JP5567364B2 - Surfactant concentration control device and heat transfer system provided with the same - Google Patents

Surfactant concentration control device and heat transfer system provided with the same Download PDF

Info

Publication number
JP5567364B2
JP5567364B2 JP2010049500A JP2010049500A JP5567364B2 JP 5567364 B2 JP5567364 B2 JP 5567364B2 JP 2010049500 A JP2010049500 A JP 2010049500A JP 2010049500 A JP2010049500 A JP 2010049500A JP 5567364 B2 JP5567364 B2 JP 5567364B2
Authority
JP
Japan
Prior art keywords
surfactant
refractive index
solution
flow path
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010049500A
Other languages
Japanese (ja)
Other versions
JP2011185671A (en
Inventor
章 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010049500A priority Critical patent/JP5567364B2/en
Publication of JP2011185671A publication Critical patent/JP2011185671A/en
Application granted granted Critical
Publication of JP5567364B2 publication Critical patent/JP5567364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、熱搬送システムの熱搬送媒体として用いる界面活性剤溶液の濃度を制御する界面活性剤濃度制御装置及びこれを備えた熱搬送システムに関する。   The present invention relates to a surfactant concentration control device that controls the concentration of a surfactant solution used as a heat transfer medium of a heat transfer system and a heat transfer system including the same.

例えば、地域冷暖房システムにおいては、熱供給側システムと熱利用側システム(例えば、ビルの冷暖房装置)とが供給側流路及び戻り側流路を介して接続され、熱を搬送する熱搬送媒体としての例えば水が、供給側流路及び戻り側流路を通して熱供給側システムと熱利用側システムとの間を循環される。このような地域冷暖房システムにおける供給側流路及び戻り側流路を規定する配管の長さは数km以上になり、その水搬送動力はかなり大きく、この水を搬送するために費やすコストは、地域冷暖房システムのランニングコストの約30〜50%であるとも言われている。   For example, in a district air conditioning system, a heat supply side system and a heat utilization side system (for example, a building air conditioning system) are connected via a supply side flow path and a return side flow path, and serve as a heat transfer medium for transferring heat. For example, water is circulated between the heat supply side system and the heat utilization side system through the supply side flow path and the return side flow path. In such a district cooling and heating system, the length of the piping that defines the supply-side flow path and the return-side flow path is several kilometers or more, and its water transport power is considerably large. The cost of transporting this water is It is also said that it is about 30-50% of the running cost of an air conditioning system.

この水搬送動力を低減させる有効な方法として、粘弾性を示す界面活性剤水溶液を熱搬送媒体として用い、配管との間の流動摩擦抵抗を低減させる方法が提案されている(例えば、特許文献1、特許文献2、特許文献3及び特許文献4)。この方法では、配管を通して循環する水に特定の陽イオン性界面活性剤とサリチル酸塩との双方がそれぞれ数10〜数1000ppmずつ溶解され、このように溶解させた界面活性剤水溶液では、界面活性剤が水中で、疎水基部を中心に親水基部を外周部に配置してミセルを形成し、そのミセルが棒状の形態をなして高次に絡まって粘弾性を示し、このことに起因して界面活性剤水溶液の流動摩擦抵抗が低減すると言われている。   As an effective method for reducing the water conveyance power, a method of reducing the fluid friction resistance between the pipe and a pipe using a surfactant aqueous solution exhibiting viscoelasticity as a heat conveyance medium has been proposed (for example, Patent Document 1). Patent Document 2, Patent Document 3, and Patent Document 4). In this method, both a specific cationic surfactant and a salicylate are dissolved in water of several tens to several thousand ppm each in water circulating through a pipe, and in the surfactant aqueous solution thus dissolved, Is in water, with a hydrophilic base centered around the hydrophobic base to form micelles, which form a rod-like form and become entangled and show viscoelasticity, resulting in surface activity It is said that the fluid friction resistance of the aqueous agent solution is reduced.

特公平3−76360号公報Japanese Patent Publication No. 3-76360 特公平4−6231号公報Japanese Patent Publication No. 4-6231 特公平5−47534号公報Japanese Patent Publication No. 5-47534 特開平8−311431号公報JP-A-8-311431

このような効果を示す界面活性剤水溶液の濃度には特定の範囲があることが知られており、摩擦低減効果を得るためには、配管内の界面活性剤水溶液の濃度を常に所望の効果が得られる所定範囲内に保つ必要がある。   It is known that there is a specific range in the concentration of the surfactant aqueous solution that exhibits such an effect. In order to obtain a friction reducing effect, the concentration of the surfactant aqueous solution in the pipe always has a desired effect. It is necessary to keep within the predetermined range obtained.

しかしながら、長期間熱搬送システムを運転すると、動力ポンプのシール部分からの漏れなどの原因により、熱搬送媒体である界面活性剤水溶液の量が減少し、この減少量を補うために、減少した量だけ例えば膨張タンクから水が補給するようになる。このように水を補給すると、界面活性剤水溶液中の界面活性剤の濃度が下がり、界面活性剤による摩擦低減効果が低下する。この時、界面活性剤水溶液を搬送するポンプ動力が一定であると、界面活性剤による摩擦低減効果の低下により、圧力損失が増大するようになり、その結果、配管内を流れる界面活性剤水溶液の流量が減少する。このように流量が低下すると、熱利用側システムでの熱量が不足し、この熱量不足を解消するためには、動力ポンプの動力を増加しなければならず、熱搬送システムの省エネルギー運転が難しくなる。   However, if the heat transfer system is operated for a long period of time, the amount of the surfactant aqueous solution, which is the heat transfer medium, decreases due to leakage from the seal portion of the power pump, etc. Only water will be replenished from the expansion tank, for example. When water is replenished in this way, the concentration of the surfactant in the surfactant aqueous solution decreases, and the friction reducing effect by the surfactant decreases. At this time, if the pump power for conveying the surfactant aqueous solution is constant, the pressure loss increases due to the decrease in the friction reducing effect by the surfactant, and as a result, the surfactant aqueous solution flowing in the pipe The flow rate decreases. When the flow rate decreases in this way, the amount of heat in the heat utilization side system becomes insufficient, and in order to resolve this insufficiency, the power of the power pump must be increased, making it difficult to save energy in the heat transfer system. .

そこで、常に摩擦低減効果を維持しながら熱搬送システムを省エネルギー運転するためには、界面活性剤水溶液の濃度を一定に維持する(換言すると、界面活性剤水溶液の濃度が低下する度に界面活性剤を添加する)ようにすればよいが、従来、界面活性剤水溶液の濃度を簡単に且つ正確に検出することができず、このことに起因して、界面活性剤を添加して所定の濃度にするのに手間がかかり、熱搬送システムの運転効率が悪くなる問題があった。   Therefore, in order to save energy by operating the heat transfer system while always maintaining the friction reduction effect, the concentration of the surfactant aqueous solution is kept constant (in other words, whenever the concentration of the surfactant aqueous solution decreases) However, conventionally, the concentration of the surfactant aqueous solution cannot be detected easily and accurately, and as a result, a surfactant is added to a predetermined concentration. There is a problem that it takes time and effort and the operation efficiency of the heat transfer system deteriorates.

本発明の目的は、熱搬送媒体として用いる界面活性剤溶液の濃度を比較的簡単に検出し、界面活性剤溶液の濃度を所定濃度に維持することができる界面活性剤濃度制御装置を提供することである。   An object of the present invention is to provide a surfactant concentration control device capable of detecting the concentration of a surfactant solution used as a heat transfer medium relatively easily and maintaining the concentration of the surfactant solution at a predetermined concentration. It is.

また、本発明の他の目的は、熱搬送媒体の流動摩擦抵抗を低減してその搬送動力を小さくすることができる熱搬送システムを提供することである。   Another object of the present invention is to provide a heat transfer system that can reduce the flow frictional resistance of the heat transfer medium and reduce the transfer power.

本発明者等は、界面活性剤溶液中の界面活性剤の濃度が屈折率と密接な関係にあることに注目し、この界面活性剤の濃度と屈折率との関係を利用して、界面活性剤溶液の屈折率を所定範囲に保つように界面活性剤の供給を制御することによって、その濃度を所定範囲に維持することができ、上記目的が達成されることを見出した。   The present inventors have noted that the concentration of the surfactant in the surfactant solution is closely related to the refractive index, and utilizing the relationship between the concentration of the surfactant and the refractive index, It has been found that the concentration can be maintained within a predetermined range by controlling the supply of the surfactant so that the refractive index of the agent solution is maintained within a predetermined range, and the above object is achieved.

本発明の請求項1に記載の界面活性剤濃度制御装置は、熱供給側システムと熱利用側システムとの間を循環する界面活性剤溶液を用いて熱を搬送する熱搬送システムにおける界面活性剤溶液の濃度を制御する界面活性剤濃度制御装置であって、
界面活性剤を供給するための界面活性剤供給手段と、前記界面活性剤供給手段から供給される界面活性剤の供給量を制御するための制御手段と、循環される界面活性剤溶液の屈折率を検出するための屈折率検出手段と、を備え、
前記制御手段は、前記屈折率検出手段からの検出信号に基づいて、前記界面活性剤供給手段から界面活性剤溶液に供給される界面活性剤の供給量を制御することを特徴とする。
The surfactant concentration control apparatus according to claim 1 of the present invention is a surfactant in a heat transfer system that transfers heat using a surfactant solution that circulates between a heat supply side system and a heat utilization side system. A surfactant concentration control device for controlling the concentration of a solution,
Surfactant supply means for supplying the surfactant, control means for controlling the supply amount of the surfactant supplied from the surfactant supply means, and the refractive index of the surfactant solution to be circulated A refractive index detecting means for detecting
The control means controls a supply amount of the surfactant supplied from the surfactant supply means to the surfactant solution based on a detection signal from the refractive index detection means.

また、本発明の請求項2に記載の界面活性剤濃度制御装置では、前記熱供給側システムと前記熱利用側システムとの間には、前記熱供給側システムからの界面活性剤溶液を前記熱利用側システムに供給する供給側流路と、前記熱利用側システムからの界面活性剤溶液を前記熱供給側システムに戻す戻り側流路が設けられており、前記界面活性剤供給手段は前記供給側流路及び前記戻り側流路のいずれか一方に接続され、前記屈折率検出手段はそれらの他方に配設されていることを特徴とする。   Further, in the surfactant concentration control apparatus according to claim 2 of the present invention, the surfactant solution from the heat supply side system is placed between the heat supply side system and the heat utilization side system. A supply-side flow path for supplying to the use-side system and a return-side flow path for returning the surfactant solution from the heat use-side system to the heat supply-side system are provided, and the surfactant supply means is the supply It is connected to either one of the side flow path and the return side flow path, and the refractive index detection means is disposed on the other of them.

また、本発明の請求項3に記載の界面活性剤濃度制御装置では、前記供給側流路及び前記戻り側流路の前記他方には、その一部をバイパスしてバイパス検出流路が設けられ、前記バイパス検出流路に溶液溜め部が設けられ、前記屈折率検出手段は前記溶液溜め部を流れる界面活性剤溶液の屈折率を検出することを特徴とする。   In the surfactant concentration control apparatus according to claim 3 of the present invention, a bypass detection flow path is provided in the other of the supply side flow path and the return side flow path by bypassing a part thereof. The bypass detection flow path is provided with a solution reservoir, and the refractive index detection means detects the refractive index of the surfactant solution flowing through the solution reservoir.

更に、本発明の請求項4に記載の熱搬送システムは、請求項1〜3のいずれかに記載の界面活性剤濃度制御装置を備えたことを特徴とする。   Furthermore, a heat transfer system according to a fourth aspect of the present invention includes the surfactant concentration control apparatus according to any one of the first to third aspects.

本発明の請求項1に記載の界面活性剤濃度制御装置によれば、屈折率検出手段は界面活性剤溶液の屈折率を検出し、制御手段はこの屈折率検出手段からの検出信号に基づいて、界面活性剤供給手段から界面活性剤溶液に供給される界面活性剤供給量を制御するので、溶液中の界面活性剤の濃度を所定範囲に維持することができる。その結果、熱搬送システムにおいて熱供給側システムと熱利用側システムとの間を循環する界面活性剤溶液の摩擦抵抗が低減され、熱搬送システムの省エネルギー化が達成される。特に、界面活性剤溶液の屈折率を利用して溶液中の界面活性剤の濃度を検出するので、溶液中のイオンなどの影響を受けずに濃度を検出することができ、例えば水道水に界面活性剤を溶解させた界面活性剤溶液を用いたときにも比較的簡単に且つ正確に界面活性剤の濃度を検出することができる。   According to the surfactant concentration control apparatus of the first aspect of the present invention, the refractive index detecting means detects the refractive index of the surfactant solution, and the control means is based on the detection signal from the refractive index detecting means. Since the surfactant supply amount supplied to the surfactant solution from the surfactant supply means is controlled, the concentration of the surfactant in the solution can be maintained within a predetermined range. As a result, the frictional resistance of the surfactant solution circulating between the heat supply side system and the heat utilization side system in the heat transfer system is reduced, and energy saving of the heat transfer system is achieved. In particular, since the concentration of the surfactant in the solution is detected using the refractive index of the surfactant solution, the concentration can be detected without being affected by ions in the solution. Even when a surfactant solution in which an active agent is dissolved is used, the concentration of the surfactant can be detected relatively easily and accurately.

また、本発明の請求項2に記載の界面活性剤濃度制御装置によれば、界面活性剤供給手段が熱搬送システムの供給側流路(又は戻り側流路)に接続され、屈折率検出手段が熱搬送システムの戻り側流路(又は供給側流路)に配設されているので、界面活性剤の補給箇所と屈折率の検出箇所とが離れており、従って、補給された界面活性剤が溶液中に充分に混合された後に屈折率を検出するようになり、界面活性剤溶液の屈折率(換言すると、界面活性剤の濃度)をより正確に検出することができる。   According to the surfactant concentration control apparatus of the second aspect of the present invention, the surfactant supply means is connected to the supply side flow path (or return side flow path) of the heat transfer system, and the refractive index detection means. Is disposed in the return-side flow path (or supply-side flow path) of the heat transfer system, the surfactant replenishment location is separated from the refractive index detection location, and therefore the replenished surfactant is provided. The refractive index is detected after sufficiently mixing in the solution, and the refractive index of the surfactant solution (in other words, the concentration of the surfactant) can be detected more accurately.

また、本発明の請求項3に記載の界面活性剤濃度制御装置によれば、熱搬送システムの戻り側流路(又は供給側流路)に、溶液溜め部を有するバイパス流路が設けられているので、この溶液溜め部における界面活性剤溶液の流速は遅くなる。そして、屈折率検出手段はこの溶液溜め部の界面活性剤溶液の屈折率を検知するので、流速の影響を少なくしてその屈折率を正確に検出することができる。   According to the surfactant concentration control apparatus of the third aspect of the present invention, the bypass channel having the solution reservoir is provided in the return side channel (or the supply side channel) of the heat transfer system. Therefore, the flow rate of the surfactant solution in the solution reservoir becomes slow. Since the refractive index detection means detects the refractive index of the surfactant solution in the solution reservoir, the refractive index can be accurately detected with less influence of the flow velocity.

更に、本発明の請求項4に記載の熱搬送システムによれば、上述した界面活性剤濃度制御装置を備えているので、この界面活性剤濃度制御装置によって界面活性剤溶液の濃度を所定範囲に維持することができ、熱搬送システムにおいて熱供給側システムと熱利用側システムとの間を循環する界面活性剤溶液の摩擦抵抗が低減され、省エネルギー化した熱搬送システムが実現可能となる。   Furthermore, according to the heat transfer system according to claim 4 of the present invention, since the surfactant concentration control device described above is provided, the concentration of the surfactant solution is set within a predetermined range by the surfactant concentration control device. The friction resistance of the surfactant solution circulating between the heat supply side system and the heat utilization side system in the heat transfer system can be reduced, and an energy saving heat transfer system can be realized.

本発明に従う熱搬送システムの一実施形態を簡略的に示すブロック図。The block diagram which shows simply one Embodiment of the heat transfer system according to this invention. 図1の熱搬送システムに装備された界面活性剤濃度制御装置を簡略的に示す簡略図。The simplification figure which shows simply the surfactant concentration control apparatus with which the heat transfer system of FIG. 1 was equipped. 図2の界面活性剤濃度制御装置における屈折率センサの検出原理を説明するための説明図。Explanatory drawing for demonstrating the detection principle of the refractive index sensor in the surfactant concentration control apparatus of FIG. 界面活性剤溶液に溶解された界面活性剤の濃度と屈折率の関係を示す図。The figure which shows the relationship between the density | concentration of the surfactant melt | dissolved in surfactant solution, and refractive index. 実施例におけるポンプ動力削減率と界面活性剤の濃度及び屈折率との関係を示す図。The figure which shows the relationship between the pump power reduction rate in an Example, the density | concentration of a surfactant, and a refractive index.

以下、添付図面を参照して、本発明に従う界面活性剤濃度制御装置及びこれを備えた熱搬送システムについて説明する。図1は、本発明に従う熱搬送システムの一実施形態を簡略的に示すブロック図であり、図2は、熱搬送システムに装備された界面活性剤濃度制御装置を示す簡略図であり、図3は、界面活性剤濃度制御装置の屈折率センサの検出原理を説明するための説明図である。   Hereinafter, a surfactant concentration control device and a heat transfer system including the same according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram schematically illustrating an embodiment of a heat transfer system according to the present invention, and FIG. 2 is a simplified diagram illustrating a surfactant concentration control apparatus installed in the heat transfer system. These are explanatory drawings for demonstrating the detection principle of the refractive index sensor of surfactant concentration control apparatus.

図1において、図示の熱搬送システムは、熱供給側システム2と、熱利用側システム4と、これらの間に設けられる供給側流路6及び戻り側流路8とを備え、例えば供給側流路6に送給ポンプ10が配設され、この送給ポンプ10の作用によって、供給側流路6及び戻り側流路8を通して熱搬送媒体が循環される。   In FIG. 1, the illustrated heat transfer system includes a heat supply side system 2, a heat utilization side system 4, and a supply side flow path 6 and a return side flow path 8 provided therebetween. A feed pump 10 is disposed in the path 6, and the heat transfer medium is circulated through the supply side flow path 6 and the return side flow path 8 by the action of the feed pump 10.

熱供給側システム2は、例えば暖房用に用いるときには熱搬送媒体を加熱するボイラなどであり、また例えば冷房用に用いるときには熱搬送媒体を冷却するガス吸収冷凍機などであり、また熱利用側システム4はビルの空調装置などである。このような熱搬送システムでは、供給側流路6及び戻り側流路8は、各種形状の配管から構成される。   The heat supply side system 2 is, for example, a boiler that heats the heat transfer medium when used for heating, and a gas absorption refrigerator that cools the heat transfer medium when used for cooling, for example. Reference numeral 4 denotes a building air conditioner. In such a heat transfer system, the supply-side flow path 6 and the return-side flow path 8 are composed of various shapes of pipes.

この形態の熱搬送システムでは、熱搬送媒体として界面活性剤溶液、例えば水(水道水など)に界面活性剤を溶解させた界面活性剤水溶液が用いられる。一般的に、界面活性剤水溶液中の界面活性剤濃度によって、配管との間の摩擦抵抗が大きく変わり、界面活性剤による摩擦低減効果が大きく変わることが知られている。例えば、漏れなどにより界面活性剤水溶液中の界面活性剤の濃度が低下すると、その摩擦低減効果も減少し、配管内を流れる界面活性剤水溶液の圧力損失が増大する。   In the heat transfer system of this form, a surfactant solution, for example, a surfactant aqueous solution in which a surfactant is dissolved in water (such as tap water) is used as a heat transfer medium. In general, it is known that the frictional resistance between the pipes varies greatly depending on the concentration of the surfactant in the surfactant aqueous solution, and the friction reduction effect by the surfactants varies greatly. For example, when the concentration of the surfactant in the surfactant aqueous solution decreases due to leakage or the like, the friction reducing effect also decreases, and the pressure loss of the surfactant aqueous solution flowing in the pipe increases.

界面活性剤水溶液濃度の変動に伴う摩擦低減効果の低下を防止するために、この熱搬送システムでは、界面活性剤濃度制御装置10が設けられている。図示の界面活性剤濃度制御装置10は、界面活性剤を供給するための界面活性剤供給手段12と、この界面活性剤供給手段12から供給される界面活性剤の供給量を制御するための制御手段14とを備え、界面活性剤供給手段12は、例えば補給する界面活性剤を貯めるタンク16と、このタンク16の排出口を開閉制御する供給制御弁18から構成される。この形態では、界面活性剤供給手段12は供給側流路6に接続され、供給制御弁18が開放されると、タンク16内の界面活性剤(又は濃い濃度の界面活性剤水溶液)が供給側流路6に供給される。   In this heat transfer system, a surfactant concentration control device 10 is provided in order to prevent a decrease in the friction reducing effect due to fluctuations in the surfactant aqueous solution concentration. The illustrated surfactant concentration control apparatus 10 includes a surfactant supply unit 12 for supplying a surfactant and a control for controlling the amount of surfactant supplied from the surfactant supply unit 12. The surfactant supply means 12 includes, for example, a tank 16 that stores a surfactant to be replenished, and a supply control valve 18 that controls opening and closing of a discharge port of the tank 16. In this embodiment, the surfactant supply means 12 is connected to the supply-side flow path 6, and when the supply control valve 18 is opened, the surfactant in the tank 16 (or a concentrated surfactant aqueous solution) is supplied to the supply side. It is supplied to the flow path 6.

このような界面活性剤水溶液の濃度は、その屈折率と密接な関係にあり、この密接な関係を利用して界面活性剤濃度制御装置10によって界面活性剤水溶液の濃度を後述するように所定の濃度に維持する。例えば、界面活性剤としてオレイルトリ(ヒドロキシエチル)アンモニウムサリチレートを用いた場合、その水溶液中の界面活性剤の濃度と屈折率の関係は、図4に示す通りの比例関係にあり、後述する各種界面活性剤においても、その水溶液中の界面活性剤の濃度と屈折率の関係は同様の比例関係にある。   The concentration of such an aqueous surfactant solution is closely related to its refractive index, and using this close relationship, the concentration of the aqueous surfactant solution is determined by the surfactant concentration controller 10 as described later. Maintain concentration. For example, when oleyltri (hydroxyethyl) ammonium salicylate is used as the surfactant, the relationship between the concentration of the surfactant in the aqueous solution and the refractive index is proportional as shown in FIG. Also in the surfactant, the relationship between the concentration of the surfactant in the aqueous solution and the refractive index is the same proportional relationship.

上述した密接な関係を利用して界面活性剤の濃度を制御する界面活性剤濃度制御装置10は、更に、界面活性剤水溶液の屈折率を検出するための屈折率検出手段20を備え、この屈折率検出手段20は例えば屈折率センサ22から構成される。   The surfactant concentration control apparatus 10 that controls the concentration of the surfactant using the close relationship described above further includes a refractive index detection means 20 for detecting the refractive index of the aqueous surfactant solution. The rate detecting means 20 is constituted by a refractive index sensor 22, for example.

ここで、図2及び図3を参照して、屈折率検出手段20に関連する構成について説明すると、戻り側流路8には、その所定部位をバイパスしてバイパス流路24が設けられ、このバイパス流路24に、流路容積が拡大した溶液溜め部26が設けられ、この溶液溜め部26に屈折率センサ22が配設されている。バイパス流路24の流入側はその流出側よりも界面活性剤水溶液の流れ方向(図2において矢印28で示す)に見て上流側に位置し、戻り管側流路8を流れる界面活性剤水溶液の一部が流入側からバイパス流路24に流入し、矢印30で示す方向にバイパス流路24及び溶液溜め部26を流れ、流出側から戻り側流路8に戻される。この実施形態では、バイパス流路24の上流側部、即ち溶液溜め部26より上流側の部位に、界面活性剤溶液を加熱するための加熱手段32が配設されている。   Here, with reference to FIG. 2 and FIG. 3, the configuration related to the refractive index detection means 20 will be described. The return side flow path 8 is provided with a bypass flow path 24 by bypassing a predetermined portion thereof. The bypass channel 24 is provided with a solution reservoir 26 having an enlarged channel volume, and the refractive index sensor 22 is disposed in the solution reservoir 26. The inflow side of the bypass channel 24 is located upstream of the outflow side in the flow direction of the surfactant aqueous solution (indicated by an arrow 28 in FIG. 2) and flows in the return pipe side channel 8. Part of the gas flows into the bypass channel 24 from the inflow side, flows through the bypass channel 24 and the solution reservoir 26 in the direction indicated by the arrow 30, and is returned to the return side channel 8 from the outflow side. In this embodiment, a heating means 32 for heating the surfactant solution is disposed on the upstream side portion of the bypass flow path 24, that is, on the upstream side of the solution reservoir portion 26.

次に、屈折率センサ22の屈折率計測原理について説明すると、屈折率センサ22は、計測液体L(この具体例では、溶液溜め部26を流れる界面活性剤溶液)に向けて光を投射する光源部34と、この計測液体に接触して投射光の一部を反射させるプリズム36と、プリズム36からの反射光を受光する受光部38とを備えている。このような屈折率センサ22では、光源部34からの光は、実線矢印で示すように、プリズム36と計測液体Lとの境界面Pに向けて投射され、投射された光は、異なる角度方向の光としてこの境界面Pに当たる。光源部34からの光がこのように投射されると、ある角度方向の光はこの境界面Pで全反射し、また他の角度方向の一部の光は部分反射し、ほとんどの光は屈折して計測液体(界面活性剤溶液)に入る。一方、この境界面Pにて反射された反射光は受光部38に向けて反射され、この反射光は、破線矢印で示すように受光部38に受光される。受光部38においては、境界面Pからの全反射の光は明るい領域aとして受光され、また境界面Pからの部分反射の光は暗い領域bとして受光され、暗い領域bと明るい領域aとの間には明確な境界線40が出現する。この出現する境界線40に相当する角度は、全反射の臨界角と呼ばれ、この臨界角から屈折率が求められ、この境界線40が図3において左側に移動する、換言すると暗い領域bが大きくなるほど屈折率が大きくなり、図3において右側に移動する、換言すると明るい領域aが大きくなるほど屈折率が小さくなる。   Next, the principle of refractive index measurement of the refractive index sensor 22 will be described. The refractive index sensor 22 is a light source that projects light toward the measurement liquid L (in this specific example, a surfactant solution flowing through the solution reservoir 26). A part 34; a prism 36 that contacts the measurement liquid and reflects part of the projection light; and a light receiving part 38 that receives the reflected light from the prism 36. In such a refractive index sensor 22, the light from the light source unit 34 is projected toward the boundary surface P between the prism 36 and the measurement liquid L as indicated by the solid line arrow, and the projected light has different angular directions. The light hits this boundary surface P as light. When the light from the light source unit 34 is projected in this way, light in a certain angle direction is totally reflected at the boundary surface P, and part of light in other angle directions is partially reflected, and most of the light is refracted. Into the measurement liquid (surfactant solution). On the other hand, the reflected light reflected by the boundary surface P is reflected toward the light receiving unit 38, and the reflected light is received by the light receiving unit 38 as indicated by a broken line arrow. In the light receiving unit 38, the totally reflected light from the boundary surface P is received as a bright region a, and the partially reflected light from the boundary surface P is received as a dark region b. A clear boundary line 40 appears between them. The angle corresponding to this appearing boundary line 40 is called the critical angle of total reflection, and the refractive index is obtained from this critical angle, and the boundary line 40 moves to the left in FIG. The refractive index increases as it increases, and moves to the right in FIG. 3, in other words, the refractive index decreases as the bright area a increases.

バイパス流路24に溶液溜め部26を設けることによって、この溶液溜め部26において界面活性剤溶液の流速が一時的に低下し、界面活性剤溶液の屈折率を後述するようにして正確に検出することができる。バイパス流路24における溶液溜め部26の形状、容積などは特に限定されるものではないが、計測精度の観点から、そこを流れる界面活性剤水溶液の流速が0.2〜0.5m/sになるようにするのが好ましく、界面活性剤水溶液の流速が0.3〜0.4m/sにするのが更に好ましい。流速が遅くなると、界面活性剤溶液が溶液溜め部26において淀むようになり、またその流速が速くなると、流れの影響を受けて正確な屈折率の計測が難しくなる。   By providing the solution reservoir 26 in the bypass channel 24, the flow rate of the surfactant solution temporarily decreases in the solution reservoir 26, and the refractive index of the surfactant solution is accurately detected as described later. be able to. The shape and volume of the solution reservoir 26 in the bypass channel 24 are not particularly limited, but from the viewpoint of measurement accuracy, the flow rate of the aqueous surfactant solution flowing therethrough is 0.2 to 0.5 m / s. Preferably, the flow rate of the surfactant aqueous solution is 0.3 to 0.4 m / s. If the flow rate is slow, the surfactant solution will stagnate in the solution reservoir 26, and if the flow rate is fast, it will be difficult to accurately measure the refractive index due to the influence of the flow.

加熱手段32は、各種の加熱ヒータを用いることができるが、バイパス流路24を規定する配管の外部より設置できるテープ状ヒータから構成するのが好ましい。界面活性剤水溶液の濃度と屈折率の関係は、約20℃を境にして顕著に変化することを本発明者は確認し、このことより、屈折率計測における温度条件を満たすために、加熱手段32により、界面活性剤水溶液の温度を20℃以上(例えば、20℃)に加温するのが望ましい。戻り側流路8内を流れる界面活性剤水溶液の温度が20℃以上ある場合、例えば熱供給システム2において加温された界面活性剤水溶液(界面活性剤水溶液が温熱を搬送する)を熱利用側システム4において消費する場合は、加熱手段32により界面活性剤水溶液を加熱する必要はないが、戻り側流路8内を流れる界面活性剤水溶液の温度が20℃より低い場合、例えば熱供給側システム2において冷却された界面活性剤水溶液(界面活性剤水溶液が冷熱を搬送する)を熱利用側システム4において消費する場合は、加熱手段32により界面活性剤水溶液を加熱するのが望ましい。   Various heating heaters can be used for the heating means 32, but it is preferable that the heating means 32 is composed of a tape-like heater that can be installed from the outside of the piping that defines the bypass flow path 24. The present inventor confirmed that the relationship between the concentration of the surfactant aqueous solution and the refractive index changes markedly at about 20 ° C., and from this, in order to satisfy the temperature condition in the refractive index measurement, the heating means 32, it is desirable to warm the temperature of the aqueous surfactant solution to 20 ° C. or higher (for example, 20 ° C.). When the temperature of the surfactant aqueous solution flowing in the return side flow path 8 is 20 ° C. or higher, for example, the surfactant aqueous solution heated by the heat supply system 2 (the surfactant aqueous solution carries the heat) is used on the heat utilization side. When consumed in the system 4, it is not necessary to heat the surfactant aqueous solution by the heating means 32, but when the temperature of the surfactant aqueous solution flowing in the return side flow path 8 is lower than 20 ° C., for example, the heat supply side system When the surfactant aqueous solution cooled in 2 (the surfactant aqueous solution carries cold heat) is consumed in the heat utilization side system 4, it is desirable to heat the surfactant aqueous solution by the heating means 32.

バイパス流路24の溶液溜め部26に配設される屈折率センサ22は、その屈折率計測部が界面活性剤溶液L(計測液体)に接触するように配設され、この溶液溜め部26の下部に位置するように設けるのが好ましい。このように配設することにより、界面活性剤水溶液中に微小な空気泡があった場合にでも、屈折率センサ22の屈折率計測部にその空気泡が捕捉され、屈折率計測の妨害になることを防止することができる。   The refractive index sensor 22 disposed in the solution reservoir 26 of the bypass channel 24 is disposed so that the refractive index measurement unit contacts the surfactant solution L (measurement liquid). It is preferable to be provided so as to be located at the lower part. By arranging in this way, even when there are minute air bubbles in the surfactant aqueous solution, the air bubbles are captured by the refractive index measurement unit of the refractive index sensor 22, which interferes with the refractive index measurement. This can be prevented.

また、この屈折率センサ22は、図2に示すように、界面活性剤水溶液の流れ方向に対して傾斜対向するような角度位置でもって配設させる。このように配設することにより、界面活性剤水溶液中に含まれた微小なゴミが屈折率センサ22の屈折率計測部に付着することを防止することができる。界面活性剤水溶液の流れ方向に対する屈折率センサ22の屈折率計測部の傾斜角度α(図2)は、0〜80度であるのが好ましく、30〜60度であるのが更に好ましい。   Further, as shown in FIG. 2, the refractive index sensor 22 is disposed at an angular position so as to be inclined to the flow direction of the surfactant aqueous solution. By disposing in this way, it is possible to prevent the minute dust contained in the surfactant aqueous solution from adhering to the refractive index measuring unit of the refractive index sensor 22. The inclination angle α (FIG. 2) of the refractive index measurement unit of the refractive index sensor 22 with respect to the flow direction of the surfactant aqueous solution is preferably 0 to 80 degrees, and more preferably 30 to 60 degrees.

バイパス流路24を規定する配管及び溶液溜め部26を規定する計測容器の材質についても特に制限はなく、鉄、銅、ステンレスなどの金属やポリエチレン、ポリブテン、シリコン、テフロン(登録商標)などの樹脂などを用いることができる。   There are no particular restrictions on the material of the piping that defines the bypass channel 24 and the material of the measurement container that defines the solution reservoir 26. Metals such as iron, copper, and stainless steel, and resins such as polyethylene, polybutene, silicon, and Teflon (registered trademark) Etc. can be used.

この形態では、屈折率検出手段20は戻り側流路8に配設され、戻り側流路8を流れる界面活性剤水溶液の屈折率を検出し、この屈折率検出手段20からの検出信号は制御手段14に送給され、制御手段14はこの検出信号に基づいて供給制御弁18を後述するように開閉制御する。   In this embodiment, the refractive index detection means 20 is disposed in the return side flow path 8, detects the refractive index of the aqueous surfactant solution flowing through the return side flow path 8, and the detection signal from the refractive index detection means 20 is controlled. Based on this detection signal, the control means 14 controls the supply control valve 18 to open and close as will be described later.

この実施形態では、界面活性剤供給手段12を供給側流路6に接続し、屈折率検出手段20を戻り側流路8に設けているので、供給側流路6にて後述する如く補給された界面活性剤は熱利用側システム4を流れる間に充分混合され、屈折率検出手段20にはこの混合された界面活性剤水溶液の屈折率を検出するようになり、かくして界面活性剤水溶液の濃度を正確に検出することができる。上述した構成に代えて、界面活性剤供給手段12を戻り側流路8に接続し、屈折率検出手段20を供給側流路6に設けるようにしても、その屈折率を正確に検出することができる。なお、これら界面活性剤供給手段12及び屈折率検出手段20の双方を供給側流路6又は戻り側流路8に設けるようにしてもよい。   In this embodiment, the surfactant supply means 12 is connected to the supply-side flow path 6 and the refractive index detection means 20 is provided in the return-side flow path 8, so that the supply-side flow path 6 is replenished as described later. The surfactant is sufficiently mixed while flowing through the heat utilization side system 4, and the refractive index detecting means 20 detects the refractive index of the mixed surfactant aqueous solution, thus the concentration of the surfactant aqueous solution. Can be accurately detected. Instead of the above-described configuration, even if the surfactant supply means 12 is connected to the return side flow path 8 and the refractive index detection means 20 is provided in the supply side flow path 6, the refractive index can be accurately detected. Can do. Note that both the surfactant supply unit 12 and the refractive index detection unit 20 may be provided in the supply-side channel 6 or the return-side channel 8.

この熱搬送システムにおける界面活性剤水溶液中の界面活性剤の濃度制御は、例えば次のようにして行われる。戻り側流路8を流れる界面活性剤水溶液の一部がバイパス流路24を通して流れ、このバイパス流路24を流れる界面活性剤水溶液が溶液溜め部26を流れる際に屈折率検出手段20が界面活性剤水溶液の濃度を検出し、屈折率検出手段20からの検出信号が制御手段14に送給される。   The concentration control of the surfactant in the aqueous surfactant solution in this heat transfer system is performed as follows, for example. A part of the surfactant aqueous solution flowing through the return side channel 8 flows through the bypass channel 24, and the refractive index detection means 20 is activated by the surfactant when the surfactant solution flowing through the bypass channel 24 flows through the solution reservoir 26. The concentration of the aqueous solution of the agent is detected, and a detection signal from the refractive index detection means 20 is sent to the control means 14.

界面活性剤水溶液の濃度とその屈折率とは、上述したように図4に示す通りの比例関係にあるので、界面活性剤水溶液の濃度が低下すると、その屈折率も低下する。このようなことから、屈折率検出手段20の検出屈折率が第1の所定値T1(例えば、0.180Brix%)より小さくなると、制御手段14は供給信号を生成し、この供給信号に基づいて供給制御弁18を開放する。かくすると、タンク16内の界面活性剤が供給制御弁18を通して供給側流路6に供給され、循環する界面活性剤水溶液の濃度が上昇し、それに伴い界面活性剤による摩擦低減効果が回復して圧力損失が減少し、供給側流路6及び戻り側流路8を流れる界面活性剤水溶液の流量も増大する。   Since the concentration of the surfactant aqueous solution and its refractive index are in a proportional relationship as shown in FIG. 4 as described above, when the concentration of the surfactant aqueous solution decreases, the refractive index also decreases. For this reason, when the detected refractive index of the refractive index detecting means 20 becomes smaller than a first predetermined value T1 (for example, 0.180 Brix%), the control means 14 generates a supply signal, and based on this supply signal The supply control valve 18 is opened. As a result, the surfactant in the tank 16 is supplied to the supply-side flow path 6 through the supply control valve 18, and the concentration of the circulating surfactant aqueous solution increases, and the friction reducing effect by the surfactant is restored accordingly. The pressure loss is reduced, and the flow rate of the aqueous surfactant solution flowing through the supply side channel 6 and the return side channel 8 is also increased.

このように界面活性剤水溶液の濃度が上昇して屈折率検出手段20の検出屈折率が、第1の所定値T1より大きい第2の所定値T2(例えば、0.330Brix%)(T1<T2)に達すると、制御手段14は、屈折率検出手段20からの検出信号に基づいて供給制御弁18を閉塞する。かくすると、タンク16からの界面活性剤の供給が停止し、循環する界面活性剤水溶液の濃度はその濃度に維持される。   In this way, the concentration of the surfactant aqueous solution increases, and the detected refractive index of the refractive index detecting means 20 is a second predetermined value T2 (for example, 0.330 Brix%) that is larger than the first predetermined value T1 (T1 <T2). ), The control means 14 closes the supply control valve 18 based on the detection signal from the refractive index detection means 20. Thus, the supply of the surfactant from the tank 16 is stopped, and the concentration of the circulating surfactant aqueous solution is maintained at that concentration.

かくの通りであるので、界面活性剤水溶液の濃度は、屈折率の第1の所定値T1に対応する第1の濃度値と屈折率の第2の所定値T2に対応する第2の濃度値との間に保たれ、かくして界面活性剤水溶液の濃度を所定範囲(例えば、400〜800ppm)に保ってその流動摩擦抵抗を低減して熱搬送システムの搬送動力を小さくすることができる。   As described above, the concentration of the aqueous surfactant solution includes the first concentration value corresponding to the first predetermined value T1 of the refractive index and the second concentration value corresponding to the second predetermined value T2 of the refractive index. Thus, the concentration of the aqueous surfactant solution can be maintained within a predetermined range (for example, 400 to 800 ppm) to reduce the flow friction resistance and to reduce the conveyance power of the heat conveyance system.

上述した形態では、屈折率の第2の所定値T2(界面活性剤の供給を停止する値)を第1の所定値T1(界面活性剤の供給を開始する値)よりも大きい値に設定して、界面活性剤水溶液の濃度制御の安定化を図っているが、上記第1の所定値と上記第2の所定値とを同じ値に設定するようにしてもよい。熱搬送媒体として用いる界面活性剤水溶液中の界面活性剤の種類については、特に制限されるものではなく、例えば、セチルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムサリチレート、セチルトリメチルアンモニウムナフトエート、ステアリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムサリチレート、ステアリルトリメチルアンモニウムナフトエート、オレイルビス(ヒドロキシエチル)メチルアンモニウムクロライド、オレイルビス(ヒドロキシエチル)メチルアンモニウムサリチレート、オレイルビス(ヒドロキシエチル)メチルアンモニウムナフトエートなどを用いることができる。この界面活性剤の濃度は、少ないと摩擦低減効果が発現せず、また多すぎると粘度が増大し、これもまた摩擦低減効果が発現しない。このようなことから、その濃度は、200〜4000ppmが好ましく、300〜2500ppmがより好ましい。   In the embodiment described above, the second predetermined value T2 (value for stopping the supply of the surfactant) of the refractive index is set to a value larger than the first predetermined value T1 (the value for starting the supply of the surfactant). Thus, the concentration control of the aqueous surfactant solution is stabilized, but the first predetermined value and the second predetermined value may be set to the same value. The type of the surfactant in the aqueous surfactant solution used as the heat transfer medium is not particularly limited. For example, cetyltrimethylammonium chloride, cetyltrimethylammonium salicylate, cetyltrimethylammonium naphthoate, stearyltrimethylammonium Chloride, stearyltrimethylammonium salicylate, stearyltrimethylammonium naphthoate, oleylbis (hydroxyethyl) methylammonium chloride, oleylbis (hydroxyethyl) methylammonium salicylate, oleylbis (hydroxyethyl) methylammonium naphthoate, etc. can be used . If the concentration of this surfactant is small, the friction reducing effect does not appear, and if it is too large, the viscosity increases, and this also does not exhibit the friction reducing effect. Therefore, the concentration is preferably 200 to 4000 ppm, more preferably 300 to 2500 ppm.

本発明の効果を確認するために、ビル空調の冷房ラインを用い、この冷房ラインに図2に示す形態の界面活性剤濃度制御装置を取り付けて次の通りの実験を行った。この実験では、3階建ての事務所ビル(延床面積約2900m)の冷房ラインに、摩擦低減効果のある界面活性剤を添加した。冷房システムでは、冷房能力528kWのガス吸収冷凍機を用い、熱搬送媒体として、水に界面活性剤(以下、「摩擦低減剤」ともいう)としてオレイルトリ(ヒドロキシエチル)アンモニウムサリチレートを溶解させた水溶液(以下、「摩擦抵抗低減水溶液」ともいう)を用いた。摩擦抵抗低減水溶液の冷凍機出口温度は、冷凍機の定格値である7℃に制御した。また、摩擦抵抗低減水溶液を循環させるポンプの動力は定格(60Hz)で15kWであり、インバーター制御を行うことにより、ポンプ動力の調整を行うことができるものであった。更に、屈折率検出手段20により計測される摩擦抵抗低減水溶液(即ち、バイパス流路の溶液溜め部を流れる摩擦抵抗低減水溶液)の水温を20℃となるように加熱手段で加熱した。 In order to confirm the effect of the present invention, a cooling line for building air conditioning was used, and a surfactant concentration control device having the configuration shown in FIG. 2 was attached to the cooling line, and the following experiment was conducted. In this experiment, a surfactant having a friction reducing effect was added to a cooling line of a three-story office building (total floor area: about 2900 m 2 ). In the cooling system, a gas absorption refrigerator having a cooling capacity of 528 kW was used, and oleyltri (hydroxyethyl) ammonium salicylate was dissolved in water as a surfactant (hereinafter also referred to as “friction reducing agent”) as a heat transfer medium. An aqueous solution (hereinafter also referred to as “friction resistance reducing aqueous solution”) was used. The refrigerator outlet temperature of the frictional resistance-reducing aqueous solution was controlled at 7 ° C., which is the rated value of the refrigerator. Moreover, the power of the pump that circulates the frictional resistance-reducing aqueous solution is rated (60 Hz) and 15 kW, and the pump power can be adjusted by performing inverter control. Further, the water temperature of the frictional resistance-reducing aqueous solution (that is, the frictional resistance-reducing aqueous solution flowing through the solution reservoir of the bypass channel) measured by the refractive index detecting unit 20 was heated by the heating unit so as to be 20 ° C.

まず、摩擦抵抗低減水溶液の流量をポンプの定格流量値(91m/min)で一定になるように、ポンプ動力をインバーター制御した。このように制御すると、循環流路内の摩擦抵抗低減水溶液中の界面活性剤の濃度が低下して摩擦低減効果が減少すると、この循環流路内を流れる摩擦抵抗低減水溶液の流量が減少する。一般に、ポンプ動力はインバーター周波数の3乗に比例するので、ポンプ動力低減率は、{1−(インバーター周波数/60)}×100で求められ、これより算出したポンプ動力低減率と摩擦低減剤の濃度との関係は、図5に示す通りであった。図5には、予め計測した摩擦低減剤の濃度に対応する屈折率値も示してある。図5から明らかな通り、摩擦低減剤の濃度が300ppm以下ではポンプ動力低減率が低く、250ppm以下では殆どポンプ動力低減効果がないことが分かる。次に、ポンプ動力を、ポンプ動力低減率が35%になるインバーター周波数53.5Hzに固定してガス吸収冷凍機の運転を行った。まず、界面活性剤を熱搬送媒体に注入したすぐ後、即ち界面活性剤の濃度が低下していない状態での屈折率を記録した。この実験においてこのときの屈折率は0.320Brix%であった。この運転状態を継続し、循環流路内の摩擦抵抗低減水溶液中の界面活性剤の濃度が低下して摩擦低減効果が減少すると、循環流路内を流れる摩擦抵抗低減水溶液の流量が減少し、このとき、界面活性剤水溶液の屈折率も減少し、屈折率が0.180Brix%(界面活性剤の濃度:400ppm)に低下すると、制御手段から界面活性剤供給手段(栗田工業株式会社製、製品名「クリフィーダーCS−31」)に供給信号を送り、自動的に循環流路内に摩擦低減剤(界面活性剤薬液)を注入した。摩擦低減剤を注入すると、摩擦抵抗低減水溶液中の界面活性剤の濃度が上昇し、それに伴って摩擦低減効果が回復して圧力損失が減少し、循環流路内の摩擦抵抗低減水溶液の流量が増加し、これと同時に摩擦抵抗低減水溶液の屈折率値も上昇した。そして、循環流路内の摩擦抵抗低減水溶液の屈折率値が0.330Brix%(界面活性剤の濃度:800ppm)に達すると、制御手段から界面活性剤供給手段に供給停止信号を送り、摩擦低減剤の注入を停止させた。 First, the pump power was inverter-controlled so that the flow rate of the frictional resistance-reducing aqueous solution was constant at the rated flow rate value of the pump (91 m 3 / min). By controlling in this way, when the concentration of the surfactant in the frictional resistance-reducing aqueous solution in the circulation channel decreases and the frictional reduction effect decreases, the flow rate of the frictional resistance-reducing aqueous solution flowing in the circulation channel decreases. Generally, since pump power is proportional to the cube of the inverter frequency, the pump power reduction rate is obtained by {1- (inverter frequency / 60) 3 } × 100, and the pump power reduction rate calculated from this and the friction reducer The relationship with the concentration of was as shown in FIG. FIG. 5 also shows the refractive index value corresponding to the pre-measured concentration of the friction reducing agent. As is clear from FIG. 5, it can be seen that the pump power reduction rate is low when the concentration of the friction reducing agent is 300 ppm or less, and there is almost no pump power reduction effect when the concentration is 250 ppm or less. Next, the pump power was fixed at an inverter frequency of 53.5 Hz where the pump power reduction rate was 35%, and the gas absorption refrigerator was operated. First, the refractive index was recorded immediately after the surfactant was injected into the heat transfer medium, that is, in a state where the concentration of the surfactant was not lowered. In this experiment, the refractive index at this time was 0.320 Brix%. If this operation state is continued and the concentration of the surfactant in the frictional resistance-reducing aqueous solution in the circulation channel decreases and the frictional reduction effect decreases, the flow rate of the frictional resistance-reducing aqueous solution flowing in the circulation channel decreases, At this time, the refractive index of the surfactant aqueous solution also decreases, and when the refractive index decreases to 0.180 Brix% (surfactant concentration: 400 ppm), the surfactant supply means (manufactured by Kurita Kogyo Co., Ltd., product) The supply signal was sent to the name “Cliffider CS-31”), and a friction reducing agent (surfactant chemical) was automatically injected into the circulation channel. When the friction reducing agent is injected, the concentration of the surfactant in the frictional resistance reducing aqueous solution is increased, and the friction reducing effect is recovered, the pressure loss is reduced, and the flow rate of the frictional resistance reducing aqueous solution in the circulation channel is reduced. At the same time, the refractive index value of the aqueous solution with reduced frictional resistance increased. When the refractive index value of the frictional resistance-reducing aqueous solution in the circulation channel reaches 0.330 Brix% (surfactant concentration: 800 ppm), a supply stop signal is sent from the control means to the surfactant supply means to reduce friction. Agent infusion was stopped.

上述した運転を行うことにより、循環流路内の摩擦抵抗低減水溶液中の界面活性剤の濃度が低下しても、摩擦低減剤を循環流路内に自動的に供給することで、常に摩擦低減効果を維持することができ、摩擦抵抗低減水溶液の屈折率値を0.180〜0.330Brix%に維持した時、ガス吸収冷凍機のポンプ動力を36%削減できた。   By performing the above-described operation, even if the concentration of the surfactant in the frictional resistance-reducing aqueous solution in the circulation flow path is reduced, the friction reducing agent is automatically supplied into the circulation flow path, so that friction is always reduced. The effect can be maintained, and when the refractive index value of the frictional resistance reduced aqueous solution is maintained at 0.180 to 0.330 Brix%, the pump power of the gas absorption refrigerator can be reduced by 36%.

2 熱供給側システム
4 熱利用側システム
6 供給側流路
8 戻り側流路
10 界面活性剤濃度制御装置
12 界面活性剤供給手段
14 制御手段
20 屈折率検出手段
















DESCRIPTION OF SYMBOLS 2 Heat supply side system 4 Heat utilization side system 6 Supply side flow path 8 Return side flow path 10 Surfactant concentration control device 12 Surfactant supply means 14 Control means 20 Refractive index detection means
















Claims (4)

熱供給側システムと熱利用側システムとの間を循環する界面活性剤溶液を用いて熱を搬送する熱搬送システムにおける界面活性剤溶液の濃度を制御する界面活性剤濃度制御装置であって、
界面活性剤を供給するための界面活性剤供給手段と、前記界面活性剤供給手段から供給される界面活性剤の供給量を制御するための制御手段と、循環される界面活性剤溶液の屈折率を検出するための屈折率検出手段と、を備え、
前記熱供給側システムと前記熱利用側システムとの間には、前記熱供給側システムからの界面活性剤溶液を前記熱利用側システムに供給する供給側流路と、前記熱利用側システムからの界面活性剤溶液を前記熱供給側システムに戻す戻り側流路が設けられており、前記界面活性剤供給手段は前記供給側流路及び前記戻り側流路のいずれか一方に接続され、前記屈折率検出手段はそれらの他方に配設されており、
前記供給側流路及び前記戻り側流路の前記他方には、その一部をバイパスしてバイパス検出流路が設けられ、前記バイパス検出流路に溶液溜め部が設けられ、前記屈折率検出手段は前記溶液溜め部を流れる界面活性剤溶液の屈折率を検出する手段であり、
前記制御手段は、前記屈折率検出手段からの検出信号に基づいて、前記界面活性剤供給手段から界面活性剤溶液に供給される界面活性剤の供給量を制御することを特徴とする界面活性剤濃度制御装置。
A surfactant concentration control device that controls the concentration of a surfactant solution in a heat transfer system that transfers heat using a surfactant solution that circulates between a heat supply side system and a heat utilization side system,
Surfactant supply means for supplying the surfactant, control means for controlling the supply amount of the surfactant supplied from the surfactant supply means, and the refractive index of the surfactant solution to be circulated A refractive index detecting means for detecting
Between the heat supply side system and the heat utilization side system, a supply side flow path for supplying a surfactant solution from the heat supply side system to the heat utilization side system, and from the heat utilization side system, A return side flow path for returning the surfactant solution to the heat supply side system is provided, and the surfactant supply means is connected to one of the supply side flow path and the return side flow path, and The rate detection means are arranged on the other of them,
The other of the supply side flow path and the return side flow path is provided with a bypass detection flow path by bypassing a part thereof, a solution reservoir is provided in the bypass detection flow path, and the refractive index detection means Is a means for detecting the refractive index of the surfactant solution flowing through the solution reservoir,
The control unit controls a supply amount of the surfactant supplied from the surfactant supply unit to the surfactant solution based on a detection signal from the refractive index detection unit. Concentration control device.
前記バイパス検出流路の溶液溜め部に配設される前記屈折率検出手段の屈折率センサが、その屈折率計測部が界面活性剤溶液に接触するように配設され、且つ、前記溶液溜め部の下部に位置するように設けられていることを特徴とする請求項1記載の界面活性剤濃度制御装置。The refractive index sensor of the refractive index detecting means disposed in the solution reservoir of the bypass detection flow path is disposed such that the refractive index measuring unit is in contact with the surfactant solution, and the solution reservoir The surfactant concentration control device according to claim 1, wherein the surfactant concentration control device is provided so as to be positioned at a lower portion of the surface active agent. 前記溶液溜め部より上流側で、バイパス検出流路の上流側部に、界面活性剤溶液を加熱するための加熱手段が更に配設されていることを特徴とする請求項1又は2に記載の界面活性剤濃度制御装置。The heating means for heating the surfactant solution is further provided upstream of the solution reservoir and upstream of the bypass detection flow path. Surfactant concentration control device. 請求項1〜3のいずれかに記載の界面活性剤濃度制御装置を備えたことを特徴とする熱搬送システム。 A heat transfer system comprising the surfactant concentration control device according to claim 1.
JP2010049500A 2010-03-05 2010-03-05 Surfactant concentration control device and heat transfer system provided with the same Active JP5567364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049500A JP5567364B2 (en) 2010-03-05 2010-03-05 Surfactant concentration control device and heat transfer system provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049500A JP5567364B2 (en) 2010-03-05 2010-03-05 Surfactant concentration control device and heat transfer system provided with the same

Publications (2)

Publication Number Publication Date
JP2011185671A JP2011185671A (en) 2011-09-22
JP5567364B2 true JP5567364B2 (en) 2014-08-06

Family

ID=44792156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049500A Active JP5567364B2 (en) 2010-03-05 2010-03-05 Surfactant concentration control device and heat transfer system provided with the same

Country Status (1)

Country Link
JP (1) JP5567364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205057A (en) * 2017-06-01 2018-12-27 株式会社日立製作所 Reaction container, and material production system and method using the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4660152A (en) * 1984-06-18 1987-04-21 Xerox Corporation System and method for monitoring and maintaining concentrate material in a fluid carrier
JPH06138028A (en) * 1992-10-23 1994-05-20 Nippondenso Co Ltd Liquid property detector
US5565978A (en) * 1993-04-15 1996-10-15 Japan Energy Corporation Total-reflection type refractive index sensor
JPH07103891A (en) * 1993-09-30 1995-04-21 Tokyo Gas Co Ltd Contamination detector for bathtub water
JP2517875B2 (en) * 1993-11-16 1996-07-24 日本たばこ産業株式会社 Method and apparatus for measuring component concentration in salt making process
JPH08240527A (en) * 1995-03-02 1996-09-17 Japan Tobacco Inc System for measuring concentration of component in salt-making process
JPH09138196A (en) * 1995-11-15 1997-05-27 Denso Corp Concentration detector for particle in liquid
JPH1038801A (en) * 1996-07-19 1998-02-13 Japan Energy Corp Total reflection type refractive index sensor
FR2763685B1 (en) * 1997-05-23 1999-07-23 Lasertec International APPARATUS FOR MEASURING THE EVOLUTION OF THE OPTICAL CHARACTERISTICS OF A LIQUID OR GASEOUS MEDIUM IN CIRCULATION
JP2000214935A (en) * 1999-01-26 2000-08-04 Toshiba Corp Method and device for controlling viscosity of fluorescent substance
KR100486441B1 (en) * 1999-06-29 2005-05-03 캐리어 코포레이션 Biosensors for monitoring air conditioning and refrigeration processes
JP4277129B2 (en) * 2000-03-03 2009-06-10 大阪瓦斯株式会社 Surfactant supply control method and heat transfer method
JP2002048358A (en) * 2000-08-03 2002-02-15 Hitachi Ltd Fluid transfer system
JP2002277423A (en) * 2001-03-16 2002-09-25 Osaka Gas Co Ltd Control unit for conrolling concentration of surfactant and heat transfer system equipped therewith
JP2008128722A (en) * 2006-11-17 2008-06-05 Kurabo Ind Ltd Method for quantifying color density of dye liquid

Also Published As

Publication number Publication date
JP2011185671A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
US8117998B2 (en) Hot water supplying system
JP5854862B2 (en) Heat source machine control system
JP2016017664A (en) Water heating system and method for notifying abnormality in water heating system
JP7330297B2 (en) System and method for heating water
US10476090B2 (en) Fuel cell system
JP5567364B2 (en) Surfactant concentration control device and heat transfer system provided with the same
JP2009245094A (en) Flow rate control system
JP5567878B2 (en) Surfactant concentration control device and heat transfer system provided with the same
CN105814370B (en) Hot-water supply
JP5575184B2 (en) Heating system
KR101832440B1 (en) Central heating system and method including heat supplementary unit of return line pipe
JP2015187511A (en) circulation type water heater
JP4277129B2 (en) Surfactant supply control method and heat transfer method
JP2007163091A (en) Hot water storage type water heater
JP2005076960A (en) Hot water supply system
JP2007099336A (en) Weighing machine
JP2015206531A (en) heat pump water heater
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JP2008175455A (en) Hot water storage type hot water supply system
JP6886640B2 (en) Hot water heating system
JP5613092B2 (en) Gas heating system
JP2003004303A (en) Hot-water storage water heater of hot and cold water mixing type
JP2002277423A (en) Control unit for conrolling concentration of surfactant and heat transfer system equipped therewith
TWM599380U (en) Control structure of constant temperature water mixing valve for electric water heater without water flow switch
JP5719807B2 (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140619

R150 Certificate of patent or registration of utility model

Ref document number: 5567364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150