JP5551974B2 - Elastic support method and elastic support device for partial model of transmission line - Google Patents
Elastic support method and elastic support device for partial model of transmission line Download PDFInfo
- Publication number
- JP5551974B2 JP5551974B2 JP2010138672A JP2010138672A JP5551974B2 JP 5551974 B2 JP5551974 B2 JP 5551974B2 JP 2010138672 A JP2010138672 A JP 2010138672A JP 2010138672 A JP2010138672 A JP 2010138672A JP 5551974 B2 JP5551974 B2 JP 5551974B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission line
- elastic
- partial model
- line partial
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Suspension Of Electric Lines Or Cables (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Description
本発明は、送電線部分模型の弾性支持方法及び弾性支持装置に関する。さらに詳述すると、本発明は、例えば風洞実験に基づく架空送電線の振動解析に用いたり屋外着氷雪実験における着雪サンプラーとして用いたりする送電線部分模型の支持に適用して好適な送電線部分模型の弾性支持方法及び弾性支持装置に関する。 The present invention relates to an elastic support method and an elastic support device for a transmission line partial model. More specifically, the present invention is suitable for application to the support of a transmission line portion model used for, for example, vibration analysis of an overhead transmission line based on a wind tunnel experiment or used as a snow landing sampler in an outdoor icing snow experiment. The present invention relates to a model elastic support method and an elastic support device.
架空送電線において冬季に雪や氷が付着することによって空力振動が生じることがある。こうした空力振動はギャロッピングと呼ばれている。着氷雪時の架空送電線におけるギャロッピング現象は鉛直振動に加えてねじれや水平振動も伴い振幅も非常に大きくなる。そして、ギャロッピングが大振幅に達すると異なる相の電線間に混触が生じることによる短絡や碍子・鉄塔の損傷などにつながるため、発生条件の究明や対策方法の検討,対策品の開発など様々な研究が行われている(非特許文献1)。送電線におけるギャロッピングの発生条件や応答特性を解明するための方法として、以下に示されるような3つの方法が行われている。 Aerodynamic vibration may occur due to snow and ice adhering to overhead power transmission lines in winter. Such aerodynamic vibration is called galloping. The galloping phenomenon in overhead power transmission lines during icing and snowing is very large in amplitude due to torsion and horizontal vibration in addition to vertical vibration. And when galloping reaches a large amplitude, it leads to short circuit and damage to insulators and steel towers due to contact between wires in different phases, so various researches such as investigation of occurrence conditions, examination of countermeasure methods, development of countermeasure products, etc. (Non-patent Document 1). As methods for elucidating the occurrence conditions and response characteristics of galloping in the transmission line, the following three methods are performed.
1)実規模送電線における自然着氷雪下若しくは模擬着氷雪を設けての観測
実際の架空送電線や観測用試験線を用いての観測を行い、ギャロッピングの応答特性の把握や対策品の効果検証などが実施されている。観測用試験線では、実際に冬季に着氷雪するような気象条件下における着氷雪形状や送電線の応答などの観測を行う方法と、人工的な模擬着氷雪形状を取り付けて観測を行う方法とが行われている(例えば非特許文献2)。
1) Observation under natural icing snow or simulated icing snow on actual scale transmission line Observe using actual aerial transmission line and observation test line to understand galloping response characteristics and verify the effectiveness of countermeasure products Etc. are being implemented. In the observation test line, there are a method of observing icing snow shape and transmission line response under weather conditions that actually icy and snowing in winter, and a method of observing with artificial simulated icing snow shape attached. (For example, Non-Patent Document 2).
2)着氷雪送電線断面の空気力係数の測定結果に基づく数値計算による応答解析
ギャロッピングの発生の有無の定式化を試みるものとして、或る瞬間に振動中の物体に作用する空気力がその瞬間の相対迎角及び相対風速で風が静止物体に作用する場合に生じる定常空気力と等しいとする準定常理論を用いて定式化したDen Hartogの条件式が提案されている。これは、風洞実験などで取得した定常空気力係数を用いて断面形状からギャロッピングの発生の可能性を判別しようとするものである。一方で、Den Hartogの条件式は、断面形状が空力的に不安定である(言い換えると、ギャロッピングが発生し得る)かどうかを判断するものであり、ギャロッピングの応答振幅を推定するためには送電線の構造特性を考慮した解析が必要になる。そこで、送電線の幾何学的非線形性を考慮した有限要素法解析プログラム(CAFSSと呼ばれる)が開発され、様々な条件下におけるギャロッピングの時刻歴応答の解析などが実施されている(例えば非特許文献3)。
2) Response analysis by numerical calculation based on the measurement result of the aerodynamic coefficient of the cross section of the icing snow transmission line As an attempt to formulate the occurrence of galloping, the aerodynamic force acting on a vibrating object at that moment Den Hartog's conditional formula formulated using quasi-stationary theory is assumed to be equal to the stationary aerodynamic force generated when the wind acts on a stationary object at a relative angle of attack and relative wind speed. This is to determine the possibility of occurrence of galloping from the cross-sectional shape using the steady aerodynamic coefficient obtained by wind tunnel experiments or the like. On the other hand, Den Hartog's conditional expression determines whether the cross-sectional shape is aerodynamically unstable (in other words, galloping can occur). To estimate the galloping response amplitude, An analysis that takes into account the structural characteristics of the wire is required. Therefore, a finite element method analysis program (referred to as CAFSS) that takes into account the geometric nonlinearity of transmission lines has been developed, and analysis of galloping time history responses under various conditions has been carried out (for example, non-patent literature). 3).
3)着氷雪送電線の部分模型を用いての風洞における自由振動実験結果に基づく推定
着氷雪送電線をモデル化した部分模型に風を作用させることによって様々な自由振動実験が実施されている。例えば、着氷雪時の4導体送電線の部分模型を風洞内に鉛直方向及びねじれ方向の2自由度で弾性支持してギャロッピング応答が計測されたり、単導体着氷雪送電線模型を風洞内に3自由度弾性支持してその応答が計測されたりしている。これらの測定結果においては、その応答特性は準定常空気力を用いてほぼ評価できるとされている。ただし、これらの実験で測定されたギャロッピングは、装置の制限から、鉛直方向・水平方向の倍振幅は10〜20[cm]程度,ねじれ方向の倍振幅は10[deg.]程度というように比較的小さな振幅の範囲に限られている。しかしながら、実際の送電線におけるギャロッピングでは、鉛直方向・水平方向の倍振幅は数mに達し、ねじれ方向の倍振幅も非常に大きくなると言われている。そこで、4導体送電線の部分模型をスパン方向に離れた2点からワイヤーで支持することによって鉛直方向・水平方向・ねじれ方向の3自由度で大振幅振動を可能とした実験が行われている(例えば非特許文献4)。
3) Estimation based on results of free vibration experiments in wind tunnels using partial models of icing snow transmission lines Various free vibration experiments have been carried out by applying wind to partial models that model icing snow transmission lines. For example, a galloping response is measured by elastically supporting a partial model of a 4-conductor transmission line during icing snow in the wind tunnel with two degrees of freedom in the vertical and torsional directions, or a single-conductor icing snow transmission line model in the wind tunnel. The response is measured with elastic support. In these measurement results, it is said that the response characteristic can be substantially evaluated using the quasi-stationary aerodynamic force. However, due to device limitations, the galloping measured in these experiments is such that the double amplitude in the vertical and horizontal directions is about 10-20 [cm], and the double amplitude in the torsion direction is about 10 [deg.]. Limited to a small amplitude range. However, in galloping in actual transmission lines, it is said that the double amplitude in the vertical and horizontal directions reaches several meters, and the double amplitude in the torsional direction becomes very large. Therefore, an experiment that enables large-amplitude vibration with three degrees of freedom in the vertical, horizontal, and torsional directions by supporting a partial model of a four-conductor transmission line with wires from two points separated in the span direction has been conducted. (For example, nonpatent literature 4).
しかしながら、上記1)実規模送電線における観測では、実規模送電線におけるギャロッピング現象が確認されてきたものの、ギャロッピングが発生した時の現象把握を行うために必要なデータ(例えば、径間内の風速分布・着氷雪形状分布,応答振幅,応答モードなど)を全て取得することは非常に困難である。また、風向・風速などの入力条件や着氷雪形状などを任意に調整することができない。また、架線形態や対策品を変えてギャロッピング現象の観測を行う場合には、その度に大規模な工事が必要になる。以上のように、実規模送電線における観測では、実際の着氷雪現象や実規模送電線のギャロッピング現象を捉えることができても、架線形態や対策品の種類、更には気象条件が変わったときにおける応答特性の違いを詳細に検討するためには非常に多くの時間と費用とを必要とするという問題がある。このため、汎用性があるとは言い難い。 However, although the galloping phenomenon in the real scale power transmission line has been confirmed in the above 1) observation on the real scale power transmission line, the data necessary for grasping the phenomenon when the galloping has occurred (for example, wind speed in the span) It is very difficult to acquire all of the distribution, ice-covered snow shape distribution, response amplitude, response mode, etc. Further, input conditions such as wind direction and wind speed, and the shape of icing snow cannot be arbitrarily adjusted. In addition, large-scale construction is required each time the galloping phenomenon is observed by changing the overhead wire form and countermeasure products. As described above, when observations on actual scale transmission lines can capture actual icing and snow phenomena and galloping phenomena on actual scale transmission lines, the types of overhead lines, types of countermeasures, and weather conditions have changed. In order to examine the difference in response characteristics in detail, there is a problem that much time and cost are required. For this reason, it is hard to say that it is versatile.
また、上記2)数値計算による応答解析では、一般的に、ギャロッピングの解析において入力条件となる空気力は風洞実験や数値計算によって計測された定常空気力係数が準定常理論を用いて入力される。しかし、送電線のギャロッピングにおいては、大振幅振動に達することに加えてねじれ振動も生じるので、空気力が準定常空気力で評価できるかという点が議論の対象とされてきた。そして、着氷雪時の4導体送電線では、大振幅鉛直加振時のモーメント及び大振幅ねじれ加振時の揚力・モーメントなどにおいては空気力に非定常性があり、準定常理論では空気力を厳密には表現できないことが明らかになっている(例えば、木村吉郎 他:大振幅加振時に着氷雪4導体送電線に作用する非定常空気力の特性,構造工学論文集,Vol.46A,pp.1055-1062,2000年)。以上のように、数値計算による応答解析では、様々な条件の設定が容易であるものの、準定常理論を用いた空気力の定式化の適用範囲や数値計算によって求められたギャロッピング応答の推定精度などについては観測や実験で得られた応答特性などと比較して検証する必要があるという問題がある。このため、汎用性があるとは言い難い。 Further, in the response analysis by the above-mentioned 2) numerical calculation, generally, the aerodynamic force that is an input condition in the galloping analysis is input by using a quasi-stationary theory as a stationary aerodynamic coefficient measured by a wind tunnel experiment or numerical calculation. . However, in transmission line galloping, torsional vibrations occur in addition to reaching large amplitude vibrations, and it has been the subject of discussion whether aerodynamics can be evaluated with quasi-stationary aerodynamics. And in the 4-conductor transmission line at the time of icing snow, the aerodynamic force is unsteady in the moment during large amplitude vertical vibration and the lift and moment during large amplitude torsional vibration. It has become clear that it cannot be expressed exactly (for example, Yoshiro Kimura et al .: Characteristics of unsteady aerodynamic forces acting on a four-conductor transmission line with icing snow during large-amplitude excitation, Journal of Structural Engineering, Vol.46A, pp. .1055-1062, 2000). As described above, in response analysis by numerical calculation, it is easy to set various conditions, but the application range of aerodynamic force formulation using quasi-stationary theory and the estimation accuracy of galloping response obtained by numerical calculation, etc. There is a problem that needs to be verified in comparison with response characteristics obtained from observations and experiments. For this reason, it is hard to say that it is versatile.
また、上記3)風洞を用いた自由振動試験について、上述の4導体送電線の部分模型をスパン方向に離れた2点からワイヤーで支持することによる鉛直・水平・ねじれの3自由度で大振幅振動を可能とした実験では、鉛直・水平方向の倍振幅は50[cm]程度,ねじれ方向の倍振幅は100[deg.]程度の振動を再現することができているものの、実際の送電線における条件に相当するような低い振動数を再現することはできていない。このように、風洞を用いた自由振動試験では、任意の構造特性,風向・風速・乱れの強さ,着氷雪形状を容易に調整した上で応答特性を測定することができるものの、送電線のギャロッピングを対象とした実験ではそれ以外の構造物の空力現象を対象とした実験に比べて模型のサイズ(導体直径など)に対する振幅が非常に大きく振動数も非常に低い実験を行う必要がある。そのため、相似則などを用いても実際の現象を再現した実験が困難であり、実験手法そのものを工夫する必要があるという問題がある。このため、汎用性があるとは言い難い。 In addition, in the above 3) free vibration test using a wind tunnel, large amplitude with 3 degrees of freedom of vertical, horizontal and torsion by supporting the partial model of the above-mentioned 4-conductor transmission line with wires from two points separated in the span direction. In the experiment that enabled vibration, although the vertical and horizontal double amplitude was about 50 [cm], and the torsional double amplitude was about 100 [deg.], The actual transmission line It is not possible to reproduce a low frequency corresponding to the condition in. In this way, in a free vibration test using a wind tunnel, the response characteristics can be measured after easily adjusting any structural characteristics, wind direction, wind speed, turbulence intensity, and the shape of icing snow. In experiments for galloping, it is necessary to conduct experiments with a very large amplitude and a very low frequency with respect to the size of the model (conductor diameter, etc.) compared to experiments for aerodynamic phenomena of other structures. Therefore, there is a problem that it is difficult to perform an experiment that reproduces an actual phenomenon even if a similarity rule is used, and the experiment method itself needs to be devised. For this reason, it is hard to say that it is versatile.
