JP5555168B2 - 多段蒸発濃縮・凝縮装置および方法 - Google Patents

多段蒸発濃縮・凝縮装置および方法 Download PDF

Info

Publication number
JP5555168B2
JP5555168B2 JP2010528616A JP2010528616A JP5555168B2 JP 5555168 B2 JP5555168 B2 JP 5555168B2 JP 2010528616 A JP2010528616 A JP 2010528616A JP 2010528616 A JP2010528616 A JP 2010528616A JP 5555168 B2 JP5555168 B2 JP 5555168B2
Authority
JP
Japan
Prior art keywords
chamber
evaporation
condensation
condensing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010528616A
Other languages
English (en)
Other versions
JPWO2010029723A1 (ja
Inventor
矢部孝
増田勇
島林洋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Engineering Co Ltd
Original Assignee
Nisso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Engineering Co Ltd filed Critical Nisso Engineering Co Ltd
Priority to JP2010528616A priority Critical patent/JP5555168B2/ja
Publication of JPWO2010029723A1 publication Critical patent/JPWO2010029723A1/ja
Application granted granted Critical
Publication of JP5555168B2 publication Critical patent/JP5555168B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0088Cascade evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/009Collecting, removing and/or treatment of the condensate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

本発明は、蒸発濃縮/凝縮技術を応用し、例えば、海水や雨水などの原液から淡水を生産したり、食品やその他の工業生産過程において対象原液を蒸発濃縮すると共に蒸発した蒸気を凝縮する場合に好適な多段蒸発濃縮・凝縮装置および方法に関する。
蒸発濃縮/凝縮技術は、工業や農業分野は勿論、最近の温暖化伴う水不足対策、特に淡水化技術として重要となる。例えば、海水を淡水化する方法には、逆浸透膜法(例えば、特開2006−122787)と蒸発法(例えば、特許文献1)がよく知られている。このうち、蒸発法は、蒸発濃縮/凝縮技術を利用したもので、特許文献1に例示されるごとく、装置底部を流れる原液(海水)が減圧フラッシュされて水蒸気を発生させる蒸発室と、その蒸発室の上方に複数の凝縮伝熱管が配置され、同伝熱管を上から臨むように原液散布装置を設けた凝縮器とからなる。そして、複数の凝縮伝熱管の内側に上記水蒸気が通されて、同伝熱管外面を流下する原液(海水)で水蒸気が冷却凝縮され、淡水となる。
特開2007−98350号公報
しかしながら、逆浸透膜法は、加圧に多大な電力を消費し維持経費がかさばるという問題がある。これに対し、従来の蒸発法では、原液(海水)を高温で加熱して蒸発したり、蒸発効率を高めるため減圧したりと大量のエネルギーを必要とし、エネルギー資源に乏しい国や地域では採用が困難となる。また、従来の蒸発法では、生産量を上げるため主要部である蒸発室や凝縮器を多段に設けるようにしているが、主要部が水平方向に配置され設置面積が広く必要となる。
本発明は、以上のような課題を解決するものであり、気化効率および凝縮効率を向上したり、省エネルギー化、メンテナンス性、設置面積の点で改善し易い多段蒸発濃縮・凝縮装置および方法を提供することを目的としている。
上記目的を達成するために、本発明の多段蒸発濃縮・凝縮装置は、原液を加熱し、蒸発室で溶媒の一部を気化して濃縮液に処理すると共に、前記気化した蒸気を凝縮室に導いて凝縮液に処理する蒸発濃縮・凝縮装置において、前記蒸発室の複数を上下に積層している蒸発処理部、および前記蒸発処理部と対向して設けられて前記各蒸発室とそれぞれ所定寸法ずらして前記凝縮室の複数を上下に積層している凝縮処理部、並びに隣接している前記蒸発室と前記凝縮室とを連通するよう設けられたデミスターとからなり、前記蒸発室のうち最上段の蒸発室、その隣の凝縮室、下段の蒸発室、その隣の凝縮室というように、一方
向の気体流を前記デミスターを介して前記最上段の蒸発室から前記凝縮室のうち最下段の凝縮室まで循環させる気流形成手段と、前記原液と前記凝縮室に溜まる凝縮液との間で熱交換を行って前記原液を加熱し、前記凝縮液を冷却する液液熱交換器と、前記原液又は前記濃縮液を液滴又は噴霧状にして、前記気流形成手段にて形成される気体と気液接触させて前記蒸発室での気化を促進する噴霧手段と、前記凝縮液を液滴又は噴霧状にして、前記気流形成手段にて形成される気体と気液接触させて前記凝縮室での凝縮を促進する噴霧手段とを備えていることを特徴としている。

以上の本発明において、図1〜図3に例示されるごとく、蒸発処理部は複数の蒸発室を上下に配置している。凝縮処理部は、蒸発処理部と対向して設けられて各蒸発室とそれぞれ所定寸法ずらして複数の凝縮室を上下に配置している。デミスターは、液体と気体を分離して気体流中の気体を専ら通過させるものであればよい。気流形成手段は、空気等の気体を気体流として所定流量および流速で圧送するとともに、最上段の蒸発室と最下段の凝縮室とを接続している接続管などを介して気体を一方向へ循環式に移送する。
以上の本発明は請求項2〜5のように具体化されることがより好ましい。
即ち、(ア)前記噴霧手段は、前記最上段の蒸発室に設けられて加熱した前記原液を噴霧する第1噴霧手段と、前記最上段以外の蒸発室に設けられて上段の蒸発室に溜まる濃縮液を下段の蒸発室で噴霧する第2噴霧手段と、前記各凝縮室に設けられて対応凝縮室に溜まる凝縮液を対応凝縮室で噴霧する第3噴霧手段とを有している構成である(請求項2)。なお、各噴霧手段は、蒸発・凝縮効率をより向上するため、噴霧方向が気流形成手段により形成される空気等の気体流の流れ方向とできるだけ交わる、つまり交流するように設置することが好ましい。
(イ)前記噴霧手段は、スプレーノズルである(請求項3)、又は、供給される液をモータによる回転力で液滴又は噴霧状にする回転翼である(請求項4)。
(ウ)前記蒸発処理部および前記凝縮処理部が略円筒形の内部を縦方向の仕切壁を介して分割した状態で対向配置されていると共に、前記デミスターが前記仕切壁に取り付けられている構成である(請求項5)。
(エ)前記蒸発処理部および前記凝縮処理部が角槽ないしは角筒形の内部を縦方向の仕切壁を介して分割した状態で対向配置されていると共に、前記デミスターが前記仕切壁に取り付けられている構成である(請求項6)。
また、上記目的を達成するために、本発明の多段蒸発濃縮・凝縮方法は、原液を加熱し、蒸発室で溶媒の一部を気化して濃縮液に処理するとともに、前記気化した蒸気を凝縮室に導いて凝縮液に処理する蒸発濃縮・凝縮方法において、請求項1から6の何れかに記載の多段蒸発濃縮・凝縮装置を使用して、加熱した前記原液を、前記最上段の蒸発室に噴霧すると同時に、前記気流形成手段より形成される気体流に接触させ、一部をその気体流に同伴させて前記最上段の蒸発室から前記デミスターを介して隣接している前記凝縮室、更にその凝縮室から前記デミスターを介して下段の前記蒸発室というように、前記最下段の凝縮室まで一方向へ流出させながら、前記最上段を除く下段の各蒸発室で対応蒸発室に溜まる前記濃縮液を噴霧して蒸発させ、前記各凝縮室で対応凝縮室に溜まる凝縮液を噴霧して冷却凝縮させることを特徴としている。
請求項1の発明では、蒸発処理部を構成している各蒸発室と凝縮処理部を構成している各凝縮室とがそれぞれ縦配置、かつ所定寸法ずらした状態で、気体流形成手段により空気等の気体流を最上段の蒸発室、その隣の凝縮室、下段の蒸発室、その隣の凝縮室というように対応デミスターを介して一方向へ圧送するため、各蒸発室側で液滴又は噴射される原液や濃縮液をその気体流の気体と気液接触させて気化効率を向上したり、凝縮室側で液滴又は噴射される凝縮液をその気体流の気体と気液接触させて凝縮効率を向上できる。また、特許文献1の構造に比べてメンテナンス性および設置面積の点で有利となり、液液熱交換器により原液と各凝縮室に溜まる凝縮液との間で熱交換を行って原液を加熱し凝縮液を冷却するため省エネルギー化からも優れている。しかも、従来のごとく減圧しないため制御を簡易化したり稼動経費を低減できる。
請求項2の発明では、第1噴射手段により加熱された原液を最上段の蒸発室で噴射し、第2噴霧手段により上段側蒸発室に溜まる濃縮液を下段側蒸発室で噴射し、第3噴霧手段により凝縮室に溜まる凝縮液を対応凝縮室で噴射して、原液、濃縮液、凝縮液を前記気体流の気体とそれぞれ効率よく気液接触可能にする。
請求項3と4の発明では、蒸発室および凝縮室に設けられる噴射手段として公知のものから選択可能にすることで設計自由度を得られるようにする。
請求項5の発明では、蒸発処理部および凝縮処理部が略円筒形の内部に仕切壁を介して分割した状態で設けられると、上記した気体流形成手段からの気体流を各室に順に送り易くなる。これに対し、請求項6の発明では、蒸発処理部および凝縮処理部が角槽ないしは角筒形の内部に仕切壁を介して分割した状態で設けられると、図1と図4の比較から明らかなように蒸発室および凝縮室の各室内容積、つまり液と気体とを接触するための室内空間を大きく確保し易くなる。
請求項7の発明では、原液を加熱し、蒸発室で溶媒の一部を気化して濃縮液に処理するとともに、前記気化した蒸気を凝縮室に導いて凝縮液に処理する蒸発濃縮・凝縮方法として、請求項1〜6の多段蒸発濃縮・凝縮装置の利点を具備でき、それにより熱効率およびメンテナンス性等に優れたものとして適用分野の拡大が図られる。
第1形態の多段蒸発濃縮・凝縮装置を示し、(a)はその模式上面図、(b)は模式縦断面図である。 第2形態の多段蒸発濃縮・凝縮装置を示し、(a)はその模式上面図、(b)は模式縦断面図である。 第3形態の多段蒸発濃縮・凝縮装置を示す模式縦断面図である。 実施例に用いた多段蒸発濃縮・凝縮装置を示す模式縦断面図である。
以下、本発明に係る多段蒸発濃縮・凝縮装置および方法として、図1に示した形態例の装置構造、それを用いた蒸発濃縮・凝縮方法、図2の変形例1、図3の変形例2、実施例の順に詳述する。変形例1と2では、形態例と同一部材および部位に同じ符号を付して重複した説明を極力省く。また、蒸発濃縮・凝縮方法の説明では、原液が海水で該海水から淡水を製造する場合の例で述べる。
(装置構造)図1に示した多段蒸発濃縮・凝縮装置は、主要部が複数の蒸発室10〜13を上下に積層している蒸発処理部1と、複数の凝縮室20〜22を上下に積層している凝縮処理部2と、前記蒸発室10〜12および凝縮室20〜22のうち、隣り合う蒸発室と凝縮室とを連通するよう設けられたデミスター3とからなり、空気等の気体を最上段の蒸発室からその隣の凝縮室、下段の蒸発室、その隣の凝縮室というように送る気体形成手段であるブロアー4と、原液である海水aと各凝縮室20〜22に溜まる凝縮液20a〜22aとの間で熱交換を行って海水aを加熱し、凝縮液20a〜22aを冷却する液液熱交換器5と、原液である海水a、濃縮液10a〜12a、凝縮液20a〜22aを液滴又は噴霧状にする噴霧手段6a〜6cとを備えている。
ここで、蒸発処理部1および凝縮処理部2は、略円筒形状の塔7の内空間を縦方向の仕切壁8を介して分割した状態で対向配置されている。また、蒸発処理部1は、塔7の対応内周面と仕切壁8との間に複数(この例では2枚)の底壁9aを間隔を保って平行に設けることで蒸発室10〜12を上下に積層した状態に形成している。最下段の蒸発室12に溜まる濃縮液12aは、最も濃縮された液(濃厚塩水)として排出可能となっている。凝縮処理部2は、塔7の対応内周面と仕切壁8との間に複数(この例では2枚)の底壁9bを間隔を保って平行に設けることで凝縮室20〜22を上下に積層した状態に形成している。この場合、各蒸発室10〜12と各凝縮室20〜22とはそれぞれ所定寸法上下にずらされている。このずれ寸法は、図1のごとく最上段の蒸発室10と最上段の凝縮室20との間、その下段(中段)の蒸発室11と最上段の凝縮室20との間およびその下段(中段)の凝縮室21との間、最下段の蒸発室13と中段の凝縮室21との間およびその最下段の凝縮室22との間を所定大のデミスター3を介して連通可能にする値である。
すなわち、各デミスター3は、仕切壁8のうち、最上段の蒸発室10と最上段の凝縮室20とを仕切っている仕切部分、中段の蒸発室11と最上段の凝縮室20とを仕切っている仕切部分、中段の蒸発室11と中段の凝縮室21とを仕切っている仕切部分、最下段の蒸発室13と中段の凝縮室21とを仕切っている仕切部分、最下段の蒸発室13と最下段の凝縮室22とを仕切っている仕切部分にそれぞれ取り付けられている。このため、この多段蒸発濃縮・凝縮装置では、最上段の蒸発室10から最下段の凝縮室22までが最上段の蒸発室10、その隣の凝縮室20、中段の蒸発室11、その隣の凝縮室21というように各デミスター3を介して連通可能になっている。
なお、以上の仕切壁8は、図1のごとく塔7内を蒸発処理部ないしは蒸発室側と凝縮処理部ないしは凝縮室側とに等分つまり円を半分に仕切る設計であるが、これに限られず蒸発処理部ないしは蒸発室側を凝縮処理部ないしは凝縮室側より大きくしたり、逆に凝縮処理部ないしは凝縮室側を蒸発処理部ないしは蒸発室側より大きくなるよう設けてもよい。勿論、装置構造としては、例えば、図4のごとく角槽ないしは角筒形状の塔7A内を分割、つまり塔7A内を仕切壁8を介して矩形状の蒸発処理部1ないしは蒸発室側と矩形状の凝縮処理部2ないしは凝縮室側とに仕切ってもよい。つまり、図4の装置構造は、作図上、符号を一部省いたが、塔7Aの形状および原液加熱部Hを除いて図1のものと同じである。また、上記各デミスター3は、公知のミストセパレーターを用いることができ、メッシュ型ミストセパレーター、波板型ミストセパレーター、ファイバーベット型ミストセパレーターのいずれでもよい。各デミスター3の大きさは、全て同じ大きさや形状にする以外に、上段側と下段側で大きさや形状を変えるようにしてもよい。
最上段の蒸発室10には気体導入用の入口1aが所定高さ位置に設けられている。最下段の凝縮室22には気体排出用の出口2aが所定高さ位置に設けられている。入口1aと出口2aとは図示を省略した接続管により連通されている。その接続管には、気体形成手段であるブロアー4が介在されており、そのブロアー4から気体が入口1a側へ向けて圧送される。ブロアー4としては、空気等の気体を所定流量および流速で供給可能なものであればよい。なお、この構成では、ブロアー4が気体流を一方向へ流すため単一のブロアーでよく、また塔7の外部に配置されるため劣化し難くなるという利点がある。しかも、ブロアー4が単一であると流量および流速制御も簡単となる。
凝縮処理部2側において、最上段の凝縮室20と中段の凝縮室21とは、凝縮室20の底壁9bに設けられた流出部9cを介して連通されている。中段の凝縮室21と最下段の凝縮室22とは、凝縮室21の底壁9bに設けられた流出部9cを介して連通されている。各流出部9cは、オーバーフロー用排水筒であり、当該凝縮室に溜まる凝縮液が所定高さになったときに凝縮液を下段の凝縮室側へオーバーフローにより排出可能にする。
上記噴霧手段6は、最上段の蒸発室10に設けられて外部の原液加熱部Hから配管b1を介して送られてくる加熱された海水aを噴霧する第1噴霧手段6aと、最上段以外の蒸発室11や12に設けられて最上段の蒸発室10からポンプPおよび配管b2を介して送られてくる濃縮液10a、或いは中段の蒸発室11からポンプPおよび配管b2を介して送られてくる濃縮液10bを噴霧する第2噴霧手段6bと、各凝縮室20〜22に設けられて対応凝縮室からポンプPおよび配管b3を介して送られてくる対応凝縮室の凝縮液20a,21a,22aを噴射する第3噴霧手段6cとを有している。各噴霧手段6a〜6cは、対象液を液滴又は噴霧状に噴射するスプレーノズルが使用されており、該スプレーノズルによる安定的なミスト化が可能となる。この場合、スプレーノズルとしては、全面シャワーでかつ目詰まりを生じさせにくい構造のもの、例えば商品名「ノズレス」と称されているノズルタイプが好ましい。なお、ノズル構成としては、蒸発室側ノズルは閉塞可能性が高いため目詰まりしにくいタイプが好ましいが、凝縮室側ノズルは閉塞可能性が低いため蒸発室より粒子が細かくなるノズルタイプが好ましい。ノズル設置位置としては、噴霧液と気体流が十分接触する位置であればよく、気体流方向に対してノズル噴霧方向が並流、向流、交流を問わない。
原液の海水aは、原液加熱部HにポンプPおよび配管bを介して供給される。液液熱交換器5は、その配管bの対応部と、凝縮室20内の第3噴射手段6cとその凝縮室20内の下側とを接続している配管b3、凝縮室21内の第3噴射手段6cとその凝縮室21内の下側とを接続している配管b3、凝縮室22内の第3噴射手段6cとその凝縮室22内の下側とを接続している配管b3との間にそれぞれ介在されている。すなわち、この構造では、凝縮室20に溜まる凝縮液20a、凝縮室21に溜まる凝縮液21a、凝縮室22に溜まる凝縮液22aの順に液温が次第に低くなる。海水aは、ポンプPおよび配管bを介して原液加熱部Hへ供給される過程で、最も液温の低い最下段の凝縮室22に溜まる凝縮液22aとの間で液液熱交換器5を介して暖められ、次に先の液温よりやや高い中段の凝縮室21に溜まる凝縮液21aとの間で液液熱交換器5を介して暖められ、最後に最も液温の高い最上段の凝縮室20に溜まる凝縮液20aとの間で液液熱交換器5を介して暖められるため、効率よく加熱される。なお、原液加熱部Hは、太陽熱を利用して海水aを所定温度(例えば、約90℃)まで加熱する例であるが、太陽熱以外でもよい。例えば、下記実施例のごとくヒーターを用いて原液を加熱する構成である。省エネの点からは、工場から排出される120〜150℃程度の低温排熱を利用して原液を加熱する構成である。また、最下段の凝縮室22に溜まる凝縮液22aは、噴射手段6cに接続されている配管b3の一部から製品(淡水)として排出可能となっている。
(蒸発濃縮・凝縮方法)以上の蒸発濃縮・凝縮装置は、海水aを加熱し、蒸発室で溶媒の一部を気化して濃縮液に処理するとともに、前記気化した蒸気を凝縮室に導いて凝縮液に処理する蒸発濃縮・凝縮方法に好適なものである。すなわち、その蒸発濃縮・凝縮方法としては、海水aがポンプPおよび配管bを介して原液加熱部Hへ供給される。この場合、海水aは、上記したように原液加熱部Hへ供給される過程で、各凝縮室20〜22に対応して塔7の外部に設けられた複数の液液熱交換器5を介して凝縮室22の凝縮液20a、凝縮室21の凝縮液21a、凝縮室22の凝縮液22aにより所定温度まで加熱される。
原液加熱部Hで所定温度まで加熱された海水aは、配管b1から送られて最上段の蒸発室10内に設けられた第1噴射手段6aから噴射される。その際、ブロアー4が予め駆動される。そして、生成される気体流は、最上段の蒸発室10からデミスター3を介して隣接している最上段の凝縮室20、その凝縮室20からデミスター3を介して中段の蒸発室11、その蒸発室11からデミスター3を介して中段の凝縮室21、更にその凝縮室21からデミスター3を介して最下段の蒸発室12、その蒸発室12からデミスター3を介して最下段の凝縮室22、更に上記した出口2aと入口1aとを接続している接続管などを介して一方向へ圧送され循環される。
前記加熱された海水aは、第1噴射手段6aから液適又は噴霧状に噴射されると、前記気体流の気体と気液接触されて、一部が溶媒である水の一部を気化しながら、残りが蒸発室10の下側に濃縮液10aとして溜められる。前記気化した蒸気は、前記気体流に同伴されて最上段の蒸発室10からデミスター3を介して隣接している最上段の凝縮室20、その凝縮室20からデミスター3を介して中段の蒸発室11、その蒸発室11からデミスター3を介して中段の凝縮室21、更にその凝縮室21からデミスター3を介して最下段の蒸発室12、その蒸発室12からデミスター3を介して最下段の凝縮室22というように一方向へ流出される。そして、中段の蒸発室11でその上段の蒸発室10に溜まる濃縮液10aが第2噴射手段6bから液適又は噴霧状に噴射されると、前記気体流の気体と気液接触されて、一部が溶媒である水の一部を気化しながら、残りが蒸発室11の下側に濃縮液11aとして溜められる。最下段の蒸発室12で中段の蒸発室11に溜まる濃縮液11aが第2噴射手段6bから液適又は噴霧状に噴射されると、前記気体流の気体と気液接触されて、一部が溶媒である水の一部を気化しながら、残りが蒸発室12の下側に濃縮液12aとして溜められる。同時に、各凝縮室20,21,22では対応凝縮室に溜まる凝縮液20a,21a,22aを前記した第3噴射手段6cから液適又は噴霧状に噴射されると、前記気体流の気体と気液接触されて、一部が溶媒である水の一部を気化しながら、残りが各凝縮室20,21,22の下側に凝縮液20a,21a,22aとして溜められる。この場合、最下段の凝縮室22に溜まる凝縮液22aが最も純度の高い淡水となっている。
(変形例1)図2に示した多段蒸発濃縮・凝縮装置は、図1の第1噴射手段6aおよび第2噴射手段6b、それの関連部(配管b2およびポンプP)を変更した一例である。すなわち、この噴射手段60は、モータMにより回転されて供給される加熱された海水aや濃縮液10a,11aを遠心力で液滴又は噴霧状にする回転翼61a,61bから構成されている。
詳述すると、変形例1において、まず、最上段の蒸発室10と中段の蒸発室11とは、蒸発室10の底壁9aに設けられた流出部9dを介して連通されている。中段の蒸発室11と最下段の蒸発室12とは、蒸発室11の底壁9aに設けられた流出部9dを介して連通されている。各流出部9dは、同軸線上に設けられたオーバーフロー用排水筒であり、当該蒸発室に溜まる濃縮液が所定高さになったときに濃縮液を下段の蒸発室側へオーバーフローにより排出可能にする。
そして、前記モータMは、塔7の上壁のうち、流出部9dの真上に設置されて、出力部に接続されたシャフト62を回動する。シャフト62は、蒸発室10の流出部9dから蒸発室11の流出部9dを通って最下段の蒸発室12まで挿通されている。シャフト62の軸周りには、原液加熱部Hより配管b1を介して送られてくる加熱された海水aを液適又は噴霧状にする蒸発室10内の回転翼61aと、蒸発室10の流出部9dから排出される濃縮液10aを液適又は噴霧状にする蒸発室11内の回転翼61bと、蒸発室11の流出部9dから排出される濃縮液11aを液適又は噴霧状にする蒸発室12内の回転翼61bとが装着されている。このような構成では、回転翼61a,61bの回転数をモータMを介して制御することにより、最適なミスト化が可能となる。なお、以上の回転翼は、液を遠心力でミスト化できればよく翼形状や翼形態等は任意である。
(変形例2)図3に示した多段蒸発濃縮・凝縮装置は、図1の蒸発処理部1を構成している蒸発室および凝縮処理部2を構成している凝縮室の数を増やし、また、変形例1と同様な考え方で第1噴射手段6aおよび第2噴射手段6b並びに第3噴射手段6c、それの関連部(配管b2およびポンプP)を変更した一例である。
すなわち、この蒸発処理部1は、塔7の対応内周面と仕切壁8との間に複数(この例では3枚)の底壁9aを間隔を保って平行に設けることで蒸発室10〜13を上下に積層した状態に形成している。最下段の蒸発室13に溜まる濃縮液13aは、最も濃縮された液(濃厚塩水)として排出可能となっている。凝縮処理部2は、塔7の対応内周面と仕切壁8との間に複数(この例では3枚)の底壁9bを間隔を保って平行に設けることで凝縮室20〜23を上下に積層した状態に形成している。この場合も、各蒸発室10〜13と各凝縮室20〜23とはそれぞれ所定寸法上下にずらされている。
また、噴射手段60Aは、モータMにより回転されて供給される加熱された海水aや濃縮液10a,11a,12aを遠心力で液滴又は噴霧状にする回転翼61a,61bから構成されている。噴射手段60Bは、モータMにより回転されて供給される凝縮液20a,21a,22a,23aを遠心力で液滴又は噴霧状にする回転翼61cから構成されている。
詳述すると、図3において、まず、最上段の蒸発室10と3段目の蒸発室11とは、蒸発室10の底壁9aに設けられた流出部9dを介して連通されている。3段目の蒸発室11と2段目の蒸発室12とは、蒸発室11の底壁9aに設けられた流出部9dを介して連通されている。2段目の蒸発室12と最下段の蒸発室13とは、蒸発室12の底壁9aに設けられた流出部9dを介して連通されている。各流出部9dは、同軸線上に設けられたオーバーフロー用排水筒であり、当該蒸発室に溜まる濃縮液が所定高さになったときに濃縮液を真下の蒸発室側へオーバーフローにより排出可能にする。また、前記モータMは、塔7の上壁のうち、流出部9dの真上に設置されて、出力部に接続されたシャフト62を回動する。シャフト62は、蒸発室10の流出部9dから蒸発室12の流出部9dを通って最下段の蒸発室13まで挿通されている。シャフト62の軸周りには、原液加熱部Hより配管b1を介して送られてくる加熱された海水aを液適又は噴霧状にする蒸発室10内の回転翼61aと、蒸発室10の流出部9dから排出される濃縮液10aを液適又は噴霧状にする蒸発室11内の回転翼61bと、蒸発室11の流出部9dから排出される濃縮液11aを液適又は噴霧状にする蒸発室12内の回転翼61bと、更に蒸発室12の流出部9dから排出される濃縮液12aを液適又は噴霧状にする蒸発室13内の回転翼61bとが装着されている。
また、最上段の凝縮室20と3段目の凝縮室21とは、凝縮室20の底壁9bに設けられた流出部9eを介して連通されている。3段目の凝縮室21と2段目の凝縮室22とは、凝縮室21の底壁9bに設けられた流出部9eを介して連通されている。2段目の凝縮室22と最下段の凝縮室23とは、凝縮室22の底壁9eに設けられた流出部9eを介して連通されている。各流出部9eは、同軸線上に設けられたオーバーフロー用排水筒であり、当該凝縮室に溜まる凝縮液が所定高さになったときに凝縮液を真下の凝縮室側へオーバーフローにより排出可能にする。また、前記モータMは、塔7の上壁のうち、流出部9eの真上に設置されて、出力部に接続されたシャフト62を回動する。シャフト62は、凝縮室20の流出部9eから凝縮室22の流出部9eを通って最下段の凝縮室23まで挿通されている。シャフト62の軸周りには、ポンプPおよび配管b3を介して送られてくる凝縮液20aを液適又は噴霧状にする凝縮室20内の回転翼61cと、ポンプPおよび配管b3を介して送られてくる凝縮液21aを液適又は噴霧状にする凝縮室21内の回転翼61cと、ポンプPおよび配管b3を介して送られてくる凝縮液22aを液適又は噴霧状にする凝縮室22内の回転翼61cと、ポンプPおよび配管b3を介して送られてくる凝縮液23aを液適又は噴霧状にする凝縮室23内の回転翼61cとが装着されている。また図示しないが、蒸発室や凝縮室内に充填物を備えることも可能である。
次に、以上の多段蒸発濃縮・凝縮装置の有用性を実施例により明らかにする。この実施例は、原液を加熱し、蒸発室で溶媒の一部を気化して濃縮液に処理するとともに、前記気化した蒸気を凝縮室に導いて凝縮液に処理する蒸発濃縮・凝縮方法として、図4の多段蒸発濃縮・凝縮装置を用いて行った例である。なお、この実施例において、原液としては、目視により判断容易となるよう海水の疑似水として、水道水に市販品の墨汁を入れ、墨汁濃度が0.1wt%の黒色水を作り、それを使用した。なお、該黒色水は貯槽に入れ温度17℃に保った。
ここで、図4の多段蒸発濃縮・凝縮装置において、塔7Aは耐熱塩ビ製で縦1m、横1m、高さ2mの大きさの角槽である。
(ア)原液加熱部Hは、トバデン製の30kW電気ヒーターを使用した。
(イ)各ポンプPは、荻原製の0.15kW渦巻きポンプを使用した。
(ウ)ブロアー4は、武藤電機製の2.2kW遠心ブロアーを使用した。
(エ)スプレーノズル(噴霧手段)6a〜6cは、目詰まりしにくいタイプとして、いけうち製AJPシリーズを使用した。
(オ)熱交換器5は、日坂製作所製プレート式熱交換器を使用した(伝熱面積2m)。
操作では、まず、上記貯槽内の黒色水を図4の最下段のポンプPにより流量15L/minとなるよう供給し、ヒーターにより加熱し、89℃の黒色水として供給して蒸発室10のノズル6aから噴霧すると同時に、ブロアー4より空気流を循環させた。この場合、循環空気はブロアー4にて288kg/日となるよう設定した。そして、黒色水がノズル6aから噴霧されると、ブロアー4から吐出される空気流に接触され、一部がその空気流に同伴させて最上段の蒸発室10からデミスター3を介して隣接している凝縮室20、該凝縮室20からデミスター3を介してその下段の蒸発室11、該蒸発室11からデミスター3を介して隣接している凝縮室21、該凝縮室21からデミスター3を介して最下段の蒸発室12、該蒸発室12からデミスター3を介して最下段の凝縮室22まで一方向へ流出される。この過程では、各蒸発室11,12のノズル6bがひとつ上の蒸発室10,11に溜まる濃縮液10a,11aを噴霧して蒸発され、かつ、凝縮室20〜22で各ノズル6cが該凝縮室20〜22に溜まる凝縮液を噴霧して冷却凝縮される。以上の操作において、中段の蒸発室11のノズル6bには上段の蒸発室10の濃縮液10aを供給量16.5L/minとなるよう供給制御し、中段の凝縮室21のノズル6cには、該凝縮室21の凝縮液20aを供給量16.5L/minとなるよう供給制御した。
そして、以上の蒸発濃縮・凝縮方法では、各室の温度として、蒸発室11が56℃、蒸発室12が46℃、凝縮室20が65℃、凝縮室21が57℃、でそれぞれ安定した。また、凝縮水(淡水)としては1028L/日となる量が採れた。この量は供給した水に対して5%の収率であった。また、その凝縮水は、原液に使用した水道水と比較して、目視では違いがわからない程の透明度であり、かつ墨汁臭もなかった。
以上のように、本発明は請求項で特定される構成を実質的に備えておればよく、細部は形態例や変形例を参考にして更に変更可能なものである。
1・・・蒸発処理部(1aは入口、9aは底壁、10〜13は蒸発室)
2・・・凝縮処理部(2aは出口、9bは底壁、20〜23は凝縮室)
3・・・デミスター
4・・・ブロアー(気体形成手段)
5・・・液液熱交換器
6・・・噴射手段(6a〜6cは第1〜第3噴射手段)
9c〜9e・・・流出部
10a〜13a・・・濃縮液
20a〜23a・・・凝縮液
b1〜b3・・・配管
60,60A,60B・・・噴射手段(61a〜61cは回転翼)
H・・・原液加熱部

Claims (7)

  1. 原液を加熱し、蒸発室で溶媒の一部を気化して濃縮液に処理すると共に、前記気化した蒸気を凝縮室に導いて凝縮液に処理する蒸発濃縮・凝縮装置において、
    前記蒸発室の複数を上下に積層している蒸発処理部、および前記蒸発処理部と対向して設けられて前記各蒸発室とそれぞれ所定寸法ずらして前記凝縮室の複数を上下に積層している凝縮処理部、並びに隣接している前記蒸発室と前記凝縮室とを連通するよう設けられたデミスターとからなり、
    前記蒸発室のうち最上段の蒸発室、その隣の凝縮室、下段の蒸発室、その隣の凝縮室というように、一方向の気体流を前記デミスターを介して前記最上段の蒸発室から前記凝縮室のうち最下段の凝縮室まで循環させる気流形成手段と、
    前記原液と前記凝縮室に溜まる凝縮液との間で熱交換を行って前記原液を加熱し、前記凝縮液を冷却する液液熱交換器と、
    前記原液又は前記濃縮液を液滴又は噴霧状にして、前記気流形成手段にて形成される気体と気液接触させて前記蒸発室での気化を促進する噴霧手段と、
    前記凝縮液を液滴又は噴霧状にして、前記気流形成手段にて形成される気体と気液接触させて前記凝縮室での凝縮を促進する噴霧手段とを備えていることを特徴とする多段蒸発濃縮・凝縮装置。
  2. 前記噴霧手段は、前記最上段の蒸発室に設けられて加熱した前記原液を噴霧する第1噴霧手段と、前記最上段以外の蒸発室に設けられて上段の蒸発室に溜まる濃縮液を下段の蒸発室で噴霧する第2噴霧手段と、前記各凝縮室に設けられて対応凝縮室に溜まる凝縮液を対応凝縮室で噴霧する第3噴霧手段とを有していることを特徴とする請求項1に記載の多段蒸発濃縮・凝縮装置。
  3. 前記噴霧手段は、スプレーノズルであることを特徴とする請求項1又は2に記載の多段蒸発濃縮・凝縮装置。
  4. 前記噴霧手段は、供給される液をモータによる回転力で液滴又は噴霧状にする回転翼であることを特徴とする請求項1又は2に記載の多段蒸発濃縮・凝縮装置。
  5. 前記蒸発処理部および前記凝縮処理部が略円筒形の内部を縦方向の仕切壁を介して分割した状態で対向配置されていると共に、前記デミスターが前記仕切壁に取り付けられていることを特徴とする請求項1から4の何れかに記載の多段蒸発濃縮・凝縮装置。
  6. 前記蒸発処理部および前記凝縮処理部が角槽ないしは角筒形の内部を縦方向の仕切壁を介して分割した状態で対向配置されていると共に、前記デミスターが前記仕切壁に取り付けられていることを特徴とする請求項1から4の何れかに記載の多段蒸発濃縮・凝縮装置。
  7. 原液を加熱し、蒸発室で溶媒の一部を気化して濃縮液に処理するとともに、前記気化した蒸気を凝縮室に導いて凝縮液に処理する蒸発濃縮・凝縮方法において、
    請求項1から6の何れかに記載の多段蒸発濃縮・凝縮装置を使用して、
    加熱した前記原液を、前記最上段の蒸発室に噴霧すると同時に、前記気流形成手段より形成される気体流に接触させ、一部をその気体流に同伴させて前記最上段の蒸発室から前記デミスターを介して隣接している前記凝縮室、更にその凝縮室から前記デミスターを介して下段の前記蒸発室というように、前記最下段の凝縮室まで一方向へ流出させながら、前記最上段を除く下段の各蒸発室で対応蒸発室に溜まる前記濃縮液を噴霧して蒸発させ、前記各凝縮室で対応凝縮室に溜まる凝縮液を噴霧して冷却凝縮させることを特徴とする多段蒸発濃縮・凝縮方法。
JP2010528616A 2008-09-09 2009-09-08 多段蒸発濃縮・凝縮装置および方法 Expired - Fee Related JP5555168B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010528616A JP5555168B2 (ja) 2008-09-09 2009-09-08 多段蒸発濃縮・凝縮装置および方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008230659 2008-09-09
JP2008230659 2008-09-09
JP2009134581 2009-06-04
JP2009134581 2009-06-04
JP2010528616A JP5555168B2 (ja) 2008-09-09 2009-09-08 多段蒸発濃縮・凝縮装置および方法
PCT/JP2009/004440 WO2010029723A1 (ja) 2008-09-09 2009-09-08 多段蒸発濃縮・凝縮装置および方法

Publications (2)

Publication Number Publication Date
JPWO2010029723A1 JPWO2010029723A1 (ja) 2012-02-02
JP5555168B2 true JP5555168B2 (ja) 2014-07-23

Family

ID=42004987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010528616A Expired - Fee Related JP5555168B2 (ja) 2008-09-09 2009-09-08 多段蒸発濃縮・凝縮装置および方法

Country Status (2)

Country Link
JP (1) JP5555168B2 (ja)
WO (1) WO2010029723A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019534A1 (de) * 2016-07-29 2018-02-01 Siemens Aktiengesellschaft Vorrichtung zum abtrennen von produktwasser aus verunreinigtem rohwasser und verfahren zum betrieb dieser vorrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100314238A1 (en) * 2010-04-30 2010-12-16 Sunlight Photonics Inc. Hybrid solar desalination system
EP2837601A4 (en) * 2012-04-10 2015-12-23 Yts Science Properties Pte Ltd WATER TREATMENT DEVICE
WO2017069031A1 (ja) * 2015-10-23 2017-04-27 株式会社シーアイピーソフト 水処理装置
JP7079151B2 (ja) * 2018-06-04 2022-06-01 オルガノ株式会社 発電設備用の蒸発濃縮装置及び方法ならびに発電設備

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124580A (ja) * 1982-01-20 1983-07-25 Hitachi Zosen Corp 造水方法
US5096543A (en) * 1990-09-27 1992-03-17 Kamyr, Inc. Carrier gas apparatus for evaporation and condensation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124580A (ja) * 1982-01-20 1983-07-25 Hitachi Zosen Corp 造水方法
US5096543A (en) * 1990-09-27 1992-03-17 Kamyr, Inc. Carrier gas apparatus for evaporation and condensation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018019534A1 (de) * 2016-07-29 2018-02-01 Siemens Aktiengesellschaft Vorrichtung zum abtrennen von produktwasser aus verunreinigtem rohwasser und verfahren zum betrieb dieser vorrichtung

Also Published As

Publication number Publication date
JPWO2010029723A1 (ja) 2012-02-02
WO2010029723A1 (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
US20230415068A1 (en) Systems including a condensing apparatus such as a bubble column condenser
EP2758142B9 (en) Bubble-column vapor mixture condenser
JP5369258B2 (ja) 省エネルギー型淡水製造装置
JP5555168B2 (ja) 多段蒸発濃縮・凝縮装置および方法
US10500521B1 (en) Dual compressor vapor phase desalination system
US10029923B2 (en) Water treatment device
CN102557168A (zh) 热管式低温多效海水淡化系统及工艺流程
JP2008229424A (ja) 減圧蒸留装置
JP7115680B2 (ja) 淡水化及び温度差発電システム
CN102765769A (zh) 低温多效热管式蒸发器
CN102659194B (zh) 蒸馏式海水淡化设备
CN104118960A (zh) 一种热空气多级加热的海水淡化装置
CN202542898U (zh) 热管式低温多效海水淡化系统
WO2020045662A1 (ja) 熱交換器
RU2659282C1 (ru) Дистиллятор
KR102189530B1 (ko) 분산형 증기경로가 구비된 med
RU178155U1 (ru) Дистиллятор шакирова
KR100937450B1 (ko) 다단 증발법 담수화설비용 냉각탑을 포함한 해수 공급장치
KR101567653B1 (ko) 담수화 플랜트
WO2019010547A1 (en) METHOD AND APPARATUS FOR THERMAL SEPARATION

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140530

R150 Certificate of patent or registration of utility model

Ref document number: 5555168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees