剤溶解工程とを有すること、かつ、
有機溶剤(A)が、前記合成工程の反応温度よりも沸点が高い有機溶剤であり、かつ有機溶剤(B)が、前記合成工程の反応温度よりも沸点が低い有機溶剤であることを特徴とするカルボキシ基含有ポリイミド樹脂溶液の製造方法。
Reaction of aliphatic isocyanate compound and / or alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule with tricarboxylic acid anhydride (b1) and / or tetracarboxylic acid anhydride (b2) A carboxy group-containing polyimide resin solution containing a carboxy group-containing polyimide resin and an organic solvent (B) obtained by
(1) In an organic solvent (A) or in the absence of a solvent, an aliphatic isocyanate compound and / or an alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, and a tricarboxylic acid anhydride (b1) And / or a synthesis step of reacting with tetracarboxylic anhydride (b2) to obtain a carboxy group-containing polyimide resin,
(2) A granulating step of volatilizing the organic solvent (A) while spraying a resin solution of the organic solvent (A) containing the carboxy group-containing polyimide resin to obtain a powder of the carboxy group-containing polyimide resin;
(3) having a solvent dissolving step of dissolving the carboxy group-containing polyimide resin powder in the organic solvent (B), and
The organic solvent (A) is an organic solvent having a boiling point higher than the reaction temperature in the synthesis step, and the organic solvent (B) is an organic solvent having a boiling point lower than the reaction temperature in the synthesis step. A method for producing a carboxy group-containing polyimide resin solution.
有機溶剤(B)が、沸点130℃以下の有機溶剤である請求項1記載のカルボキシ基含有ポリイミド樹脂溶液の製造方法。 The method for producing a carboxy group-containing polyimide resin solution according to claim 1, wherein the organic solvent (B) is an organic solvent having a boiling point of 130 ° C or lower. 有機溶剤(B)が、ケトン系有機溶剤、エステル系有機溶剤、エーテル系有機溶剤、アルコール系有機溶剤、脂肪族系有機溶剤および芳香族系有機溶剤からなる群から選ばれる一種以上の有機溶剤である請求項1記載のカルボキシ基含有ポリイミド樹脂溶液の製造方法。 The organic solvent (B) is one or more organic solvents selected from the group consisting of ketone organic solvents, ester organic solvents, ether organic solvents, alcohol organic solvents, aliphatic organic solvents, and aromatic organic solvents. A method for producing a carboxy group-containing polyimide resin solution according to claim 1. 有機溶剤(B)が、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、テトラヒドロフラン、Nメチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートおよびγ−ブチロラクトンからなる群から選ばれる一種以上の有機溶剤である請求項1記載のカルボキシ基含有ポリイミド樹脂溶液の製造方法。 Organic solvent (B) is acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, tetrahydrofuran, N methylpyrrolidone, dimethylformamide, dimethylacetamide, cyclohexanone, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate and γ-butyrolactone The method for producing a carboxy group-containing polyimide resin solution according to claim 1, which is one or more organic solvents selected from the group consisting of: 前記カルボキシ基含有ポリイミド樹脂溶液中のカルボキシ基含有ポリイミド樹脂の含有率が0.1〜90%(重量基準)である請求項1〜のいずれか一項記載のカルボキシ基含有ポリイミド樹脂溶液の製造方法。 The content of the carboxy group-containing polyimide resin in the carboxy group-containing polyimide resin solution is 0.1 to 90% (weight basis). Production of the carboxy group-containing polyimide resin solution according to any one of claims 1 to 4. Method. 分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)と、を反応させて得られるカルボキシ基含有ポリイミド樹脂と有機溶剤とを含むカルボキシ基含有ポリイミド樹脂溶液であって、全有機溶剤中の沸点130℃以下の有機溶剤の割合が99重量%以上であり、かつ、前記沸点130℃以下の有機溶剤がケトン、エステル、エーテル、アルコール、脂肪族系有機溶剤、芳香族系有機溶剤、ジメチルホルムアミド、ジメチルアセトアミド及びNメチルピロリドンからなる群から選ばれる少なくとも1つであり、かつ、前記エーテルがテトラヒドロフラン又はジオキサンであることを特徴とするカルボキシ含有ポリイミド樹脂溶液。 Reaction of aliphatic isocyanate compound and / or alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule with tricarboxylic acid anhydride (b1) and / or tetracarboxylic acid anhydride (b2) A carboxy group-containing polyimide resin solution containing a carboxy group-containing polyimide resin and an organic solvent, wherein the ratio of the organic solvent having a boiling point of 130 ° C. or lower in the total organic solvent is 99% by weight or more, and The organic solvent having a boiling point of 130 ° C. or lower is at least one selected from the group consisting of ketones, esters, ethers, alcohols, aliphatic organic solvents, aromatic organic solvents, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; The ether is tetrahydrofuran or dioxane. Bokishi group-containing polyimide resin solution. ポリイミド樹脂溶液に対するカルボキシ基含有ポリイミド樹脂の含有率が0.1〜90%(重量基準)である請求項6のカルボキシ基含有ポリイミド樹脂溶液。 The carboxy group-containing polyimide resin solution according to claim 6, wherein the content of the carboxy group-containing polyimide resin with respect to the polyimide resin solution is 0.1 to 90% (by weight). 分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)とを反応させて得られるカルボキシ基含有ポリイミド樹脂粉体。 Reacting an aliphatic isocyanate compound and / or alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule with a tricarboxylic acid anhydride (b1) and / or a tetracarboxylic acid anhydride (b2); Carboxy group-containing polyimide resin powder obtained in this way. 粒径0.01〜2000(μm)の繊維状、球状、楕円状および不定形のいずれかの粒子を90%以上含む請求項8記載のカルボキシ基含有ポリイミド樹脂粉体。 The carboxy group-containing polyimide resin powder according to claim 8, comprising 90% or more of any one of fibrous, spherical, elliptical, and amorphous particles having a particle size of 0.01 to 2000 (μm). 請求項8記載のカルボキシ基含有ポリイミド樹脂粉体の製造方法であって、
(1)有機溶剤(A)中で、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)と、を反応させてカルボキシ基含有ポリイミド樹脂を得る合成工程、
(2)前記カルボキシ基含有ポリイミド樹脂を含む有機溶剤(A)の樹脂溶液を噴霧させながら溶剤を揮発させてカルボキシ基含有ポリイミド樹脂粉体を得る造粒工程と、を有すること、かつ、有機溶剤(A)が、前記合成工程の反応温度よりも沸点が高い有機溶剤であることを特徴とするカルボキシ基含有ポリイミド樹脂粉体の製造方法。
A method for producing a carboxy group-containing polyimide resin powder according to claim 8,
(1) In an organic solvent (A), an aliphatic isocyanate compound and / or an alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, a tricarboxylic acid anhydride (b1) and / or tetra A synthesis step of reacting the carboxylic acid anhydride (b2) to obtain a carboxy group-containing polyimide resin;
(2) a granulating step of obtaining a carboxy group-containing polyimide resin powder by volatilizing the solvent while spraying a resin solution of the organic solvent (A) containing the carboxy group-containing polyimide resin, and an organic solvent (A) is the organic solvent whose boiling point is higher than the reaction temperature of the said synthetic | combination process, The manufacturing method of the carboxyl group containing polyimide resin powder characterized by the above-mentioned.
請求項8に記載のカルボキシ基含有ポリイミド樹脂粉体を、沸点130℃以下の有機溶剤(B)に溶解させる溶剤溶解工程を有することを特徴とするカルボキシ基含有ポリイミド樹脂溶液の製造方法。 A method for producing a carboxy group-containing polyimide resin solution, comprising a solvent dissolution step of dissolving the carboxy group-containing polyimide resin powder according to claim 8 in an organic solvent (B) having a boiling point of 130 ° C. or lower. 請求項6に記載のカルボキシ基含有ポリイミド樹脂溶液と、硬化性樹脂成分とを含有することを特徴とする硬化性樹脂組成物。 A curable resin composition comprising the carboxy group-containing polyimide resin solution according to claim 6 and a curable resin component. 請求項12記載の硬化性樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable resin composition according to claim 12. 分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)と、を反応させて得られるカルボキシ基含有ポリイミド樹脂と有機溶剤(B)とを含むカルボキシ基含有ポリイミド樹脂溶液の製造方法であって、
(1)有機溶剤(A)中または無溶剤中で、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)とを反応させてカルボキシ基含有ポリイミド樹脂を得る合成工程と、
(2)前記カルボキシ基含有ポリイミド樹脂を含む有機溶剤(A)の樹脂溶液を噴霧させながら該有機溶剤(A)を揮発させてカルボキシ基含有ポリイミド樹脂の粉体を得る造粒工程と、
(3)前記カルボキシ基含有ポリイミド樹脂の粉体を、有機溶剤(B)に溶解させる溶剤溶解工程と、
(4)得られたカルボキシ基含有ポリイミド樹脂溶液と、硬化性樹脂成分とを混合する工程と、を有すること、かつ、
有機溶剤(A)が、前記合成工程の反応温度よりも沸点が高い有機溶剤であり、かつ有機溶剤(B)が、前記合成工程の反応温度よりも沸点が低い有機溶剤であることを特徴とする硬化性樹脂組成物の製造方法。
Reaction of aliphatic isocyanate compound and / or alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule with tricarboxylic acid anhydride (b1) and / or tetracarboxylic acid anhydride (b2) A carboxy group-containing polyimide resin solution containing a carboxy group-containing polyimide resin and an organic solvent (B) obtained by
(1) In an organic solvent (A) or in the absence of a solvent, an aliphatic isocyanate compound and / or an alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, and a tricarboxylic acid anhydride (b1) And / or a synthesis step of reacting with tetracarboxylic anhydride (b2) to obtain a carboxy group-containing polyimide resin,
(2) A granulating step of volatilizing the organic solvent (A) while spraying a resin solution of the organic solvent (A) containing the carboxy group-containing polyimide resin to obtain a powder of the carboxy group-containing polyimide resin;
(3) a solvent dissolution step of dissolving the carboxy group-containing polyimide resin powder in an organic solvent (B);
(4) having a step of mixing the obtained carboxy group-containing polyimide resin solution and a curable resin component, and
The organic solvent (A) is an organic solvent having a boiling point higher than the reaction temperature in the synthesis step, and the organic solvent (B) is an organic solvent having a boiling point lower than the reaction temperature in the synthesis step. A method for producing a curable resin composition.
分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)と、を反応させて得られるカルボキシ基含有ポリイミド樹脂と有機溶剤(B)とを含むカルボキシ基含有ポリイミド樹脂溶液の製造方法であって、
(1)有機溶剤(A)中または無溶剤中で、分子中に2個以上のイソシアネート基を有する脂肪族イソシアネート化合物及び/又は脂環族イソシアネート化合物(a)と、トリカルボン酸無水物(b1)及び/又はテトラカルボン酸無水物(b2)とを反応させてカルボキシ基含有ポリイミド樹脂を得る合成工程と、
(2)前記カルボキシ基含有ポリイミド樹脂を含む有機溶剤(A)の樹脂溶液を噴霧させながら該有機溶剤(A)を揮発させてカルボキシ基含有ポリイミド樹脂の粉体を得る造粒工程と、
(3)前記カルボキシ基含有ポリイミド樹脂の粉体を、有機溶剤(B)に溶解させる溶剤溶解工程と、
(4)得られたカルボキシ基含有ポリイミド樹脂溶液と、硬化性樹脂成分とを混合する工程と、
(5)得られた硬化性樹脂組成物を硬化する工程と、を有すること、かつ、
有機溶剤(A)が、前記合成工程の反応温度よりも沸点が高い有機溶剤であり、かつ有機溶剤(B)が、前記合成工程の反応温度よりも沸点が低い有機溶剤であることを特徴とする硬化物の製造方法。
Reaction of aliphatic isocyanate compound and / or alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule with tricarboxylic acid anhydride (b1) and / or tetracarboxylic acid anhydride (b2) A carboxy group-containing polyimide resin solution containing a carboxy group-containing polyimide resin and an organic solvent (B) obtained by
(1) In an organic solvent (A) or in the absence of a solvent, an aliphatic isocyanate compound and / or an alicyclic isocyanate compound (a) having two or more isocyanate groups in the molecule, and a tricarboxylic acid anhydride (b1) And / or a synthesis step of reacting with tetracarboxylic anhydride (b2) to obtain a carboxy group-containing polyimide resin,
(2) A granulating step of volatilizing the organic solvent (A) while spraying a resin solution of the organic solvent (A) containing the carboxy group-containing polyimide resin to obtain a powder of the carboxy group-containing polyimide resin;
(3) a solvent dissolution step of dissolving the carboxy group-containing polyimide resin powder in an organic solvent (B);
(4) a step of mixing the obtained carboxy group-containing polyimide resin solution and a curable resin component;
(5) having a step of curing the obtained curable resin composition, and
The organic solvent (A) is an organic solvent having a boiling point higher than the reaction temperature in the synthesis step, and the organic solvent (B) is an organic solvent having a boiling point lower than the reaction temperature in the synthesis step. A method for producing a cured product.
JP2010035944A 2010-02-22 2010-02-22 Carboxy group-containing polyimide resin solution, powder and production method thereof Active JP5569027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035944A JP5569027B2 (en) 2010-02-22 2010-02-22 Carboxy group-containing polyimide resin solution, powder and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035944A JP5569027B2 (en) 2010-02-22 2010-02-22 Carboxy group-containing polyimide resin solution, powder and production method thereof

Publications (2)

Publication Number Publication Date
JP2011168743A JP2011168743A (en) 2011-09-01
JP5569027B2 true JP5569027B2 (en) 2014-08-13

Family

ID=44683190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035944A Active JP5569027B2 (en) 2010-02-22 2010-02-22 Carboxy group-containing polyimide resin solution, powder and production method thereof

Country Status (1)

Country Link
JP (1) JP5569027B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130102753A1 (en) * 2011-10-25 2013-04-25 Fujifilm Hunt Chemicals, Inc. Low residual solvent polyamideimide powder from suspension polymerization
KR102284125B1 (en) * 2014-07-10 2021-07-30 삼성전기주식회사 Resin-coated metal foil for use in manufacturing of printed circuit board, printed circuit board and manufacturing method thereof
JP2017132845A (en) * 2016-01-26 2017-08-03 セントラル硝子株式会社 Method for producing polyimide molding
WO2019013182A1 (en) * 2017-07-13 2019-01-17 セントラル硝子株式会社 Production method for polyimide powder
JP7125598B2 (en) * 2017-07-13 2022-08-25 セントラル硝子株式会社 Method for producing polyimide powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710924B2 (en) * 1990-02-20 1995-02-08 新日本理化株式会社 Method for producing solvent-soluble polyimide resin powder
JP3421776B2 (en) * 1994-10-14 2003-06-30 東洋紡績株式会社 Polyamide-imide resin composition, varnish thereof, and method for producing the varnish
JP3536945B2 (en) * 1995-03-15 2004-06-14 東洋紡績株式会社 Polyamideimide resin and varnish using the same
JP4560886B2 (en) * 2000-05-01 2010-10-13 Dic株式会社 Carboxyl group-containing amideimide resin and / or carboxyl group-containing imide resin
JP2002069200A (en) * 2000-08-31 2002-03-08 Ube Ind Ltd Granulated polyimide powder and method of granulation

Also Published As

Publication number Publication date
JP2011168743A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP4807602B2 (en) Thermosetting resin composition and cured product thereof
JP5278785B2 (en) Thermosetting resin composition, cured product thereof and interlayer adhesive film for printed wiring board
JP5569027B2 (en) Carboxy group-containing polyimide resin solution, powder and production method thereof
JP4560886B2 (en) Carboxyl group-containing amideimide resin and / or carboxyl group-containing imide resin
WO2010074014A1 (en) Polyimide resin, curable polyimide resin composition, and cured product
WO2010107045A1 (en) Polyimide resin, curable resin composition, and cured object obtained therefrom
JP2007277518A (en) Thermosetting resin composition
JP6463617B2 (en) Imide bond-containing resin and imide bond-containing resin composition
JP2010024314A (en) Thermosetting resin composition
JP5494341B2 (en) Thermosetting resin composition, cured product thereof and interlayer adhesive film for printed wiring board
JP5655451B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP4552109B2 (en) Thermosetting polyimide resin composition and cured product thereof
JP5233510B2 (en) Thermosetting resin composition
JP5158400B2 (en) Method for producing polyimide resin
CN115003771B (en) Polyurethane resin having excellent substrate adhesion, and adhesive, ink adhesive or coating composition using same
JP5655400B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP5212418B2 (en) Resin production method
JPWO2010098296A1 (en) Polyimide resin, method for producing polyimide resin, polyimide resin composition and cured product thereof
JP5245765B2 (en) Thermosetting resin composition
JP5655446B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP4998642B2 (en) Method for producing polyimide resin
JP5577996B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP5320824B2 (en) Thermosetting resin composition
JP2018168290A (en) Thermosetting resin composition and cured product of the same
WO2021261424A1 (en) Resin, method for producing same, thermosetting resin composition, and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5569027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250