JP5553160B2 - Method for treating boron-containing water - Google Patents

Method for treating boron-containing water Download PDF

Info

Publication number
JP5553160B2
JP5553160B2 JP2010188271A JP2010188271A JP5553160B2 JP 5553160 B2 JP5553160 B2 JP 5553160B2 JP 2010188271 A JP2010188271 A JP 2010188271A JP 2010188271 A JP2010188271 A JP 2010188271A JP 5553160 B2 JP5553160 B2 JP 5553160B2
Authority
JP
Japan
Prior art keywords
boron
water
treated
dissolved
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010188271A
Other languages
Japanese (ja)
Other versions
JP2012045461A (en
Inventor
澄夫 堀内
正人 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2010188271A priority Critical patent/JP5553160B2/en
Publication of JP2012045461A publication Critical patent/JP2012045461A/en
Application granted granted Critical
Publication of JP5553160B2 publication Critical patent/JP5553160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、溶存ホウ素を含有する被処理水を通電処理し、凝集物を被処理水から分離するホウ素含有水の処理方法に関する。   The present invention relates to a method for treating boron-containing water in which treated water containing dissolved boron is energized and aggregates are separated from the treated water.

多量のホウ素の摂取は食欲不振、嘔吐等の健康被害を起こす可能性がある。そこで、1999年2月、「ホウ素 1mg/L以下」が水の環境基準(水質汚濁に係る環境基準)に追加され、その後、「ホウ素」が土壌の環境基準(土壌の汚染に係る環境基準)の項目に追加された。更に、2004年7月からのホウ素及びその化合物の排水基準は海域で230mg/L以下、海域以外で10mg/L以下とされている。
溶存ホウ素を含有する被処理水からホウ素を除去する主な方法は次のとおりである。
(1)薬剤を、溶存ホウ素を含有する被処理水に添加し、溶存ホウ素を難溶性物質として沈殿させ分離させる。例えば、多価陰イオン性物質と希土類元素イオンを、溶存ホウ素を含有する被処理水に存在させ、pHを9〜13にして溶存ホウ素を難溶性物質として沈殿させ分離させるホウ素含有排水の処理方法が、当該方法の1つとして検討された(例えば、特許文献1参照)。
(2)逆浸透膜を使用して、溶存ホウ素を含有する被処理水から溶存ホウ素を膜分離する(例えば、特許文献2参照)。
(3)溶存ホウ素を含有する被処理水を木材粉に接触させ、溶存ホウ素を木材粉に吸着させる(例えば、非特許文献1参照)。
(4)溶存ホウ素を含有する被処理水をアルミニウム電極を使用して電気分解し、溶存ホウ素を凝集物として分離する(例えば、非特許文献2参照)。
(5)溶存ホウ素を含有する被処理水を樹脂に接触させ、溶存ホウ素を除去する。溶存ホウ素を含有する被処理水をホウ素濃度30mg/L以下、pH7.0〜9.5に調整し、ホウ素選択吸着樹脂塔に通水してホウ素を除去する方法が、当該方法の1つとして検討された(例えば、特許文献3参照)。
Ingestion of large amounts of boron may cause health problems such as loss of appetite and vomiting. Therefore, in February 1999, “boron 1 mg / L or less” was added to the environmental standard for water (environmental standard related to water pollution), and then “boron” became the environmental standard for soil (environmental standard related to soil contamination). Added to item. Furthermore, since July 2004, drainage standards for boron and its compounds have been set to 230 mg / L or less for sea areas and 10 mg / L or less for areas other than sea areas.
The main method for removing boron from the water to be treated containing dissolved boron is as follows.
(1) A chemical | medical agent is added to the to-be-processed water containing a dissolved boron, and a dissolved boron is precipitated and separated as a hardly soluble substance. For example, a method for treating boron-containing wastewater in which a polyvalent anionic substance and rare earth element ions are present in water to be treated containing dissolved boron, and the pH is 9 to 13 to precipitate and separate dissolved boron as a hardly soluble substance. However, it was examined as one of the said methods (for example, refer patent document 1).
(2) Using a reverse osmosis membrane, the dissolved boron is membrane-separated from the water to be treated containing dissolved boron (see, for example, Patent Document 2).
(3) The water to be treated containing dissolved boron is brought into contact with the wood powder, and the dissolved boron is adsorbed onto the wood powder (for example, see Non-Patent Document 1).
(4) The water to be treated containing dissolved boron is electrolyzed using an aluminum electrode, and the dissolved boron is separated as an aggregate (see, for example, Non-Patent Document 2).
(5) The water to be treated containing dissolved boron is brought into contact with the resin to remove the dissolved boron. One of the methods is a method in which water to be treated containing dissolved boron is adjusted to a boron concentration of 30 mg / L or less, pH 7.0 to 9.5, and passed through a boron selective adsorption resin tower to remove boron. (For example, refer patent document 3).

特開2004−963号公報JP 2004-963 A 特開2006−102624号公報JP 2006-102624 A 特開2001−340851号公報JP 2001-340851 A

化学工学論文集、第35巻第1号、2009、第55頁〜第59頁Chemical Engineering, Vol. 35, No. 1, 2009, pp. 55-59 J.-Q.Jiang et al., Environ. Chem. 3, 2006, 第350頁〜第354頁J.-Q.Jiang et al., Environ. Chem. 3, 2006, pp. 350-354

種々のイオンを含有する地下水を上記(3)〜(4)の方法で処理しても、当該地下水から溶存ホウ素を有効に除去できず、相当量のホウ素が当該地下水中に残存した。上記(1)の方法は、多量の薬剤が必要となり、また、残渣が大量に発生するため、実用的ではなかった。上記(2)の方法は、飲料水用に開発されている方法であり、膜分離の効率を高めるために様々な前処理が必要であるほか、高濃度ホウ素排水の処理が必要となるなどの課題がある。更に、上記(4)の方法は、アルミニウム電極から溶出する被処理水中のアルミニウムイオンの濃度が700mg/L以上(消費電流値が1000A・hr/m3
以上)になると、被処理水の粘度が大きくなり、凝集物の濾過が困難になるほか、本発明者の実験的検討結果によれば、除去効果が共存成分により著しく失われる。上記(5)の
方法は、種々のイオンを含有する地下水から比較的有効に溶存ホウ素を除去できたが、溶存ホウ素を除去する樹脂はかなり高価であり、樹脂再生等で発生する残渣を別途処理しなければならない。従って、上記(5)の方法による種々のイオンを含有する地下水からの溶存ホウ素除去のランニングコストは高価である。
近年、種々のイオンを含有する地下水から溶存ホウ素を有効に除去できる安価な方法が希求されていたが、有効な方法は見出されていなかった。そこで、本発明の発明者らは、種々のイオンを含有する地下水から溶存ホウ素を有効に除去できる安価な方法を提供するため、溶存ホウ素を含有する被処理水を、鉄を成分として含む電極を陽極として使用して通電処理し、凝集物を被処理水から分離する、ホウ素含有水の処理方法を検討した(特願2010−148460号)。
Even when groundwater containing various ions was treated by the methods (3) to (4) above, dissolved boron could not be effectively removed from the groundwater, and a considerable amount of boron remained in the groundwater. The method (1) is not practical because a large amount of chemicals is required and a large amount of residue is generated. The above method (2) is a method that has been developed for drinking water and requires various pretreatments to increase the efficiency of membrane separation, as well as treatment of high-concentration boron wastewater. There are challenges. Furthermore, in the method (4), the concentration of aluminum ions in the water to be treated eluted from the aluminum electrode is 700 mg / L or more (current consumption is 1000 A · hr / m 3).
In this case, the viscosity of the water to be treated becomes large and filtration of the aggregate becomes difficult, and according to the results of the experimental study by the present inventor, the removal effect is significantly lost due to the coexisting components. Although the method (5) was able to remove dissolved boron from groundwater containing various ions relatively effectively, the resin from which the dissolved boron is removed is quite expensive, and the residue generated by resin regeneration is treated separately. Must. Therefore, the running cost of removing dissolved boron from groundwater containing various ions by the method (5) is expensive.
In recent years, there has been a demand for an inexpensive method capable of effectively removing dissolved boron from groundwater containing various ions, but no effective method has been found. Therefore, the inventors of the present invention provide an inexpensive method capable of effectively removing dissolved boron from groundwater containing various ions, and therefore, an electrode containing iron as a component of water to be treated containing dissolved boron. A treatment method for boron-containing water was examined in which the current was treated as an anode and the aggregate was separated from the water to be treated (Japanese Patent Application No. 2010-148460).

上記処理方法(以下、「先願の処理方法」という。)における通電処理後の被処理水の好ましいpHは7.5〜10.5である。先願の処理方法で処理される被処理水から溶存ホウ素が除去される機構は未解明であるが、Fe2+、Fe(OH)2を主成分とする凝集
体とホウ素との相互作用で、ホウ素が当該凝集体に吸着してくると推察される。しかしながら、先願の処理方法では、排水中の成分、通電中に発生する水酸化物イオン、その他の含有成分が通電中に変化して生成する物質が存在するため、被処理水のpH変化は複雑であった。更に、建設現場からの排水等のように排水中の成分が変化することを考え併せると、先願の処理方法における通電処理後の被処理水のpHを7.5〜10.5に制御することは容易ではなかった。本発明が解決しようとする課題は、溶存ホウ素を含有する被処理水を、鉄を成分として含む電極を陽極として使用すると共に被処理水のpH変化を小さくして通電処理し、凝集物を被処理水から分離する、ホウ素含有水の処理方法の提供である。
The preferable pH of the water to be treated after the energization treatment in the above treatment method (hereinafter referred to as “the treatment method of the prior application”) is 7.5 to 10.5. The mechanism by which dissolved boron is removed from the water to be treated treated by the treatment method of the prior application is not yet elucidated, but the interaction between boron and aggregates mainly composed of Fe 2+ and Fe (OH) 2 It is assumed that boron is adsorbed on the aggregate. However, in the treatment method of the prior application, since there are substances generated by changing the components in the drainage, hydroxide ions generated during energization, and other components during energization, the pH change of the water to be treated is It was complicated. Furthermore, considering that the components in the wastewater change, such as wastewater from the construction site, the pH of the treated water after the energization treatment in the treatment method of the prior application is controlled to 7.5 to 10.5. That was not easy. The problem to be solved by the present invention is to treat the water to be treated containing dissolved boron by using an electrode containing iron as a component as an anode and reducing the pH change of the water to be treated for energization. Provided is a method for treating boron-containing water separated from treated water.

本発明の発明者らは、上記課題を解決するため、鋭意検討した結果、溶存ホウ素を含有する被処理水を鉄を成分として含む電極を陽極として使用して通電処理する際、溶存マグネシウムが通電処理後に被処理水中に残存するように溶存マグネシウム存在下で通電処理すると、先願の処理方法より溶存ホウ素濃度を小さくできることを見出し、本発明を完成させるに至った。   The inventors of the present invention have made extensive studies in order to solve the above-mentioned problems. As a result, when conducting an energization process using an electrode containing iron as a component, water to be treated containing dissolved boron, the dissolved magnesium is energized. It has been found that the concentration of dissolved boron can be made lower than the treatment method of the prior application by conducting the current treatment in the presence of dissolved magnesium so that it remains in the water to be treated after the treatment, and the present invention has been completed.

本発明のホウ素含有水の処理方法は、溶存ホウ素を含有する被処理水を、鉄を成分として含む電極を陽極として使用すると共に、溶存マグネシウムが通電処理後の被処理水中に残存するように溶存マグネシウム存在下で通電処理し、凝集物を被処理水から分離する。   In the method for treating boron-containing water of the present invention, the treated water containing dissolved boron is used so that the electrode containing iron as a component is used as an anode and dissolved magnesium remains in the treated water after the energization treatment. In the presence of magnesium, current treatment is performed to separate the agglomerates from the water to be treated.

通電処理後の被処理水中のマグネシウム濃度が20mg/L以上となるよう通電処理する。   The energization process is performed so that the magnesium concentration in the water to be treated after the energization process is 20 mg / L or more.

上記通電処理後の被処理水のpHは7.5〜10.5である。水溶性マグネシウム塩は通電処理前に溶存ホウ素を含有する被処理水に添加されねばならない。   The pH of the water to be treated after the energization treatment is 7.5 to 10.5. The water-soluble magnesium salt must be added to the water to be treated containing dissolved boron before the energization treatment.

本発明のホウ素含有水の処理方法は、種々のイオンを含有する地下水から低電流で有効に溶存ホウ素を除去でき、また、残渣量が少ないため、そのランニングコストは安価である。   The method for treating boron-containing water of the present invention can effectively remove dissolved boron from groundwater containing various ions at a low current, and the amount of residue is small, so its running cost is low.

通電処理槽を示す図Diagram showing energization processing tank 初期マグネシウム濃度と通電処理後のpH及び通電処理後のホウ素濃度の関係を示す図Figure showing the relationship between initial magnesium concentration, pH after energization treatment, and boron concentration after energization treatment 初期マグネシウム濃度と通電処理後の残留マグネシウム濃度及び通電処理後のホウ素濃度の関係を示す図Figure showing the relationship between the initial magnesium concentration, residual magnesium concentration after energization treatment, and boron concentration after energization treatment 初期pHと通電処理後のpH及び通電処理後のホウ素濃度の関係を示す図The figure which shows the relationship between the initial pH, the pH after the current treatment, and the boron concentration after the current treatment 消費電流と通電処理後のホウ素濃度の関係を示す図Diagram showing the relationship between current consumption and boron concentration after energization treatment 消費電流とマグネシウム消費量の関係を示す図Diagram showing the relationship between current consumption and magnesium consumption

本発明のホウ素含有水の処理方法で処理される溶存ホウ素を含有する被処理水は、ホウ素イオン以外のイオンを含有し得る。ホウ素イオン以外の当該イオンの具体例は、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン、アンモニウムイオン、フッ素イオン、塩素イオン、硫酸イオンである。これらのイオンは、地下水に含有されている。   The treated water containing dissolved boron treated by the method for treating boron-containing water of the present invention can contain ions other than boron ions. Specific examples of the ions other than boron ions are sodium ion, potassium ion, magnesium ion, calcium ion, ammonium ion, fluorine ion, chlorine ion, and sulfate ion. These ions are contained in groundwater.

本発明のホウ素含有水の処理方法で使用される装置の陽極の少なくとも1つは鉄を成分として含む電極である。鉄を成分として含む電極からFe2+が溶出し、Fe2+とOH-
反応してFe(OH)2が生成する。本発明のホウ素含有水の処理方法で処理される被処
理水から溶存ホウ素が除去される機構は未解明であるが、Fe2+、Fe(OH)2を主成
分とする凝集体とホウ素との相互作用で、ホウ素が当該凝集体に吸着してくると推察される。鉄以外の金属で構成される電極が陽極の一部として併用されていてもよいが、あくまでも主体は鉄で構成される。鉄以外の金属の具体例は、アルミニウム、アルミニウム/マグネシウム合金(ジュラルミン)である。
At least one of the anodes of the apparatus used in the method for treating boron-containing water of the present invention is an electrode containing iron as a component. Fe 2+ is eluted from the electrode containing iron as a component, and Fe 2+ reacts with OH to produce Fe (OH) 2 . Although the mechanism by which dissolved boron is removed from the water to be treated that is treated by the method for treating boron-containing water of the present invention is not yet elucidated, an aggregate composed mainly of Fe 2+ and Fe (OH) 2 and boron It is presumed that boron is adsorbed on the aggregates by the interaction. An electrode made of a metal other than iron may be used together as a part of the anode, but the main body is made of iron. Specific examples of metals other than iron are aluminum and aluminum / magnesium alloys (duralumin).

本発明のホウ素含有水の処理方法で使用される装置の陰極は、鉄、アルミニウム、炭素等の材料を使用して構成する。   The cathode of the apparatus used in the method for treating boron-containing water according to the present invention is formed using a material such as iron, aluminum, or carbon.

溶存ホウ素を含有する被処理水は、溶存マグネシウムが通電処理後の被処理水中に残存するように溶存マグネシウム存在下で通電処理される。溶存マグネシウムが通電処理中に被処理水からなくなると、被処理水のpHが高くなりすぎ、ホウ素が凝集物から再溶出するおそれがある。   The water to be treated containing dissolved boron is energized in the presence of dissolved magnesium so that the dissolved magnesium remains in the water to be treated after the energization treatment. If dissolved magnesium disappears from the water to be treated during the energization treatment, the pH of the water to be treated becomes too high, and boron may be re-eluted from the aggregate.

通電処理後の被処理水中のマグネシウム濃度を20mg/L以上、好ましくは50mg/L以上とする。通電処理前の被処理水が十分な量のマグネシウムを含有している場合、被処理水をそのまま通電処理に付せばよい。通電処理前の被処理水が十分な量のマグネシウムを含有していない場合、塩化マグネシウム、硫酸マグネシウム等の水溶性マグネシウム塩を通電処理前に被処理水に溶解する。被処理水中に溶解される水溶性マグネシウム塩の量は、後述する方法で決定される。
通電処理後の被処理水中のマグネシウム濃度の上限は特定されないが、コストの観点から、1000mg/Lより大きい当該マグネシウム濃度は好ましくない。
The magnesium concentration in the water to be treated after the energization treatment is 20 mg / L or more, preferably 50 mg / L or more. When the water to be treated before the energization treatment contains a sufficient amount of magnesium, the water to be treated may be directly subjected to the energization treatment. When the water to be treated before energization treatment does not contain a sufficient amount of magnesium, a water-soluble magnesium salt such as magnesium chloride or magnesium sulfate is dissolved in the water to be treated before energization treatment. The amount of the water-soluble magnesium salt dissolved in the water to be treated is determined by the method described later.
Although the upper limit of the magnesium concentration in the water to be treated after the energization treatment is not specified, the magnesium concentration higher than 1000 mg / L is not preferable from the viewpoint of cost.

本発明における通電処理は、多段階で実施され得る。多段階の通電処理における水溶性マグネシウム塩の添加は、第1段階の通電処理の前、第2段階以降の各通電処理の前のいずれでも実施され得る。   The energization process in the present invention can be performed in multiple stages. The addition of the water-soluble magnesium salt in the multi-stage energization process can be performed either before the first-stage energization process or before each energization process after the second stage.

被処理水中の溶存ホウ素濃度は、通電処理後の被処理水のpHに影響される。地下水の成分によって影響を受けるが、当該pHは7.5〜10.5であり、好ましい当該pHは7.7〜9.0である。通電処理後の被処理水のpHは、被処理水の初期pH、電流、通電処理時間等により調整される。被処理水の初期pHは、水溶性マグネシウム塩の添加前又は添加後に調整される。 The dissolved boron concentration in the for-treatment water is affected by the pH of the for-treatment water after the energization treatment. Although affected by the components of groundwater, the pH is 7.5 to 10.5, and the preferred pH is 7.7 to 9.0. The pH of the water to be treated after the energization treatment is adjusted by the initial pH of the water to be treated, the current, the energization time, and the like. The initial pH of the water to be treated is adjusted before or after the addition of the water-soluble magnesium salt.

高分子凝集剤が、通電処理後の凝集物の分離を容易化するため、通電処理前に添加され得る。
通電処理後、凝集物は濾過、遠心分離等の分別手段で被処理水から分離される。
A polymer flocculant may be added before the energization treatment to facilitate separation of the aggregates after the energization treatment.
After the energization treatment, the aggregate is separated from the water to be treated by a separation means such as filtration and centrifugation.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されない。
水中の各種イオンの定性分析及び定量分析は、高周波誘導結合プラズマ(ICP)法により行われた。
図1は、通電処理槽を示す図である。被処理水2が通電処理槽1中に貯えられており、2つのカーボン電極3が陰極とされ、2つの金属電極が陽極とされている。一方の金属電極4aは1つのカーボン電極3と面している。他方の金属電極は2つの金属電極4bと4cが溶接されており、2つのカーボン電極3と面している。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Qualitative analysis and quantitative analysis of various ions in water were performed by a high frequency inductively coupled plasma (ICP) method.
FIG. 1 is a diagram illustrating an energization processing tank. The water 2 to be treated is stored in the energization treatment tank 1, and the two carbon electrodes 3 are used as cathodes and the two metal electrodes are used as anodes. One metal electrode 4 a faces one carbon electrode 3. The other metal electrode has two metal electrodes 4 b and 4 c welded to face the two carbon electrodes 3.

3種類の地下水が準備された。それらの地下水に含まれるイオンの種類と濃度を表1に示す。   Three types of groundwater were prepared. Table 1 shows the types and concentrations of ions contained in the groundwater.

Figure 0005553160
Figure 0005553160

参考例1
図1に示される通電処理槽の3つの金属電極4a、4b及び4cを鉄電極とし、塩化マグネシウムを地下水A〜Cに溶解して通電処理し、地下水A〜C中の溶存ホウ素が10mg/L、1mg/Lになるまでの消費電流量及び鉄電極消費量を測定した。結果を表2に示す。
Reference example 1
The three metal electrodes 4a, 4b, and 4c of the energization treatment tank shown in FIG. 1 are used as iron electrodes, and magnesium chloride is dissolved in groundwater A to C to conduct energization. The dissolved boron in the groundwater A to C is 10 mg / L. The amount of current consumed and the amount of iron electrode consumed until reaching 1 mg / L were measured. The results are shown in Table 2.

Figure 0005553160
Figure 0005553160

塩化マグネシウムの溶解量が多くなると、ホウ素が目標となる溶存ホウ素濃度まで除去された被処理水を得るまでの消費電流量及び鉄電極消費量が少なくなった。   As the amount of magnesium chloride dissolved increased, the amount of current consumed and the amount of iron electrode consumed until the treated water from which boron was removed to the target dissolved boron concentration were reduced.

参考例2
図1に示される通電処理槽の3つの金属電極4a、4b及び4cを鉄電極とし、塩化マグネシウムを地下水A〜Cに溶解して通電処理し、初期マグネシウム濃度と通電処理後のpH(pHtrt)、通電処理後の残留マグネシウム濃度及び通電処理後のホウ素濃度の関係を調べた。結果を図2及び図3に示す。一定の初期マグネシウム濃度まで、初期マグネシウム濃度が大きくなるほど、通電処理後のpH及び通電処理後のホウ素濃度が低下していった(図2)。更に、地下水A中の残留マグネシウム濃度が30mg/L以上、地下水B中の残留マグネシウム濃度が20mg/L以上、地下水C中の残留マグネシウム濃度が80mg/L以上になると、通電処理後のホウ素濃度はあまり変化しなくなった(図3)。
Reference example 2
The three metal electrodes 4a, 4b and 4c of the energization treatment tank shown in FIG. 1 are used as iron electrodes, magnesium chloride is dissolved in ground water A to C, and energization treatment is performed. The relationship between the residual magnesium concentration after the energization treatment and the boron concentration after the energization treatment was examined. The results are shown in FIGS. As the initial magnesium concentration increased to a certain initial magnesium concentration, the pH after the energization treatment and the boron concentration after the energization treatment decreased (FIG. 2). Furthermore, when the residual magnesium concentration in groundwater A is 30 mg / L or more, the residual magnesium concentration in groundwater B is 20 mg / L or more, and the residual magnesium concentration in groundwater C is 80 mg / L or more, the boron concentration after the current treatment is It has not changed much (Fig. 3).

参考例3
図1に示される通電処理槽の3つの金属電極4a、4b及び4cを鉄電極と共に、地下水A〜Cの初期pH(pHini)を1M−HCl又は1M−NaOHで調整し、塩化マグネシウムを地下水A〜Cに溶解して通電処理し、初期pHと通電処理後のpH及び通電処理後のホウ素濃度の関係を調べた。結果を図4に示す。初期マグネシウム濃度(Mg)が大きくなると、pH変化が小さくなり、通電処理後のホウ素濃度が低下した。
Reference example 3
The three metal electrodes 4a, 4b and 4c of the energization treatment tank shown in FIG. 1 are adjusted together with iron electrodes, the initial pH (pHini) of the groundwater A to C is adjusted with 1M HCl or 1M NaOH, and magnesium chloride is added to the groundwater A. It melt | dissolved in -C, it energized, and investigated the relationship between initial pH, pH after an energization process, and the boron concentration after an energization process. The results are shown in FIG. As the initial magnesium concentration (Mg) increased, the pH change decreased and the boron concentration after the energization treatment decreased.

実施例及び比較例
図1に示される通電処理槽の3つの金属電極4a、4b及び4cを鉄電極と共に、地下水A〜Cに溶解される塩化マグネシウムの量を変化させ、消費電流と通電処理後のマグネシウム濃度(Mg−r)及び通電処理後のホウ素濃度の関係を調べた。結果を図5に示す。地下水A〜Cの通電処理後のマグネシウム濃度が50mg/L未満である場合、消費電力が大きくなっても、残留ホウ素濃度はあまり低下しなくなった。一方、地下水A〜Cの通電処理後のマグネシウム濃度が50mg/L以上である場合、最大のホウ素除去効率を保持できた。

Example and Comparative Example Three metal electrodes 4a, 4b, and 4c of the energization treatment tank shown in FIG. 1 are changed together with iron electrodes, and the amount of magnesium chloride dissolved in groundwater A to C is changed. The relationship between the magnesium concentration (Mg-r) and the boron concentration after the energization treatment was examined. The results are shown in FIG. When the magnesium concentration after the energization treatment of the groundwater A to C was less than 50 mg / L, the residual boron concentration did not decrease much even when the power consumption increased. On the other hand, when the magnesium concentration after the energization treatment of the groundwater A to C was 50 mg / L or more, the maximum boron removal efficiency could be maintained.

参考例4
図1に示される通電処理槽の3つの金属電極4a、4b及び4cを鉄電極とし、塩化マグネシウムを地下水A〜Cに溶解して通電処理し、消費電流とマグネシウム消費量の関係を調べた。結果を図6に示す。目的とするホウ素濃度に対応する消費電流を図5から求め、次に、当該消費電流に相当するマグネシウム消費量を図6から求める。そして、地下水A〜Cに溶解するマグネシウム塩の量を当該マグネシウム濃度から計算できる。
なお、図5に示されるごとき消費電流と通電処理後のホウ素濃度の関係を示す図、図6に示されるごとき消費電流とマグネシウム消費量の関係を示す図を地下水毎に作成し、目的とするホウ素濃度までホウ素を除去するために必要な、地下水に溶解する最低マグネシウム塩の量を計算できる。
Reference example 4
The three metal electrodes 4a, 4b, and 4c of the energizing treatment tank shown in FIG. 1 were used as iron electrodes, and magnesium chloride was dissolved in groundwater A to C to conduct energization, and the relationship between the consumption current and the magnesium consumption was examined. The results are shown in FIG. The consumption current corresponding to the target boron concentration is obtained from FIG. 5, and then the magnesium consumption corresponding to the consumption current is obtained from FIG. And the quantity of the magnesium salt melt | dissolved in groundwater AC can be calculated from the said magnesium concentration.
In addition, the figure which shows the relationship between the current consumption as shown in FIG. 5 and the boron concentration after the energization treatment, and the figure showing the relationship between the current consumption and the magnesium consumption as shown in FIG. Calculate the minimum amount of magnesium salt dissolved in groundwater required to remove boron to the boron concentration.

本発明のホウ素含有水の処理方法は、種々のイオンを含有する地下水からの有効でかつ安価な溶存ホウ素除去に好適である。本発明のホウ素含有水の処理方法でホウ素をはじめとする種々のイオンを含有する地下水からホウ素を除去する際に必要とされる電圧は12V以下、通常5V程度であるから、太陽電池で得られる電力で本発明のホウ素含有水の処理方法を実施できる。更に、本発明のホウ素含有水の処理方法は、大量の薬剤及び大規模な設備を必要としない。従って、本発明のホウ素含有水の処理方法を僻地で実施できる。   The method for treating boron-containing water of the present invention is suitable for effective and inexpensive removal of dissolved boron from groundwater containing various ions. The voltage required for removing boron from groundwater containing various ions including boron by the method for treating boron-containing water of the present invention is 12 V or less, usually about 5 V, and can be obtained with a solar cell. The method for treating boron-containing water of the present invention can be performed with electric power. Furthermore, the method for treating boron-containing water of the present invention does not require a large amount of chemicals and large-scale equipment. Therefore, the method for treating boron-containing water of the present invention can be implemented in remote areas.

1…通電処理槽、2…被処理水、3…カーボン電極、4…金属電極 DESCRIPTION OF SYMBOLS 1 ... Energization processing tank, 2 ... Water to be treated, 3 ... Carbon electrode, 4 ... Metal electrode

Claims (2)

溶存ホウ素を含有する被処理水を、鉄を成分として含む電極を陽極として使用すると共に、
通電処理後の被処理水中のマグネシウム濃度が20mg/L以上、通電処理後の被処理水のpHが7.5〜10.5となるよう通電処理し、凝集物を被処理水から分離する、ホウ素含有水の処理方法。
Using the treated water containing dissolved boron as an anode with an electrode containing iron as a component,
The magnesium concentration in the treated water after the energization treatment is 20 mg / L or more, the energization treatment is performed so that the pH of the treated water after the energization treatment is 7.5 to 10.5, and the aggregates are separated from the treated water. A method for treating boron-containing water.
水溶性マグネシウム塩を通電処理前に溶存ホウ素を含有する被処理水に添加する、請求項に記載されたホウ素含有水の処理方法。 The method for treating boron-containing water according to claim 1 , wherein the water-soluble magnesium salt is added to the water to be treated containing dissolved boron before the energization treatment.
JP2010188271A 2010-08-25 2010-08-25 Method for treating boron-containing water Active JP5553160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010188271A JP5553160B2 (en) 2010-08-25 2010-08-25 Method for treating boron-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010188271A JP5553160B2 (en) 2010-08-25 2010-08-25 Method for treating boron-containing water

Publications (2)

Publication Number Publication Date
JP2012045461A JP2012045461A (en) 2012-03-08
JP5553160B2 true JP5553160B2 (en) 2014-07-16

Family

ID=45900981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010188271A Active JP5553160B2 (en) 2010-08-25 2010-08-25 Method for treating boron-containing water

Country Status (1)

Country Link
JP (1) JP5553160B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874183A (en) * 1981-10-27 1983-05-04 Seitetsu Kagaku Co Ltd Treatment of waste liquid
JPH10216728A (en) * 1996-12-06 1998-08-18 Sanyo Electric Co Ltd Method for treating waste water containing phosphate ion
JP3942235B2 (en) * 1997-05-14 2007-07-11 栗田工業株式会社 Method for treating boron-containing water
JP2003136064A (en) * 2001-11-05 2003-05-13 Kurita Water Ind Ltd Treatment method of boiler waste water
JP2006341139A (en) * 2005-06-07 2006-12-21 Nihon Kaisui:Kk Harmful inorganic anion fixing and removing method, and fixing agent used therefor
JP2007160257A (en) * 2005-12-15 2007-06-28 Sanyo Electric Co Ltd Treatment method of harmful substance and treatment apparatus of harmful substance
JP2010022886A (en) * 2008-07-15 2010-02-04 National Univ Corp Shizuoka Univ Method for removing tetrafluoroborate ion
JP4825858B2 (en) * 2008-09-17 2011-11-30 株式会社東芝 Boron separation system
JP5818053B2 (en) * 2010-06-30 2015-11-18 清水建設株式会社 Method for treating boron-containing groundwater

Also Published As

Publication number Publication date
JP2012045461A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
Irki et al. Decolourization of Methyl Orange (MO) by electrocoagulation (EC) using iron electrodes under a magnetic field (MF)
Zhang et al. Integrated salinity reduction and water recovery in an osmotic microbial desalination cell
Singh et al. Removal of fluoride from aqueous solution: status and techniques
Ryu et al. Pulsed electrokinetic removal of Cd and Zn from fine-grained soil
Avsar et al. Comparison of classical chemical and electrochemical processes for treating rose processing wastewater
Zhao et al. Remediation of copper contaminated kaolin by electrokinetics coupled with permeable reactive barrier
Li et al. Removal of trivalent chromium in the complex state of trivalent chromium passivation wastewater
CN102240667B (en) Electric remediation and reducing detoxication method for chromium contaminated soil and underground water
US20180222776A1 (en) Method and Apparatus for Electrochemical Bromide Removal
Chang et al. The study on lead desorption from the real-field contaminated soil by circulation-enhanced electrokinetics (CEEK) with EDTA
Lu et al. Sustainable decontamination of heavy metal in wastewater and soil with novel rectangular wave asymmetrical alternative current electrochemistry
Kuleyin et al. Recovery of copper ions from industrial wastewater by electrodeposition
JP2007330914A (en) Method and apparatus for making oxidizable atmosphere water, water treatment method and water treatment apparatus
CN103951017B (en) A kind of electrolysis treatment contains cyanogen copper-contained electroplating waste water and reclaims the method for copper
Rehman et al. Operational parameter influence on heavy metal removal from metal plating wastewater by electrocoagulation process
Ihara et al. High gradient magnetic separation combined with electrocoagulation and electrochemical oxidation for the treatment of landfill leachate
CN100383064C (en) High salinity waste water treatment method
JP2004202357A (en) Method for purifying organic compound-polluted object
Zhou et al. Electrokinetic Remediation of Fluorine‐C ontaminated Soil Using Approaching Cathodes
JP5818053B2 (en) Method for treating boron-containing groundwater
JP5553160B2 (en) Method for treating boron-containing water
KR101616174B1 (en) Method for the remediation of heavy metals polluted soil using recyclable leaching agent
JP2004283678A (en) Method and apparatus for treatment of solid matter contaminated with heavy metals
CN108423912A (en) A kind of waste water treatment process
JP2013104786A (en) Method for treating soil contaminated by radioactive cesium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140514

R150 Certificate of patent or registration of utility model

Ref document number: 5553160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150