JP5551864B2 - Snow sampler - Google Patents

Snow sampler Download PDF

Info

Publication number
JP5551864B2
JP5551864B2 JP2008292223A JP2008292223A JP5551864B2 JP 5551864 B2 JP5551864 B2 JP 5551864B2 JP 2008292223 A JP2008292223 A JP 2008292223A JP 2008292223 A JP2008292223 A JP 2008292223A JP 5551864 B2 JP5551864 B2 JP 5551864B2
Authority
JP
Japan
Prior art keywords
wire
short
snow
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008292223A
Other languages
Japanese (ja)
Other versions
JP2010117309A (en
Inventor
崇 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008292223A priority Critical patent/JP5551864B2/en
Publication of JP2010117309A publication Critical patent/JP2010117309A/en
Application granted granted Critical
Publication of JP5551864B2 publication Critical patent/JP5551864B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Cable Installation (AREA)

Description

本発明は、着雪サンプラに関する。さらに詳述すると、本発明は、例えば架空送電線の着雪状況の把握や送電線の人工着雪試験などに用いられる装置に関する。   The present invention relates to a snow accretion sampler. More specifically, the present invention relates to an apparatus used for, for example, grasping a snowfall situation of an overhead power transmission line or an artificial snowfall test of a power transmission line.

架空送電線については、雪害予防及び保守の観点から、また、送電線着雪現象等の解明による雪害防止のための試験や研究の観点から、送電線着雪状況の正確な観測を行うと共に正確な各種定量データの収集を行うことが非常に重要である。そして、通電中の実際の架空送電線における着雪状況の観測・計測は困難であるので、着雪状況の観測や各種定量データの計測においては短尺の実際の電線を測定用電線(以下、測定用短尺電線と呼ぶ)として備えた着雪サンプラが用いられる。   For overhead power transmission lines, from the viewpoint of snow damage prevention and maintenance, and from the viewpoint of snow damage prevention tests and research by elucidating the snow accretion phenomenon of power transmission lines, accurate observation and accurate observation of power line snowfall conditions are performed. It is very important to collect various kinds of quantitative data. In addition, since it is difficult to observe and measure snow conditions on actual overhead power transmission lines that are energized, short actual wires are used as measurement wires (hereinafter referred to as measurement wires) when observing snow conditions and measuring various quantitative data. A snow sampler provided as a short electric wire is used.

ここで、送電線への着雪に影響する因子としては、気温,湿度,降水量,風向・風速といった気象条件、及び、電線外周形状,電線直径,径間長,電線捻り剛性,電線温度といった電線の特性が挙げられる。なお、径間長とは、送電線を支持する鉄塔と鉄塔との間の送電線の実長のことである。また、着雪影響因子としての電線温度とは、通電による送電線自体の温度上昇を考慮することであり、送電線に通電される電流値で代替することもできる。   Here, factors affecting snowfall on the transmission line include weather conditions such as temperature, humidity, precipitation, wind direction and wind speed, and the outer circumference of the wire, wire diameter, span length, wire twist rigidity, wire temperature, etc. The characteristic of an electric wire is mentioned. The span length is the actual length of the transmission line between the steel tower that supports the power transmission line. Further, the electric wire temperature as a snow accretion influencing factor is to consider the temperature rise of the transmission line itself due to energization, and can be replaced with the current value energized to the transmission line.

そして、送電線への着雪が成長する過程では、着雪によって発生する偏心モーメントによって送電線が徐々に捻れていく現象が見られ、この捻りの程度を決定づける電線捻り剛性の違いによって着雪形状及び着雪量に大きな違いが生じることが知られている。したがって、実際の送電線における着雪の状況を着雪サンプラにおいて正確に再現するためには、測定用短尺電線の捻り剛性を、送電線を支持する鉄塔と鉄塔との間の実際の架空送電線(以下、実径間と呼ぶ)の捻り剛性と等価になるように設計することが特に重要である。   In the process of growing snowfall on the transmission line, a phenomenon is observed in which the transmission line is gradually twisted due to the eccentric moment generated by the snowfall. It is known that there is a big difference in the amount of snowfall. Therefore, in order to accurately reproduce the situation of snow accretion on the actual power transmission line in the snow accretion sampler, the torsional rigidity of the short measuring wire is set to the actual overhead power transmission line between the steel tower that supports the power transmission line and the steel tower. It is particularly important to design such that it is equivalent to the torsional rigidity (hereinafter referred to as the actual span).

その上で、雪害予防及び保守並びに着雪現象の解明を目的とする試験や研究のために、着雪サンプラによって、架空送電線における電線捻回角(即ち、送電線の軸心を中心とする軸回転の角度),着雪形状,着雪重量を正確に観測・計測可能であることが必要とされる。   In addition, for the purpose of tests and research for the purpose of snow damage prevention and maintenance and the elucidation of snow accretion phenomenon, the snow twist sampler uses the wire twist angle in the overhead transmission line (that is, centering on the axis of the transmission line). It is necessary to be able to accurately observe and measure the angle of rotation of the shaft), snow shape, and snow weight.

従来の着雪サンプラとしては、例えば、図4に示すように、間隔をおいて配置された一組の支持板101,101間にボールベアリング機構102を介して回動自在に支持されたシャフト103と、これら支持板101,101間でシャフト103に同心円筒状に被嵌されたスペーサ104,104と、このスペーサ104を外抱し且つ一端がシャフト103に係止され他端が一組の支持板101,101のいずれか一方に係止された所定の捻り剛性を有するコイルスプリング105と、シャフト103とコイルスプリング105とを係止した支持板101との相対回転変位角を検出する回転検出器106と、支持板101,101間を耐湿保護する保護カバー107と、シャフト103及びコイルスプリング105を係止した支持板101,101のいずれか一方に直接又は他の部材を介して固着された測定用短尺電線の一端を同軸的に接続するコネクタ108と、他方に直接又は他の部材を介して固着された外部取付部材109とを備えるものがある(特許文献1)。   As a conventional snow sampler, for example, as shown in FIG. 4, a shaft 103 rotatably supported via a ball bearing mechanism 102 between a pair of support plates 101, 101 arranged at intervals. And spacers 104, 104 fitted concentrically on the shaft 103 between the support plates 101, 101, and the spacer 104 is encased and one end is locked to the shaft 103 and the other end is a set of supports. A rotation detector that detects a relative rotational displacement angle between a coil spring 105 having a predetermined torsional rigidity that is locked to one of the plates 101 and 101 and a support plate 101 that locks the shaft 103 and the coil spring 105. 106, a protective cover 107 that provides moisture resistance protection between the support plates 101 and 101, and a support plate 101 that locks the shaft 103 and the coil spring 105. A connector 108 that coaxially connects one end of a measurement short electric wire fixed to either one of 101 directly or via another member, and an external mounting member 109 fixed to the other directly or via another member (Patent Document 1).

実公平2−41558号Reality 2-41558

しかしながら、特許文献1の着雪サンプラにおいては、ボールベアリング機構102と特殊なコイルスプリング105とを保護カバー107に内蔵する支持機構は非常に複雑であって製作に手間がかかる。また、両端支持部の軸心合わせに細心の注意が必要とされ調整に手間がかかる。このため、汎用的であるとは言い難い。さらに、軸心合わせが正確でない場合には計測に誤差が生じてしまうという問題がある。   However, in the snow sampler of Patent Document 1, the support mechanism in which the ball bearing mechanism 102 and the special coil spring 105 are built in the protective cover 107 is very complicated and takes time to manufacture. In addition, careful attention is required for the axial alignment of both end support portions, and adjustment takes time. For this reason, it is hard to say that it is general purpose. Furthermore, there is a problem that an error occurs in measurement when the alignment is not accurate.

また、着雪サンプラにおいては着雪による偏心モーメントに追従して測定用短尺電線が滑らかに捻回する必要があるが、特許文献1の着雪サンプラのようにボールベアリング機構102を介した支持機構ではベアリング部の摩擦等によって滑らかな捻回が阻害されるので、正確な観測・計測を行うことができないという問題がある。具体的には、或る一定以上の着雪によって偏心モーメントが大きくなるまでは測定用短尺電線が捻回せず、或る一定以上の着雪量で急激に捻回するという挙動を示すので正確な観測・計測を行うことができない。さらに、着雪重量によって測定用短尺電線にたわみが生じることによってもベアリング部の滑らかな動きが阻害されるので正確な観測・計測を行うことができない。   Further, in the snow sampler, it is necessary to smoothly twist the measuring short electric wire following the eccentric moment due to snow, but the support mechanism via the ball bearing mechanism 102 as in the snow sampler disclosed in Patent Document 1. However, since the smooth twist is hindered by the friction of the bearing portion, there is a problem that accurate observation and measurement cannot be performed. Specifically, the measurement short electric wire does not twist until the eccentric moment increases due to snowfall of a certain level or more, and shows a behavior that it twists rapidly with a snowfall amount of a certain level or more. Observation / measurement cannot be performed. Furthermore, since the smooth movement of the bearing portion is hindered by the occurrence of deflection in the short measuring wire due to the snow weight, accurate observation and measurement cannot be performed.

また、特許文献1の着雪サンプラでは、ベアリング部の作動性を確保するために潤滑油の注入等の整備を定期的に行う必要がありメンテナンスの手間がかかるという問題がある。   In addition, the snow-covered sampler disclosed in Patent Document 1 has a problem that maintenance such as injection of lubricating oil needs to be periodically performed in order to ensure the operability of the bearing portion, and maintenance work is required.

さらに、実際の送電線における着雪の状況を着雪サンプラにおいて正確に再現するために測定用短尺電線の捻り剛性を実径間の捻り剛性と等価にすることが重要であるところ、特許文献1の着雪サンプラでは、コイルスプリング105を交換しないと測定用短尺電線の捻り剛性を調整することができない。したがって、観測対象とする実径間の条件が変わるたびに複雑な支持機構を分解してコイルスプリングを交換すると共に再度組み立て、且つ両端支持部の軸心合わせをあらためて行わなければならないので計測の準備に手間がかかるという問題がある。   Furthermore, it is important to make the torsional rigidity of the short electric wire for measurement equivalent to the torsional rigidity between the actual diameters in order to accurately reproduce the state of snow accretion on the actual power transmission line in the snow accumulating sampler. In the snow accretion sampler, the torsional rigidity of the short measuring wire cannot be adjusted unless the coil spring 105 is replaced. Therefore, every time the condition between the actual diameters to be observed changes, the complicated support mechanism must be disassembled, the coil springs must be replaced and reassembled, and the axis alignment of both end support parts must be performed again, so preparation for measurement There is a problem that it takes time and effort.

また、着雪形状を正確に観測するためには測定用短尺電線の軸方向正面から着雪を撮影することが望ましい。しかしながら、特許文献1の着雪サンプラでは、ボールベアリング機構102を含む支持機構が電線軸方向(即ちシャフト103の軸方向)の視野を妨げてしまうために当該方向正面から着雪を撮影することができず、最適な態様で着雪形状を観測することができないという問題がある。   Further, in order to accurately observe the snow accretion shape, it is desirable to photograph snow accretion from the axial front of the measuring short electric wire. However, in the snow accumulating sampler of Patent Document 1, since the support mechanism including the ball bearing mechanism 102 obstructs the visual field in the electric wire axial direction (that is, the axial direction of the shaft 103), it is possible to photograph the snow accumulating from the front in that direction. There is a problem that it is impossible to observe the snowfall shape in an optimal manner.

そこで、本発明は、簡単な構成で送電線における着雪状況の正確な観測・計測を行うことができると共に計測及びメンテナンスの手間を軽減することができる着雪サンプラを提供することを目的とする。さらに、本発明は、最適な態様で送電線における着雪形状を観測することができる着雪サンプラを提供することを目的とする。   Accordingly, an object of the present invention is to provide a snow-covering sampler that can accurately observe and measure snow-covering conditions on a transmission line with a simple configuration and can reduce the trouble of measurement and maintenance. . Furthermore, an object of the present invention is to provide a snow accretion sampler capable of observing the snow accretion shape on the transmission line in an optimum manner.

かかる目的を達成するため、請求項1記載の着雪サンプラは、測定用短尺電線と、該測定用短尺電線の両端のそれぞれに固定的に結合された一対のワイヤと、各ワイヤの測定用短尺電線が結合された側と反対側の端部が結合されてワイヤを介して測定用短尺電線を架空させて支持する一対の支柱とを有し、ワイヤの直径及び長さが、測定用短尺電線において実径間の捻り剛性を再現する直径及び長さに設定されるようにしている。 In order to achieve this object, the snow-covering sampler according to claim 1 includes a measuring short electric wire, a pair of wires fixedly connected to both ends of the measuring short electric wire, and a measuring short electric wire for each wire. wires are coupled the ends of the combined side opposite to have a pair of struts for supporting by fictitious measurement for short wire through the wire, the diameter and length of the wire, measuring short wire The diameter and length are set so as to reproduce the torsional rigidity between the actual diameters .

したがって、この着雪サンプラによると、測定用短尺電線を線状の吊り下げ部材によって単に吊り下げて支持するようにしているので、測定用短尺電線の支持機構の構成が非常に簡単であり、装置の製作及び調整の手間がかからない。   Therefore, according to this snow accretion sampler, the measurement short electric wire is simply suspended and supported by the linear suspension member, so the structure of the measurement short electric wire support mechanism is very simple, No need to make and adjust

また、この着雪サンプラによると、測定用短尺電線を線状の吊り下げ部材によって単に吊り下げて支持するようにしているので、測定用短尺電線が捻回する際に支持機構との間で摩擦が生じることがなく、着雪当初から滑らかで連続的な捻回が実現され、着雪に伴う電線捻回角を正確に再現することができる。また、測定用短尺電線を両端のそれぞれに結合された線状の吊り下げ部材によって支持するようにしているので、着雪によって測定用短尺電線にたわみが生じても滑らかな捻回が阻害されることがなく、着雪に伴う電線捻回角を正確に再現することができる。   In addition, according to this snow accumulating sampler, the measurement short electric wire is simply suspended by the linear suspension member and supported, so when the measurement short electric wire is twisted, friction is generated between the measurement mechanism and the support mechanism. Thus, smooth and continuous twisting is realized from the beginning of snowfall, and the wire twist angle accompanying snowfall can be accurately reproduced. In addition, since the measuring short electric wires are supported by the linear suspension members coupled to both ends, smooth twisting is hindered even when the measuring short electric wires are bent due to snow. The wire twist angle accompanying snowfall can be accurately reproduced.

また、この着雪サンプラによると、線状の吊り下げ部材の直径及び長さを調整することによって測定用短尺電線の捻り剛性と実径間の捻り剛性とを一致させることができるので、着雪サンプラにおいて実径間の捻り剛性の再現をすることが容易にできる。そして、観測対象の実径間の条件が変わった場合には吊り下げ部材の交換のみによって測定用短尺電線の捻り剛性を実径間の捻り剛性に一致させることができるので、計測の準備を簡単に行うことができる。   Also, according to this snow accretion sampler, the torsional rigidity of the short measuring wire and the torsional rigidity between the actual diameters can be matched by adjusting the diameter and length of the linear suspension member. The sampler can easily reproduce the torsional rigidity between the actual diameters. And if the conditions between the actual diameters of the observation objects change, the torsional rigidity of the short measuring wires can be matched to the torsional rigidity between the actual diameters only by replacing the suspension members, making it easy to prepare for measurement. Can be done.

さらに、この着雪サンプラによると、実径間の捻り剛性を再現するための仕組みが非常に簡単であり、特別な整備を必要とすることなく実径間の捻り剛性を再現する仕組みの作動性が確保される。   Furthermore, according to this snow accretion sampler, the mechanism to reproduce the torsional rigidity between the actual diameters is very simple, and the operability of the mechanism to reproduce the torsional rigidity between the actual diameters without requiring special maintenance. Is secured.

また、請求項2記載の着雪サンプラは、複数の測定用短尺電線と、該複数の測定用短尺電線のうち両端に位置する各測定用短尺電線の一端に結合された一対の線状の吊り下げ部材と、複数の測定用短尺電線同士を連結する一本若しくは複数の連結部材と、各吊り下げ部材の測定用短尺電線が結合された側と反対側の端部が結合されて吊り下げ部材を介して測定用短尺電線を架空させて支持する一対の支柱とを有するようにしている。   According to a second aspect of the present invention, there is provided a snow-covered sampler comprising a pair of linear suspended wires coupled to one end of each of the plurality of measurement short electric wires and each of the measurement short electric wires located at both ends of the plurality of measurement short electric wires. A suspension member, one or a plurality of coupling members that couple a plurality of short measuring wires to each other, and a suspension member in which the end of each hanging member opposite to the side where the measurement short wires are joined is joined And a pair of support columns for supporting the measurement-use short electric wire by aerial.

したがって、この着雪サンプラによると、請求項1記載の発明の作用に加え、測定用短尺電線を複数設けるようにしているので、実際の送電線の複数箇所の着雪状況を再現することができる。   Therefore, according to this snow accumulating sampler, in addition to the operation of the invention of claim 1, a plurality of short electric wires for measurement are provided, so that it is possible to reproduce snow accumulating conditions at a plurality of locations on an actual power transmission line. .

また、請求項3記載の発明は、請求項1または2記載の着雪サンプラにおいて、測定用短尺電線を軸方向正面から撮影する撮影装置を更に有するようにしている。この場合には、測定用短尺電線の両端には線状の吊り下げ部材が結合しているだけであるので、測定用短尺電線の軸方向正面から撮影することができ、測定用短尺電線の軸心位置において軸方向正面からの電線の捻回状況及び着雪状況の画像が得られる。   According to a third aspect of the present invention, in the snow accumulating sampler according to the first or second aspect of the present invention, the snow sampler further includes a photographing device for photographing the short measuring wire from the front in the axial direction. In this case, since only a linear suspension member is coupled to both ends of the measurement short electric wire, it can be taken from the front in the axial direction of the measurement short electric wire. An image of the twisted state of the electric wire and the snow-covered state from the axial front is obtained at the center position.

また、請求項4記載の発明は、請求項記載の着雪サンプラにおいて、一対の支柱のそれぞれに支持されると共に各ワイヤの測定用短尺電線が結合された側と反対側の端部が連結されるロードセルを更に有するようにしている。また、請求項5記載の発明は、請求項2記載の着雪サンプラにおいて、一対の支柱のそれぞれに支持されると共に各吊り下げ部材の測定用短尺電線が結合された側と反対側の端部が連結されるロードセルを更に有するようにしている。れらの場合には、測定用短尺電線の着雪重量が計測される。 The invention of claim 4, wherein the wherein the accretion sampler to claim 1, opposite to the end connected to the side where the measuring short wire of each wire are coupled together is supported on each of the pair of posts The load cell is further provided. According to a fifth aspect of the present invention, there is provided the snow sampler of the second aspect, wherein the end of the suspension member is supported by each of the pair of struts and is opposite to the side where the measuring short electric wires of each hanging member are coupled. Are further connected to each other. In the case of these, the accretion weight of the measuring short wire is measured.

請求項1記載の着雪サンプラによれば、測定用短尺電線の支持機構の構成が非常に簡単であり、装置の製作及び調整の手間を軽減することができるので、装置の汎用性の向上が可能になる。   According to the snow-covered sampler of claim 1, the structure of the support mechanism for the measuring short electric wire is very simple, and the labor for manufacturing and adjusting the apparatus can be reduced, so that the versatility of the apparatus can be improved. It becomes possible.

また、請求項1記載の着雪サンプラによれば、測定用短尺電線が捻回する際に支持機構との間に摩擦が生じることがなく、着雪当初から滑らかで連続的な捻回が実現され、着雪に伴う電線捻回角を正確に再現することができるので、実径間と同様の状況をつくり出して実径間における着雪状況を正確に再現することができ、装置の信頼性・有用性の向上が可能になる。さらに、着雪によって測定用短尺電線にたわみが生じても滑らかな捻回が阻害されることがなく、着雪に伴う電線捻回角を正確に再現することができるので、実径間と同様の状況をつくり出して実径間における着雪状況を正確に再現することができ、装置の信頼性・有用性の向上が可能になる。   In addition, according to the snow accumulating sampler according to claim 1, no friction is generated between the short measuring wire and the support mechanism, and smooth and continuous twisting is realized from the beginning of snowing. Because the wire twist angle that accompanies snowfall can be accurately reproduced, it is possible to create a situation similar to that between actual diameters and accurately reproduce the snowfall conditions between actual diameters, and the reliability of the equipment・ Usefulness can be improved. In addition, smooth twisting is not obstructed even if the measurement short wire is bent due to snowfall, and the wire twist angle associated with snowfall can be accurately reproduced. Thus, it is possible to accurately reproduce the snowfall situation between the actual diameters and improve the reliability and usability of the device.

また、請求項1記載の着雪サンプラによれば、着雪サンプラにおいて実径間の捻り剛性の再現をすることが容易にでき、さらに、計測の準備を簡単に行うことができるので、操作にかかる手間を軽減して操作性の向上が可能になる。   In addition, according to the snow landing sampler of the first aspect, the torsional rigidity between the actual diameters can be easily reproduced in the snow landing sampler, and furthermore, the preparation for measurement can be easily performed. This effort can be reduced and the operability can be improved.

また、請求項1記載の着雪サンプラによれば、特別な整備を必要とすることなく実径間の捻り剛性を再現する仕組みの作動性を確保することができるので、メンテナンスの手間を軽減して運用性の向上が可能になる。   In addition, according to the snow sampler of claim 1, since the operability of the mechanism for reproducing the torsional rigidity between the actual diameters can be ensured without requiring special maintenance, the labor of maintenance is reduced. This makes it possible to improve operability.

また、請求項2記載の着雪サンプラによれば、実際の送電線の複数箇所の着雪状況を再現することができるので、実際の送電線における状況の再現性の向上が可能になる。   Moreover, according to the snow accretion sampler according to the second aspect, it is possible to reproduce the snow accretion situation at a plurality of locations on the actual power transmission line, so that the reproducibility of the situation on the actual power transmission line can be improved.

また、請求項3記載の着雪サンプラによれば、測定用短尺電線の軸心位置において軸方向正面からの電線の捻回状況及び着雪状況の画像が得られるので、着雪に伴う電線捻回角を正確に計測することができると共に最適な態様で電線の着雪形状を正確に観測することができ、装置の信頼性・有用性の向上が可能になる。   Further, according to the snow accumulating sampler according to claim 3, since the image of the twisting state and the snow accumulating state of the electric wire from the axial front is obtained at the axial center position of the measurement short electric wire, the electric wire twisting accompanying the snow accretion is obtained. The turning angle can be accurately measured, and the snowfall shape of the electric wire can be accurately observed in an optimum manner, so that the reliability and usefulness of the apparatus can be improved.

さらに、請求項4,5記載の着雪サンプラによれば、請求項1,2記載の発明においても把握可能な電線捻回角と着雪形状とに加えて測定用短尺電線の着雪重量を計測することができるので、着雪状況についてのより多様なデータの把握が可能になる。 Further, according to the snow landing sampler according to claims 4 and 5 , in addition to the wire twist angle and the snow accumulating shape that can be grasped also in the inventions according to claims 1 and 2, the snow landing weight of the short measuring wire can be reduced. Since it can be measured, it becomes possible to grasp more diverse data about the snowfall situation.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に、本発明の着雪サンプラの第一の実施形態を示す。この着雪サンプラは、測定用短尺電線1と、該測定用短尺電線1の両端のそれぞれに結合された一対の線状の吊り下げ部材2,2と、該吊り下げ部材2,2のそれぞれが連結される一対のロードセル3,3と、測定用短尺電線1を軸方向正面から撮影する撮影装置4と、ロードセル3,3のそれぞれを支持し吊り下げ部材2,2を介して測定用短尺電線1を架空させて支持する一対の支柱6,6とを有する。   FIG. 1 shows a first embodiment of the snow accretion sampler of the present invention. This snow accretion sampler includes a measuring short electric wire 1, a pair of linear hanging members 2, 2 coupled to both ends of the measuring short electric wire 1, and each of the hanging members 2, 2. A pair of load cells 3 and 3 to be connected, a photographing device 4 for photographing the measurement short electric wire 1 from the front in the axial direction, and a measurement short electric wire via the suspension members 2 and 2 that support the load cells 3 and 3 respectively. It has a pair of support columns 6 and 6 for supporting 1 by aerial.

測定用短尺電線1は、着雪状況の観測対象の送電線として実際に用いられているものと同じ電線を短尺に切断したものである。測定用短尺電線1の長さは特定の長さに限定されるものではなく、例えば現場において観測を行うために着雪サンプラを設置する場所の広さや実験施設の規模などに合わせて数m程度の長さに切断したものを用いるようにする。   The measurement-use short electric wire 1 is obtained by cutting the same electric wire that is actually used as a power transmission line to be observed in a snow accretion state into a short length. The length of the short measuring wire 1 is not limited to a specific length. For example, it is about several meters in accordance with the size of the place where the snow landing sampler is installed for the observation at the site, the scale of the experimental facility, etc. Use a piece cut to a length of.

一対の線状の吊り下げ部材2,2は、測定用短尺電線1の軸方向正面の両端にそれぞれ取り付けられる。吊り下げ部材2としては、自身への着雪の影響をできるだけ低減するために細い線状の部材であって可撓性のある材質のものが用いられる。具体的には例えばステンレスワイヤが用いられる。   The pair of linear suspension members 2 and 2 are respectively attached to both ends of the measurement-use short electric wire 1 on the front side in the axial direction. As the suspension member 2, a thin linear member and a flexible material is used in order to reduce the influence of snowfall on itself as much as possible. Specifically, for example, a stainless wire is used.

吊り下げ部材2と測定用短尺電線1とは、一方が他方に対して相対的に軸回転することがないように相互に固定的に結合される。すなわち、測定用短尺電線1は軸心を中心とする回転(即ち捻回)について自由ではなく、測定用短尺電線1が捻回する際には吊り下げ部材2に固定的に結合している影響を受ける。   The suspension member 2 and the short measuring wire 1 are fixedly coupled to each other so that one does not rotate relative to the other. That is, the measurement short electric wire 1 is not free to rotate (that is, twisted) about the axis, and the measurement short electric wire 1 is fixedly coupled to the suspension member 2 when twisting. Receive.

そして、第一の実施形態では、吊り下げ部材2が、測定用短尺電線1において実径間の捻り剛性を再現する役割を果たす。このため、測定用短尺電線1において実径間の捻り剛性が再現されるように吊り下げ部材2の直径及び長さが設定される。   In the first embodiment, the suspending member 2 plays a role of reproducing the torsional rigidity between the actual diameters in the measurement short electric wire 1. For this reason, the diameter and length of the suspension member 2 are set so that the torsional rigidity between the actual diameters is reproduced in the short measuring wire 1.

測定用短尺電線1において実径間の捻り剛性を再現するための吊り下げ部材2の直径及び長さの決定方法は特定の方法に限定されるものではなく、例えば材料力学の釣り合いの関係から求めるようにしても良いしシミュレーションを用いて求めるようにしても良い。測定用短尺電線1において実径間の捻り剛性を再現するための吊り下げ部材2の直径及び長さは、具体的には例えば以下の手順によって求められる。   The method for determining the diameter and length of the suspension member 2 for reproducing the torsional rigidity between the actual diameters in the short measuring wire 1 is not limited to a specific method, and is obtained from, for example, the balance of material mechanics. Alternatively, it may be obtained by using a simulation. Specifically, the diameter and length of the suspension member 2 for reproducing the torsional rigidity between the actual diameters in the measurement short electric wire 1 are obtained by the following procedure, for example.

本実施形態で観測対象とする実径間が図3の通りであるとする。具体的には、径間長(即ち電線実長)が2L〔m〕であり、径間中央部分の長さ2Laの区間(以下、着雪区間と呼ぶ)に着雪が生じている状態を想定する。なお、着雪は始まった初期の状態であって電線の捻回角は小さいと共に着雪区間に亘って着雪形状が等しく着雪によって生じる捻回モーメントが等しいと仮定する。   Assume that the actual distances to be observed in this embodiment are as shown in FIG. Specifically, it is assumed that the span length (that is, the actual wire length) is 2 L [m], and snow is generated in a section (hereinafter referred to as a snowfall section) having a length of 2 La in the center section of the span. To do. Note that it is assumed that snowing is in an initial state where the twisting angle of the electric wire is small, the snowfall shape is the same throughout the snowing section, and the twisting moment generated by the snowfall is equal.

着雪区間の電線単位長さあたりに作用する着雪によるモーメントをMu〔N m/m〕とおく。着雪区間のうち径間端部からの位置xの単位長さへの着雪が発生させるモーメントによる位置xの電線捻回角は数式1で表される。   Let Mu [N m / m] be the moment due to snow acting per unit length of electric wire in the snow accumulating section. The electric wire twist angle at the position x due to the moment generated by the snowfall to the unit length of the position x from the end of the span in the snow accumulating section is expressed by Equation 1.

Figure 0005551864
Figure 0005551864

ここで、kxは数式2の通りである。   Here, kx is as shown in Equation 2.

Figure 0005551864
ここに、θxx:位置xの電線捻回角,Mu:モーメント〔N m/m〕,kx:位置xの捻りバネのバネ定数〔N m/rad〕,GJ:電線の捻り剛性〔N m〕(なお、G:横弾性係数,J:断面二次極モーメント),2L:径間長(即ち電線実長)〔m〕,x:径間端部からの位置〔m〕をそれぞれ表す。
Figure 0005551864
Here, θxx: wire twist angle at position x, Mu: moment [N m / m], kx: spring constant [N m / rad] of torsion spring at position x, GJ: twist rigidity of wire [N m 2 (G: transverse elastic modulus, J: cross-sectional secondary pole moment), 2L: span length (ie, actual wire length) [m], x: position [m] from the span end.

このとき、位置xの単位長さあたりの着雪に起因する径間中央(即ちx=L)における電線捻回角θLxは数式3の通りになる。   At this time, the wire twist angle θLx at the center of the span (that is, x = L) due to snowfall per unit length of the position x is expressed by Equation 3.

Figure 0005551864
Figure 0005551864

したがって、径間中央部分の着雪区間(長さ2La)への着雪によって生じる径間中央(即ちx=L)における電線捻回角θLは数式4のようになる。   Therefore, the wire twist angle θL at the center of the span (ie, x = L) caused by the snowfall on the snowfall section (length 2La) at the center of the span is expressed by Equation 4.

Figure 0005551864
Figure 0005551864

一方、着雪サンプラの測定用短尺電線1の長さを2Lsとする。そして、測定用短尺電線1に上述の実径間と等しい単位長さあたりの着雪によるモーメントMuが生じるとする。また、測定用短尺電線1を支持する吊り下げ部材2の捻りバネのバネ定数をksとする。このとき、測定用短尺電線1の着雪による電線捻回角θsは数式5のようになる。   On the other hand, the length of the measurement short electric wire 1 of the snow landing sampler is set to 2Ls. Then, it is assumed that a moment Mu due to snowfall per unit length equal to the above-described actual diameter occurs in the measurement short electric wire 1. The spring constant of the torsion spring of the suspension member 2 that supports the measurement short electric wire 1 is ks. At this time, the wire twist angle θs due to snowfall of the measurement short electric wire 1 is expressed by Equation 5.

Figure 0005551864
Figure 0005551864

したがって、想定した実径間中央における電線捻回角θLと測定用短尺電線1の電線捻回角θsとを一致させるためのバネ定数ksは、数式4と数式5とが等しいとしてksについて解くことにより、数式6のようになる。   Therefore, the spring constant ks for matching the assumed wire twist angle θL at the center of the actual diameter with the wire twist angle θs of the short measuring wire 1 is solved for ks assuming that Equation 4 and Equation 5 are equal. Thus, Equation 6 is obtained.

Figure 0005551864
Figure 0005551864

ここで、径間全体に一様に着雪する場合はLa=Lであり、数式6は数式7のようになる。   Here, when the snow falls uniformly over the entire span, La = L, and Equation 6 becomes Equation 7.

Figure 0005551864
Figure 0005551864

すなわち、実径間において径間全体に着雪する状況を再現するための捻りバネのバネ定数ksは、着雪状況の観測対象であって模擬すべき実際の送電線の捻り剛性GJ及び径間長L並びに測定用短尺電線1の長さLsの値に依存する。   In other words, the spring constant ks of the torsion spring for reproducing the situation where snow falls over the entire span between the actual spans is the torsional rigidity GJ and span of the actual transmission line to be simulated, which is the observation target of the snowfall situation. It depends on the value of the length L and the length Ls of the short electric wire 1 for measurement.

一方、着雪サンプラの吊り下げ部材2の長さをLw、捻り剛性をGwJwとすると、測定用短尺電線1は、数式8で表されるバネ定数kswを有する捻りバネに支持されていることになる。   On the other hand, when the length of the suspension member 2 of the snow-covered sampler is Lw and the torsional rigidity is GwJw, the short measuring wire 1 is supported by a torsion spring having a spring constant ksw expressed by Equation 8. Become.

Figure 0005551864
Figure 0005551864

したがって、実径間において径間全体に着雪する状況を着雪サンプラによって再現するためには、数式7のバネ定数ksと数式8のバネ定数kswとが一致するように吊り下げ部材2の長さ及び捻り剛性を設定すれば良い。   Therefore, in order to reproduce the situation of snowfalling over the entire span between actual spans by the snow landing sampler, the length of the suspension member 2 is set so that the spring constant ks of Formula 7 and the spring constant ksw of Formula 8 match. What is necessary is just to set thickness and torsional rigidity.

具体的には、数式7については、着雪状況の観測対象であって模擬すべき実際の送電線を選択すれば捻り剛性GJと径間長2Lとが決定されるので、測定用短尺電線1の長さ2Lsを設定すればバネ定数ksが算出される。そして、数式8について、算出されたバネ定数ksの値をバネ定数kswに代入すると共に、吊り下げ部材2の材質と直径とを設定することによって決定される捻り剛性GwJwの値を代入すると、吊り下げ部材2の長さLwが決定される。   Specifically, for Equation 7, if an actual power transmission line that is an observation target of a snowfall situation and is to be simulated is selected, the torsional rigidity GJ and the span length 2L are determined. If the length 2Ls is set, the spring constant ks is calculated. Then, regarding Formula 8, when the calculated value of the spring constant ks is substituted into the spring constant ksw and the value of the torsional rigidity GwJw determined by setting the material and diameter of the suspension member 2 is substituted, The length Lw of the lowering member 2 is determined.

ロードセル3は、測定用短尺電線1の着雪重量を計測するためのものである。具体的には、測定用短尺電線1の軸方向両端のそれぞれに吊り下げ部材2,2が結合されると共に、当該各吊り下げ部材2,2の測定用短尺電線1が結合されている側と反対側の端部がそれぞれロードセル3,3と連結されることによって測定用短尺電線1の着雪重量が計測される。   The load cell 3 is for measuring the snowfall weight of the short measuring wire 1. Specifically, the suspension members 2 and 2 are coupled to both ends of the measurement short electric wire 1 in the axial direction, and the side of the suspension member 2 and 2 to which the measurement short electric wire 1 is coupled; The opposite ends are connected to the load cells 3 and 3, respectively, so that the snow weight of the measuring short electric wire 1 is measured.

両ロードセル3,3はそれぞれ支柱6,6によって支持される。本実施形態では、支柱6は、垂直部材6aと、対の相手側支柱6に向かってせり出して垂直部材6aの頂部に取り付けられた水平部材6bとからなり、水平部材6bにロードセル3が取り付けられている。なお、両支柱6,6間の距離は、両吊り下げ部材2,2を介して測定用短尺電線1が架空されるように調整され、両吊り下げ部材2,2の各ロードセル3,3と連結する端部間の距離Dが測定用短尺電線1の長さ2Lsよりも少なくとも長くなるように調整される。   Both load cells 3 and 3 are supported by support columns 6 and 6, respectively. In this embodiment, the column 6 includes a vertical member 6a and a horizontal member 6b that protrudes toward the mating column 6 and is attached to the top of the vertical member 6a. The load cell 3 is attached to the horizontal member 6b. ing. In addition, the distance between both the columns 6 and 6 is adjusted so that the measurement short electric wire 1 is suspended via the both suspension members 2 and 2, and the load cells 3 and 3 of the both suspension members 2 and 2 are connected to each other. The distance D between the connecting end portions is adjusted so as to be at least longer than the length 2Ls of the measuring short electric wire 1.

一方の支柱6には、測定用短尺電線1を当該電線の軸方向正面から撮影するための撮影装置4が取り付けられる。撮影装置4としては例えばデジタルカメラが用いられる。また、本実施形態では、撮影装置4が、支柱6の垂直部材6aに取り付けられた固定部材6cによって測定用短尺電線1の軸心位置の軸方向正面に合わせて取り付けられている。   One column 6 is attached with an imaging device 4 for imaging the measurement-use short electric wire 1 from the front in the axial direction of the electric wire. For example, a digital camera is used as the photographing device 4. Moreover, in this embodiment, the imaging device 4 is attached to the axial direction front of the axial center position of the measurement short electric wire 1 by the fixing member 6 c attached to the vertical member 6 a of the support 6.

撮影装置4を用いて測定用短尺電線1の軸方向正面から、即ち最適な態様で当該電線を撮影することで、測定用短尺電線1の着雪形状を正確に観測することができると共に、測定用短尺電線1の電線捻回角を計測することができる。なお、電線捻回角は、例えば、測定用短尺電線1の撮影装置4側の端面に当該電線の半径に該当する線を予め付けておいて当該線の傾きによって計測することができる。   By photographing the electric wire from the front side in the axial direction of the measuring short electric wire 1 using the imaging device 4, that is, in an optimal manner, the snow accretion shape of the measuring short electric wire 1 can be accurately observed and measured. The wire twist angle of the short electric wire 1 can be measured. The wire twist angle can be measured by, for example, attaching a line corresponding to the radius of the wire in advance to the end surface of the measurement short wire 1 on the photographing device 4 side, and measuring the inclination of the wire.

次に、図2を用いて、本発明の着雪サンプラの第二の実施形態について説明する。なお、以下に説明する第二の実施形態において上述の第一の実施形態と同様の構成要素については、同一符号を付してその詳細な説明を省略する。   Next, a second embodiment of the snow landing sampler of the present invention will be described with reference to FIG. In addition, in 2nd embodiment demonstrated below, about the component similar to the above-mentioned 1st embodiment, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.

この第二の実施形態の着雪サンプラは、三本の測定用短尺電線1a,1b,1cと、該測定用短尺電線1a,1b,1cのうち両端に位置する各測定用短尺電線1b,1cの一端に結合された一対の線状の吊り下げ部材2,2と、該吊り下げ部材2,2のそれぞれが連結される一対のロードセル3,3と、測定用短尺電線1a及び1b並びに1a及び1cを連結する二本の連結部材5,5と、測定用短尺電線1aを軸方向正面から撮影する撮影装置4と、ロードセル3,3のそれぞれを支持し吊り下げ部材2,2を介して測定用短尺電線1を架空させて支持する一対の支柱6,6とを有する。   The snow-covering sampler of the second embodiment includes three short measuring wires 1a, 1b, 1c and the short measuring wires 1b, 1c located at both ends of the short measuring wires 1a, 1b, 1c. A pair of linear suspension members 2, 2 coupled to one end of the wire, a pair of load cells 3, 3 to which each of the suspension members 2, 2 is connected, and the short measuring wires 1 a and 1 b and 1 a and Two connecting members 5 and 5 for connecting 1c, a photographing device 4 for photographing the measurement-use short electric wire 1a from the front in the axial direction, and the load cells 3 and 3 are supported through the suspension members 2 and 2, respectively. It has a pair of support columns 6 and 6 for supporting the short electric wire 1 by aerial.

すなわち、第一の実施形態と第二の実施形態とを対比すると、第一の実施形態においては測定用短尺電線1が一本であるのに対し、第二の実施形態においては測定用短尺電線1が複数本である点で両者は大きく異なる。そして、第二の実施形態では、測定用短尺電線1同士を連結するための連結部材5を有する。なお、第二の実施形態においては、各吊り下げ部材2,2と測定用短尺電線1b,1cとは一方が他方に対して相対的に軸回転することがないように相互に固定的に結合され、さらに、各連結部材5,5と各測定用短尺電線1a,1b,1cとは一方が他方に対して相対的に軸回転することがないように相互に固定的に結合される。すなわち、各測定用短尺電線1a,1b,1cは捻回について自由ではなく、各測定用短尺電線1a,1b,1cが捻回する際には吊り下げ部材2や連結部材5に固定的に結合している影響を受ける。   That is, when the first embodiment and the second embodiment are compared, in the first embodiment, there is one measuring short electric wire 1, whereas in the second embodiment, the measuring short electric wire. Both are greatly different in that 1 is a plurality. And in 2nd embodiment, it has the connection member 5 for connecting the short electric wires 1 for measurement. In the second embodiment, the suspension members 2 and 2 and the short measuring wires 1b and 1c are fixedly coupled to each other so that one does not rotate relative to the other. Furthermore, each of the connecting members 5 and 5 and each of the short measuring wires 1a, 1b, and 1c are fixedly coupled to each other so that one does not rotate relative to the other. That is, the measurement short electric wires 1a, 1b, and 1c are not free to be twisted, and are fixedly coupled to the suspension member 2 and the connecting member 5 when the measurement short electric wires 1a, 1b, and 1c are twisted. Affected.

ここで、実径間においては、送電線を支持する鉄塔と鉄塔との間の中央部において送電線の電線捻回角が最も大きく、鉄塔の近傍ほど電線捻回角が小さい。すなわち、実径間内の位置によって送電線の電線捻回角の大きさが異なる。したがって、第二の実施形態のように測定用短尺電線を複数設けるようにすることにより、実径間内の位置毎の電線捻回角や着雪状況を再現することが可能になり、実際の送電線における状況の再現性をより向上させることができる。   Here, between the actual diameters, the wire twist angle of the power transmission line is the largest in the central portion between the steel tower supporting the power transmission line, and the wire twist angle is smaller in the vicinity of the steel tower. That is, the magnitude of the wire twist angle of the transmission line varies depending on the position within the actual span. Therefore, by providing a plurality of short measuring wires as in the second embodiment, it becomes possible to reproduce the wire twist angle and the snowfall situation for each position within the actual span. The reproducibility of the situation on the transmission line can be further improved.

そして、第二の実施形態においては、吊り下げ部材2及び連結部材5が、各測定用短尺電線1a,1b,1cにおいて実径間の捻り剛性を再現する役割を果たす。このため、各測定用短尺電線1a,1b,1cにおいて実径間の捻り剛性が再現されるように吊り下げ部材2及び連結部材5の直径及び長さが設定される。   And in 2nd embodiment, the suspending member 2 and the connection member 5 play the role which reproduces the torsional rigidity between real diameters in each measurement short length electric wire 1a, 1b, 1c. For this reason, the diameter and length of the suspending member 2 and the connecting member 5 are set so that the torsional rigidity between the actual diameters is reproduced in each of the short measuring wires 1a, 1b, and 1c.

各測定用短尺電線1a,1b,1cにおいて実径間の捻り剛性を再現するための吊り下げ部材2及び連結部材5の直径及び長さの決定方法は特定の方法に限定されるものではなく、例えば材料力学の釣り合いの関係から求めるようにしても良いしシミュレーションを用いて求めるようにしても良い。各測定用短尺電線1a,1b,1cにおいて実径間の捻り剛性を再現するための吊り下げ部材2及び連結部材5の直径及び長さは、具体的には例えば以下の手順によって求められる。   The method for determining the diameter and length of the suspension member 2 and the connecting member 5 for reproducing the torsional rigidity between the actual diameters in each of the short measuring wires 1a, 1b, 1c is not limited to a specific method, For example, it may be obtained from the balance of material mechanics or may be obtained using simulation. Specifically, the diameters and lengths of the suspension member 2 and the connecting member 5 for reproducing the torsional rigidity between the actual diameters in each of the short measuring wires 1a, 1b, and 1c are obtained, for example, by the following procedure.

まず、第二の実施形態の着雪サンプラが模擬対象とするのは、長さ2L〔m〕の径間長の実径間全長に亘って着雪する状況である。このときの径間中央の捻回角θLは数式9のようになる。なお、数式9は、数式4のLaにLを代入することによって得られるものであり、各記号の意味も数式4に関連して説明した通りである。なお、第二の実施形態においても、着雪が始まった初期の状態であって径間全体に亘って着雪形状が等しく着雪によって生じる捻回モーメントが等しいと仮定している。   First, the snow-covering sampler of the second embodiment is a simulation target in a situation where snow is applied over the entire span of the actual span of the span length of 2 L [m]. The twist angle θL at the center of the span at this time is as shown in Equation 9. Equation 9 is obtained by substituting L for La in Equation 4, and the meaning of each symbol is as described in connection with Equation 4. In the second embodiment as well, it is assumed that the snowfall is in an initial state and the snowfall shape is the same over the entire span and the twisting moments generated by the snowfall are the same.

Figure 0005551864
Figure 0005551864

一方、着雪サンプラの各測定用短尺電線1a,1b,1cの長さを全て2Lsとする。そして、電線単位長さあたりにMu〔N m/m〕のモーメントが作用しているとする。   On the other hand, the lengths of the measurement short electric wires 1a, 1b, and 1c of the snow accretion sampler are all 2Ls. Then, it is assumed that a moment of Mu [N m / m] is acting per unit length of the electric wire.

また、吊り下げ部材2及び連結部材5の長さをLw、捻り剛性をGwJwとする。このとき、測定用短尺電線1bへの着雪による測定用短尺電線1bの電線捻回角θbbについて数式10が成り立つ。なお、吊り下げ部材2及び連結部材5の直径は測定用短尺電線1a,1b,1cよりも小さく、吊り下げ部材2及び連結部材5の捻回に比べて測定用短尺電線1a,1b,1cの捻れは無視できるとする(即ち、各測定用短尺電線1a,1b,1cは剛体として扱う)。また、数式10及び数式11は、数式1及び数式2と同様の考え方に基づくものである。   The lengths of the suspension member 2 and the connecting member 5 are Lw, and the torsional rigidity is GwJw. At this time, Formula 10 is established with respect to the wire twist angle θbb of the measurement short electric wire 1b due to snow on the measurement short electric wire 1b. The diameters of the hanging member 2 and the connecting member 5 are smaller than those of the measuring short electric wires 1a, 1b, 1c, and the measuring short electric wires 1a, 1b, 1c are smaller than the twisting of the hanging member 2 and the connecting member 5. It is assumed that the twist is negligible (that is, each measurement short electric wire 1a, 1b, 1c is treated as a rigid body). In addition, Formula 10 and Formula 11 are based on the same concept as Formula 1 and Formula 2.

Figure 0005551864
Figure 0005551864

よって、測定用短尺電線1bへの着雪による測定用短尺電線1bの電線捻回角θbbは数式11のようになる。   Therefore, the wire twist angle θbb of the measurement short electric wire 1b due to snow on the measurement short electric wire 1b is expressed by Equation 11.

Figure 0005551864
Figure 0005551864

また、測定用短尺電線1bへの着雪による測定用短尺電線1bの捻回に起因する測定用短尺電線1aの電線捻回角θab及び測定用短尺電線1cの電線捻回角θcbは、測定用短尺電線1c側の吊り下げ部材2のロードセル3との連結点2aからの吊り下げ部材2および連結部材5の長さの合計に比例するので、それぞれ数式12,数式13のようになる。   Further, the wire twist angle θab of the measurement short wire 1a and the wire twist angle θcb of the measurement short wire 1c caused by twisting of the measurement short wire 1b due to snow on the measurement short wire 1b are for measurement. Since it is proportional to the total length of the suspension member 2 and the connection member 5 from the connection point 2a with the load cell 3 of the suspension member 2 on the short electric wire 1c side, Equations 12 and 13 are obtained, respectively.

Figure 0005551864
Figure 0005551864
Figure 0005551864
Figure 0005551864

次に、測定用短尺電線1aへの着雪による測定用短尺電線1aの電線捻回角θaaについて数式14が成り立つ。   Next, Formula 14 is established with respect to the wire twist angle θaa of the short measurement wire 1a due to snow on the short measurement wire 1a.

Figure 0005551864
Figure 0005551864

よって、測定用短尺電線1aへの着雪による測定用短尺電線1aの電線捻回角θaaは数式15のようになる。   Therefore, the wire twist angle θaa of the measurement short electric wire 1a due to snow on the measurement short electric wire 1a is expressed by Equation 15.

Figure 0005551864
Figure 0005551864

また、測定用短尺電線1aへの着雪による測定用短尺電線1aの捻回に起因する測定用短尺電線1bの電線捻回角θba及び測定用短尺電線1cの電線捻回角θcaは数式16のようになる。   Further, the wire twist angle θba of the measurement short wire 1b and the wire twist angle θca of the measurement short wire 1c caused by the twist of the measurement short wire 1a due to snow on the measurement short wire 1a It becomes like this.

Figure 0005551864
Figure 0005551864

さらに、測定用短尺電線1cへの着雪による測定用短尺電線1cの電線捻回角θccについは、系の対称性を考慮すれば、測定用短尺電線1bへの着雪による測定用短尺電線1bの電線捻回角θbbと同様に表される。すなわち、数式17のようになる。   Further, with regard to the wire twist angle θcc of the measurement short electric wire 1c due to snow on the measurement short electric wire 1c, in consideration of the symmetry of the system, the measurement short electric wire 1b due to snow attachment to the measurement short electric wire 1b. It is expressed in the same manner as the wire twist angle θbb. That is, Equation 17 is obtained.

Figure 0005551864
Figure 0005551864

また、測定用短尺電線1cへの着雪による測定用短尺電線1cの捻回に起因する測定用短尺電線1aの電線捻回角θac及び測定用短尺電線1bの電線捻回角θbcはそれぞれ数式18,数式19のようになる。   Further, the wire twist angle θac of the measurement short wire 1a and the wire twist angle θbc of the measurement short wire 1b caused by the twisting of the measurement short wire 1c due to snow on the measurement short wire 1c are respectively expressed by Equation 18. , Equation 19 is obtained.

Figure 0005551864
Figure 0005551864
Figure 0005551864
Figure 0005551864

以上より、測定用短尺電線1a,1b,1cの各電線捻回角θa,θb,θcはそれぞれ数式20のようになる。   From the above, the wire twist angles θa, θb, and θc of the short measuring wires 1a, 1b, and 1c are expressed by Equation 20, respectively.

Figure 0005551864
Figure 0005551864

したがって、実径間において径間全体に着雪する状況を着雪サンプラによって再現するためには、数式9のθLと数式20のθaとが一致するように吊り下げ部材2及び連結部材5の長さ及び捻り剛性を設定すれば良い。すなわち、数式21を満たすようにすれば良い。   Therefore, in order to reproduce the situation where snow falls over the entire span between actual spans by the snow landing sampler, the lengths of the suspension member 2 and the connecting member 5 are set so that θL in Formula 9 and θa in Formula 20 match. What is necessary is just to set thickness and torsional rigidity. That is, it is sufficient to satisfy Equation 21.

Figure 0005551864
Figure 0005551864

そして、数式21に基づき、着雪状況の観測対象であって模擬すべき実際の送電線を選択すれば捻り剛性GJと径間長2Lとが決定され、測定用短尺電線1の長さ2Lsを設定すると共に、吊り下げ部材2及び連結部材5の材質と直径とを設定することによって決定される捻り剛性GwJwの値を数式22に代入することにより、吊り下げ部材2及び連結部材5の長さLwが決定される。   Then, if an actual power transmission line that is to be simulated and is to be simulated based on Equation 21 is selected, the torsional rigidity GJ and the span length 2L are determined, and the length 2Ls of the short measuring wire 1 is calculated. By setting the value of the torsional rigidity GwJw determined by setting the material and diameter of the suspension member 2 and the connection member 5 to the formula 22, the lengths of the suspension member 2 and the connection member 5 are set. Lw is determined.

Figure 0005551864
Figure 0005551864

なお、数式20に示されるように、図2に示される第二の実施形態では、両端の測定用短尺電線1b,1cの捻回角θb,θcは、中央の測定用短尺電線1aの捻回角θaの3/4になる。すなわち、電線への着雪の発達に伴って捻回角が大きくなると捻回角の違いによって着雪形状に違いが現れる。第二の実施形態によれば、測定用短尺電線1aと測定用短尺電線1b,1cとに捻回角の違いが生じて径間位置による着雪形状の違いを再現することができる。   As shown in Formula 20, in the second embodiment shown in FIG. 2, the twisting angles θb and θc of the measurement short electric wires 1b and 1c at both ends are the twists of the central measurement short electric wire 1a. It becomes 3/4 of the angle θa. That is, when the twist angle increases with the development of snowfall on the electric wire, a difference in the snow landing shape appears due to the difference in the twist angle. According to the second embodiment, a difference in the twisting angle occurs between the measuring short electric wire 1a and the measuring short electric wires 1b and 1c, and the difference in snow-covering shape depending on the span position can be reproduced.

また、第二の実施形態のように複数の測定用短尺電線を備えるようにする場合には、特に両端の測定用短尺電線1b,1cが極端に傾いていないようにすることが好ましい。このため、各測定用短尺電線の長さ2Ls並びに吊り下げ部材2及び連結部材5の長さLwの合計に基づいて、両端の測定用短尺電線1b,1cが極端に傾かないように、両吊り下げ部材2,2の各ロードセル3,3と連結する端部間の距離D(即ち一対の支柱6,6の間隔)が調整されることが好ましい。そして、実際の送電線における着雪の状況を着雪サンプラにおいてより正確に再現するため、各測定用短尺電線の傾きが実径間における架空送電線の各部分の傾きに近くなるように一対の支柱6,6の間隔が調整されることが更に好ましい。   When a plurality of short measuring wires are provided as in the second embodiment, it is preferable that the measuring short wires 1b and 1c at both ends are not particularly inclined. For this reason, based on the total length 2Ls of each measurement short wire and the length Lw of the suspension member 2 and the connecting member 5, both suspensions are made so that the measurement short wires 1b and 1c at both ends are not extremely inclined. It is preferable that the distance D (that is, the distance between the pair of struts 6 and 6) between the ends of the lowering members 2 and 2 connected to the load cells 3 and 3 is adjusted. And, in order to more accurately reproduce the situation of snow accretion on the actual power transmission line with the snow accretion sampler, a pair of measurement cables are arranged so that the inclination of each measurement short wire is close to the inclination of each part of the overhead power transmission line between actual diameters. More preferably, the interval between the columns 6 and 6 is adjusted.

以上のように構成された着雪サンプラによれば、簡単な構成で送電線における着雪状況の正確な観測・計測を行うことができると共に計測及びメンテナンスの手間を軽減することができる。さらに、本発明の着雪サンプラによれば、最適な態様で送電線における着雪形状を撮影することができる。   According to the snow accretion sampler configured as described above, it is possible to accurately observe and measure the snow accretion situation on the transmission line with a simple configuration, and to reduce the trouble of measurement and maintenance. Furthermore, according to the snow sampler of the present invention, it is possible to photograph the snow accretion shape on the transmission line in an optimum manner.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、第一の実施形態及び第二の実施形態では、着雪重量を計測するためにロードセル3を備えるようにしているが、これに限られず、着雪重量を計測する必要がない場合、すなわち、着雪形状及び電線捻回角を計測することを目的とする場合にはロードセル3を備えずに吊り下げ部材2を支柱6に直接結合するようにしても良い。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. For example, in the first embodiment and the second embodiment, the load cell 3 is provided to measure the snowfall weight, but the present invention is not limited to this, and when it is not necessary to measure the snowfall weight, that is, For the purpose of measuring the snow accretion shape and the wire twist angle, the suspension member 2 may be directly coupled to the column 6 without the load cell 3.

また、第二の実施形態では、測定用短尺電線を三本備えるようにしているが、これに限られず、実径間内の位置毎の電線捻回角や着雪状況の再現性を高めるということであれば測定用短尺電線を二本以上備えるようにすれば良い。なお、第二の実施形態においては測定用短尺電線の数を奇数にすることにより、電線捻回角が最も大きくなる鉄塔と鉄塔との間の中央部を再現して当該中央部の電線捻回角を計測することができる。   In the second embodiment, three short electric wires for measurement are provided. However, the present invention is not limited to this, and the reproducibility of the wire twist angle and the snow-covered state at each position within the actual diameter is improved. If so, it is sufficient to provide two or more short electric wires for measurement. In the second embodiment, the number of short measuring wires is set to an odd number to reproduce the central portion between the steel tower and the steel tower where the wire twisting angle is the largest, and to twist the electric wire in the central portion. Corners can be measured.

本発明の着雪サンプラにおける測定用短尺電線1及び吊り下げ部材2の直径及び長さの設定の実施例を説明する。なお、本実施例では、上述の第一の実施形態の着雪サンプラ(図1参照)を用いた場合を例に挙げて説明する。   An example of setting the diameter and length of the measurement-use short electric wire 1 and the suspension member 2 in the snow-covered sampler of the present invention will be described. In this example, a case where the snow landing sampler (see FIG. 1) of the first embodiment described above is used will be described as an example.

本実施例では、240mm単導体,径間長2L=300〔m〕の実径間を模擬する場合を想定した。 In the present embodiment, it is assumed that the actual diameter of 240 mm 2 single conductor and span length 2L = 300 [m] is simulated.

吊り下げ部材2として直径1.5〔mm〕のステンレスワイヤを用いた。また、測定用短尺電線1の長さ2Ls=2〔m〕とした。   A stainless steel wire having a diameter of 1.5 [mm] was used as the suspension member 2. Further, the length 2Ls of the measurement short electric wire 1 was set to 2 [m].

ステンレスワイヤは送電線と同じような線構造であり、横弾性係数GwはアルミのACSR240mmに対して約3倍とみなした。また、ACSR240mmの直径22.4〔mm〕に対してステンレスワイヤの直径は1.5〔mm〕であるので、断面二次極モーメントJwはACSR240mmのJに対して(1.5/22.4)倍とした。これに基づいてGwJw=GJ×3×(1.5/22.4)とみなした。 The stainless steel wire had a wire structure similar to that of a power transmission line, and the transverse elastic modulus Gw was considered to be about 3 times that of aluminum ACSR 240 mm 2 . Further, since the diameter of the stainless steel wire is 1.5 [mm] with respect to the diameter 22.4 [mm] of ACSR 240 mm 2 , the cross-sectional secondary pole moment Jw is 1.5 / 22 with respect to J of ACSR 240 mm 2. .4) Four times. Based on this, it was considered that GwJw = GJ × 3 × (1.5 / 22.4) 4 .

このとき、数式7で表される実径間を模擬するための捻りバネ定数ksと数式8で表される測定用短尺電線1の支持に係る捻りバネ定数kswとが等しいとして数式9が得られた。   At this time, Equation 9 is obtained assuming that the torsion spring constant ks for simulating the actual diameter represented by Equation 7 is equal to the torsion spring constant ksw for supporting the short measuring wire 1 represented by Equation 8. It was.

Figure 0005551864
Figure 0005551864

数式9に、GwJw=GJ×3×(1.5/22.4),L=150,2Ls=2を代入し、Lw=0.67〔m〕が得られた。 Substituting GwJw = GJ × 3 × (1.5 / 22.4) 4 , L = 150, 2Ls = 2 into Equation 9, Lw = 0.67 [m] was obtained.

本発明の着雪サンプラの第一の実施形態を示す図である。It is a figure which shows 1st embodiment of the snow accretion sampler of this invention. 本発明の着雪サンプラの第二の実施形態を示す図である。It is a figure which shows 2nd embodiment of the snow accretion sampler of this invention. 本発明における捻りバネのバネ定数の説明において想定する実径間を説明する図である。It is a figure explaining the space | interval between the actual diameters assumed in description of the spring constant of the torsion spring in this invention. 従来の着雪サンプラの支持構造の構成図である。It is a block diagram of the support structure of the conventional snow accretion sampler.

符号の説明Explanation of symbols

1 測定用短尺電線
2 吊り下げ部材
3 ロードセル
4 撮影装置
6 支柱
DESCRIPTION OF SYMBOLS 1 Short electric wire for a measurement 2 Hanging member 3 Load cell 4 Imaging device 6 Prop

Claims (5)

測定用短尺電線と、該測定用短尺電線の両端のそれぞれに固定的に結合された一対のワイヤと、各前記ワイヤの前記測定用短尺電線が結合された側と反対側の端部が結合されて前記ワイヤを介して前記測定用短尺電線を架空させて支持する一対の支柱とを有し、前記ワイヤの直径及び長さが、前記測定用短尺電線において実径間の捻り剛性を再現する直径及び長さに設定されることを特徴とする着雪サンプラ。 A measuring short electric wire, a pair of wires fixedly connected to both ends of the measuring short electric wire, and an end portion of each wire opposite to the side where the measuring short electric wire is connected are combined. the short wire for the measuring through the wire have a pair of struts for supporting by imaginary Te, diameter and length of the wire, to reproduce the torsional rigidity of real span in the measuring short wire diameter And a snow accumulating sampler characterized by being set to a length . 複数の測定用短尺電線と、該複数の測定用短尺電線のうち両端に位置する各測定用短尺電線の一端に結合された一対の線状の吊り下げ部材と、前記複数の測定用短尺電線同士を連結する一本若しくは複数の連結部材と、各前記吊り下げ部材の前記測定用短尺電線が結合された側と反対側の端部が結合されて前記吊り下げ部材を介して前記測定用短尺電線を架空させて支持する一対の支柱とを有することを特徴とする着雪サンプラ。   A plurality of measurement short wires, a pair of linear suspension members coupled to one end of each measurement short wire located at both ends of the plurality of measurement short wires, and the plurality of measurement short wires One or a plurality of connecting members for connecting the measuring wire and the end of the hanging member opposite to the side to which the measuring short wire is connected, and the measuring short wire through the hanging member A snow-covered sampler comprising: a pair of support columns that support and support the vehicle. 前記測定用短尺電線を軸方向正面から撮影する撮影装置を更に有することを特徴とする請求項1または2記載の着雪サンプラ。   The snow accretion sampler according to claim 1 or 2, further comprising a photographing device for photographing the short electric wire for measurement from the front in the axial direction. 前記一対の支柱のそれぞれに支持されると共に前記各ワイヤの測定用短尺電線が結合された側と反対側の端部が連結されるロードセルを更に有することを特徴とする請求項1記載の着雪サンプラ。   The snow accretion according to claim 1, further comprising a load cell that is supported by each of the pair of support columns and to which an end portion on the opposite side to the side where the short electric wires for measurement of each wire are coupled is connected. Sampler. 前記一対の支柱のそれぞれに支持されると共に前記各吊り下げ部材の測定用短尺電線が結合された側と反対側の端部が連結されるロードセルを更に有することを特徴とする請求項2記載の着雪サンプラ。   3. The load cell according to claim 2, further comprising a load cell that is supported by each of the pair of struts and that is connected to an end of the suspension member opposite to the side to which the measurement short electric wire is coupled. A snow sampler.
JP2008292223A 2008-11-14 2008-11-14 Snow sampler Expired - Fee Related JP5551864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292223A JP5551864B2 (en) 2008-11-14 2008-11-14 Snow sampler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292223A JP5551864B2 (en) 2008-11-14 2008-11-14 Snow sampler

Publications (2)

Publication Number Publication Date
JP2010117309A JP2010117309A (en) 2010-05-27
JP5551864B2 true JP5551864B2 (en) 2014-07-16

Family

ID=42305067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292223A Expired - Fee Related JP5551864B2 (en) 2008-11-14 2008-11-14 Snow sampler

Country Status (1)

Country Link
JP (1) JP5551864B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551974B2 (en) * 2010-06-17 2014-07-16 一般財団法人電力中央研究所 Elastic support method and elastic support device for partial model of transmission line
JP7302877B2 (en) * 2020-03-24 2023-07-04 国立研究開発法人防災科学技術研究所 Snow accretion measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200942A (en) * 1983-04-28 1984-11-14 Showa Electric Wire & Cable Co Ltd Device for measuring stuck quantity of snow on electric wire

Also Published As

Publication number Publication date
JP2010117309A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
CN100482940C (en) Wind power station, control device of wind power station and method for operating wind power station
US7313975B1 (en) Apparatus and method for measuring tension in guy wires
Kalombo et al. Assessment of the fatigue failure of an All Aluminium Alloy Cable (AAAC) for a 230 kV transmission line in the Center-West of Brazil
US5170662A (en) Balance for measuring the thrust of a turbojet engine
JP3223446B2 (en) Composite mechanical test equipment for optical connectors
Zhao et al. Aeolian vibration‐based structural health monitoring system for transmission line conductors
JP5551864B2 (en) Snow sampler
CN103033314A (en) Torsion calibration device and method for measurement beam used for ship model wave load test
CN105842096A (en) Electrical contact abrasion test unit for wind-power electric conduction slip ring
CN2819195Y (en) Fast-detachable internal force nondestructive tester of lattice framed member
US20180202909A1 (en) Pure bending mechanical test device and method for implementing same
CN108020199B (en) Crack deformation monitor
CN211425853U (en) Robot joint testing device
WO2016156277A1 (en) Mechanical strain extensometer
CA2423395A1 (en) Level monitoring sensor apparatus, solid structure sensor apparatus, and pendulum sensor apparatus
CN114705392B (en) Test equipment for wind displacement resistance strength of mechanical ventilation cooling tower
CN210323239U (en) Test system suitable for multi-gear transmission conductor deicing fault research
SU1336953A3 (en) Weight measuring device
CN111089783B (en) Shearing box connecting device
RU2292030C1 (en) Device for testing specimen made of shape memory material
CN209069543U (en) Deflection measuring apparatus
CN113340350A (en) Grating vector sensor, and device and method for monitoring ice-coated sag state of overhead line
Peschel et al. The new 1.1 MN· m torque standard machine of the PTB Braunschweig/Germany
KR102489485B1 (en) Angle Measuring device for measuring eccentric load of the power distribution pole
CN209992066U (en) Power transmission line vibration monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140523

R150 Certificate of patent or registration of utility model

Ref document number: 5551864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees