JP5551576B2 - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP5551576B2
JP5551576B2 JP2010281436A JP2010281436A JP5551576B2 JP 5551576 B2 JP5551576 B2 JP 5551576B2 JP 2010281436 A JP2010281436 A JP 2010281436A JP 2010281436 A JP2010281436 A JP 2010281436A JP 5551576 B2 JP5551576 B2 JP 5551576B2
Authority
JP
Japan
Prior art keywords
refrigerant
oil
opening
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010281436A
Other languages
Japanese (ja)
Other versions
JP2012127608A (en
Inventor
憲弘 奥田
弘樹 成安
裕之 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2010281436A priority Critical patent/JP5551576B2/en
Publication of JP2012127608A publication Critical patent/JP2012127608A/en
Application granted granted Critical
Publication of JP5551576B2 publication Critical patent/JP5551576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷却機能を有するオイルセパレータを設けた空調機に関するものである。   The present invention relates to an air conditioner provided with an oil separator having a cooling function.

一般に、空調機において、圧縮機で使用される潤滑用のオイルは、冷媒に混じって吐出されるため、圧縮機の吐出側に設けたオイルセパレータで、冷媒から分離した後、再度圧縮機へと戻すように構成されている。   In general, in an air conditioner, oil for lubrication used in a compressor is discharged in a mixture with a refrigerant. Therefore, an oil separator provided on the discharge side of the compressor is separated from the refrigerant and then returned to the compressor. It is configured to return.

従来より、このオイルセパレータから圧縮機へとオイルを戻すのに当たり、室外熱交換器で凝縮した液冷媒を利用して冷却する冷凍装置の構成が開示されている(例えば、特許文献1参照)。   Conventionally, a configuration of a refrigeration apparatus that cools using liquid refrigerant condensed in an outdoor heat exchanger when returning oil from the oil separator to the compressor has been disclosed (see, for example, Patent Document 1).

特開2003−130477号公報JP 2003-130477 A

しかし、上記従来の冷凍装置は、オイル冷却に使用した冷媒が液化することが懸念されるため、2段圧縮型圧縮機の中間段に吸入する構成しか開示されておらず、オイル冷却に使用した冷媒を圧縮機吸入ラインへ導く構成を開示していない。   However, since there is a concern that the refrigerant used for oil cooling is liquefied, the above-described conventional refrigeration apparatus only discloses a configuration for sucking into an intermediate stage of a two-stage compression compressor, and is used for oil cooling. A configuration for guiding the refrigerant to the compressor suction line is not disclosed.

そこで、本発明は、冷媒の液化を防止しながらオイル冷却に使用した冷媒を圧縮機吸入ラインへ導くことを可能にする構成を提示する。   Therefore, the present invention presents a configuration that makes it possible to guide the refrigerant used for oil cooling to the compressor suction line while preventing liquefaction of the refrigerant.

上記課題を解決するための本発明の空調機は、圧縮機の吐出ラインにオイルセパレータを設け、オイルセパレータから圧縮機へのオイル戻しラインを設け、室外熱交換器または室内熱交換器で凝縮した液冷媒を貯留するレシーバを設け、前記オイル戻しラインに前記レシーバの液冷媒と前記圧縮機への戻しオイルとの熱交換器を設けた空調機において、前記オイル戻しラインに前記圧縮機の発停と連動して開閉する開閉弁を設け、前記熱交換器上流の冷媒ラインに液冷媒量を調整する電動膨張弁を設け、前記開閉弁下流にオイル温度センサを設け、前記オイル温度センサの検出温度が第1所定温度以上のときに前記電動膨張弁を所定開度だけ増加させ、前記オイル温度センサの検出温度が第1所定温度よりも低温の第2所定温度以下のときに前記電動膨張弁を所定開度だけ減少させ、前記圧縮機への冷媒吸入ラインに冷媒圧力センサを設け、前記熱交換器下流の冷媒ラインを前記圧縮機への冷媒吸入ラインと接続し、前記接続部の下流に冷媒温度センサを設け、前記冷媒温度センサと前記冷媒圧力センサのそれぞれの検出値に基づき算出される過熱度が所定値以下の状態を所定時間継続して検知したときには前記オイル温度センサの検出温度に基づいて定まる開度の増減指令に替えて前記過熱度に基づいて定まる所定開度だけ前記電動膨張弁の開度を減少させるものである。   The air conditioner of the present invention for solving the above problems is provided with an oil separator in the discharge line of the compressor, an oil return line from the oil separator to the compressor, and condensed in an outdoor heat exchanger or an indoor heat exchanger. In an air conditioner provided with a receiver for storing liquid refrigerant, and provided with a heat exchanger between the liquid refrigerant of the receiver and return oil to the compressor in the oil return line, the compressor is started and stopped in the oil return line. An on-off valve that opens and closes in conjunction with the heat exchanger, an electric expansion valve that adjusts the amount of liquid refrigerant is provided in the refrigerant line upstream of the heat exchanger, an oil temperature sensor is provided downstream of the on-off valve, and a detection temperature of the oil temperature sensor The electric expansion valve is increased by a predetermined opening when the temperature is equal to or higher than the first predetermined temperature, and the detected temperature of the oil temperature sensor is equal to or lower than the second predetermined temperature lower than the first predetermined temperature The electric expansion valve is decreased by a predetermined opening, a refrigerant pressure sensor is provided in the refrigerant suction line to the compressor, the refrigerant line downstream of the heat exchanger is connected to the refrigerant suction line to the compressor, and the connection A refrigerant temperature sensor is provided downstream of the unit, and when the degree of superheat calculated based on the detection values of the refrigerant temperature sensor and the refrigerant pressure sensor is continuously detected for a predetermined time, the oil temperature sensor The opening degree of the electric expansion valve is decreased by a predetermined opening degree determined based on the degree of superheat instead of an increase / decrease command of the opening degree determined based on the detected temperature.

また、上記課題を解決するための本発明は、上記空調機において、筒状部材の一方の開口からオイル戻し管を挿入し、前記筒状部材内部で一つまたは複数の曲がり部を設けて挿入面側からオイル戻し管を取出し、前記筒状部材の他方の開口から取出したオイル管を内部へ再挿入し、前記筒状部材内部で一つまたは複数の曲がり部を設けて再挿入面からオイル戻し管を再度取出し、再度取出したオイル管を前記圧縮機へのオイル戻しラインへ接続し、前記筒状部材の一方の開口から挿入したオイル戻し管と他方の開口から再挿入したオイル戻し管とを筒状部材の軸方向で離間し、前記筒状部材の一方の開口から挿入したオイル戻し管を一方の開口面で片持ち支持し、他方の開口から再挿入したオイル戻し管を他方の開口面で片持ち支持し、前記筒状部材に冷媒の流入管および流出管を設けて前記熱交換器を構成したものである。   Moreover, this invention for solving the said subject WHEREIN: In the said air conditioner, an oil return pipe | tube is inserted from one opening of a cylindrical member, and the one or some bending part is provided in the said cylindrical member, and it inserts it. Take out the oil return pipe from the surface side, reinsert the oil pipe taken out from the other opening of the cylindrical member into the inside, and provide one or more bent parts inside the cylindrical member to provide oil from the reinserting surface The return pipe is taken out again, the oil pipe taken out again is connected to the oil return line to the compressor, an oil return pipe inserted from one opening of the cylindrical member, and an oil return pipe reinserted from the other opening Are separated from each other in the axial direction of the cylindrical member, the oil return pipe inserted from one opening of the cylindrical member is cantilevered by one opening surface, and the oil return pipe reinserted from the other opening is supported by the other opening. Cantilevered on the surface, To Jo member provided inflow and outflow tubes of the refrigerant is obtained by forming the heat exchanger.

以上述べたように、請求項1記載の本発明によると、圧縮機への液バックを防止しながらオイル冷却にレシーバの液冷媒を使用することができる。   As described above, according to the present invention, the liquid refrigerant in the receiver can be used for oil cooling while preventing liquid back to the compressor.

請求項2記載の本発明によると、熱交換器をコンパクトにしながらオイルと冷媒との熱交換面積を確保でき、オイル戻し管の片持ち支持によって熱膨張に対する遊びも確保できる。   According to the second aspect of the present invention, the heat exchange area between the oil and the refrigerant can be ensured while the heat exchanger is made compact, and play against thermal expansion can be secured by the cantilever support of the oil return pipe.

本発明に係る空調機の冷房時の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of the refrigerant at the time of air conditioning of the air conditioner concerning the present invention. 本発明に係る空調機の暖房時の冷媒の流れを説明する冷媒回路図である。It is a refrigerant circuit figure explaining the flow of the refrigerant at the time of heating of the air conditioner concerning the present invention. (a)は熱交換器による冷媒の温度制御を説明する概略図、(b)は熱交換器周辺の冷媒回路を簡略化した冷媒回路図である。(A) is the schematic explaining the temperature control of the refrigerant | coolant by a heat exchanger, (b) is the refrigerant circuit figure which simplified the refrigerant circuit around a heat exchanger. 本発明に係る空調機に用いられる熱交換器の全体構成の概略を示す部分省略斜視図である。It is a partial abbreviation perspective view showing the outline of the whole composition of the heat exchanger used for the air conditioner concerning the present invention. 図4に示す熱交換器の冷媒通過経路とオイル通過経路とを説明する概略図である。It is the schematic explaining the refrigerant | coolant passage route and oil passage route of the heat exchanger shown in FIG.

以下、本発明の実施の形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1および図2は空調機1の冷媒回路の概略を示し、図3は同空調機1の冷媒とオイルとの熱交換器6による制御を示している。   1 and 2 schematically show the refrigerant circuit of the air conditioner 1, and FIG. 3 shows the control of the refrigerant and oil of the air conditioner 1 by the heat exchanger 6.

この空調機1は、圧縮機1a,1bの吐出ライン11にオイルセパレータ2を設け、オイルセパレータ2から圧縮機1a,1bへのオイル戻しライン12を設け、室外熱交換器3a,3bまたは室内熱交換器4で凝縮した液冷媒を貯留するレシーバ5を設け、オイル戻しライン12にレシーバ5の液冷媒と圧縮機1a,1bへの戻しオイルとの熱交換器6を設けて構成されており、熱交換器6の上流の冷媒ライン13に電動膨張弁EV1を設け、オイル戻しライン12に開閉弁SV1,SV2を設け、開閉弁SV1,SV2の下流にオイル温度センサTO1,TO2を設け、圧縮機1a,1bへの冷媒吸入ライン14に冷媒圧力センサPL1を設け、熱交換器6の下流の冷媒ライン15を圧縮機1a,1bへの冷媒吸入ライン14と接続し、この接続部分の下流に冷媒温度センサTS1を設けて構成されている。   The air conditioner 1 is provided with an oil separator 2 in the discharge line 11 of the compressors 1a and 1b, an oil return line 12 from the oil separator 2 to the compressors 1a and 1b, and outdoor heat exchangers 3a and 3b or indoor heat. A receiver 5 for storing the liquid refrigerant condensed in the exchanger 4 is provided, and a heat exchanger 6 for the liquid refrigerant in the receiver 5 and the return oil to the compressors 1a and 1b is provided in the oil return line 12, and is configured. The electric expansion valve EV1 is provided in the refrigerant line 13 upstream of the heat exchanger 6, the on-off valves SV1 and SV2 are provided on the oil return line 12, and the oil temperature sensors TO1 and TO2 are provided downstream of the on-off valves SV1 and SV2. A refrigerant pressure sensor PL1 is provided in the refrigerant suction line 14 to 1a, 1b, a refrigerant line 15 downstream of the heat exchanger 6 is connected to the refrigerant suction line 14 to the compressors 1a, 1b, That it is configured to provide a coolant temperature sensor TS1 downstream of the connecting portion.

この空調機1は、オイル温度センサTO1,TO2の検出温度が第1所定温度以上のときに電動膨張弁EV1を所定開度だけ増加させ、オイル温度センサTO1,TO2の検出温度が第1所定温度よりも低温の第2所定温度以下のときに電動膨張弁EV1を所定開度だけ減少させ、冷媒温度センサTS1と冷媒圧力センサPL1のそれぞれの検出値に基づき算出される過熱度が所定値以下の状態を所定時間継続して検知した場合はオイル温度センサTO1,TO2の検出温度に基づいて定まる開度の増減指令に替えて前記過熱度に基づいて定まる所定開度だけ前記電動膨張弁EV1の開度を減少させるようになされている。   The air conditioner 1 increases the electric expansion valve EV1 by a predetermined opening when the detected temperature of the oil temperature sensors TO1, TO2 is equal to or higher than the first predetermined temperature, and the detected temperature of the oil temperature sensors TO1, TO2 is the first predetermined temperature. When the temperature is lower than the second predetermined temperature lower than the temperature, the electric expansion valve EV1 is decreased by a predetermined opening degree, and the degree of superheat calculated based on the detected values of the refrigerant temperature sensor TS1 and the refrigerant pressure sensor PL1 is equal to or lower than the predetermined value. When the state is detected continuously for a predetermined time, the electric expansion valve EV1 is opened by a predetermined opening determined based on the degree of superheat instead of an opening / closing command determined based on the temperature detected by the oil temperature sensors TO1 and TO2. It is designed to reduce the degree.

この空調機1の暖房時および冷房時における冷媒およびオイルの流れについて説明する。   The flow of the refrigerant and oil during heating and cooling of the air conditioner 1 will be described.

空調機1は、圧縮機1a、1bで圧縮した冷媒を、当該圧縮機1a、1bからの吐出ライン11を介してオイルセパレータ2に導入し、冷媒とオイルに分離するようになされている。   The air conditioner 1 introduces the refrigerant compressed by the compressors 1a and 1b into the oil separator 2 via the discharge line 11 from the compressors 1a and 1b, and separates it into refrigerant and oil.

このうち、図1に示すように、暖房運転の場合、冷媒は、四方弁7を介して室内熱交換器4で放熱して凝縮液化した後、ブリッジ回路16を経てレシーバ5に貯留される。この液冷媒は、再度ブリッジ回路16を経て電動膨張弁EV2の開度調整により、室外熱交換器3a,3bで蒸発気化した後、アキュームレータ9に入る。この際、冷媒は、冷媒吸入ライン14に設けた圧力センサPL1と温度センサTS2とから冷媒の飽和蒸気圧温度を算出し、この算出温度よりもアキュームレータ9に入る手前の温度センサTS1から測定される実際の冷媒の温度が所定温度以上となるように電動膨張弁EV2の開度が制御されて供給される。   Among these, as shown in FIG. 1, in the case of heating operation, the refrigerant dissipates heat in the indoor heat exchanger 4 through the four-way valve 7 and is condensed and liquefied, and then stored in the receiver 5 via the bridge circuit 16. The liquid refrigerant passes through the bridge circuit 16 again and is evaporated and evaporated in the outdoor heat exchangers 3a and 3b by adjusting the opening degree of the electric expansion valve EV2, and then enters the accumulator 9. At this time, the refrigerant calculates the saturated vapor pressure temperature of the refrigerant from the pressure sensor PL1 and the temperature sensor TS2 provided in the refrigerant suction line 14, and is measured from the temperature sensor TS1 before entering the accumulator 9 from the calculated temperature. The opening of the electric expansion valve EV2 is controlled and supplied so that the actual temperature of the refrigerant becomes equal to or higher than a predetermined temperature.

それでも、このアキュームレータ9に入る手前の温度センサTS1から測定される実際の冷媒の過熱度が小さすぎる場合は、電動膨張弁EV3の開度制御によりサブエバポレータ8へと冷媒を流し、当該サブエバポレータ8においてエンジン(図示省略)の廃熱によって充分に過熱されたガス冷媒としてからアキュームレータ9に供給される。この際、サブエバポレータ8を経て供給される冷媒の温度は温度センサTS3によって測定される。ここで、電動膨張弁EV3の開度制御は、温度センサTS3から測定される実際の冷媒の温度が温度センサTS1から測定される実際の冷媒温度よりも所定温度以上となるように行われる。こうすることで、電動膨張弁EV2の開度を保ちながら、即ち、室外熱交換器3a、3bへの冷媒流量を確保してサブエバポレータ8での圧損を抑えながら、合流後の冷媒の過熱度を所定温度に維持できる。   If the actual degree of superheat of the refrigerant measured from the temperature sensor TS1 before entering the accumulator 9 is still too small, the refrigerant is caused to flow to the sub-evaporator 8 by controlling the opening degree of the electric expansion valve EV3. In FIG. 1, the gas refrigerant is sufficiently heated by the waste heat of the engine (not shown) and then supplied to the accumulator 9. At this time, the temperature of the refrigerant supplied through the sub-evaporator 8 is measured by the temperature sensor TS3. Here, the opening degree control of the electric expansion valve EV3 is performed such that the actual refrigerant temperature measured from the temperature sensor TS3 is equal to or higher than the actual refrigerant temperature measured from the temperature sensor TS1. In this way, while maintaining the opening degree of the electric expansion valve EV2, that is, while ensuring the refrigerant flow rate to the outdoor heat exchangers 3a and 3b and suppressing the pressure loss in the sub-evaporator 8, the degree of superheat of the refrigerant after merging Can be maintained at a predetermined temperature.

また、上記した室外熱交換器3a,3bやサブエバポレータ8の経路とは別にレシーバ5内の液冷媒は、電動膨張弁EV1の開度調整によって冷媒ライン13から熱交換器6に供給される。この熱交換器6に供給された冷媒が、蒸発気化することでオイルを冷却した後、冷媒ライン15から冷媒吸入ライン14に合流し、その後、アキュームレータ9へ入る。この冷媒ライン15が冷媒吸入ライン14に合流する接続部は、サブエバポレータ8からの冷媒が冷媒吸入ライン14に合流する接続部よりも下流側に設けられている。ただし、この冷媒ライン15が冷媒吸入ライン14に合流する接続部は、サブエバポレータ8からの冷媒が冷媒吸入ライン14に合流する接続部よりも上流側に設けられていてもよい。   Separately from the paths of the outdoor heat exchangers 3a and 3b and the sub-evaporator 8, the liquid refrigerant in the receiver 5 is supplied from the refrigerant line 13 to the heat exchanger 6 by adjusting the opening of the electric expansion valve EV1. After the refrigerant supplied to the heat exchanger 6 evaporates and cools the oil, it joins the refrigerant line 15 to the refrigerant suction line 14 and then enters the accumulator 9. The connection portion where the refrigerant line 15 merges with the refrigerant suction line 14 is provided on the downstream side of the connection portion where the refrigerant from the sub-evaporator 8 merges with the refrigerant suction line 14. However, the connecting portion where the refrigerant line 15 joins the refrigerant suction line 14 may be provided on the upstream side of the connecting portion where the refrigerant from the sub-evaporator 8 joins the refrigerant suction line 14.

その後、冷媒は、アキュームレータ9から冷媒吸入ライン14を通って再度圧縮機1a、1bへと吸引される。   Thereafter, the refrigerant is sucked again from the accumulator 9 through the refrigerant suction line 14 to the compressors 1a and 1b.

一方、オイルは、オイル戻しライン12に設けられた熱交換器6で冷却された後、開閉弁SV1,SV2、キャピラリCT1,CT2、オイル温度センサTO1,TO2を経て圧縮機1a、1bへと返送される。   On the other hand, the oil is cooled by the heat exchanger 6 provided in the oil return line 12, and then returned to the compressors 1a and 1b via the on-off valves SV1 and SV2, capillaries CT1 and CT2, and oil temperature sensors TO1 and TO2. Is done.

冷房運転の場合、図2に示すように、冷媒は、四方弁7を介して室外熱交換器3a,3bで放熱して凝縮液化した後、レシーバ5に貯留される。この液冷媒は、ブリッジ回路16を経て電動膨張弁41の開度調整により、室内熱交換器4で蒸発気化した後、アキュームレータ9に入る。このアキュームレータ9に入ったガス冷媒の過熱度が小さすぎる場合は、電動膨張弁EV3の開度制御によりサブエバポレータ8へと冷媒を流し、当該サブエバポレータ8においてエンジン(図示省略)の廃熱によって充分に過熱されたガス冷媒としてからアキュームレータ9に供給される。   In the case of the cooling operation, as shown in FIG. 2, the refrigerant radiates heat in the outdoor heat exchangers 3 a and 3 b through the four-way valve 7 to condense and is stored in the receiver 5. This liquid refrigerant evaporates and evaporates in the indoor heat exchanger 4 by adjusting the opening degree of the electric expansion valve 41 through the bridge circuit 16 and then enters the accumulator 9. When the degree of superheat of the gas refrigerant that has entered the accumulator 9 is too small, the refrigerant is caused to flow to the sub-evaporator 8 by controlling the opening degree of the electric expansion valve EV3, and the sub-evaporator 8 is sufficient due to waste heat of the engine (not shown). Is supplied to the accumulator 9 after being heated as a gas refrigerant.

また、上記した室外熱交換器3やサブエバポレータ8の経路とは別にレシーバ5内の液冷媒は、電動膨張弁EV1の開度調整によって熱交換器6でオイルを冷却して蒸発気化した後、アキュームレータ9へ入る。   Further, separately from the path of the outdoor heat exchanger 3 and the sub-evaporator 8, the liquid refrigerant in the receiver 5 evaporates and evaporates by cooling the oil in the heat exchanger 6 by adjusting the opening of the electric expansion valve EV1. Enter the accumulator 9.

この場合もオイルは、オイル戻しライン12に設けられた熱交換器6で冷却された後、開閉弁SV1,SV2、キャピラリCT1,CT2、オイル温度センサTO1,TO2を経て圧縮機1a、1bへと返送される。   Also in this case, after the oil is cooled by the heat exchanger 6 provided in the oil return line 12, it passes through the on-off valves SV1, SV2, capillaries CT1, CT2, and oil temperature sensors TO1, TO2 to the compressors 1a, 1b. Will be returned.

なお、圧縮機1a,1bは、一台のみで運転する場合もあれば、二台ともに運転する場合もある。一台のみの運転の場合は、開閉弁SV2が閉じられて圧縮機1bへのオイルの供給が停止され、圧縮機1aのみの運転となる。この場合、圧縮機1aから吐出された冷媒は、圧縮機1bの下流側に設けられた逆止弁CV1によって圧縮機1bへの逆流が防止される。開閉弁SV1,SV2の開閉は、圧縮機1a,1bの発停に連動するようになされている。   The compressors 1a and 1b may be operated by only one unit, or may be operated by both units. In the case of operation of only one unit, the on-off valve SV2 is closed, the supply of oil to the compressor 1b is stopped, and only the compressor 1a is operated. In this case, the refrigerant discharged from the compressor 1a is prevented from flowing back to the compressor 1b by the check valve CV1 provided on the downstream side of the compressor 1b. Opening and closing of the on-off valves SV1 and SV2 is interlocked with the start and stop of the compressors 1a and 1b.

次に、この空調機1におけるオイルの温度制御について説明する。   Next, oil temperature control in the air conditioner 1 will be described.

圧縮機1a,1bの潤滑用のオイルは、高温高酸化環境下で劣化が促進される。圧縮機1a,1bのメカシール部は軸の摺動による発熱と外気とのシール面であるため、劣化によりスラッジが発生する。そこで、オイルを冷媒で冷却することで、空調犠牲を伴わずにスラッジ発生を防止する。具体的には、図3に示すように、圧縮機1a,1bでスラッジが発生する温度帯(75〜60℃程度)にならないように、レシーバ5から熱交換器6へ流れる冷媒の流量を電動膨張弁EV1で制御して熱交換器6でのオイルの冷却具合を制御する。この際、電動膨張弁EV1の開度制御は、オイル戻しライン12に設けられた温度センサTO1,TO2の温度に基づいて行われる。この温度センサTO1,TO1の何れか(一台運転の場合はTO1)の検出温度が53℃以上ならば、電動膨張弁EV1を所定ステップ分開けて熱交換器6による冷却効率を高める。この検出温度が48度以下ならば、電動膨張弁EV1を所定ステップ分閉じて熱交換器6による冷却効率を低下させる。ただし、冷媒吸入ライン14に設けられた温度センサTS1の過熱度が3.5℃以下であれば、温度センサTO1,TO2の温度に基づく電動膨張弁EV1の制御と無関係に、当該電動膨張弁EV1は、所定ステップ分閉じられる。   Degradation of the oil for lubricating the compressors 1a and 1b is promoted in a high temperature and high oxidation environment. Since the mechanical seal portion of the compressors 1a and 1b is a seal surface between heat generated by sliding of the shaft and the outside air, sludge is generated due to deterioration. Therefore, by cooling the oil with a refrigerant, sludge generation is prevented without sacrificing air conditioning. Specifically, as shown in FIG. 3, the flow rate of the refrigerant flowing from the receiver 5 to the heat exchanger 6 is electrically controlled so as not to be in a temperature range (about 75 to 60 ° C.) where sludge is generated in the compressors 1a and 1b. The degree of oil cooling in the heat exchanger 6 is controlled by controlling the expansion valve EV1. At this time, the opening degree control of the electric expansion valve EV1 is performed based on the temperature of the temperature sensors TO1 and TO2 provided in the oil return line 12. If the detected temperature of either one of the temperature sensors TO1 and TO1 (TO1 in the case of single-unit operation) is 53 ° C. or higher, the electric expansion valve EV1 is opened by a predetermined step to increase the cooling efficiency by the heat exchanger 6. If this detected temperature is 48 degrees or less, the electric expansion valve EV1 is closed for a predetermined step to reduce the cooling efficiency by the heat exchanger 6. However, if the degree of superheat of the temperature sensor TS1 provided in the refrigerant suction line 14 is 3.5 ° C. or less, the electric expansion valve EV1 is independent of the control of the electric expansion valve EV1 based on the temperature of the temperature sensors TO1 and TO2. Is closed for a predetermined number of steps.

これにより、空調機1は、メカシール部でのオイルスラッジの発生を防止することができるために、圧縮機1a,1bの回転数を低下させるといったことをしなくても、圧縮機1a,1bへ戻されるオイルを冷却することで、メカシール部の温度上昇を抑え、スラッジの発生を防止することができることとなる。また、オイルを冷却する冷媒は、冷媒吸入ライン14に設けた温度センサTS1によって冷媒の過熱度を確認しながらオイルを冷却する構成となっているので、液冷媒のまま圧縮機1a,1bへと吸入される、いわゆる液バックを防止することができる。   Thereby, since the air conditioner 1 can prevent the generation of oil sludge at the mechanical seal portion, the compressor 1a, 1b can be moved to the compressor 1a, 1b without reducing the rotational speed of the compressors 1a, 1b. By cooling the returned oil, the temperature rise of the mechanical seal portion can be suppressed and the generation of sludge can be prevented. In addition, the refrigerant that cools the oil is configured to cool the oil while checking the degree of superheat of the refrigerant by the temperature sensor TS1 provided in the refrigerant suction line 14, so that the refrigerant remains as a liquid refrigerant to the compressors 1a and 1b. So-called liquid back that is inhaled can be prevented.

なお、本実施の形態において、スラッジが発生する温度帯として75〜60℃程度を例示しているが、この温度帯については、あくまでも例示であって、使用するオイルや冷媒、空調機1の設置環境などによって異なるため、特にこのような温度帯に限定されるものではない。また、本実施の形態において、オイルは、オイル戻しライン12に設けられた温度センサTO1,TO2によって、48〜53℃の範囲内となるように制御しているが、この温度については、スラッジが発生する温度帯(75〜60℃程度)を考慮して設定された温度帯であって、あくまでも例示である。したがって、スラッジが発生する温度帯が75〜60℃程度であっても、冷媒回路の構成によってはオイルの温度を48〜53℃の範囲とは別の温度帯で制御しなければならない場合があり、使用するオイルや冷媒、空調機1の設置環境などによって異なるため、特にこのような温度帯に限定されるものではない。さらに、本実施の形態では、温度センサTS1によって測定される冷媒の過熱度が3.5℃以下であれば、電動膨張弁EV1を所定ステップ分閉じるようになされているが、この設定温度についても、あくまでも例示であって、使用するオイルや冷媒、空調機1の設置環境、冷媒回路の構成などによって異なるため、特にこのような温度に限定されるものではない。   In addition, in this Embodiment, although about 75-60 degreeC is illustrated as a temperature range which sludge generate | occur | produces, about this temperature range, it is an illustration to the last, installation of the oil and refrigerant to be used, and the air conditioner 1 Since it differs depending on the environment, it is not particularly limited to such a temperature range. In the present embodiment, the oil is controlled to be within a range of 48 to 53 ° C. by the temperature sensors TO1 and TO2 provided in the oil return line 12, but for this temperature, the sludge is This is a temperature range set in consideration of the generated temperature range (about 75 to 60 ° C.), and is merely an example. Therefore, even if the temperature range where sludge is generated is about 75 to 60 ° C., the oil temperature may have to be controlled in a temperature range different from the range of 48 to 53 ° C. depending on the configuration of the refrigerant circuit. Since it differs depending on the oil and refrigerant to be used, the installation environment of the air conditioner 1, etc., it is not particularly limited to such a temperature range. Furthermore, in the present embodiment, if the degree of superheat of the refrigerant measured by the temperature sensor TS1 is 3.5 ° C. or less, the electric expansion valve EV1 is closed for a predetermined step. However, it is merely an example, and is not particularly limited to such a temperature because it varies depending on the oil and refrigerant to be used, the installation environment of the air conditioner 1, the configuration of the refrigerant circuit, and the like.

次に、この空調機1で用いられる熱交換器6について説明する。   Next, the heat exchanger 6 used in the air conditioner 1 will be described.

図4は、熱交換器6の全体構成の概略を示し、図5は同熱交換器6の内部構成の概略を示している。   FIG. 4 shows the outline of the overall configuration of the heat exchanger 6, and FIG. 5 shows the outline of the internal configuration of the heat exchanger 6.

この熱交換器6は、筒状部材61と、この筒状部材61内に設けられたオイル戻し管62とによって構成されている。   The heat exchanger 6 includes a tubular member 61 and an oil return pipe 62 provided in the tubular member 61.

筒状部材61は、長尺の円筒状に形成されており、その外周面の両端近傍に冷媒の入口管61aおよび出口管61bが設けられている。筒状部材61の両端は、オイル戻し管62をそれぞれ片持ち支持する蓋部材63a,63bによって閉塞される。   The cylindrical member 61 is formed in a long cylindrical shape, and a refrigerant inlet pipe 61a and an outlet pipe 61b are provided in the vicinity of both ends of the outer peripheral surface thereof. Both ends of the cylindrical member 61 are closed by lid members 63a and 63b that cantilever-support the oil return pipe 62, respectively.

オイル戻し管62は、筒状部材61内に収納される長尺に形成された内部溝付きの細管によって構成されている。このオイル戻し管62は、筒状部材61の一端から内部に挿入され、当該筒状部材61の中央よりも一端寄りの位置で一端側に折り返され、筒状部材61の一端から外に取り出された後、何度かこの筒状部材61の一端部の外側と中央よりも一端寄りの位置との間を折り返されて筒状部材61の一端側半体にオイル戻し管62が充填された充填部62aを構成するようになされている。また、オイル戻し管62は、筒状部材61の他端部でも同様に、この筒状部材61の他端部の外側と中央よりも他端寄りの位置との間を折り返されて筒状部材61の他端側半体にオイル戻し管62が充填された充填部62bを構成するようになされている。オイル戻し管62は、この筒状部材61の一端部に設けられた充填部62aと他端部に設けられた充填部62bとが、筒状部材61の外側に設けられた連絡部62cによって連絡されており、これによって一本のオイル戻し経路を形成するようになされている。すなわち、オイル戻し管62の一端側のオイル入口621から入ったオイルは充填部62aを通過し、連絡部62cを通過した後、充填部62bを通過して他端側のオイル出口622から排出される。オイル入口621とオイル出口622とは逆であっても良い。   The oil return pipe 62 is constituted by a long thin tube with an internal groove that is accommodated in the cylindrical member 61. The oil return pipe 62 is inserted inside from one end of the cylindrical member 61, folded back to one end side at a position closer to one end than the center of the cylindrical member 61, and taken out from one end of the cylindrical member 61. After that, the tubular member 61 is folded between the outer side of the one end portion and a position closer to the one end than the center several times, and the one end side half of the tubular member 61 is filled with the oil return pipe 62 The portion 62a is configured. Similarly, the oil return pipe 62 is also folded at the other end of the cylindrical member 61 between the outside of the other end of the cylindrical member 61 and a position closer to the other end than the center. A filling portion 62b in which an oil return pipe 62 is filled in the other end side half of 61 is configured. In the oil return pipe 62, a filling portion 62a provided at one end of the tubular member 61 and a filling portion 62b provided at the other end are communicated by a connecting portion 62c provided outside the tubular member 61. Thus, a single oil return path is formed. That is, the oil that has entered from the oil inlet 621 on one end side of the oil return pipe 62 passes through the filling portion 62a, passes through the connecting portion 62c, passes through the filling portion 62b, and is discharged from the oil outlet 622 on the other end side. The The oil inlet 621 and the oil outlet 622 may be reversed.

なお、連絡部62cには、途中に、筒状部材61の長さ方向に沿わずに斜め方向に曲げられた屈曲部62dが設けられており、熱による膨張や収縮で連絡部62cの間の距離が変化しても、屈曲部62dで吸収して対応できるようになされている。また、充填部62a,62bも、蓋部材63a,63bに片持ち支持されており、しかも、筒状部材61の中央は空隙が形成されているので、熱による膨張や収縮でオイル戻し管62の長さが変化しても対応できるようになされている。さらに、充填部62a,62bは、隣接するオイル戻し管62同士が接触して熱交換効率が低下しないようにフレート64によって間隙が維持され、かつ、このプレート64によって筒状部材61内を流れる冷媒の流れを乱して熱交換効率の向上を図るようになされている。   In addition, the connecting portion 62c is provided with a bent portion 62d that is bent in an oblique direction without being along the length direction of the tubular member 61, and is connected between the connecting portions 62c by expansion or contraction due to heat. Even if the distance changes, the bent portion 62d can absorb it and cope with it. Further, the filling parts 62a and 62b are also cantilevered by the lid members 63a and 63b, and a gap is formed in the center of the cylindrical member 61. Therefore, the oil return pipe 62 is expanded or contracted by heat. Even if the length is changed, it can cope. Further, the filling portions 62a and 62b are refrigerants whose gaps are maintained by the fret 64 so that the heat exchange efficiency is not lowered due to the contact between the adjacent oil return pipes 62, and the refrigerant flowing in the cylindrical member 61 by the plate 64. The heat exchange efficiency is improved by disturbing the flow of air.

この熱交換器6によると、コンパクトな形状ながらオイルと冷媒との熱交換面積を確保でき、しかもオイル戻し管62を筒状部材61の両端でそれぞれ片持ち支持することによって熱膨張に対する遊びも確保することができる。したがって、本願発明の空調機1に好適に用いることができる。   According to this heat exchanger 6, a heat exchange area between the oil and the refrigerant can be ensured in a compact shape, and play for thermal expansion is secured by cantilevering the oil return pipe 62 at both ends of the cylindrical member 61. can do. Therefore, it can be suitably used for the air conditioner 1 of the present invention.

なお、熱交換器6の形状として、長尺の円筒状に形成された筒状部材61を用いて、縦長の熱交換器6を構成しているが、この熱交換器6の形状としては、特にこのような形状のものに限定されるものではなく、空調機1の空きスペースに応じた適宜の形状に形成することができる。   In addition, as the shape of the heat exchanger 6, the vertically long heat exchanger 6 is configured by using the cylindrical member 61 formed in a long cylindrical shape. As the shape of the heat exchanger 6, It is not limited to the thing of such a shape in particular, It can form in the appropriate shape according to the empty space of the air conditioner 1.

本発明に係る空調機は、オイルセパレータを有する各種の空調機に用いられる。   The air conditioner according to the present invention is used for various air conditioners having an oil separator.

1 空調機
1a、1b 圧縮機
11 吐出ライン
12 オイル戻しライン
13 冷媒ライン
14 冷媒吸入ライン
15 冷媒ライン
2 オイルセパレータ
3 室外熱交換器
4 室内熱交換器
5 レシーバ
6 熱交換器
TO1,TO2 オイル温度センサ
TS1 冷媒温度センサ
SV1,SV2 開閉弁
PL1 冷媒圧力センサ
EV1 電動膨張弁
DESCRIPTION OF SYMBOLS 1 Air conditioner 1a, 1b Compressor 11 Discharge line 12 Oil return line 13 Refrigerant line 14 Refrigerant suction line 15 Refrigerant line 2 Oil separator 3 Outdoor heat exchanger 4 Indoor heat exchanger 5 Receiver 6 Heat exchanger TO1, TO2 Oil temperature sensor TS1 Refrigerant temperature sensor SV1, SV2 On-off valve PL1 Refrigerant pressure sensor EV1 Electric expansion valve

Claims (2)

圧縮機の吐出ラインにオイルセパレータを設け、オイルセパレータから圧縮機へのオイル戻しラインを設け、室外熱交換器または室内熱交換器で凝縮した液冷媒を貯留するレシーバを設け、前記オイル戻しラインに前記レシーバの液冷媒と前記圧縮機への戻しオイルとの熱交換器を設けた空調機において、
前記オイル戻しラインに前記圧縮機の発停と連動して開閉する開閉弁を設け、
前記熱交換器上流の冷媒ラインに液冷媒量を調整する電動膨張弁を設け、
前記開閉弁下流にオイル温度センサを設け、
前記オイル温度センサの検出温度が第1所定温度以上のときに前記電動膨張弁を所定開度だけ増加させ、
前記オイル温度センサの検出温度が第1所定温度よりも低温の第2所定温度以下のときに前記電動膨張弁を所定開度だけ減少させ、
前記圧縮機への冷媒吸入ラインに冷媒圧力センサを設け、
前記熱交換器下流の冷媒ラインを前記圧縮機への冷媒吸入ラインと接続し、
前記接続部の下流に冷媒温度センサを設け、
前記冷媒温度センサと前記冷媒圧力センサのそれぞれの検出値に基づき算出される過熱度が所定値以下の状態を所定時間継続して検知したときには前記オイル温度センサの検出温度に基づいて定まる開度の増減指令に替えて前記過熱度に基づいて定まる所定開度だけ前記電動膨張弁の開度を減少させることを特徴とする空調機。
An oil separator is provided in the discharge line of the compressor, an oil return line from the oil separator to the compressor is provided, a receiver that stores liquid refrigerant condensed in the outdoor heat exchanger or the indoor heat exchanger is provided, and the oil return line In the air conditioner provided with a heat exchanger between the liquid refrigerant of the receiver and the return oil to the compressor,
An opening / closing valve that opens and closes in conjunction with the start / stop of the compressor is provided in the oil return line,
An electric expansion valve for adjusting the amount of liquid refrigerant is provided in the refrigerant line upstream of the heat exchanger,
An oil temperature sensor is provided downstream of the on-off valve,
When the temperature detected by the oil temperature sensor is equal to or higher than a first predetermined temperature, the electric expansion valve is increased by a predetermined opening degree,
When the detected temperature of the oil temperature sensor is equal to or lower than a second predetermined temperature lower than the first predetermined temperature, the electric expansion valve is decreased by a predetermined opening degree,
Provide a refrigerant pressure sensor in the refrigerant suction line to the compressor,
Connecting a refrigerant line downstream of the heat exchanger with a refrigerant suction line to the compressor;
A refrigerant temperature sensor is provided downstream of the connection part,
When the degree of superheat calculated based on the detected values of the refrigerant temperature sensor and the refrigerant pressure sensor is continuously detected for a predetermined time, the degree of opening determined based on the detected temperature of the oil temperature sensor An air conditioner that reduces the opening of the electric expansion valve by a predetermined opening determined based on the degree of superheat instead of an increase / decrease command.
請求項1記載の空調機において、
筒状部材の一方の開口からオイル戻し管を挿入し、前記筒状部材内部で一つまたは複数の曲がり部を設けて挿入面側からオイル戻し管を取出し、前記筒状部材の他方の開口から取出したオイル管を内部へ再挿入し、前記筒状部材内部で一つまたは複数の曲がり部を設けて再挿入面からオイル戻し管を再度取出し、再度取出したオイル管を前記圧縮機へのオイル戻しラインへ接続し、前記筒状部材の一方の開口から挿入したオイル戻し管と他方の開口から再挿入したオイル戻し管とを筒状部材の軸方向で離間し、前記筒状部材の一方の開口から挿入したオイル戻し管を一方の開口面で片持ち支持し、他方の開口から再挿入したオイル戻し管を他方の開口面で片持ち支持し、前記筒状部材に冷媒の流入管および流出管を設けて前記熱交換器を構成したことを特徴とする空調機。
In the air conditioner according to claim 1,
An oil return pipe is inserted from one opening of the cylindrical member, one or a plurality of bent portions are provided inside the cylindrical member, the oil return pipe is taken out from the insertion surface side, and the other opening of the cylindrical member is The taken out oil pipe is reinserted into the interior, one or more bent portions are provided inside the cylindrical member, the oil return pipe is taken out again from the reinsertion surface, and the oil pipe taken out again is supplied to the compressor. An oil return pipe inserted from one opening of the cylindrical member and an oil return pipe reinserted from the other opening are separated in the axial direction of the cylindrical member, and connected to the return line. The oil return pipe inserted from the opening is cantilevered on one opening face, and the oil return pipe reinserted from the other opening is cantilevered on the other opening face. A pipe is provided to configure the heat exchanger Air conditioner, characterized in that the.
JP2010281436A 2010-12-17 2010-12-17 air conditioner Active JP5551576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281436A JP5551576B2 (en) 2010-12-17 2010-12-17 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281436A JP5551576B2 (en) 2010-12-17 2010-12-17 air conditioner

Publications (2)

Publication Number Publication Date
JP2012127608A JP2012127608A (en) 2012-07-05
JP5551576B2 true JP5551576B2 (en) 2014-07-16

Family

ID=46644855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281436A Active JP5551576B2 (en) 2010-12-17 2010-12-17 air conditioner

Country Status (1)

Country Link
JP (1) JP5551576B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6537015B2 (en) * 2015-03-19 2019-07-03 Toto株式会社 Solid oxide fuel cell device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3820350A (en) * 1972-12-14 1974-06-28 Stal Refrigeration Ab Rotary compressor with oil cooling
JPS5529011Y2 (en) * 1975-03-18 1980-07-10
JPS6020673B2 (en) * 1977-06-02 1985-05-23 松下電器産業株式会社 Heat exchanger tube with two paths
JPS5666681U (en) * 1979-10-19 1981-06-03
JPH06123500A (en) * 1992-10-12 1994-05-06 Hitachi Ltd Freezing apparatus
JP2001280719A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating system
JP3788360B2 (en) * 2001-08-01 2006-06-21 ダイキン工業株式会社 Refrigeration equipment
JP2006300341A (en) * 2005-04-15 2006-11-02 Hitachi Ltd Refrigerating apparatus
JP5086788B2 (en) * 2007-12-11 2012-11-28 三菱重工業株式会社 Heat pump air conditioner

Also Published As

Publication number Publication date
JP2012127608A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5446064B2 (en) Heat exchange system
JP5326488B2 (en) Air conditioner
JP5244420B2 (en) Turbo refrigerator, heat source system, and control method thereof
JP5040975B2 (en) Leakage diagnostic device
JP5130910B2 (en) Air conditioner and refrigerant quantity determination method
JP6292480B2 (en) Refrigeration equipment
JP4776438B2 (en) Refrigeration cycle
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
ITRM20070158A1 (en) REFRIGERATING SYSTEM FOR A TRANSCRITIC CYCLE WITH ECONOMISER AND LOW PRESSURE ACCUMULATOR
CN111412677A (en) Cab CO2Refrigerant frequency conversion air conditioner
EP3469271A1 (en) Cooling system with adjustable internal heat exchanger
WO2014038028A1 (en) Refrigerating device
JP2014190614A (en) Turbo refrigerator
JP5551576B2 (en) air conditioner
JP2014070783A (en) Refrigerator and added cooling medium volume adjusting device for refrigerator
JP2007127353A (en) Air-conditioner
JP2008111585A (en) Air conditioner
JP5659909B2 (en) Heat pump equipment
JP6273838B2 (en) Heat exchanger
JP2012145307A (en) Hermetic compressor
JP6410935B2 (en) Air conditioner
JP2015078777A (en) Pipe assembly and refrigeration device
JP5571429B2 (en) Gas-liquid heat exchange type refrigeration equipment
JP2017053599A (en) Refrigeration device
JP2008111584A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140522

R150 Certificate of patent or registration of utility model

Ref document number: 5551576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350