JPS58208637A - Testing device for galloping of transmission line - Google Patents

Testing device for galloping of transmission line

Info

Publication number
JPS58208637A
JPS58208637A JP57091918A JP9191882A JPS58208637A JP S58208637 A JPS58208637 A JP S58208637A JP 57091918 A JP57091918 A JP 57091918A JP 9191882 A JP9191882 A JP 9191882A JP S58208637 A JPS58208637 A JP S58208637A
Authority
JP
Japan
Prior art keywords
transmission line
acceleration
actuator
power transmission
servo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57091918A
Other languages
Japanese (ja)
Inventor
Tadao Tsujii
辻井 忠生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57091918A priority Critical patent/JPS58208637A/en
Publication of JPS58208637A publication Critical patent/JPS58208637A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the application of a galloping test to a laid power transmission line, by controlling, by a servo mechanism, the vibration displacement of an actuator of an exciter fitted to the spacer of a transmission line to be tested, and by exciting the transmission line with an acceleration of a target value. CONSTITUTION:An exciter 1 exciting a transmission line 2 with the vibration of an actuator 11 fitted to the spacer 4 of the transmission line 2, a servo mechanism consisting of a servo valve 21 controlling the vibration displacement of the actuator 11 and a servo amplifier 22, a waveform generating unit 29 supplying an input signal to the servo mechanism, a detecting means consisting of an acceleration detector 25 detecting a peak value of the transmission line 2 and an acceleration amplifier 26, a peak detecting circuit 27 feeding back a detected peak value and supplying an operation signal to the unit 29, and a comparison circuit 28, are provided. These units are constituted so that the transmission line laid actually can be subjected to excitation control at an arbitrary acceleration.

Description

【発明の詳細な説明】 2−発明は送電線のギヤロッピング試験装置に関テる。[Detailed description of the invention] 2-The invention relates to a transmission line gearropping test device.

送−称に低次の画石振動七晃生させて、その挙NjJk
試験するいわゆるキャロツビング試験においては、従来
、地上に固定された加振器によって送電線を加振する方
法を株ってきた。しかし、この従来の方法では、実際に
架f#烙れτいる送電線に加振器を実装して試験を行う
ことは、送電線の架線高さから考えτ実質的に不可能で
あり、従ってやむをえずベンチテストによって試験を行
っていた。
A low-order picture stone vibration is generated in the name of the sender, and the result is NjJk
Conventionally, in the so-called Carrotsbing test, the power transmission line is vibrated using a vibrator fixed on the ground. However, with this conventional method, it is virtually impossible to conduct a test by mounting an exciter on a transmission line that is actually suspended due to the height of the transmission line. Therefore, we had no choice but to conduct tests using bench tests.

本発明の目的は、実際に架線されている送電線にギヤロ
ッピング試験を施し得る装置を提供することにある。
An object of the present invention is to provide an apparatus that can perform a gearropping test on an actual overhead power transmission line.

本発明の特徴とするところは、試験しようとする送電線
に設けらnているスペーサに、アクチュエータの振動に
伴って所定の慣性力を発生し得る力ロ振器を取υ付け、
その加振器のアクチュエータの振′wJf位をサーボ機
構によって制御し、そのサーボ機構の操作信号を発生す
る波形発生装置に、送電線の加速度のピーク値をフィー
ドバックして目標値加速度で送電線か励孟さnるよう構
成したことにある。
The present invention is characterized by attaching a force vibrator capable of generating a predetermined inertial force in conjunction with the vibration of the actuator to a spacer provided on the power transmission line to be tested.
The vibration of the actuator of the exciter is controlled by a servo mechanism, and the peak value of the acceleration of the power transmission line is fed back to the waveform generator that generates the operation signal for the servo mechanism. The reason is that it is designed to encourage people.

以下、図面に従って不発明の実施セ1jを説明する。Hereinafter, the embodiment 1j of the invention will be explained according to the drawings.

第1図に本発明実施例の加振器を送を線に実装した状轢
を示す、 UOm器1は送電線2の両端叉持点3,3′のほぼ中央
部に取り付けられている。これは送電線の共振時におけ
る振巾の腹に加蚤点を設けると効率が良い為である。
FIG. 1 shows a state in which the vibrator according to the embodiment of the present invention is mounted on a power transmission line. The UOm device 1 is installed approximately at the center of the two ends of the power transmission line 2 at the crossing points 3, 3'. This is because it is more efficient to provide a stress point at the antinode of the amplitude when the power transmission line resonates.

第2図は加振器1の構造および取り付は状態を示す図で
ある。
FIG. 2 is a diagram showing the structure and attachment of the vibrator 1.

加振器1は、電気油圧サーボ方式の両ロンド形アクチュ
エータ11のピストン12の各ロッド12a、12bに
、方形の枠13を固着し、枠13の相対する2辺に分銅
14.14を取り付けて構成され、アクチュエータ11
は送電線2・・・2に設けられたスペーサ4に固着さ1
している。従って加振器1のアクチュエータ11が加振
されると、枠に固着された分銅が振動し所定の慣性力が
発生してスペーサ4を介して送電線2・・・2に作用す
るよう#;成されている、 第3図は不発明実施例の加振器の制御回路の画成を示す
ブロック図である。
The vibrator 1 has a rectangular frame 13 fixed to each rod 12a, 12b of a piston 12 of an electro-hydraulic servo type actuator 11, and weights 14 and 14 attached to two opposing sides of the frame 13. configured, actuator 11
is fixed to the spacer 4 provided on the power transmission line 2...2 1
are doing. Therefore, when the actuator 11 of the vibrator 1 is vibrated, the weight fixed to the frame vibrates and a predetermined inertial force is generated, which acts on the power transmission lines 2 through the spacer 4. FIG. 3 is a block diagram showing the configuration of a control circuit of an exciter according to an embodiment of the invention.

710振器1への作動油の供給量はサーボ弁21によっ
て制御され、サーボ弁21の操作量はサーボアンプ22
〃・ら供給される、加振器1のアクチュエータの変位は
変位慌出器23および変位アンプ24によって検出され
、サーボアンプ22の入力信号にフィードバックされて
サーボ機構を構成している。加振器1によって発生され
た慣性力は送電線に作用してこれを励娠するが、その送
電線の振動加速度は加速度検出器25および加速度アン
プ26によって検出され、ピーク検出回路27に出力さ
れている。ピーク検出口w1127は加速度検出値のピ
ーク値を検出して比較回路28に供給する。比較回F@
28にはまた、送tS加去の目標値たる加速度し定値が
入力されており、比較回路28はこの目標値とヒーク検
出値とから波形発生装置29に動作信号を供給する。波
形発生装置29にその動作信号に応じた波形全出力して
サーボアンプ22に供給している。
The amount of hydraulic oil supplied to the 710 shaker 1 is controlled by a servo valve 21, and the amount of operation of the servo valve 21 is controlled by a servo amplifier 22.
The displacement of the actuator of the vibrator 1 supplied from the above is detected by the displacement generator 23 and the displacement amplifier 24, and is fed back to the input signal of the servo amplifier 22 to form a servo mechanism. The inertial force generated by the vibrator 1 acts on the power transmission line and excites it, and the vibration acceleration of the power transmission line is detected by the acceleration detector 25 and the acceleration amplifier 26 and output to the peak detection circuit 27. ing. The peak detection port w1127 detects the peak value of the detected acceleration value and supplies it to the comparison circuit 28. Comparison episode F@
28 is also inputted with an acceleration constant value which is a target value for adding/subtracting the feed tS, and the comparator circuit 28 supplies an operating signal to the waveform generator 29 from this target value and the heak detection value. The waveform generator 29 outputs all the waveforms according to the operating signal and supplies them to the servo amplifier 22.

次に作用を述へる。第4図に不発明実施例の加振器10
逅拗震位とてれに起因して発圧される慣性力と、および
送電線の振動変位を示す作用説明1である。波形発生装
置29から出力され加振器1が変位ε2Lる波形は、送
電線の最大振巾付近で加振器1から発生される慣性力が
作用するように三角波としてい心。この刃口振器1の三
角波状変位によって略パルス状の慣性力が発生し、この
周期を送電線の固有振動数に一致させると送を線は共振
状態で励振される。この送電線の振動加速度のピーク値
が波ブし発生装置29にフィートノ(ツタされるので、
送!縁は希望する加速度で加振制御される。
Next, I will explain the effect. FIG. 4 shows a vibrator 10 according to an uninvented embodiment.
This is action explanation 1 showing the inertial force generated due to the persistent seismic position and sagging, and the vibration displacement of the power transmission line. The waveform outputted from the waveform generator 29 and caused by the displacement ε2L of the exciter 1 is a triangular wave so that the inertial force generated from the exciter 1 acts near the maximum amplitude of the power transmission line. A substantially pulse-like inertial force is generated by this triangular wave-like displacement of the edge vibrator 1, and when this period is made to match the natural frequency of the power transmission line, the transmission line is excited in a resonant state. The peak value of the vibration acceleration of this power transmission line waves and is transmitted to the generator 29, so
Send! The edge is controlled to vibrate at the desired acceleration.

なお、上述の実施例においては、1個の加振器を1帖方
向に固足し又加振する暮合に付いて述ベン″乙か、2個
の加振器を取り付&ブて2軸方向に加振し侍るようシこ
し、ての位相量を制御して加振方向を制御してもよいし
、ろるいは1個の加振器を例凡はモータ等によってその
姿勢を制御し得るよう暫こスペーサに取り司けて刀Ll
倣方向を制御してもよい○ツー1・こ刃口振器のアクチ
ュエータを揺動形のアクチュエータにすれ1′ユ、lJ
じり刀[I振試除を行うことかでさる〇 以上説明したよりに、本発明によれば、従来装置による
方法では不可能であった実際に架線されている送電線に
おけるキャロッピングのシュミレーションが可能となっ
た1、
In addition, in the above-mentioned embodiment, when one vibrator is fixed in one direction and vibrated, two vibrators are attached and vibrated. The vibration direction may be controlled by controlling the phase amount of the vibration in the axial direction, or the posture of a single vibration exciter is usually controlled by a motor, etc. I put the sword Ll in the spacer for a while so that I can do it.
The copying direction may be controlled.
As explained above, according to the present invention, it is possible to simulate caloping in an actual overhead power transmission line, which was not possible with methods using conventional equipment. 1,

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明実施例の加振器を送電線に取り付けた状
態を表わす図、第2図は本発明実施例の加振器の構造な
らびに送電線への取り付は方法を示す図、第8図は本発
明実施(lJの制御回路の構成を示すブロック図、第4
図は本発明実施例の作用説明図である。 1・・・加振器、       2・・・送電線、4・
・・スペーサ、 11・・・アクチュエータ、  13・・・枠、14・
・・分シ同、       21 ・サーボ弁、22・
・・サーボアンプ、   23・・・変位検出器、24
・・変位アノグ、    25・動口速度慣出器、26
・・・加速度アンプ、 27 ビーク恨出回齢、  28・・比教口始、29 
波形発年表置。 特許出願人  株式会社 島津製作所 代理人 fP埋士西1)新 2.4
Fig. 1 is a diagram showing the vibrator according to the non-invention embodiment attached to a power transmission line, Fig. 2 is a diagram showing the structure of the exciter according to the embodiment of the invention and the method for attaching it to the power transmission line, FIG. 8 is a block diagram showing the configuration of the control circuit of the present invention (IJ);
The figure is an explanatory diagram of the operation of the embodiment of the present invention. 1... Vibrator, 2... Power transmission line, 4...
... Spacer, 11... Actuator, 13... Frame, 14...
・Separately same, 21 ・Servo valve, 22・
... Servo amplifier, 23 ... Displacement detector, 24
・・Displacement anog, 25・Movement speed acclimatizer, 26
・・・Acceleration amplifier, 27 Beak grudge appearance age, 28...Hikyo opening, 29
Waveform chronology. Patent applicant: Shimadzu Corporation Agent: fP Saji Nishi 1) New 2.4

Claims (1)

【特許請求の範囲】[Claims] 送電線に設けられたスペーサに取り付けられアクチュエ
ータの振動に伴って所定の慣性力を発生して送電+Wを
刀口振する加振器と、入力信号に応じて上記加振器のア
クチュエータの振動変位を制御するサーボ機構と、その
サーボ機構に上記入力信号を供給する波形発生装置と、
上記慣性力により前像された送を線の振動加速度を検出
してそのピーク値を検出する手段と、そのピーク検出値
をフィードバックして上記波形発生装置に動作信号を供
給する手段を備え、実際に架憩された送電線を任慧の加
速度でMJJkL、得る様構成された送電線の千ヤロツ
ビング試験装置。
A vibrator is attached to a spacer provided on a power transmission line and vibrates the power +W by generating a predetermined inertial force as the actuator vibrates; and a vibratory displacement of the actuator of the vibrator according to an input signal. a servo mechanism to be controlled; a waveform generator that supplies the input signal to the servo mechanism;
It is equipped with means for detecting the peak value of the feed imaged by the inertial force by detecting the vibrational acceleration of the line, and means for feeding back the detected peak value to supply an operation signal to the waveform generator, This is a transmission line testing device configured to obtain MJJkL with a constant acceleration of a power transmission line suspended in the air.
JP57091918A 1982-05-28 1982-05-28 Testing device for galloping of transmission line Pending JPS58208637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57091918A JPS58208637A (en) 1982-05-28 1982-05-28 Testing device for galloping of transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57091918A JPS58208637A (en) 1982-05-28 1982-05-28 Testing device for galloping of transmission line

Publications (1)

Publication Number Publication Date
JPS58208637A true JPS58208637A (en) 1983-12-05

Family

ID=14039957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57091918A Pending JPS58208637A (en) 1982-05-28 1982-05-28 Testing device for galloping of transmission line

Country Status (1)

Country Link
JP (1) JPS58208637A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002702A (en) * 2010-06-17 2012-01-05 Central Res Inst Of Electric Power Ind Elastic supporting method and elastic supporting device for partial power transmission line model
CN102607786A (en) * 2012-03-20 2012-07-25 河南电力试验研究院 Galloping test machine power loading device for transmission tower tension change research
CN104848854A (en) * 2015-05-22 2015-08-19 国网河南省电力公司电力科学研究院 Power transmission line waving track measuring method based on light curtain sensor
CN108427827A (en) * 2018-02-05 2018-08-21 东南大学 A kind of conductor galloping track testing method integrated twice based on acceleration signal
CN113819950A (en) * 2021-09-26 2021-12-21 通鼎互联信息股份有限公司 Test equipment and test method for wind-induced vibration and galloping performance of optical cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002702A (en) * 2010-06-17 2012-01-05 Central Res Inst Of Electric Power Ind Elastic supporting method and elastic supporting device for partial power transmission line model
CN102607786A (en) * 2012-03-20 2012-07-25 河南电力试验研究院 Galloping test machine power loading device for transmission tower tension change research
CN104848854A (en) * 2015-05-22 2015-08-19 国网河南省电力公司电力科学研究院 Power transmission line waving track measuring method based on light curtain sensor
CN104848854B (en) * 2015-05-22 2017-11-28 国网河南省电力公司电力科学研究院 Transmission line galloping trajectory measurement method based on picking sensor
CN108427827A (en) * 2018-02-05 2018-08-21 东南大学 A kind of conductor galloping track testing method integrated twice based on acceleration signal
CN113819950A (en) * 2021-09-26 2021-12-21 通鼎互联信息股份有限公司 Test equipment and test method for wind-induced vibration and galloping performance of optical cable

Similar Documents

Publication Publication Date Title
CN106546399A (en) It is a kind of while simulating the vibration experiment of angular oscillation and linearly coupled
JPS58208637A (en) Testing device for galloping of transmission line
JP2023546396A (en) Probe for measuring the viscoelastic properties of the medium of interest
US2342116A (en) Vibrating feed for cigar machines
Varoto et al. Interaction between a vibration exciter and the structure under test
RU2037387C1 (en) Method of vibratory treatment of construction for changing strained and structural state of construction
JP3166499B2 (en) Bridge Exciter
RU2268782C1 (en) Screen shaker
JPS6147346B2 (en)
JP2006504601A (en) Device for monitoring the phase angle of multiple vibratory machines
JP2003315202A (en) Vibration testing method using self-advancing vibration generator
RU2004133002A (en) VIBROSITO RESONANT
JP2813453B2 (en) Low frequency exciter
JPH04264226A (en) Shaking tester
US3456885A (en) Sonic method and apparatus for demolition of structures
JP2006504601A5 (en)
JP4092878B2 (en) Shaking table, control device therefor, and control method
JP3282303B2 (en) Exciter
JP3281803B2 (en) Long period shaker
JPH1030951A (en) Measuring apparatus for mass
Van Den Berg et al. INVESTIGATING THE CAUSES OF NON-UNIFORM COOKIE FLOW IN VIBRATORY CONVEYORS: PART 1.
JPH0713420B2 (en) Vibration control device
JP3395271B2 (en) Impact vibration device
SU721330A1 (en) Vibration apparatus for concrete mixture compressing
JP3435167B2 (en) Multi-axis vibration device and control method thereof