JP5555486B2 - Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program - Google Patents

Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program Download PDF

Info

Publication number
JP5555486B2
JP5555486B2 JP2009295325A JP2009295325A JP5555486B2 JP 5555486 B2 JP5555486 B2 JP 5555486B2 JP 2009295325 A JP2009295325 A JP 2009295325A JP 2009295325 A JP2009295325 A JP 2009295325A JP 5555486 B2 JP5555486 B2 JP 5555486B2
Authority
JP
Japan
Prior art keywords
vehicle
tire
sensitivity
load
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009295325A
Other languages
Japanese (ja)
Other versions
JP2011131845A (en
Inventor
充浩 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2009295325A priority Critical patent/JP5555486B2/en
Publication of JP2011131845A publication Critical patent/JP2011131845A/en
Application granted granted Critical
Publication of JP5555486B2 publication Critical patent/JP5555486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、タイヤ内圧低下検出方法及び装置、並びにタイヤ内圧低下検出プログラムに関する。   The present invention relates to a tire internal pressure drop detection method and apparatus, and a tire internal pressure drop detection program.

車両のタイヤの内圧低下を検出する方法として、従来、種々の方法が提案されており、例えば特許文献1には、車両の絶対速度とタイヤの回転角速度との関係から走行中の車両のタイヤ動荷重半径を算出し、算出された動荷重半径が、予め正常内圧時の動荷重半径として記憶された初期値(基準値)よりも所定の程度だけ小さくなったときに、タイヤの内圧低下を警報する方法が開示されている。この特許文献1記載の方法では、検出精度を高めるために、車両の走行状態を限定(平坦路を一定速度で直進している走行状態に限定)し、かかる状態のときに得られた動荷重半径を有効値としてタイヤの内圧低下の検出に用いている。   Conventionally, various methods have been proposed as a method for detecting a decrease in the internal pressure of a tire of a vehicle. For example, Patent Document 1 discloses tire movement of a vehicle during traveling from the relationship between the absolute speed of the vehicle and the rotational angular velocity of the tire. The load radius is calculated, and when the calculated dynamic load radius is smaller than the initial value (reference value) stored in advance as the dynamic load radius at normal internal pressure, a warning is given of a decrease in tire internal pressure. A method is disclosed. In the method described in Patent Document 1, in order to improve the detection accuracy, the running state of the vehicle is limited (limited to a running state in which a flat road is traveling straight at a constant speed), and the dynamic load obtained in such a state The radius is used as an effective value to detect a decrease in tire internal pressure.

また、タイヤの動荷重半径は車両速度に依存することから、いずれの速度領域でも動荷重半径の減少が検出できるように、複数の速度領域における動荷重半径と車両速度との関係から近似式を用いて動荷重半径の初期化を行う方法も知られている(特許文献2参照)。   In addition, since the tire dynamic load radius depends on the vehicle speed, an approximate expression is derived from the relationship between the dynamic load radius and the vehicle speed in a plurality of speed regions so that a decrease in the dynamic load radius can be detected in any speed region. There is also known a method for initializing the dynamic load radius using the method (see Patent Document 2).

そして、これらの初期化方法によって求めた動荷重半径の基準値に対して、走行中のタイヤの動荷重半径が判定基準を超えて小さくなったと判定したときに、当該タイヤの内圧が低下していると判断するのが、動荷重半径に着目したタイヤ内圧低下検出方法である。
ところで、一般的に、タイヤの動荷重半径の内圧依存性(タイヤ内圧の低下による動荷重半径の変化の程度)は、ほぼタイヤサイズによって同一であり、検出すべき内圧低下の大きさないしは量が決まれば、かかる内圧低下に起因する動荷重半径の減少しろは、タイヤサイズ毎にほぼ一意的に定めることができる。
When it is determined that the dynamic load radius of the running tire is smaller than the determination standard with respect to the reference value of the dynamic load radius obtained by these initialization methods, the internal pressure of the tire decreases. It is the tire internal pressure drop detection method that focuses on the dynamic load radius.
By the way, in general, the internal pressure dependence of the dynamic load radius of the tire (the degree of change in the dynamic load radius due to the decrease in the tire internal pressure) is almost the same depending on the tire size, and the amount or amount of decrease in the internal pressure to be detected is large. If determined, the margin of decrease in the dynamic load radius due to such a decrease in internal pressure can be determined almost uniquely for each tire size.

前記動荷重半径の減少しろは、実験により求めることができるが、あらゆるタイヤの測定を行なうことは非常に大きな労力を要し現実的でないことから、タイヤ内圧が低下していると判定するための前記判定基準として、特許文献1記載の方法を含む従来の方法では、車両に装着される代表的なタイヤの正常内圧時における動荷重半径と、例えば30%減圧時における動荷重半径との差又は比を用いている。   The decrease in the dynamic load radius can be obtained by experimentation, but it is not practical to measure all tires, so that it is determined that the tire internal pressure has decreased. In the conventional method including the method described in Patent Document 1 as the determination criterion, a difference between a dynamic load radius of a typical tire mounted on a vehicle at a normal internal pressure and a dynamic load radius at a time of 30% decompression, for example, The ratio is used.

しかしながら、通常の乗用車では、当該乗用車に装着可能な又は装着が予定されているタイヤのサイズが複数存在しているのが一般的であり、複数の設定サイズのうちどのサイズのタイヤが車両に装着されるかは個別には分からない。
したがって、タイヤ内圧低下警報装置の閾値である前記判定基準を一定値(固定値)とした場合、装着タイヤのサイズによっては正確に警報を発することができない場合がある。
However, in general passenger cars, there are generally multiple sizes of tires that can or will be installed in the passenger car, and which of the multiple set sizes is installed in the vehicle. I don't know if it will be done individually.
Therefore, if the determination criterion, which is the threshold value of the tire internal pressure drop warning device, is set to a constant value (fixed value), an alarm may not be issued accurately depending on the size of the mounted tire.

そこで、本出願人は、装着タイヤの種類に応じて内圧低下判定基準を簡単に設定することができるタイヤ内圧低下判定方法を提案している(特許文献3参照)。
この特許文献3記載の方法では、内圧低下の判定基準である閾値を、車両の前輪の動荷重半径と後輪の動荷重半径との差に基づいて、車両に装着されるタイヤに合わせて変えている。これにより、タイヤサイズに応じた閾値を簡単に設定することができ、タイヤの内圧低下を正確に検出することができる。
In view of this, the present applicant has proposed a tire internal pressure decrease determination method that can easily set an internal pressure decrease determination standard according to the type of the mounted tire (see Patent Document 3).
In the method described in Patent Document 3, the threshold value that is a criterion for reducing the internal pressure is changed in accordance with the tire mounted on the vehicle based on the difference between the dynamic load radius of the front wheel and the dynamic load radius of the rear wheel. ing. Thereby, the threshold value according to a tire size can be set easily, and the internal pressure fall of a tire can be detected correctly.

特開2007−45295号公報JP 2007-45295 A 特開2007−276646号公報JP 2007-276646 A 特開2009−6793号公報JP 2009-6793 A

しかしながら、特許文献3記載の方法では、前輪と後輪の動荷重半径差と前後の荷重差(前輪荷重-後輪荷重)を利用してタイヤの荷重感度を推定しているが、この方法は前後荷重差の大きいFF車のような車両には有効であるが、前後荷重配分がほとんど変わらない車両では推定の精度が低下することがあり、適用可能な車種が限定されるという課題を残していた。   However, in the method described in Patent Document 3, the tire load sensitivity is estimated by using the dynamic load radius difference between the front and rear wheels and the front and rear load difference (front wheel load-rear wheel load). It is effective for vehicles such as FF vehicles with large front-rear load differences, but the accuracy of estimation may be reduced for vehicles where the front-rear load distribution is almost unchanged, leaving the problem that applicable vehicle types are limited. It was.

本発明は、このような事情に鑑みてなされたものであり、すべての車種についてタイヤサイズに応じた警報閾値を簡単に設定することができるタイヤ内圧低下検出方法及び装置、並びにタイヤ内圧低下検出プログラムを提供することを目的としている。   The present invention has been made in view of such circumstances, and a tire internal pressure drop detection method and apparatus, and a tire internal pressure drop detection program capable of easily setting an alarm threshold according to the tire size for all vehicle types. The purpose is to provide.

本発明のタイヤ内圧低下検出方法(以下、単に「検出方法」ともいう)は、走行中の車両のタイヤ動荷重半径を算出し、得られた動荷重半径の、正常内圧時における動荷重半径の基準値からの変化の大きさに基づいてタイヤの内圧低下を検出する方法であって、
前記車両の各タイヤの車輪回転情報を検出する工程と、
検出した車輪回転情報から車輪速度を算出する工程と、
前記車両に搭載されたGPS装置からの速度情報に基づいて車両速度を算出する工程と、
算出された車両速度及び前記車輪速度から各タイヤの動荷重半径を求める工程と、
得られたタイヤ動荷重半径の、前記基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する工程と
を含んでおり、
前記所定の閾値が、予め求めておいた前記車両に装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係と、初期化時に旋回走行することで得られる荷重感度とから求められる減圧感度に基づいて設定される閾値設定工程をさらに含んでおり、
前記荷重感度が、前記速度情報と車両の左右輪の車輪速度とから算出される、旋回時の荷重移動による動荷重半径変化と、横加速度との関係式から求められ、
前記車両が前輪駆動車又は後輪駆動車であり、
前記関係式が、車両の重心高、車両のトレッド幅、車両質量、及び全軸に対する従動輪軸にかかる荷重移動分担率を式中に含むことを特徴としている。
The tire internal pressure drop detection method of the present invention (hereinafter also simply referred to as “detection method”) calculates the tire dynamic load radius of a running vehicle, and the obtained dynamic load radius of the dynamic load radius at normal internal pressure is calculated. A method of detecting a decrease in tire internal pressure based on the magnitude of change from a reference value,
Detecting wheel rotation information of each tire of the vehicle;
Calculating the wheel speed from the detected wheel rotation information;
Calculating vehicle speed based on speed information from a GPS device mounted on the vehicle;
Obtaining a dynamic load radius of each tire from the calculated vehicle speed and the wheel speed;
Determining the decrease in the internal pressure of the tire when the magnitude of the change from the reference value of the obtained tire dynamic load radius exceeds a predetermined threshold,
The predetermined threshold is a pressure reduction obtained from the relationship between the load sensitivity and the pressure reduction sensitivity when turning the vehicle related to the tire to be mounted on the vehicle, and the load sensitivity obtained by turning during initialization. and Nde further contains a threshold setting step that is set based on the sensitivity,
The load sensitivity is calculated from the relationship between the lateral acceleration and the dynamic load radius change due to load movement at the time of turning, calculated from the speed information and the wheel speeds of the left and right wheels of the vehicle,
The vehicle is a front wheel drive vehicle or a rear wheel drive vehicle;
The relational expression, the center of gravity height of the vehicle, the tread width of the vehicle, and the vehicle mass, and the load shift share of according to the driven wheel axis to all axes characterized by the free Mukoto the formula.

本発明の検出方法では、車両旋回時に左右輪で荷重移動が起こることを利用して、旋回中の動荷重半径変化、すなわち荷重移動による動荷重半径変化つまり荷重感度を求めている。そして、予め求めておいた前記車両に装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係と、初期化時に旋回走行することで得られる荷重感度とから減圧感度を求め、この減圧感度に基づいて閾値を設定している。前記旋回中の荷重移動はどのような車両でも起こることから、車種に関係なく閾値を簡単に設定することができる。   In the detection method of the present invention, the change in dynamic load radius during turning, that is, the change in dynamic load radius due to load movement, that is, the load sensitivity, is obtained by utilizing the fact that load movement occurs on the left and right wheels during vehicle turning. Then, the pressure reduction sensitivity is obtained from the relationship between the load sensitivity and the pressure reduction sensitivity at the time of turning of the vehicle related to the tire to be mounted on the vehicle and the load sensitivity obtained by turning at the time of initialization. A threshold is set based on the sensitivity. Since the load movement during turning occurs in any vehicle, the threshold value can be easily set regardless of the vehicle type.

タイヤの動荷重半径変化をΔDLR、タイヤ単体の荷重感度をb、車両の重心高をH、車両のトレッド幅をW、車両質量をm、車両速度をV、ヨーレートをθ´、全軸に対する従動輪軸にかかる荷重移動分担率をαとすると、前記関係式は、
ΔDLR=b×α×(H/W)×m×Vθ´
であり、前記装着予定のタイヤに係る車両旋回時の荷重感度及び初期化時に旋回走行することで得られる荷重感度は、b×α×(H/W)×mで表される荷重感度代表特性値であるものとすることができる。
Change in tire dynamic load radius is ΔDLR, tire load sensitivity is b, vehicle center of gravity height is H, vehicle tread width is W, vehicle mass is m, vehicle speed is V, yaw rate is θ ', driven for all axes When the load movement share ratio applied to the wheel shaft is α, the relational expression is
ΔDLR = b × α × (H / W) × m × Vθ ′
The load sensitivity at the time of turning of the vehicle and the load sensitivity obtained by turning at the time of initialization related to the tire to be mounted is a load sensitivity representative characteristic represented by b × α × (H / W) × m. It can be a value.

前記装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係は、前記荷重感度代表特性値と減圧感度との一次関数で表されるものとすることができる。 The relationship between the load sensitivity and reduced pressure sensitivity during a vehicle turning of the tire will be attached may be assumed to be represented by a linear function of the decreased pressure sensitivity and the load sensitivity typical characteristic values.

本発明のタイヤ内圧低下検出装置(以下、単に「検出装置」ともいう)は、走行中の車両のタイヤ動荷重半径を算出し、得られた動荷重半径の、正常内圧時における動荷重半径の基準値からの変化の大きさに基づいてタイヤの内圧低下を検出する装置であって、
前記車両の各タイヤの車輪回転情報を検出する車輪回転情報検出手段と、
この車輪回転情報検出手段により検出された車輪回転情報から車輪速度を算出する車輪速度算出手段と、
前記車両に搭載されたGPS装置からの速度情報に基づいて車両速度を算出する車両速度算出手段と、
この車両速度算出手段により算出された車両速度及び前記車輪速度から各タイヤの動荷重半径を求める動荷重半径算出手段と、
得られたタイヤ動荷重半径の、前記基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する判定手段と
を含んでおり、
前記所定の閾値を、予め求めておいた前記車両に装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係と、初期化時に旋回走行することで得られる荷重感度とから求められる減圧感度に基づいて設定する閾値設定手段をさらに含んでおり、
前記荷重感度が、前記速度情報と車両の左右輪の車輪速度とから算出される、旋回時の荷重移動による動荷重半径変化と、横加速度との関係式から求められ、
前記車両が前輪駆動車又は後輪駆動車であり、
前記関係式が、車両の重心高、車両のトレッド幅、車両質量、及び全軸に対する従動輪軸にかかる荷重移動分担率を式中に含むことを特徴としている。
The tire internal pressure drop detection device (hereinafter, also simply referred to as “detection device”) of the present invention calculates the tire dynamic load radius of a running vehicle, and the obtained dynamic load radius of the dynamic load radius at normal internal pressure is calculated. A device for detecting a decrease in internal pressure of a tire based on the magnitude of change from a reference value,
Wheel rotation information detecting means for detecting wheel rotation information of each tire of the vehicle;
Wheel speed calculating means for calculating the wheel speed from the wheel rotation information detected by the wheel rotation information detecting means;
Vehicle speed calculation means for calculating a vehicle speed based on speed information from a GPS device mounted on the vehicle;
Dynamic load radius calculating means for determining the dynamic load radius of each tire from the vehicle speed calculated by the vehicle speed calculating means and the wheel speed;
A determination means for determining a decrease in the internal pressure of the tire when a magnitude of a change from the reference value of the obtained tire dynamic load radius exceeds a predetermined threshold,
The predetermined threshold value is determined in advance from the relationship between the load sensitivity and the depressurization sensitivity when turning the vehicle related to the tire to be mounted on the vehicle, and the load sensitivity obtained by turning during initialization. and Nde further contains a threshold setting means for setting, based on the sensitivity,
The load sensitivity is calculated from the relationship between the lateral acceleration and the dynamic load radius change due to load movement at the time of turning, calculated from the speed information and the wheel speeds of the left and right wheels of the vehicle,
The vehicle is a front wheel drive vehicle or a rear wheel drive vehicle;
The relational expression, the center of gravity height of the vehicle, the tread width of the vehicle, and the vehicle mass, and the load shift share of according to the driven wheel axis to all axes characterized by the free Mukoto the formula.

本発明の検出装置では、車両旋回時に左右輪で荷重移動が起こることを利用して、旋回中の動荷重半径変化、すなわち荷重移動による動荷重半径変化つまり荷重感度を求めている。そして、予め求めておいた前記車両に装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係と、初期化時に旋回走行することで得られる荷重感度とから減圧感度を求め、この減圧感度に基づいて閾値を設定している。前記旋回中の荷重移動はどのような車両でも起こることから、車種に関係なく閾値を簡単に設定することができる。   In the detection device of the present invention, the change in the dynamic load radius during turning, that is, the change in the dynamic load radius due to the load movement, that is, the load sensitivity is obtained by utilizing the fact that the load movement occurs in the left and right wheels when the vehicle is turning. Then, the pressure reduction sensitivity is obtained from the relationship between the load sensitivity and the pressure reduction sensitivity at the time of turning of the vehicle related to the tire to be mounted on the vehicle and the load sensitivity obtained by turning at the time of initialization. A threshold is set based on the sensitivity. Since the load movement during turning occurs in any vehicle, the threshold value can be easily set regardless of the vehicle type.

タイヤの動荷重半径変化をΔDLR、タイヤ単体の荷重感度をb、車両の重心高をH、車両のトレッド幅をW、車両質量をm、車両速度をV、ヨーレートをθ´、全軸に対する従動輪軸にかかる荷重移動分担率をαとすると、前記関係式は、
ΔDLR=b×α×(H/W)×m×Vθ´
であり、前記装着予定のタイヤに係る車両旋回時の荷重感度及び初期化時に旋回走行することで得られる荷重感度は、b×α×(H/W)×mで表される荷重感度代表特性値であるものとすることができる。
Change in tire dynamic load radius is ΔDLR, tire load sensitivity is b, vehicle center of gravity height is H, vehicle tread width is W, vehicle mass is m, vehicle speed is V, yaw rate is θ ', driven for all axes When the load movement share ratio applied to the wheel shaft is α, the relational expression is
ΔDLR = b × α × (H / W) × m × Vθ ′
The load sensitivity at the time of turning of the vehicle and the load sensitivity obtained by turning at the time of initialization related to the tire to be mounted is a load sensitivity representative characteristic represented by b × α × (H / W) × m. It can be a value.

前記装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係は、前記荷重感度代表特性値と減圧感度との一次関数で表されるものとすることができる。
The relationship between the load sensitivity and reduced pressure sensitivity during a vehicle turning of the tire will be attached may be assumed to be represented by a linear function of the decreased pressure sensitivity and the load sensitivity typical characteristic values.

本発明のタイヤ内圧低下検出プログラム(以下、単に「プログラム」ともいう)は、走行中の車両のタイヤ動荷重半径を算出し、得られた動荷重半径の、正常内圧時における動荷重半径の基準値からの変化の大きさに基づいてタイヤの内圧低下を検出するためにコンピュータを、
車両の各タイヤの車輪回転情報から車輪速度を算出する車輪速度算出手段、
前記車両に搭載されたGPS装置からの速度情報に基づいて車両速度を算出する車両速度算出手段、
この車両速度算出手段により算出された車両速度及び前記車輪速度から各タイヤの動荷重半径を求める動荷重半径算出手段、
得られたタイヤ動荷重半径の、前記基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する判定手段、及び
前記所定の閾値を、予め求めておいた前記車両に装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係と、初期化時に旋回走行することで得られる荷重感度とから求められる減圧感度に基づいて設定する閾値設定手段
として機能させ
前記荷重感度が、前記速度情報と車両の左右輪の車輪速度とから算出される、旋回時の荷重移動による動荷重半径変化と、横加速度との関係式から求められ、
前記車両が前輪駆動車又は後輪駆動車であり、
前記関係式が、車両の重心高、車両のトレッド幅、車両質量、及び全軸に対する従動輪軸にかかる荷重移動分担率を式中に含むことを特徴としている。
The tire internal pressure drop detection program (hereinafter also simply referred to as “program”) of the present invention calculates the tire dynamic load radius of a running vehicle, and uses the obtained dynamic load radius as a reference for the dynamic load radius at normal internal pressure. Computer to detect a decrease in tire internal pressure, based on the magnitude of the change from the value
Wheel speed calculating means for calculating wheel speed from wheel rotation information of each tire of the vehicle,
Vehicle speed calculation means for calculating a vehicle speed based on speed information from a GPS device mounted on the vehicle;
Dynamic load radius calculating means for determining the dynamic load radius of each tire from the vehicle speed calculated by the vehicle speed calculating means and the wheel speed;
Determination means for determining a decrease in tire internal pressure when the magnitude of change from the reference value of the obtained tire dynamic load radius exceeds a predetermined threshold, and the predetermined threshold is determined in advance. It functions as a threshold setting means that is set based on the pressure reduction sensitivity obtained from the relationship between the load sensitivity and the pressure reduction sensitivity when turning the vehicle related to the tire to be mounted on the vehicle, and the load sensitivity obtained by turning at the time of initialization. ,
The load sensitivity is calculated from the relationship between the lateral acceleration and the dynamic load radius change due to load movement at the time of turning, calculated from the speed information and the wheel speeds of the left and right wheels of the vehicle,
The vehicle is a front wheel drive vehicle or a rear wheel drive vehicle;
The relational expression includes the height of the center of gravity of the vehicle, the tread width of the vehicle, the vehicle mass, and the load transfer share ratio applied to the driven wheel shaft with respect to all the axes .

本発明のタイヤ内圧低下検出方法及び装置、並びにタイヤ内圧低下検出プログラムによれば、すべての車種についてタイヤサイズに応じた警報閾値を簡単に設定することができる。   According to the tire pressure drop detection method and apparatus and the tire pressure drop detection program of the present invention, it is possible to easily set an alarm threshold corresponding to the tire size for all vehicle types.

本発明の検出装置の一実施の形態を示すブロック図である。It is a block diagram which shows one Embodiment of the detection apparatus of this invention. 図1に示される検出装置の電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of the detection apparatus shown by FIG. 左旋回時の内外輪の対地速度と車両速度の関係を示す図である。It is a figure which shows the relationship between the ground speed of the inner and outer wheel at the time of left turn, and vehicle speed. 車両の各種パラメータを説明する図である。It is a figure explaining various parameters of vehicles. タイヤサイズ185/70R14についての動荷重半径変化量ΔDLRと横加速度θ´Vをプロットした図である。It is the figure which plotted dynamic load radius variation | change_quantity (DELTA) DLR and lateral acceleration (theta) 'V about tire size 185 / 70R14. 減圧感度と荷重感度代表特性値との関係を示す図である。It is a figure which shows the relationship between pressure reduction sensitivity and a load sensitivity representative characteristic value. 或るタイヤについての動荷重半径変化量ΔDLRと横加速度θ´Vをプロットした図である。It is the figure which plotted dynamic load radius variation | change_quantity (DELTA) DLR and lateral acceleration (theta) 'V about a certain tire.

以下、添付図面を参照しつつ、本発明のタイヤ内圧低下検出方法及び装置、並びにプログラムの実施の形態を詳細に説明する。
図1に示されるように、本発明の一実施の形態に係る検出装置は、4輪車両に備えられた4つのタイヤFL(左前輪)、FR(右前輪)、RL(左後輪)及びRR(右後輪)の車輪回転情報を検出するため、各タイヤに関連して設けられた通常の車輪速度検出手段(車輪回転情報検出手段)1を備えている。
Hereinafter, embodiments of a tire internal pressure drop detection method and apparatus, and a program according to the present invention will be described in detail with reference to the accompanying drawings.
As shown in FIG. 1, the detection apparatus according to an embodiment of the present invention includes four tires FL (left front wheel), FR (right front wheel), RL (left rear wheel), and In order to detect wheel rotation information of the RR (right rear wheel), normal wheel speed detection means (wheel rotation information detection means) 1 provided in association with each tire is provided.

前記車輪速度検出手段1としては、電磁ピックアップなどを用いて回転パルスを発生させてパルスの数から回転角速度及び車輪速度を測定するための車輪速センサ又はダイナモのように回転を利用して発電を行い、この電圧から回転角速度及び車輪速度を測定するためのものを含む角速度センサなどを用いることができる。前記車輪速度検出手段1の出力は、ABSなどのコンピュータである制御ユニット2に与えられる。この制御ユニット2には、内圧が低下したタイヤを知らせるための液晶表示素子、プラズマ表示素子又はCRTなどで構成された表示器3、ドライバーによって操作することができる初期化ボタン4、タイヤの内圧低下をドライバーに知らせる警報器5、及び車両速度情報を提供するGPS装置6が接続されている。   The wheel speed detection means 1 generates power using rotation like a wheel speed sensor or dynamo for generating rotation pulses using an electromagnetic pickup or the like and measuring the rotation angular speed and wheel speed from the number of pulses. It is possible to use an angular velocity sensor including that for measuring the rotational angular velocity and the wheel speed from this voltage. The output of the wheel speed detecting means 1 is given to a control unit 2 which is a computer such as ABS. The control unit 2 includes a liquid crystal display element for informing a tire whose internal pressure has decreased, a display 3 composed of a plasma display element or a CRT, an initialization button 4 that can be operated by a driver, and a decrease in tire internal pressure. Are connected to an alarm device 5 that informs the driver of the vehicle and a GPS device 6 that provides vehicle speed information.

制御ユニット2は、図2に示されるように、外部装置との信号の受け渡しに必要なI/Oインターフェース2aと、演算処理の中枢として機能するCPU2bと、このCPU2bの制御動作プログラムが格納されたROM2cと、前記CPU2bが制御動作を行う際にデータなどが一時的に書き込まれたり、その書き込まれたデータが読み出されたりするRAM2dとから構成されている。なお、図2において、6aはGPSアンテナである。   As shown in FIG. 2, the control unit 2 stores an I / O interface 2a necessary for passing signals to and from an external device, a CPU 2b that functions as a center of arithmetic processing, and a control operation program for the CPU 2b. The ROM 2c and the RAM 2d from which data is temporarily written or the written data is read when the CPU 2b performs a control operation. In FIG. 2, 6a is a GPS antenna.

前記車輪速度検出手段1では、タイヤの回転数に対応したパルス信号(以下、「車輪速パルス」ともいう)が出力される。また、CPU2bでは、車輪速度検出手段1から出力された車輪速パルスに基づいて、所定のサンプリング周期ΔT(sec)、例えばΔT=0.05秒毎に各タイヤの回転角速度が算出される。   The wheel speed detection means 1 outputs a pulse signal corresponding to the number of rotations of the tire (hereinafter also referred to as “wheel speed pulse”). Further, the CPU 2b calculates the rotation angular velocity of each tire at a predetermined sampling period ΔT (sec), for example, ΔT = 0.05 seconds, based on the wheel speed pulse output from the wheel speed detecting means 1.

車両速度は、車両に搭載されたGPS装置から得られる速度情報を利用して求めることができる。カーナビゲーションの普及によりGPS装置が多くの車両に取り付けられるようになっている。このことでGPS装置による測位技術も向上し、現在では速度を算出することに特化した装置(英国Race Logic社製のGPS式速度計VBOX(商品名))も販売されている。かかるGPS情報を用いた速度計による算出速度を車両速度として利用することができる。   The vehicle speed can be obtained using speed information obtained from a GPS device mounted on the vehicle. With the widespread use of car navigation systems, GPS devices are attached to many vehicles. As a result, positioning technology using a GPS device has also been improved, and a device specialized in calculating speed (GPS speedometer VBOX (trade name) manufactured by Race Logic, UK) is now on the market. The speed calculated by the speedometer using such GPS information can be used as the vehicle speed.

本実施の形態に係る検出装置は、車輪速度検出手段(車輪回転情報検出手段)1と、検出された車輪回転情報から車輪速度を算出する車輪速度算出手段と、前記車両に搭載されたGPS装置からの速度情報に基づいて車両速度を算出する車両速度算出手段と、この車両速度算出手段により算出された車両速度及び前記車輪速度から各タイヤの動荷重半径を求める動荷重半径算出手段と、得られたタイヤ動荷重半径の、前記基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する判定手段と、前記所定の閾値を、予め求めておいた前記車両に装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係と、初期化時に旋回走行することで得られる荷重感度とから求められる減圧感度に基づいて設定する閾値設定手段とから構成されている。そして、タイヤ内圧低下検出プログラムは、前記制御ユニット2を、車輪速度算出手段、車両速度算出手段、動荷重半径算出手段、判定手段及び閾値設定手段として機能させる。   The detection device according to the present embodiment includes wheel speed detection means (wheel rotation information detection means) 1, wheel speed calculation means for calculating wheel speed from detected wheel rotation information, and a GPS device mounted on the vehicle. Vehicle speed calculation means for calculating a vehicle speed based on speed information from the vehicle, dynamic load radius calculation means for obtaining a dynamic load radius of each tire from the vehicle speed and the wheel speed calculated by the vehicle speed calculation means, and Determination means for determining a decrease in tire internal pressure when the magnitude of a change in the tire dynamic load radius from the reference value exceeds a predetermined threshold, and the vehicle for which the predetermined threshold has been determined in advance Threshold setting to be set based on the relationship between the load sensitivity when turning the vehicle and the pressure reduction sensitivity of the tire scheduled to be mounted on the tire and the load sensitivity obtained by turning during initialization It is composed of a stage. Then, the tire internal pressure drop detection program causes the control unit 2 to function as wheel speed calculation means, vehicle speed calculation means, dynamic load radius calculation means, determination means, and threshold setting means.

走行中の車両のタイヤ動荷重半径(R)は、車両の絶対速度(V)とタイヤの回転角速度(ω)との関係から、V=R×ωにより算出することができる。そして、タイヤ動荷重半径(R)はタイヤ内圧が低下するにしたがって減少することが知られており、このことを利用してタイヤの内圧低下をタイヤ動荷重半径(R)の減少から推定することができる。   The tire dynamic load radius (R) of the traveling vehicle can be calculated by V = R × ω from the relationship between the absolute speed (V) of the vehicle and the rotational angular velocity (ω) of the tire. The tire dynamic load radius (R) is known to decrease as the tire internal pressure decreases, and this is used to estimate the decrease in tire internal pressure from the decrease in tire dynamic load radius (R). Can do.

内圧低下を判定するための動荷重半径の変化量(減少量)の基準、すなわち閾値は、例えばタイヤが25%又は30%減圧したときに当該タイヤの動荷重半径がどれだけ減少するかによって決定することができる。この内圧変化による動荷重半径の変化(以下、「減圧感度」ともいう)はタイヤによりほぼ一定であり、且つタイヤサイズによってほぼ決まることが知られている。したがって、予め減圧感度に関する情報を実験などにより把握しておけば、タイヤ毎の閾値を決定することができる。   The reference of the amount of change (decrease) in the dynamic load radius for determining the decrease in internal pressure, that is, the threshold value is determined by how much the dynamic load radius of the tire decreases when the tire is depressurized by 25% or 30%, for example. can do. It is known that the change in the dynamic load radius due to this change in internal pressure (hereinafter also referred to as “decompression sensitivity”) is substantially constant depending on the tire and is substantially determined by the tire size. Therefore, if the information about the pressure reduction sensitivity is obtained in advance through experiments or the like, the threshold value for each tire can be determined.

ただし、実際には開発車両の仕様が決まっていても、通常は複数のタイヤサイズの設定があるため、そのうちの1つのタイヤサイズについてだけ減圧感度を把握しても、装着されるタイヤサイズが別サイズであった場合には、閾値が現実のタイヤに適合していないことから、当該タイヤの内圧低下を正確に検出することができなくなる。特に、減圧感度を把握したタイヤの偏平率が70であるのに対し、実際に装着したタイヤの偏平率が50であるという具合に偏平率が大きく異なった場合においては、サイズによる減圧感度も大きく異なることから、偏平率70のタイヤの減圧感度で閾値を決めると、偏平率50のタイヤの内圧低下を正確に検出することができなくなる。このことは、逆の場合(実際に装着したタイヤの偏平率が、減圧感度を把握したタイヤの偏平率よりもかなり大きい場合)についても同様である。   However, even if the specifications of the developed vehicle are actually decided, there are usually multiple tire size settings, so even if you know the pressure reduction sensitivity for only one of the tire sizes, the tire size to be installed is different. In the case of the size, since the threshold value does not match the actual tire, it is impossible to accurately detect a decrease in the internal pressure of the tire. In particular, when the flatness ratio of the tire having grasped the decompression sensitivity is 70, whereas the flatness ratio of the tire actually mounted is 50, the decompression sensitivity depending on the size is large. Therefore, if the threshold value is determined based on the pressure reduction sensitivity of a tire with a flatness ratio of 70, a decrease in the internal pressure of a tire with a flatness ratio of 50 cannot be accurately detected. The same applies to the opposite case (when the flatness of the actually mounted tire is considerably larger than the flatness of the tire whose pressure reduction sensitivity is known).

本発明者は、すべてのタイヤについて減圧感度を事前に把握しなくてもタイヤの内圧低下を精度よく判定できるように、しかも適用可能な車種に制限を加えることなく精度よく判定できるように、種々検討を重ねた結果、サイズの違いによる減圧感度の影響を考慮して閾値を設定する方法を考案した。すなわち、減圧感度は、荷重に対する動荷重半径の変化量(以下、「荷重感度」ともいう)と比例関係にあるという知見に基づき、さらに、旋回走行時にはどのような車両でも左右輪で荷重移動が起こるという現象を利用して、本発明を完成させた。   The present inventor has various methods so that it is possible to accurately determine a decrease in the internal pressure of the tire without having to know the pressure reduction sensitivity in advance for all tires, and to accurately determine without limitation on applicable vehicle types. As a result of repeated studies, we have devised a method for setting the threshold in consideration of the effect of reduced pressure sensitivity due to the difference in size. That is, the pressure reduction sensitivity is based on the knowledge that there is a proportional relationship with the amount of change in the dynamic load radius with respect to the load (hereinafter also referred to as “load sensitivity”). The present invention has been completed by utilizing the phenomenon that occurs.

具体的には、減圧感度と荷重感度とが比例関係にあることから、当該減圧感度と荷重感度の比例定数のみを実験により事前に把握しておけば、荷重感度から減圧感度を自動的に算出することができ、実際に装着されているタイヤに応じた閾値を算出することができる。前記荷重感度は、後述するように、速度情報と車両の左右輪の車輪速度とから算出される、旋回時の荷重移動による動荷重半径変化と、横加速度との関係式から求めることができる。   Specifically, since the decompression sensitivity and load sensitivity are in a proportional relationship, if only the proportional constant between the decompression sensitivity and load sensitivity is known in advance by experiment, the decompression sensitivity is automatically calculated from the load sensitivity. It is possible to calculate a threshold value corresponding to a tire that is actually mounted. As will be described later, the load sensitivity can be obtained from the relational expression between the lateral acceleration and the dynamic load radius change due to the load movement at the time of turning calculated from the speed information and the wheel speeds of the left and right wheels of the vehicle.

前記減圧感度と荷重感度との関係を求めるための事前の実験については、装着が予定されているすべてのサイズ及びパターンで行う必要はなく、減圧感度と荷重感度は一定の比例関係にあるので、少なくとも1本、望ましくは3本程度の代表的なサイズ違いのタイヤを測定し、比例定数を求めるだけでよい。   The preliminary experiment for determining the relationship between the reduced pressure sensitivity and the load sensitivity does not need to be performed for all sizes and patterns that are planned to be mounted, and the reduced pressure sensitivity and the load sensitivity are in a fixed proportional relationship. It is only necessary to measure at least one, preferably about three, tires of different sizes and determine the proportionality constant.

減圧感度と荷重感度は、以下の理由により比例するものと考えられる。
タイヤの動荷重半径は、主にタイヤブレーカーの周長により決定されるが、当該タイヤに作用する荷重又はタイヤ内圧の低下によってタイヤブレーカーが撓むことで変化する。この撓み量は、タイヤの接地面積と比例し、接地面積が大きいときの撓み量は大きい。ここで、接地面積Sは、
接地面積S∝荷重/内圧
の関係にある。つまり、
動荷重半径の変化=撓み量の変化∝接地面積S∝荷重/内圧・・・・・(1)
の関係にある。
The pressure reduction sensitivity and load sensitivity are considered to be proportional for the following reasons.
The dynamic load radius of a tire is mainly determined by the circumference of the tire breaker, but changes when the tire breaker bends due to a decrease in the load acting on the tire or the tire internal pressure. The amount of deflection is proportional to the contact area of the tire, and the amount of deflection when the contact area is large is large. Here, the ground contact area S is
There is a relationship of ground contact area S∝load / internal pressure. That means
Change in dynamic load radius = Change in deflection amount ∝ Contact area S ∝ Load / Internal pressure (1)
Are in a relationship.

この(1)で示される関係より、動荷重半径の変化に対する荷重の増加は内圧が減少することと等価であることから、動荷重半径に対する内圧の影響は荷重の影響に置き換えることができる。   From the relationship shown in (1), an increase in the load with respect to the change in the dynamic load radius is equivalent to a decrease in the internal pressure. Therefore, the influence of the internal pressure on the dynamic load radius can be replaced with the influence of the load.

〔内圧低下検出方法〕
以下、本発明の検出方法について説明する。
(1)まず、車輪速度検出手段1の出力信号(パルス信号)に基づいて、次の式(2)により各タイヤの回転角速度(ω)を算出する。
回転角速度(ω)=2π×Freq(Hz)/N(個)・・・・・(2)
ここに、Nは車輪速度検出手段1の車軸1回転あたりの歯数であり、Freq(Hz)は、その車輪速度検出手段1の歯が1秒あたりにカウントされた数値である。
[Internal pressure drop detection method]
Hereinafter, the detection method of the present invention will be described.
(1) First, based on the output signal (pulse signal) of the wheel speed detecting means 1, the rotational angular velocity (ω) of each tire is calculated by the following equation (2).
Rotational angular velocity (ω) = 2π × Freq (Hz) / N (pieces) (2)
Here, N is the number of teeth per one rotation of the axle of the wheel speed detecting means 1, and Freq (Hz) is a numerical value obtained by counting the teeth of the wheel speed detecting means 1 per second.

(2)一方、GPS装置より得られる速度情報から車両速度(V)を求める。例えば、GPS装置から得られる南北方向速度(Vn)及び東西方向速度(Ve)から、以下の式(3)により車両速度(V)を求めることができる。   (2) On the other hand, the vehicle speed (V) is obtained from the speed information obtained from the GPS device. For example, the vehicle speed (V) can be obtained from the following equation (3) from the north-south direction speed (Vn) and the east-west direction speed (Ve) obtained from the GPS device.

Figure 0005555486
Figure 0005555486

前記車両速度(V)はシリアルデータとして直接制御ユニット2に出力される。なお、前記回転角速度(ω)の算出時刻と車両速度(V)の算出時刻のいずれか一方について、他方と同時刻での数値を内挿計算し、互いに同時刻での数値を算出して同期化を行い、例えば50msec毎のデジタルデータとして制御ユニット2に取り込むことができる。この50msec毎のデジタルデータから動荷重半径を50msec毎に算出し、例えば1秒毎の平均値として算出することができる。   The vehicle speed (V) is directly output to the control unit 2 as serial data. For either one of the calculation time of the rotational angular velocity (ω) and the calculation time of the vehicle speed (V), the numerical value at the same time as the other is interpolated and the numerical values at the same time are calculated and synchronized with each other. For example, can be taken into the control unit 2 as digital data every 50 msec. The dynamic load radius is calculated every 50 msec from the digital data every 50 msec, and can be calculated, for example, as an average value per second.

なお、タイヤ動荷重半径は、加減速、旋回、坂道走行など、タイヤの内圧低下以外の要因によっても変化することから、車両の走行状態を限定(平坦路を一定速度で直進している走行状態に限定)し、かかる状態のときに得られたデータを有効データとして採用するのが好ましく、こうして他の要因によるタイヤ動荷重半径の変化を内圧低下判定用のデータから排除することで、正確な内圧低下を判定することができる。   The tire dynamic load radius also changes due to factors other than a decrease in tire internal pressure, such as acceleration / deceleration, turning, and running on a slope, so the vehicle's running condition is limited (running on a flat road at a constant speed) It is preferable to adopt the data obtained in such a state as valid data, and in this way, by excluding changes in the tire dynamic load radius due to other factors from the data for determining the internal pressure drop, A decrease in internal pressure can be determined.

具体的には、走行条件が、定速度走行、平坦路走行、直線走行などの条件を満たすかどうかをそれぞれの判定条件と比較し、実際の走行中に得られたデータが基準値設定用のデータに適したデータであるかどうかの判定を行い、不適切なデータである場合は基準値設定用のデータとして使用せずに排除する。判定条件としては、例えば車両の前後方向|G|<0.05G、方位変化1度以下、路面勾配5%以下、ブレーキを踏んでいないこと、とすることができる。   Specifically, whether or not the driving condition satisfies conditions such as constant speed driving, flat road driving, and straight driving is compared with each judgment condition, and the data obtained during actual driving is used for setting the reference value. It is determined whether the data is suitable for the data. If the data is inappropriate, the data is excluded without being used as the reference value setting data. As the determination conditions, for example, the vehicle front-rear direction | G | <0.05G, the direction change is 1 degree or less, the road surface gradient is 5% or less, and the brake is not stepped on.

(3)ついで、各タイヤの回転角速度(ω)と車両速度(V)とから各タイヤの動荷重半径(R)を算出し、予め実車走行などにより設定しておいた正常内圧時における動荷重半径と、算出された動荷重半径(R)との差を算出する。   (3) Next, the dynamic load radius (R) of each tire is calculated from the rotational angular velocity (ω) and the vehicle speed (V) of each tire, and the dynamic load at normal internal pressure that is set in advance by actual vehicle running or the like. The difference between the radius and the calculated dynamic load radius (R) is calculated.

なお、前記差を所定個数蓄積し、その平均値によってタイヤ内圧低下の判定を行なうことができ、この場合、平均値を採用することにより判定の精度を高めることができる。また、所定個数蓄積した差のバラツキを母分散判定し、分散値(σ2)が基準値よりも小さいときに、差の平均値を算出するようにしてもよい。 A predetermined number of the differences can be accumulated, and the tire pressure drop can be determined based on the average value. In this case, the accuracy of the determination can be increased by adopting the average value. Alternatively, the variance of the difference accumulated by a predetermined number may be determined as the mother variance, and the average value of the differences may be calculated when the variance (σ 2 ) is smaller than the reference value.

(4)ついで、算出された差を、所定の閾値と比較し、前記差がこの閾値よりも大きければタイヤ内圧が低下していると判断し、表示器3により減圧タイヤを表示するとともに、警報器5によりドライバーに警報を発する。   (4) Next, the calculated difference is compared with a predetermined threshold value, and if the difference is larger than the threshold value, it is determined that the tire internal pressure has decreased, and the reduced pressure tire is displayed on the display 3 and an alarm is issued. A warning is issued to the driver by the device 5.

〔閾値の設定方法〕
閾値を設定するには、まず第1段階として実車実験(キャリブレーション)を行うことで荷重感度と減圧感度の関係式を求め、荷重感度から減圧感度を求めるときの定数を決定し、この定数を記憶手段に記憶させておく。ついで第2段階として、実走行の初期化時において旋回走行したときに荷重感度を推定し、推定した荷重感度に前記記憶させておいた比例定数を掛けることにより、初期化段階で自動的に減圧閾値を設定する。
以下、閾値の設定方法について詳細に説明する。
[Threshold setting method]
In order to set the threshold, first, as a first step, an actual vehicle experiment (calibration) is performed to obtain a relational expression between the load sensitivity and the decompression sensitivity, and a constant for obtaining the decompression sensitivity from the load sensitivity is determined. Store in the storage means. Then, as the second stage, the load sensitivity is estimated when the vehicle is turning at the time of initialization of the actual driving, and the pressure is automatically reduced at the initialization stage by multiplying the estimated load sensitivity by the stored proportionality constant. Set the threshold.
Hereinafter, the threshold setting method will be described in detail.

[キャリブレーション]
第1段階では、減圧感度と荷重感度との関係を事前に実車実験(キャリブレーション)を行う。事前実験では各種サイズのタイヤにて旋回走行を実施し、荷重感度を算出しておく。さらに減圧警報を発する内圧まで減圧し(例えば25%減圧。この値は変更可能である)、そのときの動荷重半径変化量(減圧感度)を算出しておく。そしてこの減圧感度と荷重感度間の比例定数を求め、その値を予め記憶手段に記憶させておく。
[Calibration]
In the first stage, an actual vehicle experiment (calibration) is performed in advance on the relationship between the pressure reduction sensitivity and the load sensitivity. In the preliminary experiment, turning with various sizes of tires is performed, and load sensitivity is calculated. Further, the pressure is reduced to an internal pressure at which a pressure reduction alarm is issued (for example, 25% pressure reduction. This value can be changed), and the dynamic load radius change amount (pressure reduction sensitivity) at that time is calculated. Then, a proportional constant between the pressure reduction sensitivity and the load sensitivity is obtained, and the value is stored in the storage means in advance.

この減圧感度と荷重感度の関係の事前実験については、前述したように、減圧感度と荷重感度は比例関係にあるので、車両への装着が予定されているすべてのサイズ、パターンについて行う必要はなく、最低1本、望ましくは3本程度の代表的なサイズ違いのタイヤを測定し、比例定数を求めておけばよい。   As described above, the pressure reduction sensitivity and the load sensitivity are proportional to each other, so it is not necessary to perform this preliminary experiment on the relationship between the pressure reduction sensitivity and the load sensitivity. It is only necessary to measure at least one tire, preferably about three tires of different sizes, and obtain a proportionality constant.

本発明の特徴は、車両旋回時には左右輪で荷重移動が起こることを利用して、この荷重移動による動荷重半径の変化量から荷重感度を求めることである。旋回走行時には、どのような車種であっても左右輪で荷重移動が起こるので、車種に関係なく荷重感度を求めることができる。
次に、前輪駆動車が旋回走行しているときの従動輪左右輪の動荷重半径の変化と荷重移動量との関係について説明する。
A feature of the present invention is that the load sensitivity is obtained from the amount of change in the dynamic load radius caused by the load movement by utilizing the fact that the load movement occurs between the left and right wheels when the vehicle is turning. When turning, load movement occurs in the left and right wheels regardless of the type of vehicle, so load sensitivity can be obtained regardless of the type of vehicle.
Next, the relationship between the change in the dynamic load radius of the left and right driven wheels and the load movement amount when the front wheel drive vehicle is turning will be described.

まず図3に示されるように、車両が半径Rの円周上を左旋回している状態を想定する。
GPS装置からは南北方向速度(Vn)及び東西方向速度(Ve)の情報が50ms毎に得られるものとする。この場合、車両の進行方向速度(V)は前記式(3)により求めることができる。
First, as shown in FIG. 3, it is assumed that the vehicle is turning left on the circumference of the radius R.
It is assumed that information on the north-south direction velocity (Vn) and the east-west direction velocity (Ve) is obtained from the GPS device every 50 ms. In this case, the traveling direction speed (V) of the vehicle can be obtained by the above equation (3).

Figure 0005555486
Figure 0005555486

Figure 0005555486
Figure 0005555486

このVとθ´を用い、車両のトレッド幅をWとして内輪の対地速度(VL)及び外輪の対地速度(VR)を表すと、
L=V-θ´×W/2
R=V+θ´×W/2
となる。
Using this V and θ ′, the ground speed (V L ) of the inner ring and the ground speed (V R ) of the outer ring are expressed with the tread width of the vehicle as W.
V L = V−θ ′ × W / 2
V R = V + θ ′ × W / 2
It becomes.

また、動荷重半径をDLR、荷重移動による動荷重半径変化をΔDLRとすると、内外輪のDLRはそれぞれGPS装置から得られる車両速度と左右輪の車輪速(ωL、ωR)により、以下の式(4)、(5)で表すことができる。 Also, assuming that the dynamic load radius is DLR and the change in dynamic load radius due to load movement is ΔDLR, the DLR of the inner and outer wheels depends on the vehicle speed obtained from the GPS device and the wheel speeds of the left and right wheels (ω L , ω R ) It can represent with Formula (4) and (5).

Figure 0005555486
Figure 0005555486

さらに式(4)、(5)より、ΔDLRは以下の式(6)に示されるように、GPS情報から得られる車両速度と左右輪の車輪速から算出することができる。   Furthermore, from equations (4) and (5), ΔDLR can be calculated from the vehicle speed obtained from GPS information and the wheel speeds of the left and right wheels, as shown in equation (6) below.

Figure 0005555486
Figure 0005555486

また、このときの荷重移動量(ΔFz。図4参照)は全軸に対する従動輪軸にかかる荷重移動分担率をα(0<α<1)とすると、GPS速度から   Further, the load movement amount (ΔFz, see FIG. 4) at this time is calculated from the GPS speed when the load movement sharing ratio applied to the driven wheel shafts with respect to all the axes is α (0 <α <1).

Figure 0005555486
Figure 0005555486

Figure 0005555486
Figure 0005555486

となり、荷重移動分担率α、車両の重心高(H)、トレッド幅(W)、質量(m)は基本的に同一車両の場合一意に決まるため、Vθ´(すなわち車両の横加速度)に対する左辺の値は、荷重感度bが大きいタイヤほど大きくなる。 Since the load transfer share α, the height of the center of gravity (H), the tread width (W), and the mass (m) are basically determined uniquely for the same vehicle, the left side with respect to Vθ ′ (that is, the lateral acceleration of the vehicle) The value of increases as the tire has a higher load sensitivity b.

[初期化]
タイヤを新しいものと交換して所定の内圧に調整した後などに初期化ボタン4を操作することで検出装置の初期化が行われるが、この初期化時に旋回走行した際に前記キャリブレーションと同様にして荷重感度を推定する。そして、推定された荷重感度に予め記憶手段に記憶させておいた減圧感度との比例定数を掛けることにより、初期化段階で自動的に減圧閾値を設定し、同じく記憶手段に記憶させておく。
[Initialize]
The detection device is initialized by operating the initialization button 4 after the tire is replaced with a new one and adjusted to a predetermined internal pressure. However, when the vehicle is turned during this initialization, it is the same as the calibration described above. To estimate the load sensitivity. Then, by multiplying the estimated load sensitivity by a proportional constant with the decompression sensitivity stored in advance in the storage means, a decompression threshold value is automatically set at the initialization stage, and is also stored in the storage means.

〔実施例〕
つぎに本発明の検出方法の実施例を説明するが、本発明はもとよりかかる実施例のみに限定されるものではない。
車両に装着された各タイヤの回転角速度を得るために、ABS制御に利用する回転速度情報を用いて回転角速度に換算した。また、車両の絶対速度を得るためにVBOX(商品名。英国Race Logic社製GPS速度計)を車両に取り付けた。車両の速度は、シリアルデータとして直接PC(パーソナルコンピュータ)に出力され、この車両速度情報と前記回転速度情報を50msec毎にデジタルデータとして同期してPCに取り込めるようにした。そして、これら2つの情報からタイヤ動荷重半径を50msec毎に計算し、1秒毎の平均値として算出した。
〔Example〕
Next, examples of the detection method of the present invention will be described. However, the present invention is not limited to such examples.
In order to obtain the rotation angular velocity of each tire mounted on the vehicle, the rotation angular velocity was converted into the rotation angular velocity using the rotation velocity information used for the ABS control. Further, in order to obtain the absolute speed of the vehicle, a VBOX (trade name, a GPS speedometer manufactured by Race Logic, UK) was attached to the vehicle. The vehicle speed is directly output as serial data to a PC (personal computer), and the vehicle speed information and the rotational speed information are synchronized with each other as digital data every 50 msec and can be taken into the PC. And the tire dynamic load radius was calculated every 50 msec from these two pieces of information, and calculated as an average value per second.

実験はFF車で行い、基準内圧は200kPaとした。また、3種類のタイヤ(表1参照)でキャリブレーションを実施した。   The experiment was performed with an FF vehicle, and the reference internal pressure was 200 kPa. In addition, calibration was performed with three types of tires (see Table 1).

キャリブレーション
FF車に表1に示される3種類のタイヤを順次装着して住友ゴム工業株式会社の岡山テストコースにおいてキャリブレーションを行い、荷重感度及び減圧感度を算出した。
荷重感度は以下の式(8)に従い、図5に示されるようにして近似直線の傾き(係数=b×α×m×H/W)を求めた。傾きの算出に際しては逐次最小二乗法などを用いることによりオンラインで算出することができる。前記係数は、荷重感度bによってのみ変化するので、これを荷重感度代表特性値とした。なお、本明細書において「荷重感度」とは、単なる荷重感度だけでなく、前記荷重感度代表特性値のように荷重感度によってのみ変化する値(荷重感度と、車両において一意的に定まる値とからなるパラメータのこと)も含むことがある。
Calibration Three types of tires shown in Table 1 were sequentially attached to the FF vehicle, and calibration was performed at the Okayama test course of Sumitomo Rubber Industries, Ltd. to calculate load sensitivity and reduced pressure sensitivity.
For load sensitivity, the slope of the approximate line (coefficient = b × α × m × H / W) was determined as shown in FIG. 5 according to the following equation (8). The slope can be calculated online by using a sequential least square method or the like. The factor because changes only by the load sensitivity b, which was used as a load sense Dodai table characteristic value. In this specification, “load sensitivity” is not only mere load sensitivity, but also a value that varies only with load sensitivity , such as the load sensitivity representative characteristic value (from load sensitivity and a value uniquely determined in the vehicle). May also be included).

Figure 0005555486
Figure 0005555486

図5は、タイヤサイズ185/70R14についての動荷重半径変化ΔDLRと横加速度θ´Vをプロットした図である。両者の関係を近似する直線の傾きを示す前記係数は、-0.44であった。同様にしてタイヤサイズ195/60R15及び205/50R16についても前記係数を求めた。
一方、減圧感度については、実際に所定量だけ減圧し(例えば25%)、そのときのΔDLRを算出した。結果を表1に示す。
FIG. 5 is a graph plotting the dynamic load radius change ΔDLR and the lateral acceleration θ′V for the tire size 185 / 70R14. The coefficient indicating the slope of a straight line approximating the relationship between the two was −0.44. Similarly, the coefficient was obtained for tire sizes 195 / 60R15 and 205 / 50R16.
On the other hand, with respect to the pressure reduction sensitivity, the pressure was actually reduced by a predetermined amount (for example, 25%), and ΔDLR at that time was calculated. The results are shown in Table 1.

Figure 0005555486
Figure 0005555486

前記キャリブレーションの結果より、図6に示されるように荷重感度代表特性値と減圧感度の比例定数を求め、その値(−0.0726)を記憶手段にプリセットした。   From the result of the calibration, as shown in FIG. 6, a proportional constant between the load sensitivity representative characteristic value and the pressure reduction sensitivity was obtained, and the value (−0.0726) was preset in the storage means.

閾値設定
或るタイヤTを前記FF車に装着し、初期化時に旋回走行をしたときに前記と同様にして横加速度とΔDLRを算出し、両者の関係を示す近似直線の傾きを求めた。
ここで得られた係数(−0.540637)に事前にキャリブレーションで求めておいた減圧感度との比例定数(−0.0726)を掛けて減圧感度とし、これに減圧警報したい減圧量(例えば25%)を掛けると、以下のようにして減圧閾値を算出することができる。
減圧閾値=−0.540637×(−0.0726)×25=0.98(mm)
すなわちこのタイヤTの場合、初期化終了後に自動的に0.98mmに閾値が設定された。
Threshold setting When a certain tire T was mounted on the FF vehicle and the vehicle was turning at the time of initialization, the lateral acceleration and ΔDLR were calculated in the same manner as described above, and the inclination of the approximate straight line indicating the relationship between the two was calculated.
The coefficient (−0.540637) obtained here is multiplied by a proportional constant (−0.0726) with the decompression sensitivity obtained in advance in calibration to obtain a decompression sensitivity, and this is the decompression amount (for example, the decompression alarm desired) 25%), the depressurization threshold can be calculated as follows.
Depressurization threshold = −0.540637 × (−0.0726) × 25 = 0.98 (mm)
That is, in the case of the tire T, the threshold value is automatically set to 0.98 mm after the initialization is completed.

次に表1に示される各タイヤについて初期化実施後に30%減圧し、誤報又は未警報の有無を従来の方法(減圧閾値として、代表的なタイヤで求めた固定閾値を採用)と比較した。結果を表2に示す。   Next, each tire shown in Table 1 was decompressed 30% after initialization, and the presence or absence of false alarms or no alarms was compared with a conventional method (adopting a fixed threshold obtained with a typical tire as a decompression threshold). The results are shown in Table 2.

Figure 0005555486
Figure 0005555486

表2に示されるように、閾値を固定値とした場合は当該閾値の設定次第では、未警報(又は誤報)となることがあるが、本発明の方法によれば正確に減圧を判定することができる。   As shown in Table 2, when the threshold value is set to a fixed value, depending on the setting of the threshold value, there may be an unalarmed (or false alarm). However, according to the method of the present invention, the decompression can be accurately determined. Can do.

1 車輪速度検出手段
2 制御ユニット
2a インターフェース
2b CPU
2c ROM
2d RAM
3 表示器
4 初期化ボタン
5 警報器
6 GPS装置
6a GPSアンテナ
1 Wheel speed detection means 2 Control unit 2a Interface 2b CPU
2c ROM
2d RAM
3 Display 4 Initialization Button 5 Alarm 6 GPS Device 6a GPS Antenna

Claims (7)

走行中の車両のタイヤ動荷重半径を算出し、得られた動荷重半径の、正常内圧時における動荷重半径の基準値からの変化の大きさに基づいてタイヤの内圧低下を検出する方法であって、
前記車両の各タイヤの車輪回転情報を検出する工程と、
検出した車輪回転情報から車輪速度を算出する工程と、
前記車両に搭載されたGPS装置からの速度情報に基づいて車両速度を算出する工程と、
算出された車両速度及び前記車輪速度から各タイヤの動荷重半径を求める工程と、
得られたタイヤ動荷重半径の、前記基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する工程と
を含んでおり、
前記所定の閾値が、予め求めておいた前記車両に装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係と、初期化時に旋回走行することで得られる荷重感度とから求められる減圧感度に基づいて設定される閾値設定工程をさらに含んでおり、
前記荷重感度が、前記速度情報と車両の左右輪の車輪速度とから算出される、旋回時の荷重移動による動荷重半径変化と、横加速度との関係式から求められ、
前記車両が前輪駆動車又は後輪駆動車であり、
前記関係式が、車両の重心高、車両のトレッド幅、車両質量、及び全軸に対する従動輪軸にかかる荷重移動分担率を式中に含むことを特徴とするタイヤ内圧低下検出方法。
This is a method of calculating the tire dynamic load radius of a running vehicle and detecting the decrease in tire internal pressure based on the magnitude of change of the obtained dynamic load radius from the standard value of the dynamic load radius at normal internal pressure. And
Detecting wheel rotation information of each tire of the vehicle;
Calculating the wheel speed from the detected wheel rotation information;
Calculating vehicle speed based on speed information from a GPS device mounted on the vehicle;
Obtaining a dynamic load radius of each tire from the calculated vehicle speed and the wheel speed;
Determining the decrease in the internal pressure of the tire when the magnitude of the change from the reference value of the obtained tire dynamic load radius exceeds a predetermined threshold,
The predetermined threshold is a pressure reduction obtained from the relationship between the load sensitivity and the pressure reduction sensitivity when turning the vehicle related to the tire to be mounted on the vehicle, and the load sensitivity obtained by turning during initialization. A threshold setting step set based on the sensitivity;
The load sensitivity is calculated from the relationship between the lateral acceleration and the dynamic load radius change due to load movement at the time of turning, calculated from the speed information and the wheel speeds of the left and right wheels of the vehicle,
The vehicle is a front wheel drive vehicle or a rear wheel drive vehicle;
The tire internal pressure drop detection method, wherein the relational expression includes a vehicle center-of-gravity height, a vehicle tread width, a vehicle mass, and a share of load movement applied to the driven wheel shaft with respect to all axes.
タイヤの動荷重半径変化をΔDLR、タイヤ単体の荷重感度をb、車両の重心高をH、車両のトレッド幅をW、車両質量をm、車両速度をV、ヨーレートをθ´、全軸に対する従動輪軸にかかる荷重移動分担率をαとすると、前記関係式は、
ΔDLR=b×α×(H/W)×m×Vθ´
であり、前記装着予定のタイヤに係る車両旋回時の荷重感度及び初期化時に旋回走行することで得られる荷重感度は、b×α×(H/W)×mで表される荷重感度代表特性値である請求項1に記載のタイヤ内圧低下検出方法。
Change in tire dynamic load radius is ΔDLR, tire load sensitivity is b, vehicle center of gravity height is H, vehicle tread width is W, vehicle mass is m, vehicle speed is V, yaw rate is θ ', driven for all axes When the load movement share ratio applied to the wheel shaft is α, the relational expression is
ΔDLR = b × α × (H / W) × m × Vθ ′
The load sensitivity at the time of turning of the vehicle and the load sensitivity obtained by turning at the time of initialization related to the tire to be mounted is a load sensitivity representative characteristic represented by b × α × (H / W) × m. The method for detecting a decrease in tire internal pressure according to claim 1, which is a value.
前記装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係は、前記荷重感度代表特性値と減圧感度との一次関数で表される請求項2に記載のタイヤ内圧低下検出方法。 The relationship between the load sensitivity and reduced pressure sensitivity during a vehicle turning according to tires will be fitted, the tire pressure drop detecting method according to claim 2 represented by a linear function of the decreased pressure sensitivity and the load sensitivity typical characteristic values. 走行中の車両のタイヤ動荷重半径を算出し、得られた動荷重半径の、正常内圧時における動荷重半径の基準値からの変化の大きさに基づいてタイヤの内圧低下を検出する装置であって、
前記車両の各タイヤの車輪回転情報を検出する車輪回転情報検出手段と、
この車輪回転情報検出手段により検出された車輪回転情報から車輪速度を算出する車輪速度算出手段と、
前記車両に搭載されたGPS装置からの速度情報に基づいて車両速度を算出する車両速度算出手段と、
この車両速度算出手段により算出された車両速度及び前記車輪速度から各タイヤの動荷重半径を求める動荷重半径算出手段と、
得られたタイヤ動荷重半径の、前記基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する判定手段と
を含んでおり、
前記所定の閾値を、予め求めておいた前記車両に装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係と、初期化時に旋回走行することで得られる荷重感度とから求められる減圧感度に基づいて設定する閾値設定手段をさらに含んでおり、
前記荷重感度が、前記速度情報と車両の左右輪の車輪速度とから算出される、旋回時の荷重移動による動荷重半径変化と、横加速度との関係式から求められ、
前記車両が前輪駆動車又は後輪駆動車であり、
前記関係式が、車両の重心高、車両のトレッド幅、車両質量、及び全軸に対する従動輪軸にかかる荷重移動分担率を式中に含むことを特徴とするタイヤ内圧低下検出装置。
This is a device that calculates the tire dynamic load radius of a running vehicle and detects the decrease in tire internal pressure based on the magnitude of the change of the obtained dynamic load radius from the reference value of the dynamic load radius at normal internal pressure. And
Wheel rotation information detecting means for detecting wheel rotation information of each tire of the vehicle;
Wheel speed calculating means for calculating the wheel speed from the wheel rotation information detected by the wheel rotation information detecting means;
Vehicle speed calculation means for calculating a vehicle speed based on speed information from a GPS device mounted on the vehicle;
Dynamic load radius calculating means for determining the dynamic load radius of each tire from the vehicle speed calculated by the vehicle speed calculating means and the wheel speed;
A determination means for determining a decrease in the internal pressure of the tire when a magnitude of a change from the reference value of the obtained tire dynamic load radius exceeds a predetermined threshold,
The predetermined threshold value is determined in advance from the relationship between the load sensitivity and the depressurization sensitivity when turning the vehicle related to the tire to be mounted on the vehicle, and the load sensitivity obtained by turning during initialization. It further includes a threshold setting means for setting based on the sensitivity,
The load sensitivity is calculated from the relationship between the lateral acceleration and the dynamic load radius change due to load movement at the time of turning, calculated from the speed information and the wheel speeds of the left and right wheels of the vehicle,
The vehicle is a front wheel drive vehicle or a rear wheel drive vehicle;
The tire internal pressure drop detecting device, wherein the relational expression includes the height of the center of gravity of the vehicle, the tread width of the vehicle, the vehicle mass, and the share of load movement applied to the driven wheel shaft with respect to all axes.
タイヤの動荷重半径変化をΔDLR、タイヤ単体の荷重感度をb、車両の重心高をH、車両のトレッド幅をW、車両質量をm、車両速度をV、ヨーレートをθ´、全軸に対する従動輪軸にかかる荷重移動分担率をαとすると、前記関係式は、
ΔDLR=b×α×(H/W)×m×Vθ´
であり、前記装着予定のタイヤに係る車両旋回時の荷重感度及び初期化時に旋回走行することで得られる荷重感度は、b×α×(H/W)×mで表される荷重感度代表特性値である請求項4に記載のタイヤ内圧低下検出装置。
Change in tire dynamic load radius is ΔDLR, tire load sensitivity is b, vehicle center of gravity height is H, vehicle tread width is W, vehicle mass is m, vehicle speed is V, yaw rate is θ ', driven for all axes When the load movement share ratio applied to the wheel shaft is α, the relational expression is
ΔDLR = b × α × (H / W) × m × Vθ ′
The load sensitivity at the time of turning of the vehicle and the load sensitivity obtained by turning at the time of initialization related to the tire to be mounted is a load sensitivity representative characteristic represented by b × α × (H / W) × m. The tire internal pressure drop detecting device according to claim 4, which is a value.
前記装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係は、前記荷重感度代表特性値と減圧感度との一次関数で表される請求項5に記載のタイヤ内圧低下検出装置。 Wherein the vehicle turning relation load sensitivity and reduced pressure sensitivity during relating to tires will be fitted, the tire pressure drop detecting device according to claim 5 which is represented by a linear function of the decreased pressure sensitivity and the load sensitivity typical characteristic values. 走行中の車両のタイヤ動荷重半径を算出し、得られた動荷重半径の、正常内圧時における動荷重半径の基準値からの変化の大きさに基づいてタイヤの内圧低下を検出するためにコンピュータを、
車両の各タイヤの車輪回転情報から車輪速度を算出する車輪速度算出手段、
前記車両に搭載されたGPS装置からの速度情報に基づいて車両速度を算出する車両速度算出手段、
この車両速度算出手段により算出された車両速度及び前記車輪速度から各タイヤの動荷重半径を求める動荷重半径算出手段、
得られたタイヤ動荷重半径の、前記基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する判定手段、及び
前記所定の閾値を、予め求めておいた前記車両に装着予定のタイヤに係る車両旋回時の荷重感度と減圧感度の関係と、初期化時に旋回走行することで得られる荷重感度とから求められる減圧感度に基づいて設定する閾値設定手段
として機能させ、
前記荷重感度が、前記速度情報と車両の左右輪の車輪速度とから算出される、旋回時の荷重移動による動荷重半径変化と、横加速度との関係式から求められ、
前記車両が前輪駆動車又は後輪駆動車であり、
前記関係式が、車両の重心高、車両のトレッド幅、車両質量、及び全軸に対する従動輪軸にかかる荷重移動分担率を式中に含むことを特徴とするタイヤ内圧低下検出プログラム。
A computer for calculating a tire dynamic load radius of a running vehicle and detecting a decrease in the internal pressure of the tire based on a magnitude of a change of the obtained dynamic load radius from a reference value of the dynamic load radius at a normal internal pressure. The
Wheel speed calculating means for calculating wheel speed from wheel rotation information of each tire of the vehicle,
Vehicle speed calculation means for calculating a vehicle speed based on speed information from a GPS device mounted on the vehicle;
Dynamic load radius calculating means for determining the dynamic load radius of each tire from the vehicle speed calculated by the vehicle speed calculating means and the wheel speed;
Determination means for determining a decrease in tire internal pressure when the magnitude of change from the reference value of the obtained tire dynamic load radius exceeds a predetermined threshold, and the predetermined threshold is determined in advance. It functions as a threshold setting means that is set based on the pressure reduction sensitivity obtained from the relationship between the load sensitivity and the pressure reduction sensitivity when turning the vehicle related to the tire to be mounted on the vehicle, and the load sensitivity obtained by turning at the time of initialization. ,
The load sensitivity is calculated from the relationship between the lateral acceleration and the dynamic load radius change due to load movement at the time of turning, calculated from the speed information and the wheel speeds of the left and right wheels of the vehicle,
The vehicle is a front wheel drive vehicle or a rear wheel drive vehicle;
The tire internal pressure drop detection program characterized in that the relational expression includes the height of the center of gravity of the vehicle, the tread width of the vehicle, the vehicle mass, and the share of load movement applied to the driven wheel shaft with respect to all the axes.
JP2009295325A 2009-12-25 2009-12-25 Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program Active JP5555486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295325A JP5555486B2 (en) 2009-12-25 2009-12-25 Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295325A JP5555486B2 (en) 2009-12-25 2009-12-25 Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program

Publications (2)

Publication Number Publication Date
JP2011131845A JP2011131845A (en) 2011-07-07
JP5555486B2 true JP5555486B2 (en) 2014-07-23

Family

ID=44345048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295325A Active JP5555486B2 (en) 2009-12-25 2009-12-25 Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program

Country Status (1)

Country Link
JP (1) JP5555486B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032604B2 (en) * 2010-01-29 2012-09-26 住友ゴム工業株式会社 Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
JP5039804B2 (en) * 2010-03-05 2012-10-03 住友ゴム工業株式会社 Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929965B2 (en) * 2003-11-20 2007-06-13 住友ゴム工業株式会社 Load sensitivity calculation method and apparatus for tire dynamic load radius, and tire load sensitivity calculation program
JP3929962B2 (en) * 2003-10-27 2007-06-13 住友ゴム工業株式会社 Tire pressure drop detection method and apparatus, and tire decompression determination program
JP5265145B2 (en) * 2007-06-27 2013-08-14 住友ゴム工業株式会社 Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program

Also Published As

Publication number Publication date
JP2011131845A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5346659B2 (en) Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program
US8577540B2 (en) Method and apparatus for detecting tire having decreased internal pressure, and program for detecting tire having decreased internal pressure
JP2008247126A (en) Tire wear warning method
JP5023188B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
JP5427868B2 (en) Tire pressure drop detection method, apparatus and program
JP5265145B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
JP5073804B2 (en) Tire pressure drop detection device and method, and tire pressure drop detection program
JP4800025B2 (en) Vehicle load state estimation method and tire pressure drop warning method
JP5555486B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
JP5069970B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
JP5106916B2 (en) Method and apparatus for determining decrease in tire internal pressure in consideration of influence of load
JP2004017716A (en) Tire air pressure lowering detecting method and device and tire air pressure reduction determining program
JP2010076702A (en) Method and device for detecting tire internal pressure drop, and program for detecting tire internal pressure drop
JP4028842B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
JP3929961B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
JP2004203214A (en) Method and device for detecting drop of pneumatic pressure of tire and program for determining pressure drop of tire
JP2010076703A (en) Method and device for estimating wheel load of tire, and program for estimating wheel load of tire
JP5032604B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
KR101571109B1 (en) Position Distiction Method Using TPMS And Position Distiction Device Thereof
JP2009014586A (en) Method, device and program for detecting tire pressure lowering
JP5039804B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
JP4086763B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
JP2010076700A (en) Method and device for estimating wheel load of tire, and program for estimating wheel load of tire
JP5097438B2 (en) Tire dynamic load radius reference value initialization method and apparatus, and tire dynamic load radius reference value initialization program
JP2004338456A (en) Slip ratio computing method, tire pneumatic pressure decrease detection method and device, program of slip ratio computation and program of tire decompression determination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5555486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250