以上のような背景を踏まえると、実際の送電線の構造特性を模擬することができる風洞実験や屋外着氷雪実験を実施することができれば、様々な条件下(例えば、構造特性,風向・風速などの入力条件,着氷雪形状)におけるギャロッピングの発生条件や応答特性を明らかにすることが可能になる。さらに、準定常理論を用いた空気力の評価の適用範囲や数値計算によって求められたギャロッピング応答の推定精度を明らかにすることが可能になる。 Based on the above background, if wind tunnel experiments and outdoor icing snow experiments that can simulate the structural characteristics of actual transmission lines can be carried out, various conditions (for example, structural characteristics, wind direction, wind speed, etc.) It is possible to clarify the occurrence conditions and response characteristics of galloping under the input conditions of ( Furthermore, it becomes possible to clarify the applicability range of the aerodynamic evaluation using the quasi-stationary theory and the estimation accuracy of the galloping response obtained by numerical calculation.
そこで、本発明は、風洞実験や屋外着氷雪実験などにおいて送電線部分模型が大振幅・低振動数で振動することができる送電線部分模型の弾性支持方法及び弾性支持装置を提供することを目的とする。 Therefore, the present invention has an object to provide an elastic support method and an elastic support device for a transmission line partial model that can vibrate the transmission line partial model with a large amplitude and a low frequency in wind tunnel experiments, outdoor icing snow experiments, and the like. And
かかる目的を達成するため、請求項1記載の送電線部分模型の弾性支持方法は、導体部及び該導体部の両端に取り付けられた対向する一対の端板を有する送電線部分模型を、一端は一対の端板のうちの一方に取り付けられると共に他端は一対の端板のそれぞれに対向して送電線部分模型の両側に配置された一対の支持台のうちの一方に支持される一対の弾性吊下げ部材によって架空させて弾性支持すると共に、一対の弾性吊下げ部材のうちの少なくとも一方を複数の線状の弾性部材で構成し、該弾性部材の径方向の支持位置を変化させると共に周方向の支持位置を変化させる位置調整機構を介して弾性吊下げ部材の他端を支持台に支持させるようにしている。 In order to achieve such an object, the elastic support method for a transmission line partial model according to claim 1 is characterized in that a transmission line partial model having a conductor portion and a pair of opposed end plates attached to both ends of the conductor portion, A pair of elastic members attached to one of the pair of end plates and supported at one of a pair of support bases disposed on both sides of the power transmission line partial model with the other end facing each of the pair of end plates The suspension member is suspended and elastically supported, and at least one of the pair of elastic suspension members is constituted by a plurality of linear elastic members, and the radial support position of the elastic member is changed and the circumferential direction is changed. The other end of the elastic suspension member is supported by the support base via a position adjustment mechanism that changes the support position of the support.
また、請求項6記載の送電線部分模型の弾性支持装置は、導体部及び該導体部の両端に取り付けられた対向する一対の端板を有する送電線部分模型と、一対の端板のそれぞれに対向して送電線部分模型の両側に配置された一対の支持台と、一端は一対の端板のうちの一方に取り付けられると共に他端は一対の支持台のうちの一方に支持されて送電線部分模型を架空させて弾性支持する一対の弾性吊下げ部材とを有し、該一対の弾性吊下げ部材のうちの少なくとも一方は複数の線状の弾性部材からなると共に、支持台に取り付けられて弾性部材の径方向の支持位置を変化させると共に周方向の支持位置を変化させる位置調整機構を介して弾性吊下げ部材の他端が支持台に支持されるようにしている。 In addition, the elastic support device for a transmission line partial model according to claim 6 is provided on each of the transmission line partial model having a conductor portion and a pair of opposing end plates attached to both ends of the conductor portion, and the pair of end plates. A pair of support bases arranged opposite to each other on both sides of the transmission line partial model, and one end is attached to one of the pair of end plates and the other end is supported by one of the pair of support bases. A pair of elastic suspension members that are elastically supported by suspending the partial model, and at least one of the pair of elastic suspension members is composed of a plurality of linear elastic members and is attached to a support base. The other end of the elastic suspension member is supported by the support base through a position adjusting mechanism that changes the radial support position of the elastic member and changes the circumferential support position.
したがって、これらの送電線部分模型の弾性支持方法及び弾性支持装置によると、支持台に取り付けられた位置調整機構によって弾性部材の径方向の支持位置を変化させて複数の弾性部材の固定点間隔を適宜変化させることができるので、送電線部分模型のねじれ方向の振動数を実験条件等に合わせて都度に簡易に調整することができる。また、弾性部材として用いる部材を選択することによってたわみ剛性を調整することができるので、送電線部分模型の鉛直方向及びねじれ方向の振動数を実験条件等に合わせて都度に簡易に調整することができる。さらに、弾性吊下げ部材による送電線部分模型の弾性支持の弛度を調整することにより、送電線部分模型の水平方向の振動数を調整することができる。 Therefore, according to the elastic support method and the elastic support device for these power transmission line partial models, the radial support position of the elastic member is changed by the position adjustment mechanism attached to the support base, and the fixed point intervals of the plurality of elastic members are increased. Since it can be changed as appropriate, the frequency in the torsional direction of the transmission line partial model can be easily adjusted according to the experimental conditions and the like. In addition, since the flexural rigidity can be adjusted by selecting a member to be used as an elastic member, it is possible to easily adjust the frequency in the vertical direction and torsional direction of the transmission line partial model according to experimental conditions and the like. it can. Furthermore, the horizontal frequency of the power transmission line partial model can be adjusted by adjusting the sag of the elastic support of the power transmission line partial model by the elastic suspension member.
また、請求項2記載の発明は、請求項1記載の送電線部分模型の弾性支持方法において、送電線部分模型の端板に、弾性部材の径方向の取り付け位置を変化させる位置調整機構を設けるようにしている。また、請求項7記載の発明は、請求項6記載の送電線部分模型の弾性支持装置において、送電線部分模型の端板が、弾性部材の径方向の取り付け位置を変化させる位置調整機構を備えるようにしている。この場合には、送電線部分模型の端板に備えられた位置調整機構によっても弾性部材の径方向の支持位置を変化させて複数の弾性部材の固定点間隔を変化させることにより、送電線部分模型のねじれ方向の振動数を調整することができる。 According to a second aspect of the present invention, in the elastic support method for a power transmission line partial model according to the first aspect, a position adjusting mechanism is provided on the end plate of the power transmission line partial model to change the radial attachment position of the elastic member. I am doing so. According to a seventh aspect of the present invention, in the elastic support device for a power transmission line partial model according to the sixth aspect, the end plate of the power transmission line partial model includes a position adjusting mechanism for changing a radial attachment position of the elastic member. I am doing so. In this case, by changing the radial support position of the elastic member by the position adjusting mechanism provided on the end plate of the power transmission line partial model, and changing the fixed point interval of the plurality of elastic members, the transmission line portion The frequency in the torsional direction of the model can be adjusted.
また、請求項3記載の発明は、請求項1記載の送電線部分模型の弾性支持方法において、支持台に、弾性部材の張力を該弾性部材毎に変化させる張力調整機構を設けるようにしている。また、請求項8記載の発明は、請求項6記載の送電線部分模型の弾性支持装置において、支持台が、弾性部材の張力を該弾性部材毎に変化させる張力調整機構を備えるようにしている。この場合には、支持台が張力調整機構を備えることにより、送電線部分模型の弾性支持の弛度を適宜変化させることができるので、送電線部分模型の水平方向の振動数を実験条件等に合わせて都度に簡易に調整することができる。 According to a third aspect of the present invention, in the elastic support method for a power transmission line partial model according to the first aspect, a tension adjusting mechanism for changing the tension of the elastic member for each elastic member is provided on the support base. . According to an eighth aspect of the present invention, in the elastic support device for a power transmission line partial model according to the sixth aspect, the support base includes a tension adjusting mechanism that changes the tension of the elastic member for each elastic member. . In this case, since the support base is provided with a tension adjustment mechanism, the sag of the elastic support of the transmission line partial model can be changed as appropriate, so that the horizontal frequency of the transmission line partial model is used as an experimental condition. In addition, it can be easily adjusted each time.
また、請求項4記載の発明は、請求項1記載の送電線部分模型の弾性支持方法において、弾性部材の剛性を変化させることによって送電線部分模型の鉛直方向の振動数を変化させるようにしている。この場合には、送電線部分模型の鉛直方向の振動数を実験条件等に合わせて都度に簡易に調整することができる。 According to a fourth aspect of the present invention, in the elastic support method for the transmission line partial model according to the first aspect, the vertical frequency of the transmission line partial model is changed by changing the rigidity of the elastic member. Yes. In this case, the frequency in the vertical direction of the transmission line partial model can be easily adjusted each time according to the experimental conditions and the like.
また、請求項5記載の発明は、請求項1記載の送電線部分模型の弾性支持方法において、送電線部分模型の鉛直方向の振動数fy,水平方向の振動数fz,ねじれ方向の振動数fθをそれぞれ数式によって表すようにしている。この場合には、送電線部分模型の各方向の振動数のそれぞれを実験条件等に合うように調整して設定することができる。 According to a fifth aspect of the present invention, in the elastic support method for the transmission line partial model according to the first aspect, the vertical frequency f y , the horizontal frequency f z , and the torsional vibration of the transmission line partial model. It has a number f theta as each represented by formula. In this case, each frequency in each direction of the transmission line partial model can be adjusted and set so as to meet the experimental conditions.
請求項1,6記載の送電線部分模型の弾性支持方法及び弾性支持装置によれば、送電線部分模型の鉛直方向,水平方向,ねじれ方向の振動数を実験条件等に合わせて都度に簡易に調整することができるので、風洞実験や屋外着氷雪実験などにおいて送電線部分模型を大振幅・低振動数で振動させることができ、風洞実験や屋外着氷雪実験などによって得られるデータの有用性と信頼性との向上を図ることが可能になると共に、送電線部分模型の支持装置の調整を簡易に行えるようにし手間を減らして汎用性の向上を図ることが可能になる。また、架空送電線の導体形状を模擬した部分模型を用いて屋外の着氷雪が生じる地域に本発明に係る装置を設置することによって実際の着氷雪現象を再現することができると共に、実際の着氷雪の再現条件下におけるギャロッピング現象の実験を行うこともできるので、着氷雪現象自体や着氷雪現象とギャロッピング現象との関係の解析に対しても有用なデータを提供することができる。 According to the elastic support method and the elastic support device for the transmission line partial model according to claims 1 and 6, the frequency in the vertical direction, horizontal direction, and twist direction of the transmission line partial model can be easily adjusted according to the experimental conditions. Because it can be adjusted, the transmission line model can be vibrated with large amplitude and low frequency in wind tunnel experiments and outdoor icing snow experiments, and the usefulness of data obtained by wind tunnel experiments and outdoor icing snow experiments etc. It is possible to improve the reliability and to easily adjust the support device for the transmission line partial model, thereby reducing the labor and improving the versatility. In addition, by installing a device according to the present invention in an area where icing and snowing occurs outdoors using a partial model simulating the conductor shape of an overhead power transmission line, the actual icing and snowing phenomenon can be reproduced and the actual landing Since the experiment of the galloping phenomenon under the reproduction condition of the ice and snow can be conducted, useful data can be provided for the analysis of the icing snow phenomenon itself and the relationship between the icing snow phenomenon and the galloping phenomenon.
請求項2,7記載の送電線部分模型の弾性支持方法及び弾性支持装置によれば、送電線部分模型のねじれ方向の振動数を調整することができるので、風洞実験や屋外着氷雪実験などにおける送電線部分模型の振動数を適切に調整し、風洞実験や屋外着氷雪実験などによって得られるデータの有用性と信頼性との向上を図ることが可能になる。 According to the elastic support method and the elastic support device for the transmission line partial model according to claims 2 and 7, the frequency in the torsional direction of the transmission line partial model can be adjusted. By appropriately adjusting the frequency of the transmission line partial model, it is possible to improve the usefulness and reliability of data obtained by wind tunnel experiments, outdoor icing snow experiments, and the like.
請求項3,8記載の送電線部分模型の弾性支持方法及び弾性支持装置によれば、送電線部分模型の水平方向の振動数を実験条件等に合わせて都度に簡易に調整することができるので、風洞実験や屋外着氷雪実験などにおける送電線部分模型の支持装置の調整を簡易に行えるようにし手間を減らして汎用性の向上を図ることが可能になる。 According to the elastic support method and the elastic support device for the transmission line partial model according to claims 3 and 8, the horizontal frequency of the transmission line partial model can be easily adjusted according to the experimental conditions and the like. In addition, it is possible to easily adjust the support device for the transmission line partial model in wind tunnel experiments and outdoor ice / snow experiments, thereby reducing the labor and improving versatility.
請求項4記載の送電線部分模型の弾性支持方法及び弾性支持装置によれば、送電線部分模型の鉛直方向の振動数を実験条件等に合わせて都度に簡易に調整することができるので、風洞実験や屋外着氷雪実験などにおける送電線部分模型の支持装置の調整を簡易に行えるようにし手間を減らして汎用性の向上を図ることが可能になる。 According to the elastic support method and the elastic support device of the power transmission line partial model according to claim 4, the vertical frequency of the power transmission line partial model can be easily adjusted according to the experimental conditions and the like. It becomes possible to easily adjust the support device for the transmission line partial model in an experiment or an outdoor icy and snow experiment, thereby reducing the labor and improving the versatility.
請求項5記載の送電線部分模型の弾性支持方法及び弾性支持装置によれば、送電線部分模型の各方向の振動数のそれぞれを実験条件等に合うように調整して設定することができるので、風洞実験や屋外着氷雪実験などにおける多様な実験条件に合わせた送電線部分模型の支持装置の仕様設定を容易に行えるようにし手間を減らして汎用性の向上を図ることが可能になる。 According to the elastic support method and the elastic support device of the power transmission line partial model according to claim 5, each frequency of each direction of the power transmission line partial model can be adjusted and set so as to meet the experimental conditions. In addition, it is possible to easily set the specifications of the supporting device for the transmission line partial model in accordance with various experimental conditions in wind tunnel experiments and outdoor ice / snow experiments, etc., thereby reducing the effort and improving the versatility.
以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。 Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.
図1から図3に、本発明の送電線部分模型の弾性支持方法及び弾性支持装置の実施形態の一例を示す。なお、本実施形態では、4導体送電線の実寸部分模型(以下、送電線部分模型という)を支持する場合を例に挙げて説明する。 FIG. 1 to FIG. 3 show an example of an embodiment of an elastic support method and an elastic support device for a power transmission line partial model of the present invention. In the present embodiment, a case where an actual size partial model of a four-conductor power transmission line (hereinafter referred to as a power transmission line partial model) is supported will be described as an example.
本実施形態の送電線部分模型10は、具体的には、四本の導体部11,…,11が相互に軸心方向平行に各導体部11の端部11aの配置が正方形になるように配置され、両端部11a,11aがそれぞれ対向する一対の端板12,12によって固定されて構成される。ここで、以下の説明においては、送電線部分模型10の軸心方向は各導体部11の軸心方向と同じであると定義する。 Specifically, in the power transmission line partial model 10 of the present embodiment, the four conductor portions 11,..., 11 are parallel to each other in the axial direction, and the arrangement of the end portions 11 a of each conductor portion 11 is square. The both ends 11a and 11a are arranged and fixed by a pair of end plates 12 and 12 facing each other. Here, in the following description, it is defined that the axial direction of the transmission line partial model 10 is the same as the axial direction of each conductor portion 11.
そして、送電線部分模型10は、例えば風洞実験や屋外着氷雪実験で実際の送電線の応答を模擬する場合であれば、導体形状,導体間隔,質量,質量慣性モーメントが実際の送電線のものと等価になるように構成される。具体的には例えば、導体部11の間隔(本実施形態の場合には、言い換えると、四本の導体部11の端部11aの位置によって形成される正方形の一辺の長さ)は実際の送電線と同じに40〔cm〕程度に設定されることが考えられる。 If the transmission line partial model 10 simulates the response of an actual transmission line in, for example, a wind tunnel experiment or an outdoor icing snow experiment, the conductor shape, the conductor interval, the mass, and the mass moment of inertia are those of the actual transmission line. Is configured to be equivalent to Specifically, for example, the interval between the conductor portions 11 (in this embodiment, in other words, the length of one side of the square formed by the positions of the end portions 11a of the four conductor portions 11) is the actual transmission. It is conceivable that it is set to about 40 [cm] as with the electric wire.
一方、送電線部分模型10の導体部11の長さは特定の長さに限定されるものではなく、例えば風洞実験設備の規模と送電線部分模型10の大きさから想定される送電線部分模型の弾性支持装置1全体の大きさとを考慮して適当な長さに設定される。具体的には例えば、導体部11の長さは100〔cm〕程度に設定される。 On the other hand, the length of the conductor portion 11 of the power transmission line partial model 10 is not limited to a specific length. For example, the power transmission line partial model assumed from the scale of the wind tunnel test facility and the size of the power transmission line partial model 10. The length is set to an appropriate length in consideration of the overall size of the elastic support device 1. Specifically, for example, the length of the conductor portion 11 is set to about 100 [cm].
また、導体部11としては、実際の導体の形状を模擬したパイプや、導体として実際に用いられている鋼心アルミ撚り線を切断したものを用いる。また、着氷雪時の送電線を対象とした実験を行う場合には、着氷雪の形状を模擬した着氷雪の模型を製作して当該模型を導体部11に取り付けるようにしても良いし、着氷雪状態の形状を再現した導体の模型を製作して当該模型を導体部11として用いるようにしても良い。 Moreover, as the conductor part 11, what cut | disconnected the pipe which simulated the shape of the actual conductor, and the steel core aluminum strand wire actually used as a conductor is used. Further, when conducting an experiment on a power transmission line during icing snow, a model of icing snow simulating the shape of icing snow may be manufactured and the model may be attached to the conductor 11. A conductor model that reproduces the shape of the ice and snow condition may be manufactured and used as the conductor portion 11.
各導体部11を所定の位置関係で固定するために導体部11の両端部11a,11aのそれぞれに取り付けられる対向する一対の端板12は、風洞実験を行う場合には一般的に気流の二次元性を確保するために薄い円形平板状に形成される。なお、気流の二次元性を積極的に確保する必要がない場合には例えば環状に形成されたものを用いても良い。また、端板12の形状は、円形に限られず、正多角形でも良い。なお、以下の説明では、端板12の、導体部11側の面のことを内側面と呼び、反対側の面のことを外側面と呼ぶ。 In order to fix each conductor part 11 in a predetermined positional relationship, a pair of opposed end plates 12 attached to both ends 11a and 11a of the conductor part 11 are generally two air currents when performing a wind tunnel experiment. In order to ensure dimensionality, it is formed in a thin circular flat plate shape. In addition, when it is not necessary to positively ensure the two-dimensionality of the airflow, for example, an annular shape may be used. Further, the shape of the end plate 12 is not limited to a circle, and may be a regular polygon. In the following description, the surface of the end plate 12 on the conductor portion 11 side is referred to as an inner surface, and the opposite surface is referred to as an outer surface.
各導体部11は、端板12に対し、固定して取り付けられるようにしても良いし、任意の角度だけ軸回転すると共にその後固定されるようにして取り付けられるようにしても良い。軸回転可能に取り付けられるようにした場合には、着氷雪形状の発達角を導体部11毎に任意の方向に調整することなどが可能になる。また、各導体部11は端板12に対して個別に着脱可能であって任意の導体部を取り外すことができるので、導体部毎で異なる着氷雪形状を有するような模型(例えば多導体の後流側の着氷雪形状を小さくするなど)についての実験も可能になる。 Each conductor portion 11 may be fixedly attached to the end plate 12, or may be attached so as to be rotated by an arbitrary angle and then fixed. When it is attached so as to be rotatable about the shaft, it is possible to adjust the development angle of the icing snow shape in an arbitrary direction for each conductor portion 11. In addition, since each conductor portion 11 can be individually attached to and detached from the end plate 12 and an arbitrary conductor portion can be removed, a model having a different icing snow shape for each conductor portion (for example, after a multiconductor). Experiments such as reducing the shape of the icy snow on the flow side) are also possible.
また、送電線部分模型10全体の質量及び質量慣性モーメントを実際の架空送電線と同じにするために、端板12の例えば外側面に質量調整用の錘を適宜取り付けるようにしても良い。 Further, in order to make the mass and the mass moment of inertia of the entire transmission line partial model 10 the same as the actual overhead transmission line, a weight for mass adjustment may be appropriately attached to, for example, the outer surface of the end plate 12.
また、例えば風洞実験などの際に送電線部分模型10の挙動を計測するために端板12の外側面に位置計測用のマークを付けるようにしても良い。そして、目視したり画像解析したりすることによってマークの位置計測を行って送電線部分模型10の鉛直方向・水平方向・ねじれ方向の変位を算出するようにしても良い。例えば、端板12の外側面外縁寄りの位置に等間隔で全て色違いの四つの画像トレース用マーカーを取り付けると共に支持台4の下部にビデオカメラを据え付け、当該ビデオカメラによって撮影された映像をコンピュータに取り込んだ後に画像解析することによって鉛直方向・水平方向・ねじれ方向の変位を算出する。具体的には、撮影された映像において、各コマの中での解析対象とする領域(即ち画素の範囲)及び抽出する色(即ちRGB値の範囲)を指定することによって色違いの各マーカーの座標値を算出することなどが考えられる。 Further, for example, a position measurement mark may be attached to the outer surface of the end plate 12 in order to measure the behavior of the transmission line partial model 10 during a wind tunnel experiment or the like. Then, the position of the mark may be measured by visual observation or image analysis to calculate the displacement of the transmission line partial model 10 in the vertical direction, horizontal direction, and twist direction. For example, four image tracing markers of different colors are attached at equal intervals at positions near the outer edge of the end plate 12, and a video camera is installed at the lower part of the support base 4, and images taken by the video camera are displayed on the computer. The displacement in the vertical direction, the horizontal direction, and the torsional direction is calculated by analyzing the image after taking in the image. Specifically, in the captured video, by specifying the region to be analyzed (ie, the range of pixels) and the color to be extracted (ie, the range of RGB values) in each frame, It is conceivable to calculate coordinate values.
そして、本発明の送電線部分模型の弾性支持方法は、導体部11及び該導体部11の両端に取り付けられた対向する一対の端板12,12を有する送電線部分模型10を、一端は一対の端板12,12のうちの一方に取り付けられると共に他端は一対の端板12,12のそれぞれに対向して送電線部分模型10の両側に配置された一対の支持台4,4のうちの一方に支持される一対の弾性吊下げ部材2,2によって架空させて弾性支持すると共に、一対の弾性吊下げ部材2,2のそれぞれを複数の線状の弾性部材2aで構成し、該弾性部材2aの径方向の支持位置を変化させると共に周方向の支持位置を変化させる位置調整機構3を介して弾性吊下げ部材2の他端を支持台4に支持させるようにしている。 And the elastic support method of the power transmission line partial model of this invention is the power transmission line partial model 10 which has a pair of opposing end plates 12 and 12 attached to the both ends of the conductor part 11 and this conductor part 11, and one end is a pair. Of the pair of support bases 4, 4 attached to one of the end plates 12, 12 and having the other end opposed to the pair of end plates 12, 12 on both sides of the transmission line partial model 10. A pair of elastic suspension members 2 and 2 supported by one of the two are suspended and elastically supported, and each of the pair of elastic suspension members 2 and 2 is constituted by a plurality of linear elastic members 2a. The other end of the elastic suspension member 2 is supported by the support base 4 via a position adjustment mechanism 3 that changes the support position in the radial direction of the member 2a and changes the support position in the circumferential direction.
上記送電線部分模型の弾性支持方法は、本発明の送電線部分模型の弾性支持装置として実現される。本発明の送電線部分模型の弾性支持装置1は、導体部11及び該導体部11の両端に取り付けられた対向する一対の端板12,12を有する送電線部分模型10と、一対の端板12,12のそれぞれに対向して送電線部分模型10の両側に配置された一対の支持台4,4と、一端は一対の端板12,12のうちの一方に取り付けられると共に他端は一対の支持台4,4のうちの一方に支持されて送電線部分模型10を架空させて弾性支持する一対の弾性吊下げ部材2,2とを有し、該一対の弾性吊下げ部材2,2のそれぞれは複数の線状の弾性部材2aからなると共に、支持台4に取り付けられて弾性部材2aの径方向の支持位置を変化させると共に周方向の支持位置を変化させる位置調整機構3を介して弾性吊下げ部材2の他端が支持台4に支持されるようにしている。 The elastic support method for the transmission line partial model is realized as an elastic support device for the transmission line partial model of the present invention. The elastic support device 1 of the power transmission line partial model of the present invention includes a power transmission line partial model 10 having a conductor portion 11 and a pair of opposed end plates 12 and 12 attached to both ends of the conductor portion 11, and a pair of end plates. 12 and 12, a pair of support bases 4 and 4 disposed on both sides of the transmission line partial model 10, and one end is attached to one of the pair of end plates 12 and 12, and the other end is a pair. A pair of elastic suspension members 2, 2 that are supported by one of the support bases 4, 4 and elastically support the power transmission line partial model 10 by aerial, and the pair of elastic suspension members 2, 2. Each of these comprises a plurality of linear elastic members 2a, and is attached to a support base 4 via a position adjusting mechanism 3 that changes the radial support position of the elastic member 2a and changes the circumferential support position. The other end of the elastic suspension member 2 is the support base 4. It is to be supported.
弾性吊下げ部材2を構成する線状(言い換えると、紐状)の弾性部材2aは、送電線部分模型10の各端板12の外側面に、本実施形態では、四本ずつ取り付けられる。なお、弾性吊下げ部材2を構成する線状(紐状)の弾性部材2aは四本には限られない。また、送電線部分模型10の両側で弾性部材2aの本数が異なっていても構わない。具体的には例えば、本実施形態のように両側共に四本ずつの他に、両側共に二本ずつや三本ずつでも良いし、一方が二本で他方が三本でも良いし、一方が一本で他方が二本や三本などでも良い。すなわち、送電線部分模型10の両側の一対の弾性吊下げ部材2,2のうちの少なくとも一方が複数本の線状の弾性部材2aから構成されていれば良い。 In this embodiment, four linear (in other words, string-like) elastic members 2 a constituting the elastic suspension member 2 are attached to the outer surface of each end plate 12 of the power transmission line partial model 10. In addition, the linear (string-like) elastic member 2a which comprises the elastic suspension member 2 is not restricted to four. Further, the number of elastic members 2 a may be different on both sides of the power transmission line partial model 10. Specifically, for example, in addition to four on both sides as in this embodiment, two or three on both sides may be used, one on two and the other on three, or one on one. The book may be two or three on the other side. That is, it is only necessary that at least one of the pair of elastic suspension members 2 and 2 on both sides of the power transmission line partial model 10 is constituted by a plurality of linear elastic members 2a.
弾性部材2aは、剛性が伸びに対してなるべく一定である(言い換えると、線形性が保たれる)ことが好ましい。また、弾性部材2aとしては、これによって構成される弾性吊下げ部材2として送電線部分模型10を支持するのに十分な強度があるものが用いられる。具体的には例えばウレタンゴム製やニトリルゴム製や天然ゴム製で直径3〔mm〕程度の丸断面形状の紐部材が用いられる。 The elastic member 2a preferably has a rigidity that is as constant as possible with respect to elongation (in other words, linearity is maintained). In addition, as the elastic member 2a, an elastic suspension member 2 having a sufficient strength to support the power transmission line partial model 10 is used. Specifically, for example, a string member made of urethane rubber, nitrile rubber, or natural rubber and having a round cross-sectional shape of about 3 mm in diameter is used.
二つの支持台4,4は、送電線部分模型10の軸心方向の両側に、送電線部分模型10と離れて対向して配置される。本実施形態の支持台4は、直方体形状のフレーム構造として構成される。なお、図1においては、支持台4を構成する直方体形状のフレーム構造のうち、底部矩形フレーム4aと、当該底部矩形フレーム4aと底辺が共通する前部矩形フレーム4bのみを表している。 The two support bases 4, 4 are arranged on both sides of the transmission line partial model 10 in the axial direction so as to be separated from the transmission line partial model 10. The support base 4 of this embodiment is comprised as a rectangular parallelepiped frame structure. In FIG. 1, only the bottom rectangular frame 4 a and the front rectangular frame 4 b having the same bottom side as the bottom rectangular frame 4 a among the rectangular frame structures constituting the support base 4 are shown.
そして、支持台4の前部矩形フレーム4bに水平部材4cが取り付けられ、当該水平部材4cに、送電線部分模型10両端の端板12と対向させて位置調整機構3が取り付けられる。 And the horizontal member 4c is attached to the front part rectangular frame 4b of the support stand 4, and the position adjustment mechanism 3 is attached to the said horizontal member 4c so that the end plate 12 of both ends of the power transmission line partial model 10 may be opposed.
位置調整機構3は、図2に示すように、円形平板状の本体3aを有し、当該本体3aの中心を貫通する中心ボルト3cによって水平部材4cに取り付けられる。なお、本体3aの形状は、円形に限られるものではなく、多角形でも良い。 As shown in FIG. 2, the position adjustment mechanism 3 has a circular flat plate-shaped main body 3a, and is attached to the horizontal member 4c by a center bolt 3c that passes through the center of the main body 3a. In addition, the shape of the main body 3a is not limited to a circle, and may be a polygon.
位置調整機構3の本体3aには、弾性吊下げ部材2を構成する各弾性部材2a端部の取り付け・固定位置を径方向に調整するための径方向位置調整機構を構成するものとして径方向のスリット3bが四つ形成される。四つの径方向スリット3b,…,3bは、本体3aの中心ボルト3cを中心とする十字の各辺の位置に、言い換えると、隣り合うスリットとの方向が90°ずつずれて形成される。 The main body 3a of the position adjusting mechanism 3 includes a radial position adjusting mechanism for adjusting the attachment / fixing position of each elastic member 2a constituting the elastic hanging member 2 in the radial direction. Four slits 3b are formed. The four radial slits 3b,..., 3b are formed at the positions of the sides of the cross centered on the central bolt 3c of the main body 3a, in other words, the directions of the adjacent slits are shifted by 90 °.
径方向のスリット3bは、本実施形態では弾性吊下げ部材2を構成する弾性部材2aの本数が四本であるので四つ形成されており、すなわち弾性部材2aの本数と同じ個数だけ少なくとも形成される。したがって、例えば、弾性部材2aが三本の場合には隣り合うスリットとの方向が120°ずつずれて三つの径方向スリット3bが形成されるようにしても良く、弾性部材2aが二本の場合には中心ボルト3cを通る一直線上に二つの径方向スリット3bが形成されるようにしても良い。 In the present embodiment, the number of the radial slits 3b is four because the number of the elastic members 2a constituting the elastic suspension member 2 is four, that is, at least as many as the number of the elastic members 2a are formed. The Therefore, for example, when there are three elastic members 2a, the directions of adjacent slits may be shifted by 120 ° to form three radial slits 3b, and when there are two elastic members 2a. Alternatively, two radial slits 3b may be formed on a straight line passing through the center bolt 3c.
位置調整機構3の径方向スリット3bには、それぞれ、径方向位置調整機構を構成するものとしてスライダ5が一つずつ取り付けられる。スライダ5は、径方向スリット3bの長手方向(即ち、本体3aの径方向)と直交する方向の両側のそれぞれに固定用ボルト5b,5bを有する。 One slider 5 is attached to each of the radial slits 3b of the position adjusting mechanism 3 as a component of the radial position adjusting mechanism. The slider 5 has fixing bolts 5b and 5b on both sides in a direction orthogonal to the longitudinal direction of the radial slit 3b (that is, the radial direction of the main body 3a).
位置調整機構3は径方向スリット3bを有することによってスライダ5を、ボルト5b,5bを緩めた場合には径方向スリット3bの長手方向(即ち、本体3aの径方向;図2中の両矢印3f)に摺動可能にさせると共に、ボルト5b,5bを締め付けた場合には摺動不能に固定する。 The position adjusting mechanism 3 has the radial slit 3b, and when the bolts 5b and 5b are loosened, the position adjusting mechanism 3 has a longitudinal direction of the radial slit 3b (that is, the radial direction of the main body 3a; double arrow 3f in FIG. 2). ), And when bolts 5b and 5b are tightened, they are fixed so that they cannot slide.
スライダ5には、さらに、中央位置に貫通孔5aが設けられている。そして、当該貫通孔5aを弾性部材2aが貫通する。そして、各弾性部材2aは、スライダ5を経由して(言い換えると、スライダ5に係止されて)支持台4に支持される。 The slider 5 is further provided with a through hole 5a at the center position. And the elastic member 2a penetrates the said through-hole 5a. Each elastic member 2a is supported by the support 4 via the slider 5 (in other words, locked to the slider 5).
ここで、弾性部材2aを係止して当該弾性部材2aの固定点を位置決めする各スライダ5は、中心ボルト3cを中心とする円周上に、即ち中心ボルト3cから同じ距離だけ離れた位置に配置され固定される。このため、本実施形態では、径方向スリット3bの長手方向の両側部に目盛3hが付されている。 Here, each slider 5 that locks the elastic member 2a and positions the fixing point of the elastic member 2a is on the circumference centered on the central bolt 3c, that is, at a position separated from the central bolt 3c by the same distance. Arranged and fixed. For this reason, in this embodiment, the scale 3h is attached | subjected to the both sides of the longitudinal direction of the radial direction slit 3b.
位置調整機構3の本体3aには、さらに、各弾性部材2a端部の取り付け・固定位置を周方向に調整するための周方向位置調整機構を構成するものとして周方向のスリット3dが二つ形成される。二つの周方向スリット3d,3dは、本体3aの外縁寄りの位置に、各々が周方向一周の四分の一の長さを有するものとして対向して形成される。そして、周方向スリット3dを貫通して支持台4の水平部材4cに嵌められる周縁ボルト3eが備えられる。なお、周方向のスリット3dは、本体3aが回転する際のガイドとして機能し、また、本体3aを任意の角度に設定することができるように90度以上の回転を許容するガイドとして機能するものであればどのような形状であっても良く、例えば、周方向一周の四分の一を超える長さを有するものであっても良い。また、周方向のスリット3dは一つでも良い。 The body 3a of the position adjusting mechanism 3 further includes two circumferential slits 3d that constitute a circumferential position adjusting mechanism for adjusting the attaching / fixing position of each elastic member 2a end in the circumferential direction. Is done. The two circumferential slits 3d, 3d are formed to face each other at a position near the outer edge of the main body 3a as having a length of a quarter of one circumference in the circumferential direction. And the peripheral volt | bolt 3e which penetrates the circumferential direction slit 3d and is fitted by the horizontal member 4c of the support stand 4 is provided. The circumferential slit 3d functions as a guide when the main body 3a rotates, and also functions as a guide allowing rotation of 90 degrees or more so that the main body 3a can be set at an arbitrary angle. Any shape may be used, and for example, it may have a length exceeding a quarter of one round in the circumferential direction. Further, the number of circumferential slits 3d may be one.
位置調整機構3は周方向スリット3dを有することによって本体3aを、中心ボルト3c及び周縁ボルト3e,3eを緩めた場合には中心ボルト3cを中心に回転(図2中の矢印3g)可能にさせると共に、これらボルト3c,3e,3eを締め付けた場合には回転不能に固定する。 The position adjusting mechanism 3 has a circumferential slit 3d so that the main body 3a can rotate around the central bolt 3c (arrow 3g in FIG. 2) when the central bolt 3c and the peripheral bolts 3e and 3e are loosened. At the same time, when these bolts 3c, 3e, 3e are tightened, they are fixed so as not to rotate.
なお、支持台4の水平部材4cに対する位置調整機構3の取り付けの初期状態において、例えば、各径方向スリット3b,…,3bは水平部材4cに対して45度の角度をなし、二つの周方向スリット3d,3dは水平に(言い換えると左右に)対向している。ただし、位置調整機構3の取り付けの初期状態(姿勢)はこれに限られるものではなく、実験の内容等に応じた所望の角度に設定することができるように適宜調整される。 In the initial state of attaching the position adjusting mechanism 3 to the horizontal member 4c of the support base 4, for example, each radial slit 3b,..., 3b forms an angle of 45 degrees with respect to the horizontal member 4c, and two circumferential directions The slits 3d and 3d face each other horizontally (in other words, left and right). However, the initial state (posture) of attachment of the position adjustment mechanism 3 is not limited to this, and is adjusted as appropriate so that it can be set to a desired angle according to the contents of the experiment.
本実施形態の送電線部分模型の弾性支持装置1は張力調整機構6を更に備える。張力調整機構6は各弾性部材2aの張力を個別に調整するためのものである。張力調整機構6は、図3に示すように、滑車6aと錘6bとからなり、支持台4に備えられる。そして、位置調整機構3に取り付けられたスライダ5の貫通孔5aを貫通した弾性部材2aが滑車6aにかけられる。そして、滑車6aを通過して下方に垂れ下がる弾性部材2aの先端部(言い換えると、下端部)に錘6bが取り付けられる。 The elastic support device 1 of the power transmission line partial model of the present embodiment further includes a tension adjusting mechanism 6. The tension adjusting mechanism 6 is for individually adjusting the tension of each elastic member 2a. As shown in FIG. 3, the tension adjusting mechanism 6 includes a pulley 6 a and a weight 6 b and is provided on the support base 4. And the elastic member 2a which penetrated the through-hole 5a of the slider 5 attached to the position adjustment mechanism 3 is put on the pulley 6a. Then, a weight 6b is attached to the distal end portion (in other words, the lower end portion) of the elastic member 2a that passes through the pulley 6a and hangs downward.
なお、図3では、滑車6aと錘6bとを二組のみ表示するようにしているが、本実施形態では弾性吊下げ部材2を構成する弾性部材2aの本数が四本であるので一つの支持台4には四組の滑車6aと錘6bとが備えられている。すなわち、弾性部材2aの本数と同じ組数の滑車6aと錘6bとが備えられる。 In FIG. 3, only two sets of the pulley 6a and the weight 6b are displayed. However, in this embodiment, the number of the elastic members 2a constituting the elastic suspension member 2 is four, so that one support is provided. The table 4 is provided with four sets of pulleys 6a and weights 6b. That is, the same number of pulleys 6a and weights 6b as the number of elastic members 2a are provided.
張力調整機構6の錘6bの重さを調整することによって各弾性部材2aの張力が個別に調整される。そして、実験の内容等に合わせた各弾性部材2aの張力及び送電線部分模型10の角度三成分(即ち、水平角,傾斜角,仰角)が確保された状態で、弾性部材2aのスライダ5貫通部分の両側を固定治具で挟むなどによってスライダ5に対して弾性部材2aが固定される。これにより、実験の内容等に合わせて各弾性部材2aの任意の張力及び任意の姿勢に設定した状態で送電線部分模型10を弾性支持することが可能になる。 By adjusting the weight of the weight 6b of the tension adjusting mechanism 6, the tension of each elastic member 2a is individually adjusted. The elastic member 2a penetrates the slider 5 in a state in which the tension of each elastic member 2a and the three components of the angle of the transmission line partial model 10 (that is, the horizontal angle, the inclination angle, and the elevation angle) are ensured according to the contents of the experiment. The elastic member 2a is fixed to the slider 5 by sandwiching both sides of the portion with a fixing jig. Thereby, it becomes possible to elastically support the power transmission line partial model 10 in a state in which an arbitrary tension and an arbitrary posture of each elastic member 2a are set in accordance with the contents of the experiment.
上述の構成により、送電線部分模型10は、軸心方向両側のそれぞれに離れて対向配置された支持台4,4の間に弾性吊下げ部材2によって弾性支持される。そして、弾性吊下げ部材2を構成する弾性部材2aは、位置調整機構3によって支持位置(係止位置)の調整が可能であるように、且つ、張力調整機構6によって張力の調整が可能であるようにされつつ支持台4に支持される。 With the above-described configuration, the power transmission line partial model 10 is elastically supported by the elastic suspension member 2 between the support bases 4 and 4 that are disposed to face each other on both sides in the axial direction. The elastic member 2 a constituting the elastic suspension member 2 can be adjusted in tension so that the support position (locking position) can be adjusted by the position adjusting mechanism 3 and the tension adjusting mechanism 6 can adjust the tension. In this way, it is supported by the support base 4.
なお、例えば支持台4の前部矩形フレーム4bへの水平部材4cの取り付け位置を変えられるようにし、送電線部分模型10の弾性支持の弛度に合わせて位置調整機構3の高さを変えて送電線部分模型10の支持点の高さを調整することが可能であるようにしても良い。 For example, the mounting position of the horizontal member 4c to the front rectangular frame 4b of the support base 4 can be changed, and the height of the position adjusting mechanism 3 is changed in accordance with the slackness of the elastic support of the power transmission line partial model 10. The height of the support point of the power transmission line partial model 10 may be adjusted.
以上の構成を有する本発明の送電線部分模型の弾性支持方法及び弾性支持装置によれば、複数の弾性部材2aの径方向の支持位置や周方向の支持位置を変化させたり、複数の弾性部材2aの張力を該弾性部材2a毎に調整したりすることができる。 According to the elastic support method and the elastic support device of the power transmission line partial model of the present invention having the above configuration, the radial support positions and the circumferential support positions of the plurality of elastic members 2a are changed, or the plurality of elastic members The tension of 2a can be adjusted for each elastic member 2a.
これにより、送電線部分模型10を鉛直方向・水平方向・ねじれ方向の3自由度で大振幅振動させることが可能になる。また、弾性挙動を示す(言い換えると、剛性が低い)紐部材である弾性部材2aを送電線部分模型10の軸心方向に長く用いることによって実際の送電線と同等の低い振動数で振動させることが可能になる。そして、送電線部分模型の各方向の振動特性のそれぞれを実験条件等に合うように調整して設定することが可能になる。 As a result, the transmission line partial model 10 can be vibrated with a large amplitude with three degrees of freedom in the vertical direction, the horizontal direction, and the torsional direction. In addition, the elastic member 2a, which is a string member that exhibits elastic behavior (in other words, low rigidity), is vibrated at a low frequency equivalent to that of an actual power transmission line by using it long in the axial direction of the power transmission line partial model 10. Is possible. And it becomes possible to adjust and set each vibration characteristic of each direction of a power transmission line partial model so that it may meet experimental conditions.
具体的には、本発明では、弾性吊下げ部材2を構成する弾性部材2aの支持台4による支持点が、位置調整機構3の径方向位置調整機構としての径方向スリット3b及びスライダ5並びに周方向位置調整機構としての周方向スリット3dによって任意の位置に調整される(言い換えると、支持点の角度及び間隔が任意の位置に調整される)と共に任意の位置で固定される。 Specifically, in the present invention, the support point of the elastic member 2 a constituting the elastic suspension member 2 by the support base 4 is the radial slit 3 b and the slider 5 as the radial position adjustment mechanism of the position adjustment mechanism 3 and the circumference. It is adjusted to an arbitrary position (in other words, the angle and interval of the support points are adjusted to an arbitrary position) and fixed at an arbitrary position by the circumferential slit 3d as the directional position adjusting mechanism.
そして、弾性部材2aによって構成される弾性吊下げ部材2の支持点(固定点)の角度を位置調整機構3によって調整することにより、送電線部分模型10の軸心方向の軸を回転中心とする設置角度を調整することが可能になる。なお、風洞を用いて実験をする場合には風は一般的に水平方向に吹いているところ、本発明によれば、位置調整機構3を軸回転させて送電線部分模型10を回転させることによって風に対する仰角の調整が可能であり、任意の吹き上げ角・吹き下ろし角を設定することができる。 Then, by adjusting the angle of the support point (fixed point) of the elastic suspension member 2 constituted by the elastic member 2a by the position adjustment mechanism 3, the axis in the axial direction of the power transmission line partial model 10 is set as the rotation center. The installation angle can be adjusted. In the experiment using the wind tunnel, the wind is generally blowing in the horizontal direction. According to the present invention, the position adjustment mechanism 3 is rotated to rotate the transmission line partial model 10. The elevation angle with respect to the wind can be adjusted, and arbitrary blowing and blowing angles can be set.
また、弾性吊下げ部材2を構成する弾性部材2aの支持点(固定点)の間隔を位置調整機構3によって調整することにより、送電線部分模型10のねじれ方向の振動数を調整することが可能である。 Further, by adjusting the distance between the support points (fixed points) of the elastic member 2a constituting the elastic suspension member 2 by the position adjusting mechanism 3, the frequency in the torsional direction of the transmission line partial model 10 can be adjusted. It is.
さらに、送電線部分模型10の弾性支持の弛度(言い換えると、弾性吊下げ部材2を構成する弾性部材2aの張力)を張力調整機構6によって調整することで水平方向の振動数を調整することが可能であり、また、弾性吊下げ部材2を構成する弾性部材2aのたわみ剛性を調整することで送電線部分模型10の鉛直方向及びねじれ方向の振動数を調整することが可能である。 Further, the horizontal frequency is adjusted by adjusting the slackness of the elastic support of the power transmission line partial model 10 (in other words, the tension of the elastic member 2a constituting the elastic suspension member 2) by the tension adjusting mechanism 6. In addition, by adjusting the flexural rigidity of the elastic member 2a constituting the elastic suspension member 2, it is possible to adjust the frequency in the vertical direction and the twist direction of the transmission line partial model 10.
したがって、風洞実験や屋外着氷雪実験などで実際の送電線の応答を模擬するためには導体形状,導体間隔,質量,質量慣性モーメントに加えて振動数特性を実際の送電線と等価にする必要があるところ、本発明では、上述の構成・機構を組み合わせることにより、鉛直方向・水平方向・ねじれ方向のそれぞれの振動数を調整して目的の値にすることができる。これにより、様々な架線形態や対策品を取り付けた状況における振動数特性を再現することができ、これらの違いによるギャロッピングの応答特性の違いを検討することができる。 Therefore, in order to simulate the response of actual transmission lines in wind tunnel experiments and outdoor icing and snow experiments, it is necessary to make the frequency characteristics equivalent to the actual transmission lines in addition to the conductor shape, conductor spacing, mass, and mass moment of inertia. However, in the present invention, by combining the above-described configurations and mechanisms, the respective frequencies in the vertical direction, the horizontal direction, and the torsional direction can be adjusted to the target values. Thereby, the frequency characteristic in the situation where various overhead wire forms or countermeasure products are attached can be reproduced, and the difference in galloping response characteristics due to these differences can be examined.
以上の構成を有する本発明の送電線部分模型の弾性支持方法及び弾性支持装置によれば、また、架空送電線の導体形状を模擬した部分模型を用いて屋外の着氷雪が生じる地域に本実験装置を設置することによって実際の着氷雪現象を再現することができると共に、実際の着氷雪の条件下におけるギャロッピング現象の解析を行うこともできる。 According to the elastic supporting method and the elastic supporting device of the transmission line partial model of the present invention having the above-described configuration, the experiment is performed in an area where icing snow is outdoors using the partial model simulating the conductor shape of the overhead transmission line. By installing the device, it is possible to reproduce the actual icing snow phenomenon and to analyze the galloping phenomenon under the actual icing snow condition.
なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の実施形態では、本発明の送電線部分模型の弾性支持方法及び弾性支持装置によって支持される送電線部分模型として四本の導体部11を有する4導体送電線の部分模型10を例に挙げて説明したが、本発明が対象とし得る送電線の種類は4導体送電線に限られるものではなく、単導体送電線や2〜8導体送電線でも良い。 In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. For example, in the above-described embodiment, the partial model 10 of the four-conductor transmission line having the four conductor portions 11 is taken as an example of the transmission line partial model supported by the elastic support method and the elastic support device of the transmission line partial model of the present invention. However, the types of transmission lines that can be targeted by the present invention are not limited to four-conductor transmission lines, and may be single-conductor transmission lines or 2 to 8-conductor transmission lines.
また、上述の実施形態では、位置調整機構3の径方向位置調整機構は径方向スリット3b及びスライダ5を有するものとして構成されているが、径方向位置調整機構の構成はこれに限られるものではなく、弾性吊下げ部材2を構成する各弾性部材2aの支持位置をこれら支持位置の中心に対して放射方向(即ち径方向)に移動させて各弾性部材2aの固定点間隔を調整可能であればどのような構成であっても良い。 In the above-described embodiment, the radial position adjustment mechanism of the position adjustment mechanism 3 is configured to include the radial slit 3b and the slider 5, but the configuration of the radial position adjustment mechanism is not limited to this. In addition, it is possible to adjust the distance between the fixing points of the elastic members 2a by moving the support positions of the elastic members 2a constituting the elastic suspension member 2 in the radial direction (that is, the radial direction) with respect to the center of the support positions. Any configuration may be used.
また、上述の実施形態では、位置調整機構3の周方向位置調整機構は周方向スリット3dを有するものとして構成されているが、周方向位置調整機構の構成はこれに限られるものではなく、弾性吊下げ部材2を構成する各弾性部材2aの支持位置(固定点)をこれら支持位置の中心に対して回転させて周方向に調整可能であればどのような構成であっても良い。 In the above-described embodiment, the circumferential position adjustment mechanism of the position adjustment mechanism 3 is configured to have the circumferential slit 3d. However, the configuration of the circumferential position adjustment mechanism is not limited to this, and is elastic. Any configuration may be used as long as the support positions (fixed points) of the elastic members 2a constituting the suspension member 2 can be adjusted in the circumferential direction by rotating with respect to the centers of these support positions.
また、送電線部分模型10の端板12が、当該端板12への各弾性部材2aの取り付け位置を径方向に位置調整する機構を備えるようにしても良い。この場合は、端板12への各弾性部材2aの取り付け位置を送電線部分模型10の軸心に対して径方向に移動させて各弾性部材2aの固定点間隔を調整することによっても送電線部分模型10のねじれ方向の振動数を調整することができる。 Further, the end plate 12 of the power transmission line partial model 10 may be provided with a mechanism for adjusting the attachment position of each elastic member 2a to the end plate 12 in the radial direction. In this case, the transmission line can also be adjusted by moving the attachment position of each elastic member 2a to the end plate 12 in the radial direction with respect to the axis of the transmission line partial model 10 to adjust the fixed point interval of each elastic member 2a. The frequency in the torsional direction of the partial model 10 can be adjusted.
また、上述の実施形態では、張力調整機構3は滑車6aと錘6bとからなるものとして構成されているが、張力調整機構の構成はこれに限られるものではなく、弾性吊下げ部材2を構成する弾性部材2aの張力を調整可能であればどのような構成であっても良い。具体的には例えば錘6bの代わりに巻き取り器を備えるようにして弾性部材2aを巻き取ることによって張力を調整するようにしても良い。なお、本発明において張力調整機構3は必須の構成ではない。本発明では、張力調整機構3がなくても、弾性吊下げ部材2による送電線部分模型10の弾性支持の弛度を調整することによって送電線部分模型10の水平方向の振動数を調整することが可能である。 In the above-described embodiment, the tension adjustment mechanism 3 is configured by the pulley 6a and the weight 6b. However, the configuration of the tension adjustment mechanism is not limited to this, and the elastic suspension member 2 is configured. Any configuration may be used as long as the tension of the elastic member 2a to be adjusted is adjustable. Specifically, for example, a tensioner may be adjusted by winding the elastic member 2a so as to include a winder instead of the weight 6b. In the present invention, the tension adjusting mechanism 3 is not an essential configuration. In the present invention, the horizontal frequency of the transmission line partial model 10 is adjusted by adjusting the slackness of the elastic support of the transmission line partial model 10 by the elastic suspension member 2 without the tension adjusting mechanism 3. Is possible.
本発明の送電線部分模型の弾性支持方法及び弾性支持装置における送電線部分模型の各方向の振動数の調整方法を検討した実施例を図4から図6を更に用いて説明する。本実施例の送電線部分模型の弾性支持方法及び弾性支持装置の構成は上述の実施形態で説明したものと同様とする。なお、図4においては弾性部材2aを片側当たり二本のみ表示するようにしているが、これは弾性部材2a同士の水平位置が重複しているためであり、弾性部材2aは実際には片側当たり四本である。 An embodiment in which the elastic support method of the power transmission line partial model and the adjustment method of the frequency in each direction of the power transmission line partial model in the elastic support device according to the present invention will be described with reference to FIGS. The configuration of the elastic support method and the elastic support device of the power transmission line partial model of this example is the same as that described in the above embodiment. In FIG. 4, only two elastic members 2a are displayed per side. This is because the horizontal positions of the elastic members 2a overlap each other, and the elastic member 2a actually hits one side. There are four.
送電線部分模型10の無風時における構造的特性を表す運動方程式に関わるパラメータとして以下のものを用いた。各パラメータの定義を図4及び図5に示す。なお、送電線部分模型側の弾性部材の固定とは送電線部分模型10の端板12の外側面への各弾性部材2aの取り付けのことであり、また、支持台側の弾性部材の固定とは位置調整機構3及びスライダ5による各弾性部材2aの支持点(固定点)のことである。 The following were used as parameters related to the equation of motion representing the structural characteristics of the transmission line partial model 10 when no wind was applied. The definition of each parameter is shown in FIGS. The fixing of the elastic member on the power transmission line partial model side refers to the attachment of each elastic member 2a to the outer surface of the end plate 12 of the power transmission line partial model 10, and the fixing of the elastic member on the support base side. Is a support point (fixed point) of each elastic member 2 a by the position adjusting mechanism 3 and the slider 5.
l :導体部の長さ〔m〕
m :送電線部分模型の質量〔kg〕
I :送電線部分模型の質量慣性モーメント〔kgm2〕
Br:送電線部分模型側の弾性部材固定半径〔m〕
Dr:支持台側の弾性部材固定半径〔m〕
αB,:送電線部分模型側の弾性部材固定角度〔rad.〕
αD :支持台側の弾性部材固定角度〔rad.〕
L :支持台と送電線部分模型との間隔〔m〕
H :送電線部分模型の弾性支持の弛度〔m〕
T :弾性部材の張力〔N〕
E :弾性部材のヤング率〔N/m2〕
A :弾性部材の断面積〔m2〕
l: Length of conductor [m]
m: Mass of the transmission line partial model [kg]
I: Mass moment of inertia [kgm 2 ] of the transmission line partial model
B r : Elastic member fixed radius on the transmission line partial model side [m]
Dr : elastic member fixing radius on the support base side [m]
α B ,: Elastic member fixing angle on the transmission line partial model side [rad.]
α D : Elastic member fixing angle on the support base side [rad.]
L: Distance between the support base and the transmission line partial model [m]
H: Sag of elastic support of transmission line partial model [m]
T: tension of elastic member [N]
E: Young's modulus of elastic member [N / m 2 ]
A: Cross-sectional area of elastic member [m 2 ]
図5(a)における点D1,点D2,点D3,点D4は各スライダ5によって係止される四本の弾性部材2aの支持点(固定点)の位置であり、点D0は位置調整機構3の中心ボルト3cの位置であって各スライダ5が配置される円周の中心である。また、同(b)における点B1,点B2,点B3,点B4は四本の弾性部材2aの端板12への取り付け点であり、点B0は四本の弾性部材2aの端板12への取り付け点の中心である。そして、送電線部分模型の弾性支持の弛度Hは、図5(a)における点D0と同(b)における点B0との間の距離である。 Point D 1 , point D 2 , point D 3 , and point D 4 in FIG. 5A are the positions of the support points (fixed points) of the four elastic members 2 a locked by the sliders 5. 0 is the position of the center bolt 3c of the position adjusting mechanism 3 and the center of the circumference where each slider 5 is arranged. Further, point B 1 , point B 2 , point B 3 , and point B 4 in (b) are attachment points of the four elastic members 2 a to the end plate 12, and point B 0 is the four elastic members 2 a. This is the center of the attachment point to the end plate 12. The slackness H of the elastic support of the transmission line partial model is a distance between the point D 0 in FIG. 5A and the point B 0 in FIG. 5B.
本実施例では、片側四本ずつ計八本の均一・等質な弾性部材2aが全て等しい張力で固定されており、四本の弾性部材2aの固定点間隔は支持台4側においては等間隔D、送電線部分模型10側においては等間隔Bで固定されている状態を考えた。なお、支持台4側における固定点の等間隔Dと弾性吊下げ部材固定半径Drとの間には数式1−1の関係が成り立ち、送電線部分模型10側における固定点の等間隔Bと弾性吊下げ部材固定半径Brとの間には数式1−2の関係が成り立つ。なお、以下の検討においては、弾性部材2aの質量は無視し得るとする。
図4中における左側の四本の弾性部材2aに着目し、支持台4側の支持点(固定点)の中心(即ち点D0)を原点と考えることにより、支持台4側の弾性部材2aの固定点D1〜D4及び送電線部分模型10側の弾性部材2aの固定点B1〜B4は以下のような座標で表される。
このとき、それぞれの固定点間の弾性部材2aの長さL* 10〜L* 40は数式3のように表される。
また、弾性部材2aのヤング率E及び断面積Aが伸びに関わらず一定であるとすると、弾性部材2aのもとの長さLi0(ただし、i=1,2,3,4)は数式4のように表される。
ここで、送電線部分模型10がつり合い位置から鉛直方向,水平方向,ねじれ方向に変位したとすると、各弾性部材2aの長さL1〜L4は数式3と同様に導かれて数式5のように表される。
ただし、送電線部分模型10の各方向の変位を図5に示す座標系に従ってそれぞれ以下のように定義する。
y:つり合い位置からの鉛直変位〔m〕
z:つり合い位置からの水平変位〔m〕
θ:つり合い位置からのねじれ変位〔rad.〕
However, the displacement of each direction of the transmission line partial model 10 is defined as follows according to the coordinate system shown in FIG.
y: Vertical displacement from the balance position [m]
z: Horizontal displacement from balanced position [m]
θ: Torsional displacement from the balance position [rad.]
また、送電線部分模型10にはスパン方向(即ち、軸心方向;図4に示すx軸方向)の回転変位(具体的には、ローリング変位及びヨーイング変位)は生じないことを前提とした。 The transmission line partial model 10 is premised on that no rotational displacement (specifically, rolling displacement and yawing displacement) in the span direction (that is, the axial direction; the x-axis direction shown in FIG. 4) occurs.
ここで、減衰力などの非保存力を考慮しないときのラグランジュの運動方程式は数式6のように表される。
Uk:送電線部分模型の弾性部材による位置エネルギー,
Ug:送電線部分模型の重力による位置エネルギー,
q :或る方向の変位(具体的には、y,z,θのいずれか)
をそれぞれ表す。
Here, the Lagrangian equation of motion when non-conservative force such as damping force is not taken into consideration is expressed as Equation 6.
U k : potential energy due to the elastic member of the transmission line partial model,
U g : Potential energy due to gravity of the transmission line partial model,
q: displacement in a certain direction (specifically, any one of y, z, and θ)
Respectively.
ここで、送電線部分模型10の運動エネルギーTは数式7のように表される。
また、送電線部分模型10の弾性部材2aによる位置エネルギーUkは数式8のように表される。
また、送電線部分模型10の重力による位置エネルギーUgは、重力加速度gを用いて数式9のように表される。
数式6に数式7〜9を代入して整理すると、鉛直方向の運動方程式は数式10のように、水平方向の運動方程式は数式11のように、ねじれ方向の運動方程式は数式12のようにそれぞれ表される。
続いて、数式10〜12で表される運動方程式を用い、各パラメータを変化させたときの本発明の送電線部分模型の弾性支持方法及び弾性支持装置における送電線部分模型の振動数特性の変化を検討した。 Subsequently, using the equations of motion represented by Equations 10 to 12, the change in the frequency characteristics of the transmission line partial model in the elastic support apparatus and the elastic support device of the present invention when each parameter is changed It was investigated.
具体的には、表1に示す諸元を基本ケースとし、支持台側の弾性部材固定点間隔D,弾性部材のたわみ剛性EA,送電線部分模型の弾性支持の弛度H,弾性部材固定角度αD(=αB)をそれぞれ変化させたときの振動数特性を比較した。なお、表1においては、弾性部材2aをゴム紐と表記している。
数式10〜12はそれぞれの変位に関して非線形項が含まれる方程式であるので、応答振幅によって振動数特性が異なると考えられた。このため、減衰を考慮しない数式10〜12を用いて異なる初期変位を与えた後の時刻歴の定常応答波形を導出し、当該波形をスペクトル解析することによって各振幅における卓越周波数を読み取った。本実施例では、4次のルンゲ・クッタ法を用いて時刻歴応答解析を行った。 Since Equations 10 to 12 are equations including a nonlinear term with respect to each displacement, it was considered that the frequency characteristics differ depending on the response amplitude. For this reason, the steady response waveform of the time history after giving different initial displacement was calculated | required using numerical formulas 10-12 which do not consider attenuation | damping, and the dominant frequency in each amplitude was read by carrying out the spectrum analysis of the said waveform. In this example, a time history response analysis was performed using a fourth-order Runge-Kutta method.
まず、数式10〜12の運動方程式を変形して数式13のように表した。なお、数式10〜12においては減衰項を考慮していないため、鉛直方向,水平方向,ねじれ方向の運動方程式に速度項が含まれない。このため、数式13のそれぞれの式の右辺は変位項のみの関数である。
数式13は数式14のように行列表示することができる。
そして、4次のルンゲ・クッタ法を用いると、iステップ目の応答は(i−1)ステップ目(ただし、iは自然数)の応答を用いて数式15のように表される。
h :時間刻み〔秒〕
をそれぞれ表す。
When the fourth-order Runge-Kutta method is used, the response of the i-th step is expressed as Equation 15 using the response of the (i-1) -th step (where i is a natural number).
h: Time step [second]
Respectively.
各自由度の、異なる振幅における振動数特性を得るため、初期値X0は以下に示されるようにそれぞれの方向の成分のみが含まれるものを用いた。
鉛直方向の振動数特性を求める場合 :X0=[y0 0 0 0 0 0]T
水平方向の振動数特性を求める場合 :X0=[0 z0 0 0 0 0]T
ねじれ方向の振動数特性を求める場合:X0=[0 0 θ0 0 0 0]T
In order to obtain the frequency characteristics of each degree of freedom at different amplitudes, the initial value X 0 was used including only components in the respective directions as shown below.
When obtaining the frequency characteristics in the vertical direction: X 0 = [y 0 0 0 0 0 0] T
When obtaining frequency characteristics in the horizontal direction: X 0 = [0 z 0 0 0 0 0] T
When obtaining the frequency characteristics in the torsional direction: X 0 = [0 0 θ 0 0 0 0] T
なお、y0,z0としては、0.01,0.25,0.50,0.75,1.00,1.25,1.50〔m〕を与え、θ0としては、0.1,25,50,75,100,125,150〔deg.〕を与えた。 As y 0 and z 0 , 0.01, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50 [m] are given, and as θ 0 , 0.1, 25, 50, 75, 100, 125, 150 [deg. ] Was given.
また、ルンゲ・クッタ法を行う際には、時間刻みhを0.01秒として50000ステップ(即ち500秒間)の計算を行い、初期変位を与えた方向の波形を用いてスペクトル解析を行ってピーク値をとる振動数を読み取った。 When the Runge-Kutta method is used, the time increment h is set to 0.01 seconds, the calculation is performed in 50000 steps (that is, 500 seconds), the spectrum is analyzed using the waveform in the direction in which the initial displacement is given, and the peak value is calculated. The frequency taken was read.
各パラメータを基本ケースから変化させたときの倍振幅に対する振動数特性について図6に示す結果が得られた。図6(a)には支持台側弾性部材固定点間隔Dのみを基本ケースから0.200,0.600〔m〕と変化させたときの振動数特性を示し、同(b)には弾性部材のたわみ剛性EAのみを基本ケースから49.0,196.0〔N〕と変化させたときの振動数特性を示し、同(c)には送電線部分模型の弾性支持の弛度Hのみを基本ケースから1.400,1.800〔m〕と変化させたときの振動数特性を示し、同(d)には弾性部材固定角度(αB=αD)のみを基本ケースから30.0,45.0〔deg.〕と変化させたときの振動数特性を示している。 The results shown in FIG. 6 were obtained for the frequency characteristics with respect to the double amplitude when each parameter was changed from the basic case. FIG. 6A shows the frequency characteristics when only the support base side elastic member fixing point interval D is changed from the basic case to 0.200 and 0.600 [m], and FIG. 6B shows the flexural rigidity of the elastic member. The frequency characteristics when only EA is changed to 49.0, 196.0 [N] from the basic case are shown. In (c), only the slackness H of the elastic support of the transmission line partial model is 1.400, 1.800 [from the basic case. m] shows the frequency characteristics when changed, and (d) shows the vibration when only the elastic member fixing angle (α B = α D ) is changed from the basic case to 30.0, 45.0 [deg.]. Number characteristics are shown.
図6に示されるように、振動数特性には振幅に対する依存特性があることが確認された。特にねじれ方向の振動数においてその特徴は顕著であり、振幅が大きくなると振動数は低下することが確認された。一方、鉛直方向及び水平方向の振動数は振幅に対してほぼ一定であるものの、振幅が大きくなると鉛直方向では振動数がわずかに低くなると共に水平方向では振動数がわずかに高くなる傾向があることが確認された。 As shown in FIG. 6, it was confirmed that the frequency characteristic has a dependence characteristic on the amplitude. In particular, the characteristic is remarkable in the frequency in the torsional direction, and it has been confirmed that the frequency decreases as the amplitude increases. On the other hand, the frequency in the vertical and horizontal directions is almost constant with respect to the amplitude, but when the amplitude is increased, the frequency tends to be slightly lower in the vertical direction and slightly higher in the horizontal direction. Was confirmed.
図6(a)に示す結果から、支持台側の弾性部材固定点間隔Dのみを変化させると、鉛直方向及び水平方向の振動数は変わらないものの、ねじれ方向の振動数が変化することが確認された。このことから、支持台側の弾性部材固定点間隔Dを小さくすることにより、ねじれ方向の振動数を低くすることができることが確認された。 From the result shown in FIG. 6A, it is confirmed that if only the elastic member fixing point interval D on the support base side is changed, the frequency in the torsional direction is changed, although the frequency in the vertical and horizontal directions is not changed. It was done. From this, it was confirmed that the frequency in the torsional direction can be lowered by reducing the elastic member fixing point interval D on the support base side.
また、図6(b)に示す結果から、弾性部材のたわみ剛性EAのみを変化させると、水平方向の振動数はあまり変化しないものの、鉛直方向及びねじれ方向の振動数は変化することが確認された。このことから、弾性部材のたわみ剛性EAを大きくすることにより、鉛直方向及びねじれ方向の振動数を高くすることができることが確認された。 Further, from the results shown in FIG. 6B, it is confirmed that when only the flexural rigidity EA of the elastic member is changed, the frequency in the horizontal direction and the frequency in the torsional direction are changed although the horizontal frequency does not change much. It was. From this, it was confirmed that the vibration frequency in the vertical direction and the torsional direction can be increased by increasing the flexural rigidity EA of the elastic member.
また、図6(c)に示す結果から、送電線部分模型の弾性支持の弛度Hのみを変化させると、鉛直方向及び水平方向及びねじれ方向の振動数が変化することが確認された。その変化は水平方向の振動数において顕著にみられ、このことから、送電線部分模型の弾性支持の弛度Hを大きくする(言い換えると、弾性部材の張力Tを小さくする)ことにより、水平方向の振動数を低くすることができることが確認された。 Further, from the results shown in FIG. 6C, it was confirmed that the frequency in the vertical direction, the horizontal direction, and the torsional direction changes when only the elastic support slack H of the transmission line partial model is changed. The change is noticeable in the horizontal frequency, and from this, by increasing the sag H of the elastic support of the transmission line partial model (in other words, decreasing the tension T of the elastic member), It has been confirmed that the frequency of can be lowered.
さらに、図6(d)に示す結果から、弾性吊下げ部材2を構成する弾性部材2aの固定角度(αB=αD)のみを変化させても、鉛直・水平・ねじれ方向の振動数は変化しないことが確認された。この傾向はD=0.200〔m〕とした場合においても同様であり、弾性吊下げ部材2(弾性部材2a)の固定角度(αB=αD)は振動数特性に影響しないことが確認された。そして、ギャロッピングなどの空力現象の応答特性においては断面の仰角の影響が非常に大きいところ、本発明の構成における弾性吊下げ部材(弾性部材)の固定角度は振動数特性に影響を殆ど与えないので、本発明によれば位置調整機構3によって送電線部分模型の設置角度を目的の値に調整した上で当該模型の構造特性に影響を与えることなく再現性の高い実験を行って所望のデータ入手や解析を行うことができるという有用性が確認された。 Further, from the result shown in FIG. 6 (d), even if only the fixing angle (α B = α D ) of the elastic member 2a constituting the elastic suspension member 2 is changed, the frequency in the vertical, horizontal, and twist directions is It was confirmed that there was no change. This tendency is the same when D = 0.200 [m], and it was confirmed that the fixed angle (α B = α D ) of the elastic suspension member 2 (elastic member 2a) does not affect the frequency characteristics. . And in the response characteristics of aerodynamic phenomena such as galloping, the influence of the elevation angle of the cross section is very large. However, the fixed angle of the elastic suspension member (elastic member) in the configuration of the present invention hardly affects the frequency characteristics. According to the present invention, the position adjustment mechanism 3 adjusts the installation angle of the transmission line partial model to a target value, and then obtains desired data by performing highly reproducible experiments without affecting the structural characteristics of the model. And the usefulness of being able to perform analysis was confirmed.
続いて、本発明の送電線部分模型の弾性支持方法及び弾性支持装置における送電線部分模型の構造的な特性を表す線形式の誘導について説明する。なお、本実施例の送電線部分模型の弾性支持方法及び弾性支持装置の構成は上述の実施形態や実施例で説明したものと同様とする。 Next, description will be made on the method of elastic support of the power transmission line partial model of the present invention and the guidance of the line form representing the structural characteristics of the power transmission line partial model in the elastic support device. In addition, the structure of the elastic support method of the power transmission line partial model of this example and the elastic support device is the same as that described in the above-described embodiments and examples.
上述の実施例1の数式10〜数式12においてそれぞれの変位を微小変位と仮定して支持台側・送電線部分模型側それぞれの弾性吊下げ部材2(弾性部材2a)の固定角度αD=αB=0のように単純化することにより、鉛直方向運動方程式を線形化した式は数式16のように、水平方向運動方程式を線形化した式は数式17のように、ねじれ方向運動方程式を線形化した式は数式18のようにそれぞれ表される。
ただし、Ld,Lu,Hdは数式19の通りである。
また、張力Tは静的つり合い条件より数式20のように表される。
数式16〜数式18を用いて固有値解析を行うことにより、微小振幅における各方向の振動数を算出することができる。その結果は、数式10〜数式12を用いてなるべく小さな値を初期変位X0として与えて時刻歴応答解析を行って卓越周波数を読み取った値と対応することを確認した。 By performing eigenvalue analysis using Equations 16 to 18, the frequency in each direction at a minute amplitude can be calculated. It was confirmed that the result corresponds to the value obtained by reading the dominant frequency by performing time history response analysis by giving the smallest possible value as the initial displacement X 0 using Equations 10 to 12.
また、数式16〜数式18において、支持台側と送電線部分模型側との弾性部材固定点間隔が同じ(即ち、D=B)場合には、鉛直方向,水平方向,ねじれ方向の方程式にはそれぞれの方向以外の変位項が含まれないので、微小振幅の範囲では鉛直方向,水平方向,ねじれ方向の振動はそれぞれお互いに独立した振動をすることが確認された。 In addition, in Formulas 16 to 18, when the elastic member fixing point intervals on the support base side and the transmission line partial model side are the same (that is, D = B), the vertical direction, horizontal direction, and twist direction equations are Since displacement terms other than the respective directions are not included, it was confirmed that the vibrations in the vertical direction, the horizontal direction, and the torsional direction are independent from each other within a minute amplitude range.
一方で、支持台側と送電線部分模型側との弾性部材固定点間隔が異なる(即ち、D≠B)場合には、水平方向及びねじれ方向の運動方程式にお互いの変位項が含まれる。このことから、水平方向とねじれ方向とは構造的に連成した振動をする。水平方向とねじれ方向との構造的な連成作用は、空力不安定現象において非常に重要な役割を果たすとの知見も報告されており、風洞実験を行う際にはこの影響についても十分に検討する必要があることが確認された。 On the other hand, when the distance between the elastic member fixing points on the support base side and the transmission line partial model side is different (that is, D ≠ B), the mutual displacement terms are included in the equations of motion in the horizontal direction and the torsional direction. Therefore, the horizontal direction and the torsional direction vibrate structurally. It has also been reported that the structural interaction between the horizontal direction and the torsional direction plays a very important role in the aerodynamic instability phenomenon, and this effect is also fully examined when conducting wind tunnel experiments. Confirmed that there is a need to do.
さらに、数式21が成り立つときには、鉛直方向の振動数fy,水平方向の振動数fz,ねじれ方向の振動数fθはそれぞれ数式22のように表される。
ただし、弾性吊下げ部材2(弾性部材2a)の長さLg及び送電線部分模型10のx軸周りの回転半径Rは数式23の通りである。
数式22から、水平方向の振動数fzは弾性支持の弛度Hで振動数特性が決まり、このことからも弾性部材の張力Tを調整することによって水平方向の振動数fzを調整できることが確認された。鉛直方向の振動数fyはそれに加えて弾性吊下げ部材のたわみ剛性EAが含まれる項があるため、弾性吊下げ部材の剛性を変えることによって鉛直方向の振動数fyを調整できることが確認された。また、ねじれ方向の振動数fθはこれらに加えて弾性部材の固定位置Brを変えることによって調整できることが確認された。そして、これらの特性は実施例1で確認された特徴とも一致することが確認された。 From Equation 22, the frequency characteristic of the horizontal frequency f z is determined by the slackness H of the elastic support. From this, the horizontal frequency f z can be adjusted by adjusting the tension T of the elastic member. confirmed. Frequency f y of the vertical direction because there is a term included in addition to the flexural rigidity EA elastic hanging member, is confirmed to be able to adjust the frequency f y in the vertical direction by changing the rigidity of the elastic hanging member It was. Further, the vibration frequency f theta twist sense it was confirmed that can be adjusted by changing the fixing position B r of the elastic member in addition to these. These characteristics were confirmed to be consistent with the characteristics confirmed in Example 1.
なお、支持台側の弾性部材固定点間隔Dと送電線部分模型側の弾性部材固定点間隔Bとが異なるときには、数式16〜数式18を用いて固有値解析によってそれぞれの微小振幅における振動数を求める必要があり、鉛直方向の振動数fy及び水平方向の振動数fzは数式22によって算出される値とあまり変わらないが、ねじれ方向の振動数fθは数式22によって算出される値と大きく変わる。 In addition, when the elastic member fixing point interval D on the support base is different from the elastic member fixing point interval B on the transmission line partial model side, the frequency at each minute amplitude is obtained by eigenvalue analysis using Equations 16 to 18. The frequency f y in the vertical direction and the frequency f z in the horizontal direction are not much different from the values calculated by Equation 22, but the frequency f θ in the torsional direction is as large as the value calculated by Equation 22. change.
続いて、本発明の送電線部分模型の弾性支持方法及び弾性支持装置における送電線部分模型の構造的な特性を確認するため、無風時において送電線部分模型に初期変位を与えてその自由振動波形を計測した実験の実施例を図7から図11を更に用いて説明する。本実施例の送電線部分模型の弾性支持方法及び弾性支持装置の構成は上述の実施形態や実施例で説明したものと同様とする。 Subsequently, in order to confirm the structural characteristics of the transmission line partial model of the transmission line partial model of the present invention and the elastic support apparatus, an initial displacement is given to the transmission line partial model in the absence of wind and the free vibration waveform An example of an experiment in which measurement is performed will be described with reference to FIGS. The configuration of the elastic support method and the elastic support device of the power transmission line partial model of this example is the same as that described in the above-described embodiment and examples.
本実施例では、弾性部材2aの支持台4側の固定点間隔D及び固定角度αDを変化させる実験を実施して得られた振動数特性を上述の実施例1の解析結果と比較した。 In the present embodiment, the frequency characteristics obtained by performing the experiment for changing the fixed point interval D and the fixed angle α D on the support base 4 side of the elastic member 2a were compared with the analysis result of the above-described first embodiment.
本実施例では、実際の鋼心アルミ撚り線の4導体送電線を実寸大で模擬した実験を想定し、導体間隔・質量・慣性モーメントは実際の鋼心アルミ撚り線送電線における値と等しい送電線部分模型10を製作した。導体部の長さlを1.000〔m〕とし、質量m及び質量慣性モーメントIが表2に示す値である送電線部分模型10を製作した。質量m及び質量慣性モーメントIは、端板12及び当該端板12に取りつけられた弾性部材2aの固定具なども含めて表2に示す値と等しくなるように調整した。
本実施例では、無風時における構造特性のみの把握を目的としているために導体形状を模擬する必要はないので、導体部11はパイプ(直径28.0〔mm〕)で製作した。また、端板12は枠のみで構成されるもの(具体的には環状フレーム)を用いた。端板12の詳細寸法を図7に示す。 In this embodiment, since the purpose is to understand only the structural characteristics when there is no wind, it is not necessary to simulate the conductor shape, so the conductor portion 11 was made of a pipe (diameter 28.0 [mm]). Further, the end plate 12 is composed of only a frame (specifically, an annular frame). Detailed dimensions of the end plate 12 are shown in FIG.
また、本実施例では、全ての計測ケースにおいて、表2に示す模型諸元に加え、支持台4と送電線部分模型10との固定点間隔L,送電線部分模型側の弾性部材固定点間隔B,張力調整用の錘(言い換えると、張力)を同じ値に設定して実験を行った。これら共通の実験諸元を表3に示す。なお、本実施例では、弾性部材2aとして直径3〔mm〕の丸断面形状を有するウレタンゴムを用いた(本実施例では、弾性部材のことをゴム紐ともいう)。
そして、本実施例では、支持台4側のゴム紐の固定点間隔Dと固定角度αDとを変化させながら実験を行った。本実施例における計測ケース(Case)を表4に示す。なお、支持台側固定角度が0.0〔deg.〕の計測ケース(Case1,4)においてはそれぞれゴム紐の張力を調整した後にゴム紐を固定しているのに対し、それ以外の計測ケースのCase2,3及びCase5,6ではそれぞれCase1及びCase4の支持台側固定角度が0.0〔deg.〕でゴム紐を固定した状態から位置調整機構3を回転させてそれぞれの固定角度に設定した。
本実施例では、送電線部分模型10を人力で引っ張ることによって鉛直・水平・ねじれのそれぞれの方向に初期変位を与えた後、静かに手を離すことによって送電線部分模型10を自由振動させた。この際にはできる限り対象とする方向以外の変位が生じないようにして初期変位を与えた。 In this embodiment, the transmission line partial model 10 is freely vibrated by pulling the transmission line partial model 10 by human power and then giving an initial displacement in each of the vertical, horizontal, and twist directions, and then gently releasing the hand. . At this time, the initial displacement was given so as not to cause displacement other than the target direction as much as possible.
そして、デジタルビデオカメラレコーダーを用いてサンプリング周波数29.97〔Hz〕で送電線部分模型10の振動をミニDVテープに撮影した。なお、送電線部分模型10の端板12の外側面外縁寄りの位置に等間隔で青色,赤色,黄色,緑色の四つの画像トレース用マーカーを予め取り付けた。また、撮影の際には、これらマーカーを識別し易くするために模型の後方には黒い幕を設置した。 Then, the vibration of the transmission line partial model 10 was photographed on a mini DV tape at a sampling frequency of 29.97 [Hz] using a digital video camera recorder. It should be noted that four image trace markers of blue, red, yellow, and green were attached in advance at equal intervals at positions near the outer edge of the end plate 12 of the transmission line partial model 10. In order to make it easier to identify these markers when shooting, a black curtain was placed behind the model.
そして、撮影された映像をパソコンにAVI形式(DV codec形式,記録画素数:640×480ドット)で取り込んだ後、端板12の外側面に取り付けたマーカーの座標を算出するためにMath Works社・MATLAB上で製作したプログラムを用いて画像トレースを実施した。 Then, after taking the captured video in the AVI format (DV codec format, number of recorded pixels: 640 × 480 dots) to a personal computer, Math Works in order to calculate the coordinates of the markers attached to the outer surface of the end plate 12 -Image tracing was performed using a program produced on MATLAB.
本実施例では、各画像に対して解析対象とする領域(即ち画素の範囲)や抽出したい色(即ちRGB値の範囲)などを指定することにより、条件を満たす画素群を抽出した。それぞれのマーカーに対して条件を設定し、抽出された複数の画素群の中心座標をそのマーカーの位置とした。その後、四つのマーカーの位置関係に基づいて送電線部分模型10のつり合い位置からの鉛直変位,水平変位,ねじれ変位をそれぞれ算出した。 In this embodiment, a pixel group satisfying the condition is extracted by designating a region to be analyzed (that is, a range of pixels) and a color to be extracted (that is, a range of RGB values) for each image. Conditions were set for each marker, and the center coordinates of the extracted plurality of pixel groups were used as the marker positions. Thereafter, the vertical displacement, the horizontal displacement, and the torsional displacement from the balanced position of the transmission line partial model 10 were calculated based on the positional relationship of the four markers.
また、得られた変位のうち初期変位を与えた方向の変位については、3Hzローパスフィルターをかけた後、図8に示すように各波の極大値・極小値を求め、それらから半波毎の周期Ti(ただし、i=1,2,3,…)を読み取った。そして、数式24を用いて振動数fiを算出した。
(数24) fi=1/Ti (ただし、i=1,2,3,…)
Moreover, about the displacement of the direction which gave the initial displacement among the obtained displacements, after applying a 3 Hz low-pass filter, as shown in FIG. 8, the maximum value and the minimum value of each wave are obtained, and from each of them, the half wave is obtained. The period T i (where i = 1, 2, 3,...) Was read. The frequency f i was calculated using Equation 24.
(Equation 24) f i = 1 / T i (where i = 1, 2, 3,...)
Case1において鉛直方向に初期変位を与えた後の送電線部分模型10の挙動を画像トレースすることによって求めた鉛直変位波形を図9に示す。図9には、各波における極大値・極小値も併せて示している。 FIG. 9 shows a vertical displacement waveform obtained by image tracing the behavior of the power transmission line partial model 10 after the initial displacement is given in the vertical direction in Case1. FIG. 9 also shows the maximum and minimum values in each wave.
図9に示す結果から、トレースされた波形は滑らかに減衰振動していることが確認された。また、図9に示す結果から、数式24を用いる上述の方法で各振幅における振動数特性を読み取った。他の方向に初期変位を与えた場合並びに他の計測ケースについても同様の滑らかな減衰波形が得られており、それぞれについて振動数特性を読み取った。 From the results shown in FIG. 9, it was confirmed that the traced waveform was smoothly damped and oscillated. Moreover, the frequency characteristic in each amplitude was read from the result shown in FIG. Similar smooth attenuation waveforms were obtained when initial displacement was applied in other directions and in other measurement cases, and the frequency characteristics were read for each.
各計測ケースについて求められたそれぞれの変位の倍振幅に対する振動数の変化特性を図10A及び図10Bに示す。また、図10A及び図10Bには、実験結果と共に、数式10〜12を用いて解析的に求めた各振幅における振動数特性も示した。本実施例では、実施例1で説明したように、各方向に初期変位を与えた後の時刻歴応答波形をスペクトル解析することによって各倍振幅に対する振動数特性を算出した。なお、ゴム紐のたわみ剛性EAは98.0〔N〕として解析を行った。 The change characteristics of the frequency with respect to the double amplitude of each displacement obtained for each measurement case are shown in FIGS. 10A and 10B. Moreover, in FIG. 10A and FIG. 10B, the frequency characteristic in each amplitude calculated | required analytically using Numerical formula 10-12 was also shown with the experimental result. In the present embodiment, as described in the first embodiment, the frequency characteristics for each double amplitude are calculated by performing spectrum analysis on the time history response waveform after the initial displacement is applied in each direction. The analysis was performed assuming that the flexural rigidity EA of the rubber string was 98.0 [N].
図10A及び図10Bに示す結果から、本発明の送電線部分模型の弾性支持方法及び弾性支持装置によれば、鉛直方向・水平方向に倍振幅1〜2〔m〕程度,ねじれ方向に倍振幅180〔deg.〕以上の振動を再現することが可能であること、及び、0.5〔Hz〕以下の低振動数の振動を再現することが可能であることが確認された。 From the results shown in FIGS. 10A and 10B, according to the elastic supporting method and the elastic supporting device for the transmission line partial model of the present invention, the vertical amplitude and the horizontal direction are about double amplitude 1-2 [m], and the double amplitude is twisted. It was confirmed that vibrations of 180 [deg.] Or more can be reproduced, and vibrations with a low frequency of 0.5 [Hz] or less can be reproduced.
なお、支持台4の位置調整機構3(具体的には弾性部材固定部分)の高さを調整することによってより一層大きな鉛直方向の振幅を再現することが可能であり、支持台4と送電線部分模型10との間隔Lを長くとることによってより一層の大振幅・低振動数の振動を再現することが可能である。 It is possible to reproduce a larger vertical amplitude by adjusting the height of the position adjustment mechanism 3 (specifically, the elastic member fixing portion) of the support base 4. By taking a longer distance L from the partial model 10, it is possible to reproduce vibrations with a larger amplitude and lower frequency.
図10A及び図10Bに示す結果から、さらに、実験結果と解析結果とがほぼ一致しており、本発明の送電線部分模型の弾性支持方法及び弾性支持装置における送電線部分模型の振動数特性が数式10〜12によって正確に表現できていることが確認された。 From the results shown in FIG. 10A and FIG. 10B, the experimental results and the analysis results almost coincide, and the frequency characteristic of the power transmission line partial model in the power transmission line partial model and the elastic support device of the present invention is as follows. It was confirmed that it was able to express correctly by numerical formulas 10-12.
また、Case1及びCase4における水平方向に初期変位を与えた後の波形の一部として図11に示す結果が得られた。図11(a)に示す結果から、支持台4側と送電線部分模型10側とのゴム紐固定点間隔D,Bを等しくしたCase1では、水平以外の方向の振動は殆ど生じていないことが確認された。一方で、図11(b)に示す結果から、支持台4側と送電線部分模型10側とのゴム紐固定点間隔D,Bが異なるCase4では、水平方向の振動に伴ってねじれ方向の振動が生じていることが確認された。また、この現象については、数式10〜12を用いた時刻歴応答解析でも同様の特徴が見られた。 Moreover, the result shown in FIG. 11 as a part of the waveform after giving the initial displacement in the horizontal direction in Case 1 and Case 4 was obtained. From the results shown in FIG. 11 (a), in Case 1 where the distances D and B between the support base 4 and the transmission line partial model 10 are equal, vibrations in directions other than horizontal are hardly generated. confirmed. On the other hand, from the result shown in FIG. 11 (b), in Case 4 in which the distances D and B between the rubber strap fixing points on the support base 4 side and the transmission line partial model 10 side are different, the vibration in the torsional direction is accompanied by the vibration in the horizontal direction. It was confirmed that this occurred. Moreover, about this phenomenon, the same characteristic was seen also by the time history response analysis using Numerical formulas 10-12.
そして、水平方向とねじれ方向との構造的な連成作用はギャロッピングの発生において非常に重要な役割を果たすことがある。このため、風洞実験を行う場合には振動数特性だけではなく支持台4側と送電線部分模型10側とのゴム紐の固定点間隔D,Bをそれぞれ変えた場合における応答特性の違いにも着目することにより、架空送電線の振動解析のための風洞実験においてより一層有益なデータ収集が可能になることが確認された。 The structural coupling between the horizontal direction and the twist direction may play a very important role in the occurrence of galloping. For this reason, when conducting a wind tunnel experiment, not only the frequency characteristics but also the difference in response characteristics when the distances D and B between the fixed points of the rubber straps on the support base 4 side and the transmission line partial model 10 side are changed. It has been confirmed that more useful data can be collected in wind tunnel experiments for vibration analysis of overhead power transmission lines.
1 弾性支持装置
2 弾性吊下げ部材
2a 弾性部材
3 位置調整機構
4 支持台
5 スライダ
10 送電線部分模型
11 導体部
12 端板
DESCRIPTION OF SYMBOLS 1 Elastic support apparatus 2 Elastic suspension member 2a Elastic member 3 Position adjustment mechanism 4 Support stand 5 Slider 10 Power transmission line partial model 11 Conductor part 12 End plate
Claims (8)
I:送電線部分模型の質量慣性モーメント〔kgm2〕,
Br:送電線部分模型側の弾性部材固定半径〔m〕,
L:支持台と送電線部分模型との間隔〔m〕,
H:送電線部分模型の弾性支持の弛度〔m〕,
T:弾性部材の張力〔N〕,
E:弾性部材のヤング率〔N/m2〕,
A:弾性部材の断面積〔m2〕,
g:重力加速度〔m/s2〕 をそれぞれ表す。 The elasticity of the transmission line partial model according to claim 1, wherein the vertical frequency f y , the horizontal frequency f z , and the torsional frequency f θ of the transmission line partial model are expressed by Formula 1. Support method.
I: Mass moment of inertia [kgm 2 ] of the transmission line partial model,
B r : elastic member fixed radius [m] on the transmission line partial model side,
L: Distance [m] between the support base and the transmission line partial model,
H: slackness of elastic support of transmission line partial model [m],
T: tension of elastic member [N],
E: Young's modulus of elastic member [N / m 2 ],
A: Cross-sectional area of elastic member [m 2 ],
g: Gravity acceleration [m / s 2 ], respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010138672A JP5551974B2 (en) | 2010-06-17 | 2010-06-17 | Elastic support method and elastic support device for partial model of transmission line |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010138672A JP5551974B2 (en) | 2010-06-17 | 2010-06-17 | Elastic support method and elastic support device for partial model of transmission line |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012002702A JP2012002702A (en) | 2012-01-05 |
JP5551974B2 true JP5551974B2 (en) | 2014-07-16 |
Family
ID=45534843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010138672A Expired - Fee Related JP5551974B2 (en) | 2010-06-17 | 2010-06-17 | Elastic support method and elastic support device for partial model of transmission line |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5551974B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104266811B (en) * | 2014-09-16 | 2017-03-01 | 上海卫星工程研究所 | Zero stiffness non-linear micro-vibration suspension apparatus and its micro-vibration test method |
JP6082776B2 (en) * | 2015-06-19 | 2017-02-15 | 古河電気工業株式会社 | Transmission line construction method |
CN105139094B (en) * | 2015-09-11 | 2016-09-07 | 国家电网公司 | The electrical network quantitative Long-range Forecasting Methods of icing based on discrete particle cluster and least square |
CN105808819B (en) * | 2016-02-17 | 2017-12-26 | 南方电网科学研究院有限责任公司 | Calculation method for real-time distribution model of icing of power transmission line |
CN105738143B (en) * | 2016-03-10 | 2018-02-06 | 国网福建省电力有限公司 | The equivalent wind load experimental method of cement electric pole |
CN106289714A (en) * | 2016-07-19 | 2017-01-04 | 华北电力大学 | A kind of Novel power transmission tower structure wind tunnel experiment air spring pole |
CN106468616A (en) * | 2016-09-20 | 2017-03-01 | 华北电力大学 | A kind of computational methods of power transmission tower air spring pole design |
CN110567737A (en) * | 2018-06-05 | 2019-12-13 | 深圳光启尖端技术有限责任公司 | Equivalent wind load loading method |
CN109374249B (en) * | 2018-11-08 | 2023-12-26 | 国网浙江省电力有限公司电力科学研究院 | Wire clamp test platform for simulating random curve swing of wire under wind excitation |
CN112710444B (en) * | 2019-12-26 | 2021-12-07 | 浙江大学 | Spring suspension section model device and test method |
CN112858825A (en) * | 2021-02-28 | 2021-05-28 | 太原理工大学 | Variable load simulation test device and method applied to transformer substation overline |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6032417B2 (en) * | 1980-08-22 | 1985-07-27 | 古河電気工業株式会社 | Multi-conductor power transmission line swing test equipment |
JPS58208637A (en) * | 1982-05-28 | 1983-12-05 | Shimadzu Corp | Testing device for galloping of transmission line |
JP2004036770A (en) * | 2002-07-03 | 2004-02-05 | Nhk Spring Co Ltd | Galloping preventive device |
JP4155356B2 (en) * | 2003-11-18 | 2008-09-24 | 中国電力株式会社 | Abnormal vibration detection mechanism of overhead power transmission line |
JP4866291B2 (en) * | 2007-04-19 | 2012-02-01 | 財団法人電力中央研究所 | Wire shake measurement method by image processing, wire shake measurement device, and wire shake measurement program |
JP5551864B2 (en) * | 2008-11-14 | 2014-07-16 | 一般財団法人電力中央研究所 | Snow sampler |
-
2010
- 2010-06-17 JP JP2010138672A patent/JP5551974B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012002702A (en) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5551974B2 (en) | Elastic support method and elastic support device for partial model of transmission line | |
Van Dyke et al. | Galloping of a single conductor covered with a D-section on a high-voltage overhead test line | |
Hung et al. | Large amplitude vibrations of long-span transmission lines with bundled conductors in gusty wind | |
KR102591946B1 (en) | Wind generation means and wind test facility comprising the same | |
Wang et al. | Overhead electrical transmission line galloping. A full multi-span 3-DOF model, some applications and design recommendations | |
Takeuchi et al. | Aerodynamic damping properties of two transmission towers estimated by combining several identification methods | |
WO2016060417A1 (en) | Fairing, and fatigue test apparatus and method using same | |
Yang et al. | Nonlinear inelastic responses of transmission tower-line system under downburst wind | |
Lu et al. | Study on wind tunnel test and galloping of iced quad bundle conductor | |
CN103683086B (en) | Power transmission circuit caused by windage transient state analyzing method under the effect of motion thunderstorm wind | |
Machado et al. | Spectral model and experimental validation of hysteretic and aerodynamic damping in dynamic analysis of overhead transmission conductor | |
Lie et al. | Comprehensive riser VIV model tests in uniform and sheared flow | |
CN109186932A (en) | A kind of big height difference tower wire body system flow tunnel testing device | |
Lou et al. | Jump height of an iced transmission conductor considering joint action of ice-shedding and wind | |
CN106525368B (en) | A kind of cathead electric power pylon damping ratio recognition methods | |
Matsumiya et al. | Field observation of galloping on four-bundled conductors and verification of countermeasure effect of loose spacers | |
Najafi et al. | Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique | |
Matsumiya et al. | Unsteady aerodynamic force modelling for 3-DoF-galloping of four-bundled conductors | |
CN108061636A (en) | Utilize the apparatus and method of garage's sailing test structure galloping | |
CN104764579A (en) | Wind tunnel test device for three-freedom-degree waving of multi-bundle iced conductor | |
CN204649379U (en) | Many divisions ice coating wire Three Degree Of Freedom waves flow tunnel testing device | |
CN210071282U (en) | Insulator wind tunnel force test device | |
Katsumura et al. | Effects of side ratio on characteristics of across-wind and torsional responses of high-rise buildings | |
Matsumiya et al. | Wind tunnel tests for simulating large-amplitude, low-frequency galloping on overhead transmission lines | |
JP5211333B2 (en) | Spacer wear amount prediction method, system thereof, and test apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140520 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140523 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5551974 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |