JP5346659B2 - Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program - Google Patents

Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program Download PDF

Info

Publication number
JP5346659B2
JP5346659B2 JP2009097882A JP2009097882A JP5346659B2 JP 5346659 B2 JP5346659 B2 JP 5346659B2 JP 2009097882 A JP2009097882 A JP 2009097882A JP 2009097882 A JP2009097882 A JP 2009097882A JP 5346659 B2 JP5346659 B2 JP 5346659B2
Authority
JP
Japan
Prior art keywords
vehicle
vehicle mass
mass
tire
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009097882A
Other languages
Japanese (ja)
Other versions
JP2010249597A (en
Inventor
充浩 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2009097882A priority Critical patent/JP5346659B2/en
Publication of JP2010249597A publication Critical patent/JP2010249597A/en
Application granted granted Critical
Publication of JP5346659B2 publication Critical patent/JP5346659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、車両質量推定装置、方法及びプログラム、並びにタイヤ空気圧低下検出装置、方法及びプログラムに関する。   The present invention relates to a vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program.

タイヤが減圧すると規定内圧(正常空気圧)のタイヤより外径(タイヤの有効転がり半径)が減少するため、他の正常なタイヤに比べると車輪速度(回転角速度)が増加するという原理に基づいて、走行中のタイヤの回転角速度の相対比較により当該タイヤの減圧を検知する装置は、間接式空気圧警報装置として知られている(例えば、特許文献1参照)。   Based on the principle that the wheel speed (rotational angular speed) increases compared to other normal tires, because the outer diameter (effective rolling radius of the tire) decreases from the tire of the specified internal pressure (normal air pressure) when the tire is depressurized, A device that detects the decompression of a tire by relative comparison of the rotational angular velocities of the running tire is known as an indirect pneumatic alarm device (see, for example, Patent Document 1).

このような警報装置では、例えば以下の式(1)で示されるような判定値DEL1〜DEL3を用いてタイヤの減圧を判定している。   In such an alarm device, for example, the pressure reduction of the tire is determined using determination values DEL1 to DEL3 as represented by the following formula (1).

ここで、F1〜F4は、それぞれ左前輪タイヤ、右前輪タイヤ、左後輪タイヤ及び右後輪タイヤの車輪速度である。 Here, F1 to F4 are wheel speeds of the left front wheel tire, the right front wheel tire, the left rear wheel tire, and the right rear wheel tire, respectively.

ところで、タイヤは空気圧が低下した場合だけでなく、荷重がかかった場合にもその外径が小さくなるが、前述した車輪速度の相対比較による方法では、荷重による影響を定量的に補正することができないので、荷重変化によって判定値DELが変化しているのか、又は、減圧によって変化しているのかを区別することができない。
また、車両のトランクには重い荷物を載せる場合が多いため、とりわけDEL2において荷重変動による影響が大きく、特に同軸2輪の減圧判定は困難となる。
By the way, the outer diameter of a tire decreases not only when the air pressure decreases but also when a load is applied. However, the above-described method based on the relative comparison of the wheel speeds can quantitatively correct the influence of the load. Since it cannot be performed, it cannot be distinguished whether the determination value DEL has changed due to a load change or has changed due to reduced pressure.
In addition, since a heavy load is often placed on the trunk of the vehicle, the influence of load fluctuation is particularly large in DEL2, and it is particularly difficult to determine whether or not the coaxial two wheels are depressurized.

そこで本発明者は、さきに、荷重による動荷重半径の減少を定量的に補正することができるタイヤ内圧低下検出方法及び装置を提案した(特許文献2参照)。この特許文献2記載の装置は、車両の各タイヤの車輪回転情報を検出する車輪回転情報検出手段と、検出した車輪回転情報から車輪速度を算出する車輪速度算出手段と、車両速度を求める車両速度算出手段と、前記車輪速度及び車両速度から各タイヤの動荷重半径を求める動荷重半径算出手段と、前記車両の質量を求める車両質量算出手段と、得られた車両質量と、正常内圧であり且つ荷重非搭載時における車両質量との比較により所定タイヤの輪荷重変化量を求め、この輪荷重変化量に基づいて当該所定タイヤの動荷重半径の基準値を補正する基準値補正手段と、得られたタイヤ動荷重半径の、前記補正された基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する判定手段とを備えており、前記車両質量算出手段は、車両が傾斜角θの路面を走行しているものとし、当該車両の質量をm、車両速度をV、車両加速度をα、車両のアクスルシャフトトルクをT、駆動力をFx、タイヤ負荷半径をR、路面の傾斜角をθ、空力抵抗をA、重力加速度をgとしたときに
m(α+gsin(θ))+AV2=Fx=T/R
により車両質量mを推定している。具体的に、このタイヤ内圧低下検出装置では、GPS装置などを用いて路面の傾斜角θや、車両速度V及び車両加速度αを求め、これらの値を用いた逐次最小二乗によって車両質量mを推定している。
Therefore, the present inventor previously proposed a method and an apparatus for detecting a decrease in tire internal pressure that can quantitatively correct a decrease in the dynamic load radius due to a load (see Patent Document 2). The device described in Patent Document 2 includes a wheel rotation information detection unit that detects wheel rotation information of each tire of a vehicle, a wheel speed calculation unit that calculates a wheel speed from the detected wheel rotation information, and a vehicle speed for determining the vehicle speed. A calculation means, a dynamic load radius calculation means for determining a dynamic load radius of each tire from the wheel speed and the vehicle speed, a vehicle mass calculation means for determining the mass of the vehicle, the obtained vehicle mass, and a normal internal pressure, and A reference value correction means for obtaining a wheel load change amount of a predetermined tire by comparison with a vehicle mass when no load is mounted, and correcting a reference value of a dynamic load radius of the predetermined tire based on the wheel load change amount; Determination means for determining a decrease in tire internal pressure when the magnitude of a change in the tire dynamic load radius from the corrected reference value exceeds a predetermined threshold, and calculating the vehicle mass The stage assumes that the vehicle is traveling on a road surface with an inclination angle θ, the mass of the vehicle is m, the vehicle speed is V, the vehicle acceleration is α, the axle shaft torque of the vehicle is T, the driving force is Fx, the tire load M (α + gsin (θ)) + AV 2 = Fx = T / R where R is the radius, θ is the slope of the road surface, A is the aerodynamic resistance, and g is the acceleration of gravity.
Is used to estimate the vehicle mass m. Specifically, in this tire internal pressure drop detecting device, a road surface inclination angle θ, a vehicle speed V, and a vehicle acceleration α are obtained using a GPS device or the like, and the vehicle mass m is estimated by successive least squares using these values. doing.

特開昭63−305011号公報JP 63-305011 A 特開2009−040080号公報JP 2009-040080 A

しかしながら、特許文献2記載のタイヤ内圧低下検出装置ではGPS装置などから得られる路面の傾斜角θを用いて車両質量を推定しており、このようなGPS装置を装備していない車両では、少なくとも路面の傾斜角θに関する情報を入手することができず、したがって車両質量を推定することができない。   However, in the tire internal pressure drop detection device described in Patent Document 2, the vehicle mass is estimated by using the road surface inclination angle θ obtained from a GPS device or the like, and in a vehicle not equipped with such a GPS device, at least the road surface Information on the tilt angle θ of the vehicle cannot be obtained, and therefore the vehicle mass cannot be estimated.

本発明は、このような事情に鑑みてなされたものであり、GPS装置を装備していない車両であっても当該車両の質量を推定することができる車両質量推定装置、方法及びプログラム、並びに、これらを利用したタイヤ空気圧低下検出装置、方法及びプログラムを提供することを目的としている。   The present invention has been made in view of such circumstances, and a vehicle mass estimation device, method and program capable of estimating the mass of the vehicle even if the vehicle is not equipped with a GPS device, and An object of the present invention is to provide a tire pressure drop detecting device, method, and program using these.

本発明の車両質量推定装置は、車両に装着された車輪の回転速度に基づいて当該車両の質量を推定する装置であって、
前記車両の各タイヤの車輪回転情報を検出する車輪回転情報検出手段と、
この車輪回転情報検出手段により検出された車輪回転情報から車両速度を算出する車両速度算出手段と、
この車両速度算出手段により算出された車両速度から車両加速度を算出する車両加速度算出手段と、
車両のアクスルシャフトトルクから当該車両の駆動力を算出する駆動力算出手段と、
車両が傾斜角θの路面を走行しているものとし、前記算出された車両速度、車両加速度及び駆動力をそれぞれV、α及びFxとし、車両質量をm、空力抵抗をA、重力加速度をgとしたときに、勾配の変化の影響が少ない所定の短時間の間のデータに対し、
Fx=m(α+gsin(θ))+AV
という関係について逐次最小二乗を行うことで車両質量mを推定する車両質量推定手段と、
この車両質量推定手段により推定された車両質量が所定範囲内の値であるか否かを判断し、所定範囲外の値である場合に当該車両質量を排除するリジェクト手段と、
このリジェクト手段により排除されなかったデータ群について、Fx−(mgsin(θ)+AV)を従属変数として、車両加速度αについて逐次最小二乗を行うことで補正された車両質量を求める車両質量補正手段と
を備えたことを特徴としている。
The vehicle mass estimation device of the present invention is a device that estimates the mass of the vehicle based on the rotational speed of wheels mounted on the vehicle,
Wheel rotation information detecting means for detecting wheel rotation information of each tire of the vehicle;
Vehicle speed calculation means for calculating the vehicle speed from the wheel rotation information detected by the wheel rotation information detection means;
Vehicle acceleration calculating means for calculating vehicle acceleration from the vehicle speed calculated by the vehicle speed calculating means;
Driving force calculating means for calculating the driving force of the vehicle from the axle shaft torque of the vehicle;
And that the vehicle is traveling on a road surface inclination angle theta, the vehicle speed the calculated vehicle acceleration and the driving force respectively V, and α and Fx, the vehicle mass m, the aerodynamic resistance A, the acceleration of gravity When g is used, the data for a predetermined short time with little influence of the change in the gradient,
Fx = m (α + gsin (θ)) + AV 2
Vehicle mass estimation means for estimating vehicle mass m by sequentially performing least squares on the relationship
Determining whether the vehicle mass estimated by the vehicle mass estimation means is a value within a predetermined range, and rejecting the vehicle mass when the vehicle mass is a value outside the predetermined range;
Vehicle mass correction means for obtaining a corrected vehicle mass by successively performing least squares with respect to the vehicle acceleration α, with Fx− (mgsin (θ) + AV 2 ) as a dependent variable, for the data group not excluded by the reject means; It is characterized by having.

本発明の車両質量推定装置では、短い時間の間においては、坂道勾配が変化する可能性が小さいという推定のもとに、前記Fx=m(α+gsin(θ))+AV2という関係式において坂道勾配が関係するmgsin(θ)を定数項と推定し、この関係について逐次最小二乗を行うことで車両質量を推定している。そして、短時間においても坂道勾配の変化があった場合の異常値をリジェクトし、残ったデータ群について、Fx−(mgsin(θ)+AV2)を従属変数として、車両加速度αについて逐次最小二乗を行うことで補正された車両質量を求めている。したがって、GPS装置などからの路面傾斜角θの情報が得られないような場合でも、車両質量を高精度に推定することができる。 In the vehicle mass estimation apparatus according to the present invention, the slope gradient is expressed in the relational expression Fx = m (α + gsin (θ)) + AV 2 on the assumption that the slope slope is unlikely to change during a short time. Is estimated as a constant term, and the vehicle mass is estimated by successively performing least squares on this relationship. Then, an abnormal value is rejected when there is a change in the slope of the slope even in a short time, and for the remaining data group, Fx− (mgsin (θ) + AV 2 ) is used as a dependent variable, and the least square is sequentially applied to the vehicle acceleration α. The vehicle mass corrected by performing is obtained. Therefore, even when information on the road surface inclination angle θ from the GPS device or the like cannot be obtained, the vehicle mass can be estimated with high accuracy.

前記車両質量推定手段は、忘却係数を入れた逐次最小二乗を行うことで、勾配の変化の影響が少ない所定の短時間の間での車両質量を推定するように構成してもよい。この場合、車両に搭載されているECUなどの比較的低容量のCPUを備えた装置であっても、車両質量を推定することができる。   The vehicle mass estimation means may be configured to estimate the vehicle mass in a predetermined short time with little influence of a change in gradient by performing successive least squares including a forgetting factor. In this case, the vehicle mass can be estimated even with a device having a relatively low-capacity CPU such as an ECU mounted on the vehicle.

本発明の車両質量推定方法は、車両に装着された車輪の回転速度に基づいて当該車両の質量を推定する方法であって、
前記車両の各タイヤの車輪回転情報を検出する車輪回転情報検出工程と、
この車輪回転情報検出工程において検出された車輪回転情報から車両速度を算出する車両速度算出工程と、
この車両速度算出工程において算出された車両速度から車両加速度を算出する車両加速度算出工程と、
車両のアクスルシャフトトルクから当該車両の駆動力を算出する駆動力算出工程と、
車両が傾斜角θの路面を走行しているものとし、前記算出された車両速度、車両加速度及び駆動力をそれぞれV、α及びFxとし、車両質量をm、空力抵抗をA、重力加速度をgとしたときに、勾配の変化の影響が少ない所定の短時間の間のデータに対し、
Fx=m(α+gsin(θ))+AV
という関係について逐次最小二乗を行うことで車両質量mを推定する車両質量推定工程と、
この車両質量推定工程において推定された車両質量が所定範囲内の値であるか否かを判断し、所定範囲外の値である場合に当該車両質量を排除するリジェクト工程と、
このリジェクト工程において排除されなかったデータ群について、Fx−(mgsin(θ)+AV)を従属変数として、車両加速度αについて逐次最小二乗を行うことで補正された車両質量を求める車両質量補正工程と
を含むことを特徴としている。
The vehicle mass estimation method of the present invention is a method for estimating the mass of a vehicle based on the rotational speed of wheels mounted on the vehicle,
A wheel rotation information detection step of detecting wheel rotation information of each tire of the vehicle;
A vehicle speed calculation step for calculating a vehicle speed from the wheel rotation information detected in the wheel rotation information detection step;
A vehicle acceleration calculation step of calculating vehicle acceleration from the vehicle speed calculated in the vehicle speed calculation step;
A driving force calculation step of calculating the driving force of the vehicle from the axle shaft torque of the vehicle;
And that the vehicle is traveling on a road surface inclination angle theta, the vehicle speed the calculated vehicle acceleration and the driving force respectively V, and α and Fx, the vehicle mass m, the aerodynamic resistance A, the acceleration of gravity When g is used, the data for a predetermined short time with little influence of the change in the gradient,
Fx = m (α + gsin (θ)) + AV 2
A vehicle mass estimation step of estimating the vehicle mass m by sequentially performing least squares on the relationship,
Determining whether the vehicle mass estimated in the vehicle mass estimation step is a value within a predetermined range, and rejecting the vehicle mass when the vehicle mass is a value outside the predetermined range;
A vehicle mass correction step for obtaining a corrected vehicle mass by successively performing least squares with respect to the vehicle acceleration α using Fx− (mgsin (θ) + AV 2 ) as a dependent variable for a data group that has not been excluded in the reject step; It is characterized by including.

前記車両質量推定工程は、忘却係数を入れた逐次最小二乗を行うことで、勾配の変化の影響が少ない所定の短時間の間での車両質量を推定してもよい。   The vehicle mass estimation step may estimate the vehicle mass in a predetermined short time with little influence of a change in gradient by performing successive least squares including a forgetting factor.

本発明の車両質量推定プログラムは、車両に装着された車輪の回転速度に基づいて当該車両の質量を推定するためにコンピュータを、
車両の各タイヤの車輪回転情報から車両速度を算出する車両速度算出手段、
この車両速度算出手段により算出された車両速度から車両加速度を算出する車両加速度算出手段、
車両のアクスルシャフトトルクから当該車両の駆動力を算出する駆動力算出手段、
車両が傾斜角θの路面を走行しているものとし、前記算出された車両速度、車両加速度及び駆動力をそれぞれV、α及びFxとし、車両質量をm、空力抵抗をA、重力加速度をgとしたときに、勾配の変化の影響が少ない所定の短時間の間のデータに対し、
Fx=m(α+gsin(θ))+AV
という関係について逐次最小二乗を行うことで車両質量mを推定する車両質量推定手段、
この車両質量推定手段により推定された車両質量が所定範囲内の値であるか否かを判断し、所定範囲外の値である場合に当該車両質量を排除するリジェクト手段、及び、
このリジェクト手段により排除されなかったデータ群について、Fx−(mgsin(θ)+AV)を従属変数として、車両加速度αについて逐次最小二乗を行うことで補正された車両質量を求める車両質量補正手段として機能させることを特徴としている。
The vehicle mass estimation program of the present invention uses a computer to estimate the mass of the vehicle based on the rotational speed of wheels mounted on the vehicle,
Vehicle speed calculating means for calculating vehicle speed from wheel rotation information of each tire of the vehicle;
Vehicle acceleration calculating means for calculating vehicle acceleration from the vehicle speed calculated by the vehicle speed calculating means;
Driving force calculating means for calculating the driving force of the vehicle from the axle shaft torque of the vehicle;
And that the vehicle is traveling on a road surface inclination angle theta, the vehicle speed the calculated vehicle acceleration and the driving force respectively V, and α and Fx, the vehicle mass m, the aerodynamic resistance A, the acceleration of gravity When g is used, the data for a predetermined short time with little influence of the change in the gradient,
Fx = m (α + gsin (θ)) + AV 2
Vehicle mass estimation means for estimating vehicle mass m by sequentially performing least squares on the relationship
Determining whether the vehicle mass estimated by the vehicle mass estimation means is a value within a predetermined range, and rejecting the vehicle mass when the vehicle mass is a value outside the predetermined range; and
As a vehicle mass correction means for obtaining a corrected vehicle mass by successively performing least squares with respect to the vehicle acceleration α, using Fx− (mgsin (θ) + AV 2 ) as a dependent variable for the data group that has not been excluded by the reject means. It is characterized by functioning.

また、本発明のタイヤ空気圧低下検出装置は、走行中の車両のタイヤ減圧判定値を算出し、得られた減圧判定値の、正常内圧時における減圧判定値の基準値からの変化の大きさに基づいてタイヤ空気圧の低下を検出する装置であって、
前記車両質量推定装置と、
車輪回転情報検出手段により検出された車輪回転情報から得られる各輪の車輪速度から減圧判定値を求める減圧判定値算出手段と、
得られた車両質量と、正常内圧であり且つ荷重非搭載時における車両質量との比較により所定タイヤの輪荷重変化量を求め、この輪荷重変化量に基づいて減圧判定値の基準値を補正する基準値補正手段と、
得られたタイヤ減圧判定値の、前記補正された基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する判定手段と
を備えたことを特徴としている。
Further, the tire pressure drop detecting device of the present invention calculates a tire pressure reduction judgment value of a running vehicle, and changes the magnitude of the obtained pressure reduction judgment value from a reference value of the pressure reduction judgment value at normal internal pressure. A device for detecting a decrease in tire air pressure based on:
The vehicle mass estimation device;
Decompression determination value calculating means for obtaining a decompression determination value from the wheel speed of each wheel obtained from the wheel rotation information detected by the wheel rotation information detection means;
A wheel load change amount of a predetermined tire is obtained by comparing the obtained vehicle mass with a normal internal pressure and a vehicle mass when no load is mounted, and the reference value of the decompression determination value is corrected based on the wheel load change amount. A reference value correcting means;
And determining means for determining a decrease in the internal pressure of the tire when the magnitude of the change of the obtained tire decompression determination value from the corrected reference value exceeds a predetermined threshold value.

本発明のタイヤ空気圧低下検出装置では、前記車両質量推定装置により車両質量を推定しており、GPS装置を装備していない車両であっても車両質量を高精度に推定することができ、その結果荷重による減圧判定値の変動を定量的に補正することができる。したがって、減圧による減圧判定値の変化と荷重による減圧判定値の変化とを区別することができ、タイヤ空気圧低下の検出精度を向上させることができる。   In the tire pressure drop detecting device of the present invention, the vehicle mass is estimated by the vehicle mass estimation device, and the vehicle mass can be estimated with high accuracy even for a vehicle not equipped with a GPS device. It is possible to quantitatively correct the fluctuation of the decompression determination value due to the load. Therefore, it is possible to distinguish between a change in the decompression determination value due to decompression and a change in the decompression determination value due to load, and the detection accuracy of the tire air pressure drop can be improved.

本発明のタイヤ空気圧低下検出方法は、走行中の車両のタイヤ減圧判定値を算出し、得られた減圧判定値の、正常内圧時における減圧判定値の基準値からの変化の大きさに基づいてタイヤ空気圧の低下を検出する方法であって、
前記車両質量推定方法と、
車輪回転情報検出手段により検出された車輪回転情報から得られる各輪の車輪速度から減圧判定値を求める減圧判定値算出工程と、
得られた車両質量と、正常内圧であり且つ荷重非搭載時における車両質量との比較により所定タイヤの輪荷重変化量を求め、この輪荷重変化量に基づいて減圧判定値の基準値を補正する基準値補正工程と、
得られたタイヤ減圧判定値の、前記補正された基準値からの変化の大きさが所定の閾値を超えた場合にタイヤ空気圧の低下を判定する判定工程と
を含むことを特徴としている。
The method for detecting a decrease in tire air pressure according to the present invention calculates a tire pressure reduction determination value of a running vehicle, and based on the magnitude of change of the obtained pressure reduction determination value from a reference value of the pressure reduction determination value at normal internal pressure. A method for detecting a decrease in tire air pressure,
The vehicle mass estimation method;
A decompression determination value calculating step for obtaining a decompression determination value from the wheel speed of each wheel obtained from the wheel rotation information detected by the wheel rotation information detection means;
A wheel load change amount of a predetermined tire is obtained by comparing the obtained vehicle mass with a normal internal pressure and a vehicle mass when no load is mounted, and the reference value of the decompression determination value is corrected based on the wheel load change amount. A reference value correction process;
And a determination step of determining a decrease in tire air pressure when the magnitude of change of the obtained tire decompression determination value from the corrected reference value exceeds a predetermined threshold value.

本発明のタイヤ空気圧低下検出プログラムは、走行中の車両のタイヤ減圧判定値を算出し、得られた減圧判定値の、正常内圧時における減圧判定値の基準値からの変化の大きさに基づいてタイヤ空気圧の低下を検出するためにコンピュータを、
車両の各タイヤの車輪回転情報から車両速度を算出する車両速度算出手段、
この車両速度算出手段により算出された車両速度から車両加速度を算出する車両加速度算出手段、
車両のアクスルシャフトトルクから当該車両の駆動力を算出する駆動力算出手段、
車両が傾斜角θの路面を走行しているものとし、前記算出された車両速度、車両加速度及び駆動力をそれぞれV、α及びFxとし、車両質量をm、空力抵抗をA、重力加速度をgとしたときに、勾配の変化の影響が少ない所定の短時間の間のデータに対し、
Fx=m(α+gsin(θ))+AV
という関係について逐次最小二乗を行うことで車両質量mを推定する車両質量推定手段、
この車両質量推定手段により推定された車両質量が所定範囲内の値であるか否かを判断し、所定範囲外の値である場合に当該車両質量を排除するリジェクト手段、
このリジェクト手段により排除されなかったデータ群について、Fx−(mgsin(θ)+AV)を従属変数として、車両加速度αについて逐次最小二乗を行うことで補正された車両質量を求める車両質量補正手段、
車輪回転情報検出手段により検出された車輪回転情報から得られる各輪の車輪速度から減圧判定値を求める減圧判定値算出手段と、
得られた車両質量と、正常内圧であり且つ荷重非搭載時における車両質量との比較により所定タイヤの輪荷重変化量を求め、この輪荷重変化量に基づいて減圧判定値の基準値を補正する基準値補正手段と、
得られたタイヤ減圧判定値の、前記補正された基準値からの変化の大きさが所定の閾値を超えた場合にタイヤ空気圧の低下を判定する判定手段として機能させることを特徴としている。
The tire pressure drop detection program of the present invention calculates a tire pressure reduction determination value of a running vehicle, and based on the magnitude of change of the obtained pressure reduction determination value from a reference value of the pressure reduction determination value at normal internal pressure. Computer to detect tire pressure drop,
Vehicle speed calculating means for calculating vehicle speed from wheel rotation information of each tire of the vehicle;
Vehicle acceleration calculating means for calculating vehicle acceleration from the vehicle speed calculated by the vehicle speed calculating means;
Driving force calculating means for calculating the driving force of the vehicle from the axle shaft torque of the vehicle;
And that the vehicle is traveling on a road surface inclination angle theta, the vehicle speed the calculated vehicle acceleration and the driving force respectively V, and α and Fx, the vehicle mass m, the aerodynamic resistance A, the acceleration of gravity When g is used, the data for a predetermined short time with little influence of the change in the gradient,
Fx = m (α + gsin (θ)) + AV 2
Vehicle mass estimation means for estimating vehicle mass m by sequentially performing least squares on the relationship
Rejecting means for determining whether or not the vehicle mass estimated by the vehicle mass estimating means is a value within a predetermined range, and for excluding the vehicle mass when the vehicle mass is a value outside the predetermined range;
Vehicle mass correction means for obtaining a corrected vehicle mass by sequentially performing least squares with respect to the vehicle acceleration α using Fx− (mgsin (θ) + AV 2 ) as a dependent variable for the data group not excluded by the reject means;
Decompression determination value calculating means for obtaining a decompression determination value from the wheel speed of each wheel obtained from the wheel rotation information detected by the wheel rotation information detection means;
A wheel load change amount of a predetermined tire is obtained by comparing the obtained vehicle mass with a normal internal pressure and a vehicle mass when no load is mounted, and the reference value of the decompression determination value is corrected based on the wheel load change amount. A reference value correcting means;
The tire decompression determination value is made to function as a determination unit that determines a decrease in tire air pressure when the magnitude of change from the corrected reference value exceeds a predetermined threshold value.

本発明の車両質量推定装置、方法及びプログラムによれば、GPS装置を装備していない車両であっても当該車両の質量を推定することができ、また、本発明のタイヤ空気圧低下検出装置、方法及びプログラムによれば、GPS装置を装備していない車両であっても荷重による減圧判定値の変動を定量的に補正することができ、タイヤ空気圧低下の検出精度を向上させることができる。   According to the vehicle mass estimation device, method, and program of the present invention, the mass of the vehicle can be estimated even for a vehicle that is not equipped with a GPS device. And according to the program, even if the vehicle is not equipped with a GPS device, it is possible to quantitatively correct the variation in the decompression determination value due to the load, and to improve the detection accuracy of the tire pressure drop.

本発明のタイヤ空気圧低下検出装置の一実施の形態を示すブロック図である。It is a block diagram which shows one Embodiment of the tire pressure fall detection apparatus of this invention. 図1に示されるタイヤ空気圧低下検出装置の電気的構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the tire pressure drop detecting device shown in FIG. 1. 傾斜角θの路面を走行する車両に作用する力を示す図である。It is a figure which shows the force which acts on the vehicle which drive | works the road surface of inclination-angle (theta). 本発明の車両質量推定方法の一実施の形態のフローチャートである。It is a flowchart of one embodiment of the vehicle mass estimation method of the present invention. 比較例1における車両の駆動力と加速度との関係を示す図である。It is a figure which shows the relationship between the driving force and acceleration of a vehicle in the comparative example 1. 比較例1における推定質量の時系列変化を示す図である。It is a figure which shows the time series change of the estimated mass in the comparative example 1. FIG. 比較例2における推定質量の時系列変化を示す図である。It is a figure which shows the time series change of the estimated mass in the comparative example 2. FIG. 比較例2における坂道勾配抵抗の、推定質量に対する影響を示す図である。It is a figure which shows the influence with respect to the estimated mass of the slope gradient resistance in the comparative example 2. FIG. 実施例1における補正後の車両の駆動力(駆動力−走行抵抗−坂道勾配抵抗)と加速度との関係を示す図である。It is a figure which shows the relationship between the driving force (driving force-traveling resistance-hill slope resistance) of the vehicle after correction | amendment in Example 1, and acceleration. 実施例1における推定質量の時系列変化を示す図である。It is a figure which shows the time-sequential change of the estimated mass in Example 1. FIG. 車両質量と判定値DEL2との関係を示す図である。It is a figure which shows the relationship between vehicle mass and determination value DEL2.

以下、添付図面を参照しつつ、本発明の車両質量推定装置、方法及びプログラム、並びに、タイヤ空気圧低下検出装置、方法及びプログラムの実施の形態を詳細に説明する。
図1に示されるように、本発明の一実施の形態に係るタイヤ空気圧低下検出装置は、4輪車両に備えられた4つのタイヤの左前輪(FL)、右前輪(FR)、左後輪(RL)及び右後輪(RR)の回転速度情報を検出するため、各タイヤに関連して設けられた通常の車輪速度検出手段(車輪回転情報検出手段)1を備えている。
Hereinafter, embodiments of a vehicle mass estimation device, a method and a program, and a tire pressure drop detection device, a method and a program according to the present invention will be described in detail with reference to the accompanying drawings.
As shown in FIG. 1, a tire pressure drop detecting device according to an embodiment of the present invention includes a left front wheel (FL), a right front wheel (FR), and a left rear wheel of four tires provided in a four-wheel vehicle. In order to detect rotational speed information of (RL) and the right rear wheel (RR), a normal wheel speed detection means (wheel rotation information detection means) 1 provided in association with each tire is provided.

前記車輪速度検出手段1としては、電磁ピックアップなどを用いて回転パルスを発生させ、パルスの数から回転角速度及び車輪速度を測定するための車輪速センサや、ダイナモのように回転を利用して発電を行い、この電圧から回転角速度及び車輪速度を測定するためのものを含む角速度センサなどを用いることができる。前記車輪速度検出手段1の出力は、ABSなどのコンピュータである制御ユニット2に与えられる。この制御ユニット2には、例えばタイヤが減圧していることを表示するための液晶表示素子、プラズマ表示素子又はCRTなどで構成された表示器3、ドライバーによって操作することができる初期化ボタン4、及びタイヤの減圧をドライバーに知らせる警報器5が接続されている。   As the wheel speed detecting means 1, a rotation pulse is generated by using an electromagnetic pickup or the like, and a wheel speed sensor for measuring a rotation angular speed and a wheel speed from the number of pulses or a power generation using rotation like a dynamo. An angular velocity sensor including that for measuring the rotational angular velocity and the wheel speed from this voltage can be used. The output of the wheel speed detecting means 1 is given to a control unit 2 which is a computer such as ABS. The control unit 2 includes, for example, a liquid crystal display element for displaying that the tire is depressurized, a display 3 composed of a plasma display element or a CRT, an initialization button 4 that can be operated by a driver, An alarm device 5 is connected to notify the driver of tire decompression.

制御ユニット2は、図2に示されるように、外部装置との信号の受け渡しに必要なI/Oインターフェース2aと、演算処理の中枢として機能するCPU2bと、このCPU2bの制御動作プログラムが格納されたROM2cと、前記CPU2bが制御動作を行う際にデータなどが一時的に書き込まれたり、その書き込まれたデータが読み出されたりするRAM2dとから構成されている。   As shown in FIG. 2, the control unit 2 stores an I / O interface 2a necessary for passing signals to and from an external device, a CPU 2b that functions as a center of arithmetic processing, and a control operation program for the CPU 2b. The ROM 2c and the RAM 2d from which data is temporarily written or the written data is read when the CPU 2b performs a control operation.

前記車輪速度検出手段1では、タイヤの回転数に対応したパルス信号(以下、「車輪速パルス」ともいう)が出力される。そして、この車輪速パルスを所定のサンプリング周期ΔT(秒)、例えばΔT=0.05秒毎にサンプリングすることで、車輪速信号の時系列データを得ることができる。   The wheel speed detection means 1 outputs a pulse signal corresponding to the number of rotations of the tire (hereinafter also referred to as “wheel speed pulse”). Then, by sampling this wheel speed pulse every predetermined sampling period ΔT (seconds), for example, ΔT = 0.05 seconds, time-series data of the wheel speed signal can be obtained.

本実施の形態に係る車両質量推定装置は、車輪速度検出手段(車輪回転情報検出手段)1、この車輪回転情報検出手段により検出された車輪回転情報から車両速度を算出する車両速度算出手段と、この車両速度算出手段により算出された車両速度から車両加速度を算出する車両加速度算出手段と、車両のアクスルシャフトトルクから当該車両の駆動力を算出する駆動力算出手段と、車両が傾斜角θの路面を走行しているものとし、前記算出された車両速度、車両加速度及び駆動力をそれぞれV、α及びFxとし、車両質量をm、タイヤ負荷半径をR、空力抵抗をA、重力加速度をgとしたときに、勾配の変化の影響が少ない所定の短時間の間のデータに対し、
Fx=m(α+gsin(θ))+AV2
という関係について逐次最小二乗を行うことで車両質量mを推定する車両質量推定手段と、この車両質量推定手段により推定された車両質量が所定範囲内の値であるか否かを判断し、所定範囲外の値である場合に当該車両質量を排除するリジェクト手段と、このリジェクト手段により排除されなかったデータ群について、Fx−(mgsin(θ)+AV2)を従属変数として、車両加速度αについて逐次最小二乗を行うことで補正された車両質量を求める車両質量補正手段とで主に構成されている。
The vehicle mass estimation apparatus according to the present embodiment includes a wheel speed detection means (wheel rotation information detection means) 1, a vehicle speed calculation means for calculating a vehicle speed from wheel rotation information detected by the wheel rotation information detection means, Vehicle acceleration calculating means for calculating vehicle acceleration from the vehicle speed calculated by the vehicle speed calculating means, driving force calculating means for calculating the driving force of the vehicle from the axle shaft torque of the vehicle, and a road surface on which the vehicle has an inclination angle θ The calculated vehicle speed, vehicle acceleration, and driving force are V, α, and Fx, vehicle mass is m, tire load radius is R, aerodynamic resistance is A, and gravitational acceleration is g. When the data for a given short period of time is less affected by the change in slope,
Fx = m (α + gsin (θ)) + AV 2
Vehicle mass estimation means for estimating the vehicle mass m by sequentially performing least squares on the relationship, and whether the vehicle mass estimated by the vehicle mass estimation means is a value within a predetermined range, For the rejection means for excluding the vehicle mass when the value is outside and the data group not excluded by the rejection means, Fx− (mgsin (θ) + AV 2 ) is used as a dependent variable, and the vehicle acceleration α is successively minimized. It is mainly composed of vehicle mass correction means for obtaining vehicle mass corrected by squaring.

また、本実施の形態に係るタイヤ空気圧低下検出装置は、かかる車両質量推定装置と、車輪回転情報検出手段により検出された車輪回転情報から得られる各輪の車輪速度から減圧判定値を求める減圧判定値算出手段と、得られた車両質量と、正常内圧であり且つ荷重非搭載時における車両質量との比較により所定タイヤの輪荷重変化量を求め、この輪荷重変化量に基づいて減圧判定値の基準値を補正する基準値補正手段と、得られたタイヤ減圧判定値の、前記補正された基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する判定手段とで主に構成されている。   Further, the tire pressure drop detection device according to the present embodiment is a decompression determination for obtaining a decompression determination value from the wheel speed of each wheel obtained from the vehicle mass estimation device and the wheel rotation information detected by the wheel rotation information detection means. The wheel load change amount of a predetermined tire is obtained by comparing the value calculation means, the obtained vehicle mass, and the vehicle mass when the internal pressure is normal and the load is not mounted, and the decompression judgment value is calculated based on the wheel load change amount. Reference value correcting means for correcting the reference value, and determining means for determining a decrease in the internal pressure of the tire when the magnitude of change of the obtained tire decompression determination value from the corrected reference value exceeds a predetermined threshold value And is mainly composed.

さらに、車両質量推定プログラムは、前記制御ユニット2を車両速度算出手段と、車両加速度算出手段、車両質量推定手段、リジェクト手段、及び車両質量補正手段として機能させる。また、タイヤ空気圧低下検出プログラムは、前記制御ユニット2を車両速度算出手段、車両加速度算出手段、駆動力算出手段、車両質量推定手段、リジェクト手段、車両質量補正手段、減圧判定値算出手段、基準値補正手段、及び判定手段として機能させる。   Further, the vehicle mass estimation program causes the control unit 2 to function as vehicle speed calculation means, vehicle acceleration calculation means, vehicle mass estimation means, reject means, and vehicle mass correction means. Further, the tire air pressure drop detection program uses the control unit 2 as a vehicle speed calculation means, a vehicle acceleration calculation means, a driving force calculation means, a vehicle mass estimation means, a rejection means, a vehicle mass correction means, a decompression determination value calculation means, a reference value It functions as correction means and determination means.

本発明において、車両速度Vは、前記車輪速度検出手段1により求められる従動輪の車輪速ないしは回転角速度ωと、従動輪のタイヤの動荷重半径DLR(初期設定値)とから、
V=DLR×ω
により算出することができる。厳密に言えば、走行中のタイヤの動荷重半径は減圧や荷重により変化するが、この変化の大きさは1mm程度であり、一般車両のタイヤの動荷重半径の値(300mm程度)に比べて小さいため、車両速度を算出する過程においてタイヤの動荷重半径を初期設定値に固定したとしても、速度算出に精度に与える影響は無視できる程度である。
In the present invention, the vehicle speed V is calculated from the wheel speed or rotational angular speed ω of the driven wheel obtained by the wheel speed detecting means 1 and the dynamic load radius DLR (initial setting value) of the tire of the driven wheel.
V = DLR × ω
Can be calculated. Strictly speaking, the dynamic load radius of a running tire changes with reduced pressure or load, but the magnitude of this change is about 1 mm, compared to the value of the dynamic load radius of a general vehicle tire (about 300 mm). Therefore, even if the dynamic load radius of the tire is fixed to the initial setting value in the process of calculating the vehicle speed, the influence on the speed calculation is negligible.

また、車両の加速度αは、この車両速度Vと、サンプリング時間との関係から算出することができる。例えば、最も簡便な方法としては、サンプリング時間間隔(Δt)について、
α=(Vt−Vt-1)/Δt(Vの添字tは、サンプリング時間tのときの速度)
で求めることができる。なお、この加速度は、例えば過去n個分の速度データ(Vt-n〜Vt)を記憶させておき、この速度をサンプリング時間に対しV=αt+V0にて回帰係数を求める方法、又はカルマンフィルタを用いる方法を採用するほうが、差分による誤差をより軽減できるため望ましい。
Further, the vehicle acceleration α can be calculated from the relationship between the vehicle speed V and the sampling time. For example, as the simplest method, for the sampling time interval (Δt),
α = (V t −V t−1 ) / Δt (the subscript t of V is the speed at the sampling time t)
Can be obtained. For this acceleration, for example, speed data (V tn to V t ) for the past n is stored, and a method of obtaining a regression coefficient with V = αt + V 0 with respect to the sampling time or using a Kalman filter is used. It is desirable to adopt the method because the error due to the difference can be further reduced.

以下、車両質量の算出手順及び減圧判定値の基準値の補正手順について、詳細に説明する。
〔車両質量の算出〕
まず、図4のフローチャートを参照しつつ、車両質量の算出手順を説明する。
車両の全質量は、傾斜角θの路面(坂道)を加速度αで走行中の車両に作用する車両前後方向の力のバランスを利用して推定することができる(図3参照)。すなわち、ステップS1において、車両の駆動力Fx、車両速度V及び車両加速度αを取得する。駆動力Fxは、CAN情報である車両のアクスルシャフトトルクTと、タイヤの負荷半径R(初期設定値)とからFx=T/Rにて算出することができる。また、車両速度Vは、前記のように車輪速度検出手段により検出された車輪回転情報から得られる車輪速と動荷重半径(初期設定値)とから得ることができ、車両加速度αは、この車両速度Vから算出することができる。
Hereinafter, a procedure for calculating the vehicle mass and a procedure for correcting the reference value of the decompression determination value will be described in detail.
[Calculation of vehicle mass]
First, the vehicle mass calculation procedure will be described with reference to the flowchart of FIG.
The total mass of the vehicle can be estimated using a balance of forces in the longitudinal direction of the vehicle acting on the vehicle traveling on the road surface (slope) with an inclination angle θ at an acceleration α (see FIG. 3). That is, in step S1, the driving force Fx, the vehicle speed V, and the vehicle acceleration α of the vehicle are acquired. The driving force Fx can be calculated from Fx = T / R from the axle shaft torque T of the vehicle, which is CAN information, and the tire load radius R (initial setting value). Further, the vehicle speed V can be obtained from the wheel speed obtained from the wheel rotation information detected by the wheel speed detecting means as described above and the dynamic load radius (initial setting value). It can be calculated from the velocity V.

そして、前記駆動力Fx、車両速度V、車両加速度α、及び路面の傾斜角θを用いて、以下の式(2)から車両質量mを算出することができる。
m(α+gsin(θ))+AV2=Fx=T/R・・・・・・(2)
ここに、Tはアクスルシャフトトルク、Rはタイヤ負荷半径、Fxは駆動力、gは重力加速度、Vは車両速度、Aは空力抵抗、αは車両加速度、θは路面の傾斜角である。
And vehicle mass m is computable from the following formula | equation (2) using the said driving force Fx, the vehicle speed V, the vehicle acceleration (alpha), and the inclination-angle (theta) of a road surface.
m (α + gsin (θ)) + AV 2 = Fx = T / R (2)
Here, T is the axle shaft torque, R is the tire load radius, Fx is the driving force, g is the gravitational acceleration, V is the vehicle speed, A is the aerodynamic resistance, α is the vehicle acceleration, and θ is the road inclination angle.

ところで、本発明では、GPS装置などの利用を前提にしていないので、路面の傾斜角θを得ることができない。一方、例えば2〜3秒といった比較的短時間の間では、路面の傾斜角θが変化する確率は小さく、したがって、この短時間の間では式(2)の左辺のmgsin(θ)が一定の値を示す、すなわちmgsin(θ)が定数であると推定することができる。   By the way, in this invention, since it is not premised on utilization of a GPS apparatus etc., the inclination | tilt angle (theta) of a road surface cannot be obtained. On the other hand, for a relatively short time, such as 2 to 3 seconds, the probability that the road inclination angle θ changes is small. Therefore, the mgsin (θ) on the left side of the equation (2) is constant during this short time. It can be estimated that a value is shown, ie mgsin (θ) is a constant.

そこで、本発明では、式(2)の関係について逐次最小二乗を行うに際し、適当な忘却係数を入れることで、短時間での車両質量の推定を行っている。
具体的に、式(2)に示される関係について忘却係数λ(例えば、0.965)を入れた逐次最小二乗を行い、空力抵抗A(b1)、推定質量m(b2)、及び定数項(mgsin(θ))(b3)を推定する(ステップS2)。逐次最小二乗により得られる回帰式の加速度の係数b2は車両質量を表していると推定することができ、またこのときの切片(b3)は坂道勾配による抵抗分と推定することができる。
Therefore, in the present invention, the vehicle mass is estimated in a short time by adding an appropriate forgetting factor when the least squares are sequentially performed with respect to the relationship of Expression (2).
Specifically, successive least squares including a forgetting factor λ (for example, 0.965) are performed on the relationship shown in Expression (2), and an aerodynamic resistance A (b1), an estimated mass m (b2), and a constant term ( mgsin (θ)) (b3) is estimated (step S2). The acceleration coefficient b2 of the regression equation obtained by successive least squares can be estimated to represent the vehicle mass, and the intercept (b3) at this time can be estimated to be a resistance due to a slope gradient.

しかしながら、前記のような短時間の間においても坂道の勾配が変化した場合、加速度αの係数であるb2、すなわち車両質量は実際の質量と大きく異なってしまうため、この加速度の係数b2に対し、適当な範囲のリジェクト幅(Mmin、Mmax)を設定し、係数b2がこのリジェクト幅の範囲内にあるか否かの判断を行い(ステップS3)、係数b2がこの範囲を外れる場合には、坂道勾配に変化があったとみなし、データのリジェクトを行う(ステップS4)。前記リジェクト幅(Mmin、Mmax)は、各車両に対し初期設定され、例えば空車質量が1600kg、最大積車時の質量が2000kgの場合、余裕値を200kgとして、Mmin=1600−200=1400kg、Mmax=2000+200=2200kgとして初期設定することができる。   However, when the slope of the hill changes even for a short time as described above, the acceleration α coefficient b2, that is, the vehicle mass greatly differs from the actual mass. An appropriate range of reject width (Mmin, Mmax) is set, and it is determined whether the coefficient b2 is within the reject width range (step S3). Data is rejected assuming that the gradient has changed (step S4). The reject width (Mmin, Mmax) is initially set for each vehicle. For example, when the empty vehicle mass is 1600 kg and the mass at the time of maximum loading is 2000 kg, the margin value is 200 kg, Mmin = 1600−200 = 1400 kg, Mmax = 2000 + 200 = 2200 kg can be initialized.

一方、ステップS3において、所定のリジェクト幅の範囲内であると判断されたデータに対し、以下に述べるような補正を行う。
ステップS2において推定された車両質量(b2)は、過去のデータを順次忘却することにより得られた値である。ここで、車両質量(b2)は、走行中は本質的に変化しない値であると考えられるので(一旦、車両が走行を始めると、その間に荷物や人が車両に載るという可能性は通常考えられない)、もし、坂道勾配に変化がないのであれば、独立変数である車両速度Vや車両加速度αの変動が大きく、且つ十分に多くのデータが存在する方が、車両質量(b2)の推定誤差を小さくすることができる。それにも拘わらず、逐次最小二乗を行うに際し忘却係数を入れることは精度良い回帰(車両質量の推定)という目的とは相反する。
On the other hand, in step S3, correction as described below is performed on the data determined to be within the range of the predetermined reject width.
The vehicle mass (b2) estimated in step S2 is a value obtained by sequentially forgetting past data. Here, since the vehicle mass (b2) is considered to be a value that does not substantially change during traveling (the possibility that a load or a person will be placed on the vehicle during the period once the vehicle starts traveling is normally considered). If there is no change in the slope of the hill, the fluctuation of the vehicle speed V and the vehicle acceleration α, which are independent variables, is large, and the vehicle mass (b2) The estimation error can be reduced. Nevertheless, it is contrary to the purpose of accurate regression (estimation of vehicle mass) to include a forgetting factor when performing successive least squares.

すなわち、忘却係数を入れるということは、定数項(b3)の変化(坂道勾配変化)にある程度追従できるというメリットがある反面、実質的なデータ量の減少に相当するため、これだけでは精度の高い車両質量を得ることは困難である。
そこで、本実施の形態では、ステップS3において有効である(所定のリジェクト幅の範囲内にある)と判断されたデータについて、新たに(Fx−b1×V2−b3)を従属変数として、再度、車両加速度αについて、忘却係数を入れない逐次回帰を行う(ステップS5)。これにより、車両質量の補正を行い、坂道勾配の影響を除去しつつ、回帰の精度を高めた、より誤差の少ない質量推定を行うことができる。
そして、ステップS6において、ステップS5で得られた推定車両質量mで、車両質量mの更新を行う。
In other words, inserting the forgetting factor has an advantage that it can follow the change in the constant term (b3) (slope gradient change) to some extent, but it corresponds to a substantial decrease in the amount of data. It is difficult to obtain mass.
Therefore, in the present embodiment, the data determined to be valid in step S3 (within the range of the predetermined reject width) is again set as (Fx−b1 × V 2 −b3) as a dependent variable. The vehicle acceleration α is sequentially regressed without entering the forgetting factor (step S5). As a result, it is possible to perform mass estimation with less error while correcting the vehicle mass and removing the influence of the slope gradient while improving the accuracy of the regression.
In step S6, the vehicle mass m is updated with the estimated vehicle mass m obtained in step S5.

〔減圧判定値の基準値の補正〕
こうして求めた推定車両質量mと、基準時(ドライバー1名のみ乗車時)における推定車両質量との差から、所定タイヤにおける輪荷重の増加分を求めることができる。例えば、車両のトランクに荷物を載せた場合、この荷物による荷重は実質的に両後輪が負担することから、各後輪は前記差の2分の1だけ輪荷重が増加すると考えることができる。
[Correction of standard value of decompression judgment value]
From the difference between the estimated vehicle mass m thus obtained and the estimated vehicle mass at the reference time (when only one driver is in the vehicle), it is possible to obtain an increase in the wheel load on the predetermined tire. For example, when a load is placed on the trunk of a vehicle, the load due to this load is substantially borne by both rear wheels, so it can be considered that the wheel load of each rear wheel increases by one half of the difference. .

なお、通常、助手席には人が乗り、またその荷重は重くともせいぜい100kg程度であるのに対して、後部座席及びトランクには合せて100〜300kg程度の荷重を載せる可能性があることから、後輪タイヤの方が前輪タイヤよりも荷重変動が大きいものと考えられる。したがって、車両質量の増加分を全て後輪タイヤが負担する、すなわち後輪タイヤの輪荷重が増加すると仮定しても、内圧低下の検出精度は向上するものと考えられる。この点について、本発明者は、種々の積載条件で車両の質量が増加したとき、この荷重の増分が全て後輪タイヤに乗ったと仮定し、別途求めた各輪の輪荷重実測値と比較した。その結果、車両質量の増加分が全て後輪タイヤの荷重増になると仮定したときの輪荷重実測値とのずれは、全く荷重増を考慮しなかったときの輪荷重実測値とのずれに比べて、前輪タイヤについては同程度であるが、後輪タイヤについては、荷重の増分が全て後輪タイヤに乗ったと仮定したときの方が、全く荷重増を考慮しなかったときよりも明らかにずれが小さくなることを確認している。このことから、車両質量の増分を全て後輪タイヤが負担すると仮定しても、内圧低下の検出精度が向上することが分かる。   Normally, a passenger sits on the passenger seat and the load is about 100 kg at the maximum, but there is a possibility that a load of about 100 to 300 kg may be put on the rear seat and the trunk. The rear wheel tire is considered to have a larger load fluctuation than the front wheel tire. Therefore, even if it is assumed that the rear wheel tire bears all the increase in vehicle mass, that is, the wheel load of the rear wheel tire increases, it is considered that the detection accuracy of the internal pressure drop is improved. In this regard, the present inventor assumed that when the vehicle mass increased under various loading conditions, all of the load increments were on the rear wheel tire, and compared with the separately obtained wheel load actual measurement values for each wheel. . As a result, the deviation from the measured wheel load when all the increase in vehicle mass is assumed to be an increase in the load on the rear tire is compared to the deviation from the measured wheel load when no increase in load is taken into account. As for the front wheel tire, it is almost the same, but for the rear wheel tire, it is clear that the increase in load is assumed to have been on the rear wheel tire rather than the case where no increase in load is considered. Has been confirmed to be smaller. From this, it can be seen that even if it is assumed that the rear tires bear all of the vehicle mass increment, the detection accuracy of the internal pressure drop is improved.

走行中の車両のタイヤ減圧判定値は、各輪の車輪速度から、例えば前述した式(1)により算出することができる。そして、タイヤ減圧判定値はタイヤ内圧が低下するにしたがって変化することが知られており、このことを利用してタイヤの内圧低下をタイヤ減圧判定値の変化から推定することができる。   The tire decompression determination value of the running vehicle can be calculated from the wheel speed of each wheel, for example, using the above-described equation (1). And it is known that a tire decompression determination value changes as the tire internal pressure decreases, and this can be used to estimate a decrease in tire internal pressure from a change in the tire decompression determination value.

(1)補正に先立ち、該当タイヤの荷重による減圧判定値の変化量を実験により求め、初期値として把握しておく。具体的には、例えば車両装着予定のタイヤについて実車にて減圧判定値の測定を行い、荷重による減圧判定値の変化量を測定する。基準荷重及び基準内圧のときの減圧判定値を基準としたときに、質量が1kg増加することで変化する減圧判定値、すなわち減圧判定値の質量感度(%/kg)を求める。なお、分子の単位が(%)であるのは、減圧判定値の変化を、(減圧判定値の変化量/基準荷重及び基準内圧のときの減圧判定値)で評価しているからである。   (1) Prior to the correction, the amount of change in the pressure reduction judgment value due to the load of the relevant tire is obtained by experiment and is grasped as an initial value. Specifically, for example, a pressure reduction determination value is measured with a real vehicle for a tire to be mounted on a vehicle, and a change amount of the pressure reduction determination value due to a load is measured. The pressure reduction judgment value that changes when the mass increases by 1 kg, that is, the mass sensitivity (% / kg) of the pressure reduction judgment value when the pressure reduction judgment value at the reference load and the reference internal pressure is used as a reference. The unit of the numerator is (%) because the change in the reduced pressure determination value is evaluated by (the amount of change in the reduced pressure determination value / the reduced pressure determination value at the reference load and the reference internal pressure).

(2)ついで、前述した「車両質量の算出」において求めた推定車両質量と基準時における推定車両質量との差から、所定タイヤの輪荷重の増加分を算出する。この増加分(kg)に、初期値として求めておいた減圧判定値の質量感度(%/kg)を乗じることで、荷重による減圧判定値の変化量(%)を算出することができる。例えば、車両のトランクに重い荷物を積載した場合、推定車両質量の増加分は、後輪タイヤが負担すると考えられるので、この影響分について減圧判定値の基準値の補正を行う。
この変化量(%)を、基準値から減じることにより、タイヤ内圧が低下しているか否かの判断基準となる減圧判定値の基準値を補正することができる。例えば、タイヤの輪荷重増加分が20kgであり、質量感度が0.003%/kgであるとすると、荷重による減圧判定値の変化量は20×0.003=0.06%となる。したがって、補正後の基準値は、基準値−0.06(%)となり、この補正後基準値と、実測された減圧判定値とを比較してタイヤ内圧の低下を判定する。減圧判定値の変化から輪荷重の増加による変化分を引くことで、タイヤ内圧の低下による減圧判定値の変化であるか否かを正確に判定することができる。
(2) Next, an increase in the wheel load of the predetermined tire is calculated from the difference between the estimated vehicle mass obtained in the above-described “calculation of vehicle mass” and the estimated vehicle mass at the reference time. By multiplying this increase (kg) by the mass sensitivity (% / kg) of the decompression determination value obtained as the initial value, the amount of change (%) in the decompression determination value due to the load can be calculated. For example, when a heavy load is loaded on the trunk of the vehicle, the increase in the estimated vehicle mass is considered to be borne by the rear wheel tire. Therefore, the reference value of the decompression determination value is corrected for this influence.
By subtracting this amount of change (%) from the reference value, it is possible to correct the reference value of the reduced pressure determination value, which is a reference for determining whether or not the tire internal pressure has decreased. For example, if the increase in the wheel load of the tire is 20 kg and the mass sensitivity is 0.003% / kg, the amount of change in the decompression determination value due to the load is 20 × 0.003 = 0.06%. Accordingly, the corrected reference value is the reference value −0.06 (%), and the decrease in the tire internal pressure is determined by comparing the corrected reference value with the actually measured pressure reduction determination value. By subtracting the change due to the increase in wheel load from the change in the decompression determination value, it is possible to accurately determine whether or not the change in the decompression determination value is due to a decrease in tire internal pressure.

〔タイヤ空気圧低下検出方法〕
次に本発明のタイヤ空気圧低下検出方法について説明する。
(1)まず、車輪速度検出手段1の出力信号(パルス信号)に基づいて、次の式(3)により各タイヤの回転角速度ωを算出する。
回転角速度ω=2π×Freq(Hz)/N(個)・・・・・(3)
ここに、Nは車輪速度検出手段1の車軸1回転あたりの歯数であり、Freq(Hz)は、その車輪速度検出手段1の歯が1秒あたりにカウントされた数値である。
[Tire pressure drop detection method]
Next, the tire pressure drop detecting method of the present invention will be described.
(1) First, based on the output signal (pulse signal) of the wheel speed detection means 1, the rotational angular speed ω of each tire is calculated by the following equation (3).
Rotational angular velocity ω = 2π × Freq (Hz) / N (pieces) (3)
Here, N is the number of teeth per one rotation of the axle of the wheel speed detecting means 1, and Freq (Hz) is a numerical value obtained by counting the teeth of the wheel speed detecting means 1 per second.

(2)前記回転角速度ωのうち従動輪の回転角速度ωと、動荷重半径の初期設定値DLRとから、V=DLR×ωにより、車両速度Vを算出する。
(3)得られた回転角速度ωから、式(1)により減圧判定値を算出し、予め実車走行などにより設定しておいた基準荷重及び基準内圧のときの減圧判定値との差(%)を求める。
(2) The vehicle speed V is calculated by V = DLR × ω from the rotational angular speed ω of the driven wheel in the rotational angular speed ω and the initial set value DLR of the dynamic load radius.
(3) From the obtained rotational angular velocity ω, the pressure reduction judgment value is calculated by the equation (1), and the difference (%) between the reference pressure and the pressure reduction judgment value at the reference internal pressure set in advance by actual vehicle running or the like. Ask for.

(4)ついで、前述した「車両質量の算出」における手順にしたがい推定車両質量を求め、この推定車両質量と基準時(ドライバー1名のみ乗車時)における車両総質量との差から、所定タイヤにおける輪荷重の増加分を求める。そして、得られた輪荷重の増加分と初期値として求めておいた減圧判定値の質量感度(%/kg)とから荷重による減圧判定値の変化量(%)を算出する。   (4) Next, an estimated vehicle mass is obtained according to the procedure in “Calculation of vehicle mass” described above, and the difference between the estimated vehicle mass and the total vehicle mass at the reference time (when only one driver is on board) Find the increase in wheel load. Then, the amount of change (%) in the reduced pressure determination value due to the load is calculated from the increase in the obtained wheel load and the mass sensitivity (% / kg) of the reduced pressure determination value obtained as the initial value.

(5)つぎに、この変化量(%)を、判定基準値から減じることにより、タイヤ内圧が低下しているか否かの判断基準となる減圧判定値の基準値を補正する。
そして、補正された減圧判定値(%)と、実測された減圧判定値(%)とを比較することにより、タイヤ内圧が低下しているか否かを判定する。具体的には、前述した減圧判定値の質量感度(%/kg)を求める際に、併せて減圧判定値の減圧感度(内圧が1%減少することで減少する減圧判定値(%))を求めておき、実測された減圧判定値(%)と補正された減圧判定値(%)との差を、前記減圧感度(%/%)で除することで、基準内圧に対する減圧の程度(%)を求めることができる。得られた減圧の程度を閾値(例えば、30%)と比較し、当該閾値よりも減圧の程度が大きい場合には、タイヤ内圧が低下していると判断し、表示器3により減圧タイヤを表示するとともに、警報器5によりドライバーに警報を発する。
(5) Next, by subtracting the amount of change (%) from the determination reference value, the reference value of the reduced pressure determination value serving as a determination reference for determining whether or not the tire internal pressure is reduced is corrected.
Then, by comparing the corrected pressure reduction determination value (%) with the actually measured pressure reduction determination value (%), it is determined whether or not the tire internal pressure has decreased. Specifically, when the mass sensitivity (% / kg) of the above-described decompression determination value is obtained, the decompression sensitivity of the decompression determination value (the decompression determination value (%) that decreases when the internal pressure decreases by 1%) is also obtained. The degree of pressure reduction relative to the reference internal pressure (%) is calculated by dividing the difference between the actually measured pressure reduction judgment value (%) and the corrected pressure reduction judgment value (%) by the pressure reduction sensitivity (% /%). ). The degree of decompression obtained is compared with a threshold value (for example, 30%). If the degree of decompression is greater than the threshold value, it is determined that the tire internal pressure has decreased, and the decompressed tire is displayed on the display 3. At the same time, the alarm 5 gives an alarm to the driver.

つぎに本発明のタイヤ質量推定方法の実施例を説明するが、本発明はもとよりかかる実施例のみに限定されるものではない。
[実施例及び比較例]
車両に装着された各タイヤの回転角速度を得るために、ABS制御に利用する回転速度情報を用いて、回転角速度に換算した。また、車両のアクスルシャフトトルク情報をPC(パーソナルコンピュータ)に出力し、これらの情報を50msec毎にデジタルデータとして同期してPCに取り込めるようにした。
Next, examples of the tire mass estimation method of the present invention will be described, but the present invention is not limited to such examples.
[Examples and Comparative Examples]
In order to obtain the rotational angular velocity of each tire mounted on the vehicle, the rotational angular velocity used for ABS control was converted into the rotational angular velocity. In addition, the axle shaft torque information of the vehicle is output to a PC (personal computer), and such information can be taken into the PC synchronously as digital data every 50 msec.

テスト条件
FF車にタイヤを装着してテスト走行を行った。
走行条件
荷重:(1)1名乗車(1600kg)、(2)最大積車(2000kg)
空気圧:(1)4輪基準内圧、(2)フロント2輪が25%減圧、(3)リア2輪が25%減圧
荷重2条件、空気圧3条件の組合せにて、DEL2=[{(F1+F2)/(F3+F4)}−1]×100(%)と、車両質量とをそれぞれ算出した。
Test conditions A test drive was performed with tires attached to FF vehicles.
Traveling condition load: (1) 1 person ride (1600kg), (2) Maximum loading capacity (2000kg)
Air pressure: (1) Four wheel reference internal pressure, (2) Two front wheels are depressurized 25%, (3) Rear two wheels are depressurized 25%, DEL2 = [{(F1 + F2) / (F3 + F4)}-1] × 100 (%) and vehicle mass were calculated.

<比較例1>
1名乗車且つ4輪基準内圧の場合において、忘却係数1にて、車両の駆動力Fxを車両加速度αだけで回帰した。結果を図5に示す。回帰直線の傾きが車両質量mに相当するが、路面勾配の変化や空力抵抗の影響が考慮されていないので、両者の相関が低いことが分かる。
図6は、比較例1における推定質量の時系列変化を示しているが、車両質量の真値(1600kg)と推定値との乖離が大きいことが分かる。
<Comparative Example 1>
In the case of one-seater and four-wheel reference internal pressure, the driving force Fx of the vehicle was regressed only by the vehicle acceleration α with a forgetting factor of 1. The results are shown in FIG. Although the slope of the regression line corresponds to the vehicle mass m, it is understood that the correlation between the two is low because the change in the road surface gradient and the influence of aerodynamic resistance are not taken into consideration.
FIG. 6 shows the time-series change of the estimated mass in Comparative Example 1, but it can be seen that the difference between the true value (1600 kg) of the vehicle mass and the estimated value is large.

<比較例2>
比較例1と同じ1名乗車且つ4輪基準内圧の場合において、忘却係数0.965にて、車両の駆動力Fxを車両速度V及び車両加速度αで回帰した。図7は、比較例2における推定質量の時系列変化を示している。短時間での推定を時系列に行っているため、得られる質量推定値は収束していかないことが分かる。また、図8は、同じく比較例2における坂道勾配抵抗の、推定質量に対する影響を示す図である。図8より、短時間での推定となるので、坂道勾配の変化に追従できることが分かる。
<Comparative Example 2>
In the case of the same number of passengers and four-wheel reference internal pressure as in Comparative Example 1, the driving force Fx of the vehicle was regressed with the vehicle speed V and the vehicle acceleration α with a forgetting factor of 0.965. FIG. 7 shows the time series change of the estimated mass in Comparative Example 2. Since the estimation in a short time is performed in time series, it can be seen that the obtained mass estimation value does not converge. Moreover, FIG. 8 is a figure which shows the influence with respect to the estimated mass of the slope gradient resistance in the comparative example 2 similarly. As can be seen from FIG. 8, since the estimation is performed in a short time, it is possible to follow the change in the slope of the slope.

<実施例1>
比較例1と同じ1名乗車且つ4輪基準内圧の場合において、忘却係数0.965にて、車両の駆動力Fxを車両速度V及び車両加速度αで回帰し、得られたデータについて所定のリジェクト幅の範囲(Mmin=1600-200=1400kg、Mmax=2000+200=2200kg)から外れたものをリジェクトし、残ったデータについて、再度、忘却係数=1の逐次最小二乗で補正後Fx(Fx-b1×V2−b2。b1は空力抵抗A、b2は定数項mgsin(θ)である)を車両加速度αで回帰した。
<Example 1>
In the case of the same number of passengers and four-wheel reference internal pressure as in Comparative Example 1, the driving force Fx of the vehicle is regressed with the vehicle speed V and the vehicle acceleration α with a forgetting factor of 0.965, and the obtained data is subjected to a predetermined rejection. Those outside the range of the width (Mmin = 1600−200 = 1400 kg, Mmax = 2000 + 200 = 2200 kg) are rejected, and the remaining data is corrected again with the successive least squares of the forgetting factor = 1 and Fx (Fx− b1 × V 2 −b2, where b1 is an aerodynamic resistance A, and b2 is a constant term mgsin (θ)) with a vehicle acceleration α.

補正後の車両の駆動力(駆動力−走行抵抗−坂道勾配抵抗)と加速度との関係を図9に示す。また、実施例1における推定質量の時系列変化を図10に示す。
図9〜10より、駆動力Fxを坂道勾配の抵抗と走行抵抗(空気抵抗)とで補正を行うことにより、当該補正後Fxと車両加速度αとの相関性がよくなり、車両質量の推定精度が向上することが分かる。
FIG. 9 shows the relationship between the corrected driving force of the vehicle (driving force—travel resistance—slope gradient resistance) and acceleration. Moreover, the time series change of the estimated mass in Example 1 is shown in FIG.
9 to 10, by correcting the driving force Fx by the slope gradient resistance and the running resistance (air resistance), the correlation between the corrected Fx and the vehicle acceleration α is improved, and the estimation accuracy of the vehicle mass is improved. Can be seen to improve.

また、図11は、前記6つのケース(2条件×3条件)について算出したDEL2と推定質量との関係を示す図である。図11より、例えばリア2輪減圧(1名乗車)と積車時(基準内圧)、又は基準内圧(1名乗車)とフロント2輪減圧(積車)のように、DEL2だけで区別できないという問題が、本発明によれば減圧しているか否かの区別ができるようになり、誤報や未警報を防止できることが分かる。   FIG. 11 is a diagram showing the relationship between DEL2 and estimated mass calculated for the six cases (2 conditions × 3 conditions). From FIG. 11, for example, rear two-wheel pressure reduction (one passenger) and loading (reference internal pressure), or reference internal pressure (one passenger) and front two-wheel pressure reduction (loading) cannot be distinguished by DEL2 alone. According to the present invention, it becomes possible to distinguish whether or not the pressure is reduced, and it can be understood that false alarms and non-alarms can be prevented.

1 車輪速度検出手段
2 制御ユニット
2a インターフェース
2b CPU
2c ROM
2d RAM
3 表示器
4 初期化ボタン
5 警報器
1 Wheel speed detection means 2 Control unit 2a Interface 2b CPU
2c ROM
2d RAM
3 Display 4 Initialization button 5 Alarm

Claims (9)

車両に装着された車輪の回転速度に基づいて当該車両の質量を推定する装置であって、
前記車両の各タイヤの車輪回転情報を検出する車輪回転情報検出手段と、
この車輪回転情報検出手段により検出された車輪回転情報から車両速度を算出する車両速度算出手段と、
この車両速度算出手段により算出された車両速度から車両加速度を算出する車両加速度算出手段と、
車両のアクスルシャフトトルクから当該車両の駆動力を算出する駆動力算出手段と、
車両が傾斜角θの路面を走行しているものとし、前記算出された車両速度、車両加速度及び駆動力をそれぞれV、α及びFxとし、車両質量をm、空力抵抗をA、重力加速度をgとしたときに、勾配の変化の影響が少ない所定の短時間の間のデータに対し、
Fx=m(α+gsin(θ))+AV
という関係について逐次最小二乗を行うことで車両質量mを推定する車両質量推定手段と、
この車両質量推定手段により推定された車両質量が所定範囲内の値であるか否かを判断し、所定範囲外の値である場合に当該車両質量を排除するリジェクト手段と、
このリジェクト手段により排除されなかったデータ群について、Fx−(mgsin(θ)+AV)を従属変数として、車両加速度αについて逐次最小二乗を行うことで補正された車両質量を求める車両質量補正手段と
を備えたことを特徴とする車両質量推定装置。
An apparatus for estimating the mass of a vehicle based on the rotational speed of wheels mounted on the vehicle,
Wheel rotation information detecting means for detecting wheel rotation information of each tire of the vehicle;
Vehicle speed calculation means for calculating the vehicle speed from the wheel rotation information detected by the wheel rotation information detection means;
Vehicle acceleration calculating means for calculating vehicle acceleration from the vehicle speed calculated by the vehicle speed calculating means;
Driving force calculating means for calculating the driving force of the vehicle from the axle shaft torque of the vehicle;
And that the vehicle is traveling on a road surface inclination angle theta, the vehicle speed the calculated vehicle acceleration and the driving force respectively V, and α and Fx, the vehicle mass m, the aerodynamic resistance A, the acceleration of gravity When g is used, the data for a predetermined short time with little influence of the change in the gradient,
Fx = m (α + gsin (θ)) + AV 2
Vehicle mass estimation means for estimating vehicle mass m by sequentially performing least squares on the relationship
Determining whether the vehicle mass estimated by the vehicle mass estimation means is a value within a predetermined range, and rejecting the vehicle mass when the vehicle mass is a value outside the predetermined range;
Vehicle mass correction means for obtaining a corrected vehicle mass by successively performing least squares with respect to the vehicle acceleration α, with Fx− (mgsin (θ) + AV 2 ) as a dependent variable, for the data group not excluded by the reject means; A vehicle mass estimation apparatus comprising:
前記車両質量推定手段は、忘却係数を入れた逐次最小二乗を行うことで、勾配の変化の影響が少ない所定の短時間の間での車両質量を推定するように構成されている請求項1に記載の車両質量推定装置。   The vehicle mass estimation means is configured to estimate a vehicle mass in a predetermined short time with little influence of a change in gradient by performing successive least squares including a forgetting factor. The vehicle mass estimation apparatus described. 車両に装着された車輪の回転速度に基づいて当該車両の質量を推定する方法であって、
前記車両の各タイヤの車輪回転情報を検出する車輪回転情報検出工程と、
この車輪回転情報検出工程において検出された車輪回転情報から車両速度を算出する車両速度算出工程と、
この車両速度算出工程において算出された車両速度から車両加速度を算出する車両加速度算出工程と、
車両のアクスルシャフトトルクから当該車両の駆動力を算出する駆動力算出工程と、
車両が傾斜角θの路面を走行しているものとし、前記算出された車両速度、車両加速度及び駆動力をそれぞれV、α及びFxとし、車両質量をm、空力抵抗をA、重力加速度をgとしたときに、勾配の変化の影響が少ない所定の短時間の間のデータに対し、
Fx=m(α+gsin(θ))+AV
という関係について逐次最小二乗を行うことで車両質量mを推定する車両質量推定工程と、
この車両質量推定工程において推定された車両質量が所定範囲内の値であるか否かを判断し、所定範囲外の値である場合に当該車両質量を排除するリジェクト工程と、
このリジェクト工程において排除されなかったデータ群について、Fx−(mgsin(θ)+AV)を従属変数として、車両加速度αについて逐次最小二乗を行うことで補正された車両質量を求める車両質量補正工程と
を含むことを特徴とする車両質量推定方法。
A method for estimating the mass of a vehicle based on the rotational speed of wheels mounted on the vehicle,
A wheel rotation information detection step of detecting wheel rotation information of each tire of the vehicle;
A vehicle speed calculation step for calculating a vehicle speed from the wheel rotation information detected in the wheel rotation information detection step;
A vehicle acceleration calculation step of calculating vehicle acceleration from the vehicle speed calculated in the vehicle speed calculation step;
A driving force calculation step of calculating the driving force of the vehicle from the axle shaft torque of the vehicle;
And that the vehicle is traveling on a road surface inclination angle theta, the vehicle speed the calculated vehicle acceleration and the driving force respectively V, and α and Fx, the vehicle mass m, the aerodynamic resistance A, the acceleration of gravity When g is used, the data for a predetermined short time with little influence of the change in the gradient,
Fx = m (α + gsin (θ)) + AV 2
A vehicle mass estimation step of estimating the vehicle mass m by sequentially performing least squares on the relationship,
Determining whether the vehicle mass estimated in the vehicle mass estimation step is a value within a predetermined range, and rejecting the vehicle mass when the vehicle mass is a value outside the predetermined range;
A vehicle mass correction step for obtaining a corrected vehicle mass by successively performing least squares with respect to the vehicle acceleration α using Fx− (mgsin (θ) + AV 2 ) as a dependent variable for a data group that has not been excluded in the reject step; The vehicle mass estimation method characterized by including.
前記車両質量推定工程は、忘却係数を入れた逐次最小二乗を行うことで、勾配の変化の影響が少ない所定の短時間の間での車両質量を推定する請求項3に記載の車両質量推定方法。   4. The vehicle mass estimation method according to claim 3, wherein the vehicle mass estimation step estimates vehicle mass in a predetermined short time with little influence of a change in gradient by performing successive least squares including a forgetting factor. . 車両に装着された車輪の回転速度に基づいて当該車両の質量を推定するためにコンピュータを、
車両の各タイヤの車輪回転情報から車両速度を算出する車両速度算出手段、
この車両速度算出手段により算出された車両速度から車両加速度を算出する車両加速度算出手段、
車両のアクスルシャフトトルクから当該車両の駆動力を算出する駆動力算出手段、
車両が傾斜角θの路面を走行しているものとし、前記算出された車両速度、車両加速度及び駆動力をそれぞれV、α及びFxとし、車両質量をm、空力抵抗をA、重力加速度をgとしたときに、勾配の変化の影響が少ない所定の短時間の間のデータに対し、
Fx=m(α+gsin(θ))+AV
という関係について逐次最小二乗を行うことで車両質量mを推定する車両質量推定手段、
この車両質量推定手段により推定された車両質量が所定範囲内の値であるか否かを判断し、所定範囲外の値である場合に当該車両質量を排除するリジェクト手段、及び、
このリジェクト手段により排除されなかったデータ群について、Fx−(mgsin(θ)+AV)を従属変数として、車両加速度αについて逐次最小二乗を行うことで補正された車両質量を求める車両質量補正手段として機能させることを特徴とする車両質量推定プログラム。
A computer to estimate the mass of the vehicle based on the rotational speed of wheels mounted on the vehicle;
Vehicle speed calculating means for calculating vehicle speed from wheel rotation information of each tire of the vehicle;
Vehicle acceleration calculating means for calculating vehicle acceleration from the vehicle speed calculated by the vehicle speed calculating means;
Driving force calculating means for calculating the driving force of the vehicle from the axle shaft torque of the vehicle;
And that the vehicle is traveling on a road surface inclination angle theta, the vehicle speed the calculated vehicle acceleration and the driving force respectively V, and α and Fx, the vehicle mass m, the aerodynamic resistance A, the acceleration of gravity When g is used, the data for a predetermined short time with little influence of the change in the gradient,
Fx = m (α + gsin (θ)) + AV 2
Vehicle mass estimation means for estimating vehicle mass m by sequentially performing least squares on the relationship
Determining whether the vehicle mass estimated by the vehicle mass estimation means is a value within a predetermined range, and rejecting the vehicle mass when the vehicle mass is a value outside the predetermined range; and
As a vehicle mass correction means for obtaining a corrected vehicle mass by successively performing least squares with respect to the vehicle acceleration α, using Fx− (mgsin (θ) + AV 2 ) as a dependent variable for the data group that has not been excluded by the reject means. A vehicle mass estimation program that is made to function.
前記車両質量推定手段は、忘却係数を入れた逐次最小二乗を行うことで、勾配の変化の影響が少ない所定の短時間の間での車両質量を推定するように構成されている請求項5に記載の車両質量推定プログラム。   The vehicle mass estimation means is configured to estimate a vehicle mass in a predetermined short time with little influence of a change in gradient by performing successive least squares including a forgetting factor. The vehicle mass estimation program described. 走行中の車両のタイヤ減圧判定値を算出し、得られた減圧判定値の、正常内圧時における減圧判定値の基準値からの変化の大きさに基づいてタイヤ空気圧の低下を検出する装置であって、
請求項1又は2に記載の車両質量推定装置と、
車輪回転情報検出手段により検出された車輪回転情報から得られる各輪の車輪速度から減圧判定値を求める減圧判定値算出手段と、
得られた車両質量と、正常内圧であり且つ荷重非搭載時における車両質量との比較により所定タイヤの輪荷重変化量を求め、この輪荷重変化量に基づいて減圧判定値の基準値を補正する基準値補正手段と、
得られたタイヤ減圧判定値の、前記補正された基準値からの変化の大きさが所定の閾値を超えた場合にタイヤの内圧低下を判定する判定手段と
を備えたことを特徴とするタイヤ空気圧低下検出装置。
This is a device that calculates the tire pressure reduction judgment value for a running vehicle and detects the decrease in tire air pressure based on the magnitude of change of the obtained pressure reduction judgment value from the reference value of the pressure reduction judgment value at normal internal pressure. And
The vehicle mass estimation device according to claim 1 or 2,
Decompression determination value calculating means for obtaining a decompression determination value from the wheel speed of each wheel obtained from the wheel rotation information detected by the wheel rotation information detection means;
A wheel load change amount of a predetermined tire is obtained by comparing the obtained vehicle mass with a normal internal pressure and a vehicle mass when no load is mounted, and the reference value of the decompression determination value is corrected based on the wheel load change amount. A reference value correcting means;
Tire pressure, comprising: a determination means for determining a decrease in the internal pressure of the tire when a magnitude of a change from the corrected reference value of the obtained tire decompression determination value exceeds a predetermined threshold value Drop detection device.
走行中の車両のタイヤ減圧判定値を算出し、得られた減圧判定値の、正常内圧時における減圧判定値の基準値からの変化の大きさに基づいてタイヤ空気圧の低下を検出する方法であって、
請求項3又は4に記載の車両質量推定方法と、
車輪回転情報検出手段により検出された車輪回転情報から得られる各輪の車輪速度から減圧判定値を求める減圧判定値算出工程と、
得られた車両質量と、正常内圧であり且つ荷重非搭載時における車両質量との比較により所定タイヤの輪荷重変化量を求め、この輪荷重変化量に基づいて減圧判定値の基準値を補正する基準値補正工程と、
得られたタイヤ減圧判定値の、前記補正された基準値からの変化の大きさが所定の閾値を超えた場合にタイヤ空気圧の低下を判定する判定工程と
を含むことを特徴とするタイヤ空気圧低下検出方法。
This is a method for calculating the tire pressure reduction judgment value of a running vehicle and detecting the decrease in tire air pressure based on the magnitude of change of the obtained pressure reduction judgment value from the reference value of the pressure reduction judgment value at normal internal pressure. And
The vehicle mass estimation method according to claim 3 or 4,
A decompression determination value calculating step for obtaining a decompression determination value from the wheel speed of each wheel obtained from the wheel rotation information detected by the wheel rotation information detection means;
A wheel load change amount of a predetermined tire is obtained by comparing the obtained vehicle mass with a normal internal pressure and a vehicle mass when no load is mounted, and the reference value of the decompression determination value is corrected based on the wheel load change amount. A reference value correction process;
A tire pressure decrease characterized by comprising: a determination step of determining a decrease in tire air pressure when a magnitude of a change from the corrected reference value of the obtained tire decompression determination value exceeds a predetermined threshold value. Detection method.
走行中の車両のタイヤ減圧判定値を算出し、得られた減圧判定値の、正常内圧時における減圧判定値の基準値からの変化の大きさに基づいてタイヤ空気圧の低下を検出するためにコンピュータを、
車両の各タイヤの車輪回転情報から車両速度を算出する車両速度算出手段、
この車両速度算出手段により算出された車両速度から車両加速度を算出する車両加速度算出手段、
車両のアクスルシャフトトルクから当該車両の駆動力を算出する駆動力算出手段、
車両が傾斜角θの路面を走行しているものとし、前記算出された車両速度、車両加速度及び駆動力をそれぞれV、α及びFxとし、車両質量をm、空力抵抗をA、重力加速度をgとしたときに、勾配の変化の影響が少ない所定の短時間の間のデータに対し、
Fx=m(α+gsin(θ))+AV
という関係について逐次最小二乗を行うことで車両質量mを推定する車両質量推定手段、
この車両質量推定手段により推定された車両質量が所定範囲内の値であるか否かを判断し、所定範囲外の値である場合に当該車両質量を排除するリジェクト手段、
このリジェクト手段により排除されなかったデータ群について、Fx−(mgsin(θ)+AV)を従属変数として、車両加速度αについて逐次最小二乗を行うことで補正された車両質量を求める車両質量補正手段、
車輪回転情報検出手段により検出された車輪回転情報から得られる各輪の車輪速度から減圧判定値を求める減圧判定値算出手段と、
得られた車両質量と、正常内圧であり且つ荷重非搭載時における車両質量との比較により所定タイヤの輪荷重変化量を求め、この輪荷重変化量に基づいて減圧判定値の基準値を補正する基準値補正手段と、
得られたタイヤ減圧判定値の、前記補正された基準値からの変化の大きさが所定の閾値を超えた場合にタイヤ空気圧の低下を判定する判定手段として機能させることを特徴とするタイヤ空気圧低下検出プログラム。
A computer for calculating a tire pressure reduction judgment value of a running vehicle and detecting a decrease in tire air pressure based on a magnitude of change of the obtained pressure reduction judgment value from a reference value of the pressure reduction judgment value at normal internal pressure The
Vehicle speed calculating means for calculating vehicle speed from wheel rotation information of each tire of the vehicle;
Vehicle acceleration calculating means for calculating vehicle acceleration from the vehicle speed calculated by the vehicle speed calculating means;
Driving force calculating means for calculating the driving force of the vehicle from the axle shaft torque of the vehicle;
And that the vehicle is traveling on a road surface inclination angle theta, the vehicle speed the calculated vehicle acceleration and the driving force respectively V, and α and Fx, the vehicle mass m, the aerodynamic resistance A, the acceleration of gravity When g is used, the data for a predetermined short time with little influence of the change in the gradient,
Fx = m (α + gsin (θ)) + AV 2
Vehicle mass estimation means for estimating vehicle mass m by sequentially performing least squares on the relationship
Rejecting means for determining whether or not the vehicle mass estimated by the vehicle mass estimating means is a value within a predetermined range, and for excluding the vehicle mass when the vehicle mass is a value outside the predetermined range;
Vehicle mass correction means for obtaining a corrected vehicle mass by sequentially performing least squares with respect to the vehicle acceleration α using Fx− (mgsin (θ) + AV 2 ) as a dependent variable for the data group not excluded by the reject means;
Decompression determination value calculating means for obtaining a decompression determination value from the wheel speed of each wheel obtained from the wheel rotation information detected by the wheel rotation information detection means;
A wheel load change amount of a predetermined tire is obtained by comparing the obtained vehicle mass with a normal internal pressure and a vehicle mass when no load is mounted, and the reference value of the decompression determination value is corrected based on the wheel load change amount. A reference value correcting means;
A tire pressure drop characterized by causing a tire pressure drop to function as a judgment means for judging a tire pressure drop when a magnitude of a change in the tire pressure reduction judgment value from the corrected reference value exceeds a predetermined threshold value. Detection program.
JP2009097882A 2009-04-14 2009-04-14 Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program Expired - Fee Related JP5346659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097882A JP5346659B2 (en) 2009-04-14 2009-04-14 Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097882A JP5346659B2 (en) 2009-04-14 2009-04-14 Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program

Publications (2)

Publication Number Publication Date
JP2010249597A JP2010249597A (en) 2010-11-04
JP5346659B2 true JP5346659B2 (en) 2013-11-20

Family

ID=43312106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097882A Expired - Fee Related JP5346659B2 (en) 2009-04-14 2009-04-14 Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program

Country Status (1)

Country Link
JP (1) JP5346659B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647696B1 (en) * 2015-07-13 2016-08-11 현대오트론 주식회사 Apparatus and method for monitoring tire pressure using radius analysis
KR101647697B1 (en) * 2015-07-13 2016-08-11 현대오트론 주식회사 Apparatus and method for monitoring tire pressure using mass of vehicle
KR20170007978A (en) * 2015-07-13 2017-01-23 현대오트론 주식회사 Apparatus and method for monitoring tire pressure using regression equation
CN110361081A (en) * 2019-07-19 2019-10-22 成都云科新能汽车技术有限公司 A kind of vehicular gross combined weight dynamic measurement method based on recurrent least square method
CN111198032A (en) * 2018-11-19 2020-05-26 陕西汽车集团有限责任公司 Real-time estimation method for automobile mass
EP4331930A1 (en) 2022-08-22 2024-03-06 Sumitomo Rubber Industries, Ltd. Wheel load estimation device, method, and program

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538279B2 (en) 2011-03-25 2014-07-02 住友ゴム工業株式会社 Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program
JP5427868B2 (en) 2011-10-21 2014-02-26 住友ゴム工業株式会社 Tire pressure drop detection method, apparatus and program
KR101459683B1 (en) * 2012-12-20 2014-11-12 현대오트론 주식회사 Automobile and the control method
CN104574957B (en) * 2014-12-23 2019-03-05 厦门雅迅网络股份有限公司 A kind of method and system using wind speed and angular transducer monitoring overload of vehicle
GB2538806B (en) * 2015-05-29 2021-04-07 Sevcon Ltd Method and apparatus
CN107490423A (en) * 2017-09-08 2017-12-19 北京汽车研究总院有限公司 A kind of complete vehicle weight method of testing, system and vehicle
JP6969363B2 (en) * 2017-12-22 2021-11-24 住友ゴム工業株式会社 Tire decompression detector
US11573119B2 (en) * 2019-01-17 2023-02-07 GM Global Technology Operations LLC Method and apparatus for dynamically estimating vehicle mass
CN110232170A (en) * 2019-06-18 2019-09-13 北京蜂云科创信息技术有限公司 A method of judging vehicle load state
CN110371128B (en) * 2019-06-26 2021-10-08 江铃汽车股份有限公司 Steep descent control method and device and readable storage medium
CN111891133B (en) * 2020-06-29 2022-06-03 东风商用车有限公司 Vehicle mass estimation method and system adaptive to various road conditions
CN112319481B (en) * 2020-10-27 2021-11-12 东风商用车有限公司 Vehicle mass estimation and gradient automatic identification method based on oil mass
CN114674403B (en) * 2021-12-30 2024-05-14 北京万集科技股份有限公司 Target vehicle detection method and device, storage medium and electronic equipment
CN115230717A (en) * 2022-07-21 2022-10-25 广西科技大学 Method and device for calculating mass of loaded automobile
CN116872947B (en) * 2023-09-08 2024-01-26 江西五十铃汽车有限公司 Vehicle load measuring method and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972776A (en) * 1995-09-05 1997-03-18 Unisia Jecs Corp Vehicle weight calculation system
JP2004037255A (en) * 2002-07-03 2004-02-05 Sumitomo Rubber Ind Ltd Method and apparatus for estimating mass of vehicle, and method and apparatus for estimating gradient using the method
DE10307511B4 (en) * 2003-02-21 2004-12-09 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Method and device for computer-aided estimation of the mass of a vehicle, in particular a commercial vehicle
JP4066864B2 (en) * 2003-03-28 2008-03-26 アイシン精機株式会社 Vehicle weight estimation device
JP4256797B2 (en) * 2004-02-16 2009-04-22 住友ゴム工業株式会社 Tire pressure drop warning method and apparatus, and tire decompression determination program
JP5069970B2 (en) * 2007-08-06 2012-11-07 住友ゴム工業株式会社 Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647696B1 (en) * 2015-07-13 2016-08-11 현대오트론 주식회사 Apparatus and method for monitoring tire pressure using radius analysis
KR101647697B1 (en) * 2015-07-13 2016-08-11 현대오트론 주식회사 Apparatus and method for monitoring tire pressure using mass of vehicle
KR20170007978A (en) * 2015-07-13 2017-01-23 현대오트론 주식회사 Apparatus and method for monitoring tire pressure using regression equation
KR101704633B1 (en) 2015-07-13 2017-02-08 현대오트론 주식회사 Apparatus and method for monitoring tire pressure using regression equation
CN111198032A (en) * 2018-11-19 2020-05-26 陕西汽车集团有限责任公司 Real-time estimation method for automobile mass
CN110361081A (en) * 2019-07-19 2019-10-22 成都云科新能汽车技术有限公司 A kind of vehicular gross combined weight dynamic measurement method based on recurrent least square method
EP4331930A1 (en) 2022-08-22 2024-03-06 Sumitomo Rubber Industries, Ltd. Wheel load estimation device, method, and program

Also Published As

Publication number Publication date
JP2010249597A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5346659B2 (en) Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program
JP5538279B2 (en) Vehicle mass estimation device, method and program, and tire air pressure drop detection device, method and program
EP2363695B1 (en) Apparatus, method and programm for vehicle mass estimation
JP4463311B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
US8554402B2 (en) Method and apparatus for detecting tire having decreased internal pressure, and program for detecting tire having decreased internal pressure
JP5427868B2 (en) Tire pressure drop detection method, apparatus and program
US7333008B2 (en) Tire deflation warning system and method thereof, and judgment program of tire with reduced pressures
JP5265145B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
EP3835161B1 (en) Vehicle mass estimation device
JP4964329B2 (en) Tire pressure drop detection device and method, and tire pressure drop detection program
JP5069970B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
EP3509875B1 (en) Estimation of absolute wheel roll radii and estimation of vertical compression value
JP5555486B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
JP3869762B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
US20040111198A1 (en) Underinflation detector
JP2010076702A (en) Method and device for detecting tire internal pressure drop, and program for detecting tire internal pressure drop
JP2010076700A (en) Method and device for estimating wheel load of tire, and program for estimating wheel load of tire
JP2010076703A (en) Method and device for estimating wheel load of tire, and program for estimating wheel load of tire
JP2009014586A (en) Method, device and program for detecting tire pressure lowering
JP3623023B2 (en) Tire pressure drop detection method and apparatus
JP3585557B2 (en) Method and apparatus for detecting decrease in tire air pressure
JP5097438B2 (en) Tire dynamic load radius reference value initialization method and apparatus, and tire dynamic load radius reference value initialization program
JP3605006B2 (en) Tire pressure drop warning device and method
JP5032604B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program
JP5039804B2 (en) Tire internal pressure drop detection method and apparatus, and tire internal pressure drop detection program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5346659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees